JP2006037211A - Method for heat-treating aluminum alloy casting - Google Patents
Method for heat-treating aluminum alloy casting Download PDFInfo
- Publication number
- JP2006037211A JP2006037211A JP2004223424A JP2004223424A JP2006037211A JP 2006037211 A JP2006037211 A JP 2006037211A JP 2004223424 A JP2004223424 A JP 2004223424A JP 2004223424 A JP2004223424 A JP 2004223424A JP 2006037211 A JP2006037211 A JP 2006037211A
- Authority
- JP
- Japan
- Prior art keywords
- casting
- aluminum alloy
- temperature
- heat treatment
- solution treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005266 casting Methods 0.000 title claims abstract description 114
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 69
- 230000032683 aging Effects 0.000 claims abstract description 31
- 230000008018 melting Effects 0.000 claims abstract description 29
- 238000002844 melting Methods 0.000 claims abstract description 29
- 238000004881 precipitation hardening Methods 0.000 claims abstract description 14
- 239000011777 magnesium Substances 0.000 claims description 12
- 238000007664 blowing Methods 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 74
- 229910045601 alloy Inorganic materials 0.000 description 22
- 239000000956 alloy Substances 0.000 description 22
- 238000012360 testing method Methods 0.000 description 16
- 239000006104 solid solution Substances 0.000 description 11
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 7
- 238000009863 impact test Methods 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 239000013618 particulate matter Substances 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910018566 Al—Si—Mg Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910017758 Cu-Si Inorganic materials 0.000 description 2
- 229910017931 Cu—Si Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910018594 Si-Cu Inorganic materials 0.000 description 1
- 229910008465 Si—Cu Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
Description
本発明は、析出硬化型の鋳造用アルミニウム合金からなる鋳物を溶体化処理し、次いで、時効処理を行うことにより、その鋳物の機械的性質を向上させるアルミニウム合金鋳物の熱処理方法に関する。 The present invention relates to a heat treatment method for an aluminum alloy casting that improves the mechanical properties of the casting by subjecting a casting made of a precipitation hardening type casting aluminum alloy to solution treatment and then aging treatment.
地球環境問題の1つである地球温暖化は、人間のあらゆる活動で発生する二酸化炭素の影響が大きいといわれており、特に二酸化炭素排出を導く自動車用燃料の消費量の低減が、世界的に強く求められている。自動車の燃費を改善するための対策は種々存在するが、最も効果があり、他のどの技術とも併用して適用可能な手段が自動車重量の軽量化であるため、その軽量化に寄与しより低廉なアルミニウム(Al)合金が自動車用部品の材料として多用されるようになってきている。 Global warming, one of the global environmental problems, is said to have a large impact on carbon dioxide generated by all human activities. In particular, the reduction of automobile fuel consumption, which leads to carbon dioxide emissions, is worldwide. There is a strong demand. There are various measures to improve automobile fuel efficiency, but it is the most effective and can be applied in combination with any other technology. Aluminum (Al) alloys are increasingly used as materials for automotive parts.
Al合金のうち鋳造用のAl合金として、例えば、ケイ素(Si)とマグネシウム(Mg)を含有したAl−Si−Mg系のAC4C合金(日本工業規格)が知られている。このAl合金は、機械的性質と鋳造性とのバランスが優れており、車両用ホイール等の材料として好適に用いられるものである。 As an Al alloy for casting among Al alloys, for example, an Al—Si—Mg-based AC4C alloy (Japanese Industrial Standard) containing silicon (Si) and magnesium (Mg) is known. This Al alloy has an excellent balance between mechanical properties and castability, and is suitably used as a material for vehicle wheels and the like.
AC4C合金は、熱処理により、金属間化合物のMg2Siからなる中間相を時効析出させて機械的性質を向上させることが出来る析出硬化型鋳造用Al合金である。時効析出のための熱処理は、例えば溶体化処理及び時効処理で構成される。溶体化処理は、マトリックス中にMg及びSiを固溶させ、その状態から急冷することによって、常温で、高温のときと同じようにAlにMg2Siが固溶している過飽和固溶体を得る処理であり、時効処理は、マトリックス中に固溶したMg2Siを析出させる処理である。尚、AC4C合金を含む析出硬化型鋳造用Al合金の熱処理に関する先行技術文献の一例として、特許文献1が挙げられる。
従来、一般に、鋳物の機械的性質を向上させるための熱処理において、鋳物がAC4C合金からなるものでは、空気を熱媒体としたトンネル炉等の雰囲気炉が用いられ、540℃前後で、数時間乃至十数時間行われていた(特許文献1参照)。しかし、このような熱処理の結果として得られる鋳物の引張強度等の機械的性質は、熱処理を施さない場合に比べれば向上しているものの一定の限界があり、上記地球環境問題への関心の高まりとともに更なる改善が求められていた。例えば被処理物である鋳物が車両用部品の場合に、引張強さ、0.2%耐力、及び伸び等の機械的性質を向上させることが出来れば、より薄肉化、即ち、より軽量化することが可能になり、自動車等の燃費が改善され、極めて好ましいからである。 Conventionally, in general, in a heat treatment for improving the mechanical properties of a casting, when the casting is made of an AC4C alloy, an atmospheric furnace such as a tunnel furnace using air as a heat medium is used. It was performed for more than ten hours (see Patent Document 1). However, the mechanical properties such as tensile strength of the casting obtained as a result of such heat treatment are improved compared to the case where the heat treatment is not performed, but there are certain limitations, and there is a growing interest in the above global environmental problems. At the same time, further improvements were required. For example, when the casting that is the object to be processed is a vehicle part, if the mechanical properties such as tensile strength, 0.2% proof stress, and elongation can be improved, the thickness is reduced, that is, the weight is reduced. This is because it is possible to improve the fuel efficiency of automobiles and the like, which is extremely preferable.
又、従来の溶体化処理では、数時間(概ね4時間以上)を要しているため、生産効率向上の障害になり、改善が望まれていた。 Moreover, since the conventional solution treatment requires several hours (approximately 4 hours or more), it has become an obstacle to improving production efficiency, and improvement has been desired.
本発明は、このような従来の課題に鑑みてなされたものであり、その目的とするところは、機械的性質をより高め得て、生産効率向上に寄与する、AC4C合金を含む析出硬化型鋳造用Al合金からなる鋳物の熱処理方法を提供することにある。検討が重ねられた結果、以下に示す手段により、上記目的を達成することが見出された。 The present invention has been made in view of such conventional problems, and the object of the present invention is to provide a precipitation hardening casting including an AC4C alloy that can further improve mechanical properties and contribute to improvement in production efficiency. An object of the present invention is to provide a heat treatment method for a casting made of an Al alloy. As a result of repeated studies, it has been found that the above object can be achieved by the following means.
即ち、本発明によれば、析出硬化型の鋳造用アルミニウム合金からなる鋳物の機械的性質を向上させるための熱処理方法であって、溶体化処理と、その後の時効処理とを有し、溶体化処理における保持温度が、被処理物である鋳物を構成する鋳造用アルミニウム合金の融解温度以上の温度であるアルミニウム合金鋳物の熱処理方法が提供される。 That is, according to the present invention, there is provided a heat treatment method for improving the mechanical properties of a casting made of a precipitation hardening type casting aluminum alloy, which has a solution treatment and a subsequent aging treatment. There is provided a heat treatment method for an aluminum alloy casting in which the holding temperature in the treatment is a temperature equal to or higher than the melting temperature of the casting aluminum alloy constituting the casting to be treated.
本発明においては、溶体化処理における保持温度が、被処理物である鋳物を構成する鋳造用アルミニウム合金の融解温度に対し±0乃至+5℃の範囲であることが好ましい。より好ましくは鋳造用アルミニウム合金の融解温度に対し+1乃至+5℃の範囲、更に好ましくは鋳造用アルミニウム合金の融解温度に対し+2乃至+5℃の範囲である。 In the present invention, the holding temperature in the solution treatment is preferably in the range of ± 0 to + 5 ° C. with respect to the melting temperature of the casting aluminum alloy constituting the casting to be processed. More preferably, it is in the range of +1 to + 5 ° C. with respect to the melting temperature of the casting aluminum alloy, and more preferably in the range of +2 to + 5 ° C. with respect to the melting temperature of the casting aluminum alloy.
又、本発明においては、溶体化処理に要する時間が、昇温時間及び保持時間を含み、90分以内であることが好ましい。より好ましくは60分以内である。 In the present invention, it is preferable that the time required for the solution treatment is within 90 minutes including the temperature raising time and the holding time. More preferably, it is within 60 minutes.
本発明において、溶体化処理は、被処理物である鋳物を流動層の中に存在させることにより行われることが好ましい。又、時効処理が、被処理物である鋳物を流動層の中に存在させることにより行われることが好ましい。そして、この流動層は、熱風の直接吹込みにより形成されていることが好ましい。 In the present invention, the solution treatment is preferably performed by causing a casting, which is an object to be processed, to exist in the fluidized bed. Moreover, it is preferable that an aging process is performed by making the casting which is a to-be-processed object exist in a fluidized bed. The fluidized bed is preferably formed by direct blowing of hot air.
本発明のアルミニウム合金鋳物の熱処理方法は、析出硬化型の鋳造用アルミニウム合金が、ケイ素(Si)を6.0乃至8.0質量%、及び、マグネシウム(Mg)を0.2乃至0.4質量%含有するものである場合に、特に好適である。融解温度が557℃のAC4C合金(日本工業規格)がこの鋳造用アルミニウム合金に該当する。そして、この場合には、溶体化処理温度は、557乃至562℃であることが好ましい。 In the heat treatment method for an aluminum alloy casting according to the present invention, the precipitation hardening type aluminum alloy for casting has a silicon (Si) content of 6.0 to 8.0 mass% and a magnesium (Mg) content of 0.2 to 0.4. It is particularly suitable when it is contained by mass%. An AC4C alloy (Japanese Industrial Standard) having a melting temperature of 557 ° C. corresponds to this casting aluminum alloy. In this case, the solution treatment temperature is preferably 557 to 562 ° C.
本発明のアルミニウム合金鋳物の熱処理方法は、被処理物である鋳物が、車両用足まわり部品である場合に、特に好適である。 The heat treatment method for an aluminum alloy casting of the present invention is particularly suitable when the casting that is the object to be processed is a vehicle suspension part.
本発明のアルミニウム合金鋳物の熱処理方法によれば、溶体化処理が、被処理物である鋳物を構成する鋳造用アルミニウム合金の融解温度以上の高い温度であり、従来より高い保持温度で行われるため、従来より短時間の処理であっても、Al中の添加元素の固溶量が多くなり、引張強さ、耐力、及び伸びという三つの機械的性質を向上させることが出来る。 According to the heat treatment method for an aluminum alloy casting of the present invention, the solution treatment is performed at a higher temperature than the melting temperature of the casting aluminum alloy constituting the casting to be processed, and at a higher holding temperature than before. Even if the treatment is performed in a shorter time than in the prior art, the amount of the additive element in Al is increased, and the three mechanical properties of tensile strength, proof stress, and elongation can be improved.
又、本発明のアルミニウム合金鋳物の熱処理方法は、好ましくは、溶体化処理に要する時間が、昇温時間及び保持時間の合計で90分以内にするため、総熱処理時間を従来に比して大幅に短縮することが出来るとともに、機械的性質の低下を招かない。 In the heat treatment method for aluminum alloy castings according to the present invention, preferably, the time required for the solution treatment is within 90 minutes in total of the temperature raising time and the holding time. And the mechanical properties are not deteriorated.
アルミニウム合金鋳物を熱処理し、その機械的性質を向上させるためには、例えば鋳物を構成する材料がAC4C合金であれば、溶体化処理において、Al中のMg2Siの固溶量を、より高めることが肝要である。このことは換言すれば、従来の溶体化処理では、Al中のMg2Siの固溶量に限界があるため、機械的性質の向上に一定の限界が生じている、と考えられた。更に、金属ミクロ組織の観察により、従来の溶体化処理による鋳物では、共晶Si組織が粗大化し、機械的性質を高める上での阻害要因になっている、と推考された。 In order to heat-treat an aluminum alloy casting and improve its mechanical properties, for example, if the material constituting the casting is an AC4C alloy, the solid solution amount of Mg 2 Si in Al is further increased in the solution treatment. It is important. In other words, the conventional solution treatment had a limit in the solid solution amount of Mg 2 Si in Al, and it was considered that there was a certain limit in improving the mechanical properties. Furthermore, from observation of the metal microstructure, it has been inferred that the eutectic Si structure is coarsened and becomes an obstructive factor in enhancing the mechanical properties in the conventional casting by solution treatment.
そこで、例えば鋳物を構成する材料がAC4C合金であれば、Alに対するMg2Siの固溶量が最大になるまでの時間が短くなるように、溶体化処理における保持温度を、より高くすることに考え至った。そして、溶体化処理に要する時間を短縮することで、共晶Si組織の粗大化を抑制することが可能である。 Therefore, for example, if the material constituting the casting is an AC4C alloy, the holding temperature in the solution treatment is made higher so that the time until the solid solution amount of Mg 2 Si with respect to Al becomes maximum is shortened. I thought. And it is possible to suppress the coarsening of a eutectic Si structure | tissue by shortening the time which a solution treatment requires.
しかしながら、保持温度が高すぎると局所的に融解し、機械的性質が著しく低下してしまうおそれがある。又、溶体化処理に要する時間が短すぎると、AlへのMg2Siの固溶がすすまない結果、機械的性質の向上が図れないおそれがある。溶体化処理における保持温度をより高く設定する本発明は、このような困難を乗り越えるべく研究が重ねられて得られたものであり、本発明においては、溶体化処理温度は、被処理物を構成する鋳造用アルミニウム合金の融解温度と同じ温度乃至は少し高い温度(好ましくは融解温度に対し±0〜+5℃の範囲の温度)に設定し、好ましくは溶体化処理に要する時間を昇温時間及び保持時間の合計で90分以内に設定する。このような条件で溶体化処理を行うと、被処理物である鋳物に局所的融解は生じず、Al中への添加元素(Mg、Si)の固溶量は短時間で最大に達し、機械的性質が向上する。一方、共晶Si組織の粗大化はみられず、機械的性質を低下させない。 However, if the holding temperature is too high, it may melt locally and the mechanical properties may be significantly reduced. On the other hand, if the time required for the solution treatment is too short, the solid solution of Mg 2 Si in Al is not sufficient, and the mechanical properties may not be improved. The present invention for setting a higher holding temperature in the solution treatment is obtained by repeated research to overcome such difficulties. In the present invention, the solution treatment temperature constitutes the workpiece. Set to a temperature that is the same as or slightly higher than the melting temperature of the casting aluminum alloy to be cast (preferably a temperature in the range of ± 0 to + 5 ° C. with respect to the melting temperature). Set the total retention time within 90 minutes. When solution treatment is performed under such conditions, local melting does not occur in the casting that is the object to be processed, and the amount of additive elements (Mg, Si) in Al reaches the maximum in a short time, and the machine The physical properties are improved. On the other hand, no coarsening of the eutectic Si structure is observed, and the mechanical properties are not deteriorated.
尚、このような条件で溶体化処理を行うためには、熱処理炉として流動層炉を使用することが好ましい。雰囲気炉は、炉内の温度の振れが少なくても約±5℃と大きいため、保持温度が高すぎると、実際の溶体化処理温度が、被処理物を構成する鋳造用アルミニウム合金の融解温度を大きく越えてしまい、局所的に融解してしまうおそれがあるからである。流動層炉を用いれば、特にそれが熱風直接吹込型の流動層炉であれば、炉内における温度の振れを極小さくすることが可能であるため、被処理物である鋳物の局所的な融解の発生が防止され、更に、実際の溶体化処理温度を好ましい温度範囲、即ち被処理物を構成する鋳造用アルミニウム合金の融解温度に対し±0〜+5℃の範囲にすることが可能である。 In order to perform the solution treatment under such conditions, it is preferable to use a fluidized bed furnace as the heat treatment furnace. Atmosphere furnaces have a large temperature of about ± 5 ° C even if there is little temperature fluctuation in the furnace, so if the holding temperature is too high, the actual solution treatment temperature will be the melting temperature of the casting aluminum alloy constituting the workpiece. It is because there exists a possibility of melt | dissolving locally locally. If a fluidized bed furnace is used, especially if it is a hot air direct blown type fluidized bed furnace, it is possible to minimize the temperature fluctuation in the furnace. Further, the actual solution treatment temperature can be set within a preferable temperature range, that is, within a range of ± 0 to + 5 ° C. with respect to the melting temperature of the casting aluminum alloy constituting the workpiece.
以下、本発明の実施の形態について、詳細に説明する。但し、本発明が以下の実施の形態に限定されるものでないことはいうまでもない。 Hereinafter, embodiments of the present invention will be described in detail. However, it goes without saying that the present invention is not limited to the following embodiments.
先ず、主に析出硬化型の鋳造用Al合金を用意し、これを溶解し溶湯を得て、一般的な各種の鋳造法により所望の形状に成形し、被処理物である鋳物を得る。そして、得られた鋳物に対して、図1に示されるような熱処理スケジュールに基づいて熱処理を行う。具体的には、鋳物を熱処理炉に入れ、その熱処理炉内を昇温した後、所定の温度で保持し、鋳物に溶体化処理を施す。その後、急冷する。次いで、鋳物を、同じ又は別の熱処理炉に入れ、再度昇温した後、所定の温度を保持し、鋳物に時効処理を施す。鋳物に対して、このような熱処理を施すことにより、その機械的性質を向上させることが出来る。鋳物の機械的性質が向上することは、一定の機械的性質を維持するために、より薄肉化が可能であることを意味するから、鋳物が車両用部品、特に高い強度が要求される足まわり部品(ホイール、ロアアーム、アッパーリンク等)である場合には、それを軽量化出来、自動車等の燃費向上に貢献し得る。 First, a precipitation hardening type Al alloy for casting is prepared, and this is melted to obtain a molten metal, which is then molded into a desired shape by various general casting methods to obtain a casting which is a workpiece. Then, the obtained casting is heat-treated based on a heat treatment schedule as shown in FIG. Specifically, the casting is put in a heat treatment furnace, the temperature inside the heat treatment furnace is raised, and then kept at a predetermined temperature, and the casting is subjected to a solution treatment. Then, cool rapidly. Next, the casting is put in the same or another heat treatment furnace, and after raising the temperature again, the predetermined temperature is maintained and the casting is subjected to an aging treatment. By subjecting the casting to such heat treatment, the mechanical properties can be improved. An improvement in the mechanical properties of the casting means that it can be made thinner in order to maintain a certain mechanical property. Therefore, the casting is a component for a vehicle, particularly a suspension that requires high strength. If it is a part (wheel, lower arm, upper link, etc.), it can be reduced in weight, which can contribute to improved fuel consumption of automobiles and the like.
本発明のアルミニウム合金鋳物の熱処理方法では、被処理物たる鋳物を、好ましくは10分以内(より好ましくは5分以内)の短い昇温時間54(図1参照)で溶体化処理温度まで昇温させ、その温度で保持時間53だけ保持し、鋳物を溶体化処理する。昇温時間54及び保持時間53を含めて溶体化処理に要する時間(溶体化処理時間51)は90分以内(より好ましくは60分以内)である。そして、このとき、被処理物である鋳物を構成する鋳造用Al合金の融解温度に対して同じか乃至は少し高い温度(好ましくは融解温度に対して±0〜+5℃の範囲の温度)を保持して溶体化処理する。 In the heat treatment method for an aluminum alloy casting of the present invention, the casting to be treated is heated to the solution treatment temperature within a short heating time 54 (see FIG. 1), preferably within 10 minutes (more preferably within 5 minutes). The casting is held at that temperature for a holding time 53, and the casting is subjected to a solution treatment. The time required for the solution treatment (solution treatment time 51) including the temperature raising time 54 and the holding time 53 is within 90 minutes (more preferably within 60 minutes). At this time, a temperature that is the same as or slightly higher than the melting temperature of the casting Al alloy that constitutes the casting to be processed (preferably a temperature in the range of ± 0 to + 5 ° C. with respect to the melting temperature). Hold and solution treatment.
次いで、鋳物を熱処理炉から取り出し、水冷手段等により常温まで急冷する。そして、鋳物を時効処理する。時効処理は、自然時効でもよく限定されるものではないが、好ましくは高温で行う人工時効であり、被処理物たる鋳物を、好ましくは10分以内(より好ましくは5分以内)で時効処理温度まで昇温し、その温度で時効処理時間52(図1参照)だけ保持する。時効処理温度は、限定されるものではないが、150〜200℃の範囲が好ましく、170〜190℃の範囲が更に好ましい。 Next, the casting is taken out from the heat treatment furnace and rapidly cooled to room temperature by water cooling means or the like. The casting is then aged. The aging treatment may be natural aging, and is not limited, but is preferably artificial aging performed at a high temperature, and the aging treatment temperature is preferably within 10 minutes (more preferably within 5 minutes) of the casting to be treated. And the temperature is maintained for only the aging treatment time 52 (see FIG. 1). The aging treatment temperature is not limited, but is preferably in the range of 150 to 200 ° C, more preferably in the range of 170 to 190 ° C.
昇温時間及び保持時間の合計が90分以内という短い時間で溶体化処理すると、溶体化処理温度が、被処理物である鋳物を構成する鋳造用Al合金の融解温度以上の高い温度であっても、被処理物たる鋳物が直ぐに融解することはない。一方、従来より高い溶体化処理温度で処理する結果、溶体化処理温度が融解温度より低い(一般に融解温度に対して−20〜−10℃の範囲の温度である)従来方法に比較して、鋳造時(凝固時)に晶出した微量異種金属が、短時間で、より多量に、Alに固溶化し、後の時効処理による析出硬化が、より促進され、機械的性質を、大きく向上させることが可能となる。 When the solution treatment is performed in a short time of 90 minutes or less in total of the temperature raising time and the holding time, the solution treatment temperature is higher than the melting temperature of the casting Al alloy constituting the casting that is the object to be processed. However, the casting that is the object to be processed does not melt immediately. On the other hand, as a result of processing at a higher solution treatment temperature than conventional, the solution treatment temperature is lower than the melting temperature (generally in the range of −20 to −10 ° C. with respect to the melting temperature), compared to the conventional method, A trace amount of dissimilar metals crystallized at the time of casting (solidification) is solidified in a large amount in a short time, and precipitation hardening by the subsequent aging treatment is further promoted, and mechanical properties are greatly improved. It becomes possible.
本発明において、被処理物(鋳物)は、析出硬化型の鋳造用Al合金を主な材料とするものであれば限定されない。その析出硬化型の鋳造用Al合金として、例えば、Siを7.0質量%とMgを0.3質量%含有したAl−Si−Mg系のAC4C合金(日本工業規格、以下同じ)、特に、鉄(Fe)の含有量を極少なく抑え靱性を向上させたもの(日本工業規格ではAC4CH合金として区別される)を、好ましいものとして挙げることが出来る。他に、Siを9.0質量%とMgを0.5質量%含有したAl−Si−Mg系のAC4A合金、Siを8.5質量%と銅(Cu)を3.0質量%含有したAl−Si−Cu系のAC4B合金、Siを5.0質量%とCuを1.2質量%とMgを0.5質量含有したAl−Si−Cu−Mg系のAC4D合金、Siを4.5質量%とCuを4.0質量%含有したAl−Cu−Si系のAC2A合金、Siを6.0質量%とCuを3.0質量%含有したAl−Cu−Si系のAC2B合金を例示することが出来る。何れかの鋳造用Al合金であれば、本発明のアルミニウム合金鋳物の熱処理方法によって、引張強さ、0.2%耐力、及び、伸びという三つの機械的性質を、高レベルに、向上させることが可能である。 In the present invention, the object to be processed (casting) is not limited as long as it is mainly composed of a precipitation hardening type Al alloy for casting. As the precipitation hardening type Al alloy for casting, for example, an Al—Si—Mg-based AC4C alloy containing 7.0% by mass of Si and 0.3% by mass of Mg (Japanese Industrial Standard, the same shall apply hereinafter), What has reduced the content of iron (Fe) to a minimum and improved toughness (distinguished as an AC4CH alloy in the Japanese Industrial Standard) can be mentioned as a preferable one. In addition, Al-Si-Mg AC4A alloy containing 9.0% by mass of Si and 0.5% by mass of Mg, 8.5% by mass of Si and 3.0% by mass of copper (Cu) 3. Al-Si-Cu-based AC4B alloy, Al-Si-Cu-Mg-based AC4D alloy containing 5.0% by mass of Si, 1.2% by mass of Cu and 0.5% by mass of Mg, and 4. An Al-Cu-Si-based AC2A alloy containing 5% by mass and 4.0% by mass of Cu, and an Al-Cu-Si-based AC2B alloy containing 6.0% by mass of Si and 3.0% by mass of Cu It can be illustrated. With any casting Al alloy, the three mechanical properties of tensile strength, 0.2% proof stress, and elongation can be improved to a high level by the heat treatment method for aluminum alloy castings of the present invention. Is possible.
融解温度は鋳造用Al合金の種類によって異なるため、本発明において溶体化処理における保持温度も異なることになる。例えば、AC4C合金及びAC4CH合金の場合には、融解温度は約557℃であるから、溶体化処理の保持温度は557〜562℃の範囲にすることが好ましい。融解温度と同じか乃至は少し高い温度で溶体化処理することにより固溶がすすみ、より具体的には、Mg及び/又はSiのα相中(Al)への固溶率を、より短い時間で80%以上とすることが出来る。その結果、得られるAl合金の強度が、大きく向上する。 Since the melting temperature varies depending on the type of Al alloy for casting, the holding temperature in the solution treatment in the present invention also varies. For example, in the case of an AC4C alloy and an AC4CH alloy, the melting temperature is about 557 ° C., so the solution treatment holding temperature is preferably in the range of 557-562 ° C. The solution treatment proceeds at a temperature equal to or slightly higher than the melting temperature. More specifically, the solid solution ratio of Mg and / or Si in the α phase (Al) is reduced in a shorter time. 80% or more. As a result, the strength of the obtained Al alloy is greatly improved.
本発明のアルミニウム合金鋳物の熱処理方法において、溶体化処理における保持温度が所定の温度範囲であればよく、溶体化処理を行うための熱処理炉について特に制限はない。即ち、例えば、高周波加熱方式、低周波加熱方式、遠赤外線加熱方式等の何れかの加熱手段を備える炉、あるいは一般的な大気炉、等を利用することが可能である。より好ましい熱処理炉は炉内の温度分布の均一性に優る流動層炉であり、これを使用して、被処理物である鋳物を流動層の中に存在させて溶体化処理を施すことが好ましい。 In the heat treatment method for an aluminum alloy casting of the present invention, the holding temperature in the solution treatment may be within a predetermined temperature range, and there is no particular limitation on the heat treatment furnace for performing the solution treatment. That is, for example, a furnace equipped with any heating means such as a high-frequency heating system, a low-frequency heating system, a far-infrared heating system, or a general atmospheric furnace can be used. A more preferable heat treatment furnace is a fluidized bed furnace excellent in the uniformity of temperature distribution in the furnace, and it is preferable to use this to carry out a solution treatment by allowing castings to be processed to exist in the fluidized bed. .
流動層炉は、粉粒体等の粒状物が吹き込みガスにより加熱され、且つ、均一に混合されて形成された流動層を有する炉であり、この流動層内の温度分布が概ね均一になり、伝熱効率がよい、という特徴を有する。流動層内の温度分布が均一に維持されると、融解温度と同じか乃至は少し高い温度で、例えば90分程度、溶体化処理を行っても、鋳物が局所的に融解するおそれは極小さくなる。又、伝熱効率がよいことから、溶体化処理温度までの昇温時間を短縮することが出来る。これらの特徴は、従来の空気を熱媒体とする雰囲気炉に対して大きな利点である。 A fluidized bed furnace is a furnace having a fluidized bed in which granular materials such as powder are heated by blowing gas and uniformly mixed, and the temperature distribution in the fluidized bed becomes substantially uniform, The heat transfer efficiency is good. If the temperature distribution in the fluidized bed is kept uniform, even if solution treatment is performed at a temperature that is the same as or slightly higher than the melting temperature, for example, for about 90 minutes, the possibility of local melting of the casting is minimal. Become. Moreover, since the heat transfer efficiency is good, the temperature raising time to the solution treatment temperature can be shortened. These features are significant advantages over conventional atmospheric furnaces that use air as a heat medium.
時効処理の具体的方法については特に制限はない。空気を熱媒体とする従来の雰囲気炉を使用することも出来るが、溶体化処理と同様に、流動層炉を使用することが、より好ましい。昇温が速いことによる時効処理時間の短縮の他に、溶体化処理と同じ流動層炉を使用することが、熱処理プロセス全体の制御上、操作上の観点から好ましいからである。 There is no restriction | limiting in particular about the specific method of an aging treatment. Although a conventional atmospheric furnace using air as a heat medium can be used, it is more preferable to use a fluidized bed furnace as in the solution treatment. This is because, in addition to shortening the aging treatment time due to rapid temperature rise, it is preferable from the viewpoint of operation from the viewpoint of control of the entire heat treatment process to use the same fluidized bed furnace as the solution treatment.
流動層炉は、その加熱手段により、炉体の外部から加熱する方式や、ラジアントチューブを流動層中に内蔵するラジアントチューブ方式等の間接加熱方式の他、熱風の直接吹込みによる直接加熱方式のものに分類される。何れの加熱手段を備えるものも適用可能であるが、熱風の直接吹込みによる直接加熱方式により流動層を形成する流動層炉が好ましい。流動層中の温度分布の均一性が、より優り、流動層内の温度差を約±1.5〜±3℃の範囲に抑えることが出来るからである。 The fluidized-bed furnace uses a heating method from the outside of the furnace body, an indirect heating method such as a radiant tube method in which a radiant tube is built in the fluidized bed, or a direct heating method by direct blowing of hot air. It is classified as a thing. Although any heating means can be applied, a fluidized bed furnace in which a fluidized bed is formed by a direct heating method by direct blowing of hot air is preferable. This is because the uniformity of the temperature distribution in the fluidized bed is superior, and the temperature difference in the fluidized bed can be suppressed to a range of about ± 1.5 to ± 3 ° C.
図2は、本発明に用いられる熱風直接吹込み方式の流動層炉の一例を示す概略図である。容器10内において、粉粒体等の粒状物12が多孔板16上に充填され、この粒状物12が多孔板16の下から吹き込まれる熱風14により流動化され、均一に混合されて流動層18が形成されているものである。 FIG. 2 is a schematic view showing an example of a fluidized bed furnace of the hot air direct blowing type used in the present invention. In the container 10, a granular material 12 such as a granular material is filled on a perforated plate 16, and the granular material 12 is fluidized by hot air 14 blown from below the perforated plate 16, uniformly mixed, and fluidized bed 18. Is formed.
図3は、本発明に用いられる流動層炉の他例を示す概略図である。熱風発生装置20において、図示しないブロワより送られる空気がバーナ22からの火炎により700〜800℃の熱風まで暖められる。この熱風は熱風温度監視装置24を経て、流動層炉26に吹き込まれる。流動層炉26において、熱風は多孔パイプ28から流動層30中に吹き込まれ、粒状物32を流動化させるとともに粒状物32を加熱する。このようにして、流動層30内が所定の温度範囲になるように加熱される。例えば、設定温度を、融解温度より+2℃に設定した場合に、流動層30内の温度は融解温度より±0〜+4℃の範囲に収まり、流動層内が大きく融解温度を越えた温度になることはない。このように均一の温度の流動層30内において鋳物34は迅速に加熱される。尚、粒状物排出用バルブ36は適宜粒状物32を外部に排出するものである。本発明にかかる時効処理についても、図2及び図3に示される流動層炉を用いることが出来る。 FIG. 3 is a schematic view showing another example of a fluidized bed furnace used in the present invention. In the hot air generator 20, air sent from a blower (not shown) is heated to 700 to 800 ° C. hot air by the flame from the burner 22. This hot air is blown into the fluidized bed furnace 26 through the hot air temperature monitoring device 24. In the fluidized bed furnace 26, hot air is blown from the porous pipe 28 into the fluidized bed 30 to fluidize the particulate matter 32 and heat the particulate matter 32. In this way, the fluidized bed 30 is heated so as to be in a predetermined temperature range. For example, when the set temperature is set to + 2 ° C. from the melting temperature, the temperature in the fluidized bed 30 falls within the range of ± 0 to + 4 ° C. from the melting temperature, and the fluidized bed has a temperature that greatly exceeds the melting temperature. There is nothing. Thus, the casting 34 is rapidly heated in the fluidized bed 30 having a uniform temperature. Note that the particulate matter discharge valve 36 appropriately discharges the particulate matter 32 to the outside. The fluidized bed furnace shown in FIGS. 2 and 3 can also be used for the aging treatment according to the present invention.
以下、本発明を実施例に基づき、更に具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples.
(実施例1)図3に示される流動層炉26を用い、試験用鋳物に熱処理(溶体化処理及び時効処理)を施した。用いた試験用鋳物は、図6に示される形状及び大きさを有する試験用鋳物61であり、AC4CH合金を使用して鋳造成形したものである。流動層炉は、内径1500mm×1500mmの角タンクで、直胴部高さが750mm、下方部が逆円錐状である。流動層を構成する粒状物としては、平均粒径が50〜500μmの砂を用いた。 Example 1 Heat treatment (solution treatment and aging treatment) was performed on a test casting using a fluidized bed furnace 26 shown in FIG. The test casting used was a test casting 61 having the shape and size shown in FIG. 6, and was cast using an AC4CH alloy. The fluidized bed furnace is a square tank having an inner diameter of 1500 mm × 1500 mm, the straight body portion has a height of 750 mm, and the lower portion has an inverted conical shape. As the granular material constituting the fluidized bed, sand having an average particle diameter of 50 to 500 μm was used.
熱処理条件は、溶体化処理温度560℃で、その溶体化処理温度までの昇温時間を10分とし、その昇温時間を含んで15分の溶体化処理時間で溶体化処理を行った後に、急冷し、その後、時効処理温度190℃で、昇温、保持を含め60分の時効処理を実施した。又、溶体化処理時間を30分、60分、120分、180分、300分、450分、として、同様の熱処理を行った。 The heat treatment conditions were a solution treatment temperature of 560 ° C., a temperature rise time to the solution treatment temperature of 10 minutes, and after performing the solution treatment with a solution treatment time of 15 minutes including the temperature rise time, After rapid cooling, an aging treatment was carried out at an aging treatment temperature of 190 ° C. for 60 minutes including heating and holding. Further, the same heat treatment was performed with the solution treatment time being 30 minutes, 60 minutes, 120 minutes, 180 minutes, 300 minutes, and 450 minutes.
熱処理された試験用鋳物の固溶の進み具合を確認するため、固溶量の代替として吸熱エネルギー(mcal/g)を測定した。吸熱エネルギーは、熱処理された試験用鋳物から5mgの小片を切り出し、その小片をアルゴンガスによる不活性雰囲気中で徐々に昇温して、示差走査熱量分析装置(DSC)を用いて測定した。 In order to confirm the progress of the solid solution of the heat-treated test casting, the endothermic energy (mcal / g) was measured as an alternative to the solid solution amount. The endothermic energy was measured using a differential scanning calorimeter (DSC) after cutting out a 5 mg piece from the heat-treated test casting, gradually heating the piece in an inert atmosphere with argon gas.
又、溶体化処理時間を30分、60分、120分、180分、300分、450分、として、同様の熱処理を行い、吸熱エネルギーを測定した。溶体化処理時間と吸熱エネルギー(固溶量)との関係を、図4に示す。 Further, the heat treatment was performed for 30 minutes, 60 minutes, 120 minutes, 180 minutes, 300 minutes, and 450 minutes, and the endothermic energy was measured. FIG. 4 shows the relationship between the solution treatment time and the endothermic energy (solid solution amount).
(比較例1,2)熱処理条件のうち、溶体化処理温度を540℃(比較例1)、550℃(比較例2)とした以外は、実施例1と同様にして、溶体化処理時間を変更して、熱処理を行い、吸熱エネルギーを測定した。溶体化処理時間と吸熱エネルギー(固溶量)との関係を、図4に示す。 (Comparative Examples 1 and 2) Of the heat treatment conditions, the solution treatment time was set in the same manner as in Example 1 except that the solution treatment temperature was 540 ° C (Comparative Example 1) and 550 ° C (Comparative Example 2). A heat treatment was performed after changing the temperature, and the endothermic energy was measured. FIG. 4 shows the relationship between the solution treatment time and the endothermic energy (solid solution amount).
(考察)図4より、AC4CH合金の融解温度より高温の560℃で溶体化処理を行うと、溶体化処理温度が540℃、550℃の場合より、最大固溶量に達するまでの溶体化処理時間が短縮されることが理解出来る。 (Consideration) From FIG. 4, when solution treatment is performed at 560 ° C., which is higher than the melting temperature of the AC4CH alloy, the solution treatment until reaching the maximum solid solution amount from the case where the solution treatment temperature is 540 ° C. and 550 ° C. It can be understood that time is shortened.
(実施例2)実施例1と同じ流動層炉を用い、車両用ホイールに熱処理(溶体化処理及び時効処理)を施した。用いた車両用ホイールは、図5(a)に斜視図として示され、図5(b)に断面図(図5(a)のAA断面)として示されるホイール41である。ホイール41は、アウターリム43及びインナーリム42と、スポーク44とを有するものであり、AC4CH合金を使用して鋳造成形して得たものである。 (Example 2) Using the same fluidized bed furnace as in Example 1, the vehicle wheel was subjected to heat treatment (solution treatment and aging treatment). The vehicle wheel used is a wheel 41 shown as a perspective view in FIG. 5A and as a cross-sectional view (cross section AA in FIG. 5A) in FIG. 5B. The wheel 41 has an outer rim 43, an inner rim 42, and a spoke 44, and is obtained by casting using an AC4CH alloy.
熱処理条件は、溶体化処理温度560℃で、その溶体化処理温度までの昇温時間を10分とし、その昇温時間を含んで15分の溶体化処理時間で溶体化処理を行った後に、急冷し、その後、時効処理温度190℃で、昇温、保持を含め60分の時効処理を実施した。 The heat treatment conditions were a solution treatment temperature of 560 ° C., a temperature rise time to the solution treatment temperature of 10 minutes, and after performing the solution treatment with a solution treatment time of 15 minutes including the temperature rise time, After rapid cooling, an aging treatment was carried out at an aging treatment temperature of 190 ° C. for 60 minutes including heating and holding.
機械的性質を確認するため、熱処理された車両用ホイールのアウターリム(アウターともいう)、インナーリム(インナーともいう)、スポークから、それぞれ試験片(n=4)を切り出し、各試験片に対し、引張試験(引張強さ、0.2%耐力、伸び)、衝撃試験、硬さ試験を行った。得られた結果を図7及び図8に示す。尚、引張試験は、JIS Z2241で規定されている試験法に従って行った。衝撃試験は、JISで規定されたシャルピー試験法を用いて衝撃値を測定した。硬さ試験としては、JIS Z2245に規定された試験法を用い、硬さ(ロックウェル硬さBスケール)を測定した。 To confirm the mechanical properties, test pieces (n = 4) were cut out from the outer rim (also referred to as outer), inner rim (also referred to as inner), and spokes of the heat-treated vehicle wheel. , Tensile test (tensile strength, 0.2% yield strength, elongation), impact test, hardness test. The obtained results are shown in FIGS. The tensile test was performed according to a test method defined in JIS Z2241. In the impact test, the impact value was measured using the Charpy test method defined by JIS. As the hardness test, the hardness (Rockwell hardness B scale) was measured using a test method defined in JIS Z2245.
(実施例3,4)熱処理条件のうち、溶体化処理時間を30分(実施例3)、60分(実施例4)とした以外は、実施例2と同様にして、熱処理を行い、引張試験(引張強さ、0.2%耐力、伸び)、衝撃試験、硬さ試験を行った。結果を図7及び図8に示す。 (Examples 3 and 4) Among the heat treatment conditions, except that the solution treatment time was 30 minutes (Example 3) and 60 minutes (Example 4), the heat treatment was performed in the same manner as in Example 2, and the tensile treatment was performed. A test (tensile strength, 0.2% yield strength, elongation), impact test, and hardness test were performed. The results are shown in FIGS.
(実施例5,6)熱処理条件のうち、時効処理温度を170℃(実施例5,6とも)とし、溶体化処理時間を30分(実施例5)、60分(実施例6)とした以外は、実施例2と同様にして、熱処理を行い、引張試験(引張強さ、0.2%耐力、伸び)、衝撃試験、硬さ試験を行った。結果を図7及び図8に示す。 (Examples 5 and 6) Of the heat treatment conditions, the aging treatment temperature was 170 ° C. (both Examples 5 and 6), and the solution treatment time was 30 minutes (Example 5) and 60 minutes (Example 6). Except for the above, heat treatment was performed in the same manner as in Example 2, and a tensile test (tensile strength, 0.2% proof stress, elongation), an impact test, and a hardness test were performed. The results are shown in FIGS.
(実施例7,8)熱処理条件のうち、時効処理温度を160℃(実施例7,8とも)とし、溶体化処理時間を30分(実施例7)、60分(実施例8)とした以外は、実施例2と同様にして、熱処理を行い、引張試験(引張強さ、0.2%耐力、伸び)、衝撃試験、硬さ試験を行った。結果を図7及び図8に示す。 (Examples 7 and 8) Among heat treatment conditions, the aging treatment temperature was 160 ° C. (both Examples 7 and 8), and the solution treatment time was 30 minutes (Example 7) and 60 minutes (Example 8). Except for the above, heat treatment was performed in the same manner as in Example 2, and a tensile test (tensile strength, 0.2% proof stress, elongation), an impact test, and a hardness test were performed. The results are shown in FIGS.
(比較例3)雰囲気炉(大気炉)を使用し、熱処理条件を、溶体化処理温度540℃で、その溶体化処理温度までの昇温時間を10分とし、その昇温時間を含んで5時間の溶体化処理時間で溶体化処理を行った後に、急冷し、その後、時効処理温度155℃で、昇温、保持を含め2.5時間の時効処理を実施した。それ以外は、実施例2と同様にして、熱処理を行い、引張試験(引張強さ、0.2%耐力、伸び)、衝撃試験、硬さ試験を行った。結果を図7及び図8に示す。 (Comparative Example 3) An atmosphere furnace (atmospheric furnace) was used, and the heat treatment conditions were a solution treatment temperature of 540 ° C., a temperature rise time to the solution treatment temperature of 10 minutes, and including the temperature rise time. After performing the solution treatment for a time of the solution treatment time, it was rapidly cooled, and then an aging treatment was carried out at an aging treatment temperature of 155 ° C. for 2.5 hours including heating and holding. Other than that, it heat-processed similarly to Example 2, and performed the tensile test (tensile strength, 0.2% yield strength, elongation), the impact test, and the hardness test. The results are shown in FIGS.
(考察)図7及び図8より、AC4CH合金の融解温度より高温である560℃で溶体化処理を行うと、溶体化処理温度が540℃の場合より、機械的性質が向上することが理解出来る。 (Consideration) From FIG. 7 and FIG. 8, it can be understood that when the solution treatment is performed at 560 ° C. which is higher than the melting temperature of the AC4CH alloy, the mechanical properties are improved compared to the case where the solution treatment temperature is 540 ° C. .
本発明のアルミニウム合金鋳物の熱処理方法は、析出硬化型の鋳造用アルミニウム合金からなるあらゆる鋳物に利用することが出来る。特に、被処理物である鋳物が、車両用足まわり部品、エンジン部品等の薄肉化を通じて軽量化が求められる鋳物である場合に、好適な熱処理方法である。 The heat treatment method for an aluminum alloy casting of the present invention can be used for any casting made of a precipitation hardening type aluminum alloy for casting. In particular, this is a suitable heat treatment method when the casting to be treated is a casting that is required to be lightened through thinning of a vehicle undercarriage part, an engine part, and the like.
10…容器、12…粒状物、14…熱風、16…多孔板、18…流動層、20…熱風発生装置、22…バーナ、24…熱風温度監視装置、26…流動層炉、28…多孔パイプ、30…流動層、32…粒状物、34…鋳物、36…粒状物排出用バルブ、41…ホイール、42…インナーリム、43…アウターリム、44…スポーク、51…溶体化処理時間、52…時効処理時間、53…保持時間(溶体化処理)、54…昇温時間(溶体化処理)、61…試験用鋳物。 DESCRIPTION OF SYMBOLS 10 ... Container, 12 ... Granular substance, 14 ... Hot air, 16 ... Perforated plate, 18 ... Fluidized bed, 20 ... Hot air generator, 22 ... Burner, 24 ... Hot air temperature monitoring device, 26 ... Fluidized bed furnace, 28 ... Porous pipe 30 ... Fluidized bed, 32 ... Granular matter, 34 ... Casting, 36 ... Valve for discharging particulate matter, 41 ... Wheel, 42 ... Inner rim, 43 ... Outer rim, 44 ... Spoke, 51 ... Solution treatment time, 52 ... Aging treatment time, 53 ... holding time (solution treatment), 54 ... temperature rise time (solution treatment), 61 ... test casting.
Claims (9)
溶体化処理と、その後の時効処理とを有し、
前記溶体化処理における保持温度が、被処理物である前記鋳物を構成する鋳造用アルミニウム合金の融解温度以上の温度であるアルミニウム合金鋳物の熱処理方法。 A heat treatment method for improving the mechanical properties of a casting made of a precipitation hardening type aluminum alloy for casting,
Having solution treatment and subsequent aging treatment,
A heat treatment method for an aluminum alloy casting, wherein a holding temperature in the solution treatment is equal to or higher than a melting temperature of an aluminum alloy for casting that constitutes the casting that is a workpiece.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004223424A JP2006037211A (en) | 2004-07-30 | 2004-07-30 | Method for heat-treating aluminum alloy casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004223424A JP2006037211A (en) | 2004-07-30 | 2004-07-30 | Method for heat-treating aluminum alloy casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006037211A true JP2006037211A (en) | 2006-02-09 |
Family
ID=35902517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004223424A Pending JP2006037211A (en) | 2004-07-30 | 2004-07-30 | Method for heat-treating aluminum alloy casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006037211A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105316608A (en) * | 2015-11-20 | 2016-02-10 | 张家港市广大机械锻造有限公司 | Heat treatment process after refinement modification of Al-Si alloy |
CN115852278A (en) * | 2022-12-05 | 2023-03-28 | 贵州航天新力科技有限公司 | Control method for surface oxidation in high-temperature heat treatment process of aluminum-lithium alloy |
CN116145055A (en) * | 2023-01-30 | 2023-05-23 | 中信戴卡股份有限公司 | Casting and heat treatment integrated manufacturing method and assembly line equipment for aluminum alloy wheel |
-
2004
- 2004-07-30 JP JP2004223424A patent/JP2006037211A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105316608A (en) * | 2015-11-20 | 2016-02-10 | 张家港市广大机械锻造有限公司 | Heat treatment process after refinement modification of Al-Si alloy |
CN115852278A (en) * | 2022-12-05 | 2023-03-28 | 贵州航天新力科技有限公司 | Control method for surface oxidation in high-temperature heat treatment process of aluminum-lithium alloy |
CN116145055A (en) * | 2023-01-30 | 2023-05-23 | 中信戴卡股份有限公司 | Casting and heat treatment integrated manufacturing method and assembly line equipment for aluminum alloy wheel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4768925B2 (en) | Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product | |
JPH0561321B2 (en) | ||
JP2024088721A (en) | Manufacturing method of aluminum alloy forging material | |
JP7467633B2 (en) | Powdered Aluminum Materials | |
JP7459496B2 (en) | Manufacturing method for aluminum alloy forgings | |
JP4822324B2 (en) | Aluminum alloy forged road wheel and manufacturing method thereof | |
CN1173053C (en) | Copper-based alloys and methods of producing castings and forgings using copper-based alloys | |
US6773665B1 (en) | Non-Cu-based cast Al alloy and method for heat treatment thereof | |
JP2001226731A (en) | Aluminum-zinc-magnesium cast forging aluminum alloy, aluminum-zinc-magnesium cast forged product, and method of manufacturing the same | |
JP2006037211A (en) | Method for heat-treating aluminum alloy casting | |
CN105543591A (en) | Aluminum alloy cast rod used for hub and preparation method of aluminum alloy cast rod | |
EP1327696A1 (en) | Aluminum alloy formed by precipitation hardening and method for heat treatment thereof | |
JP2002275567A (en) | Precipitation hardening type Al alloy and heat treatment method of precipitation hardening type alloy | |
JP7380127B2 (en) | Manufacturing method for aluminum alloy forgings for automobile suspension parts | |
US9284636B1 (en) | Impact toughness and heat treatment for cast aluminum | |
KR100703130B1 (en) | Non-heat treatment type high ductility aluminum main alloy and its manufacturing method | |
JP2009079299A (en) | Automotive parts | |
JP2002060881A (en) | Aluminum alloy for casting and forging and method for producing casting forging | |
JP4216752B2 (en) | Heat treatment method for wrought aluminum alloy | |
JP4464672B2 (en) | Aluminum alloy for wrought material | |
JP2005314803A (en) | Method for producing aluminum product | |
JP2003253367A (en) | PRECIPITATION HARDENED Al ALLOY | |
JP2002309330A (en) | Wheel for vehicle | |
JP2002363717A (en) | METHOD FOR HEAT-TREATING Al ALLOY | |
JP2001316786A (en) | METHOD FOR HEAT TREATING PRECIPITATION HARDENING Al ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070607 |
|
A977 | Report on retrieval |
Effective date: 20081209 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20081216 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090317 |