[go: up one dir, main page]

JP2006028274A - Epoxy resin composition and prepreg using the same - Google Patents

Epoxy resin composition and prepreg using the same Download PDF

Info

Publication number
JP2006028274A
JP2006028274A JP2004206709A JP2004206709A JP2006028274A JP 2006028274 A JP2006028274 A JP 2006028274A JP 2004206709 A JP2004206709 A JP 2004206709A JP 2004206709 A JP2004206709 A JP 2004206709A JP 2006028274 A JP2006028274 A JP 2006028274A
Authority
JP
Japan
Prior art keywords
epoxy resin
prepreg
resin composition
magnesium hydroxide
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206709A
Other languages
Japanese (ja)
Inventor
Akio Sato
明生 佐藤
Shingo Terasaki
慎悟 寺崎
Hisami Bessho
久美 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2004206709A priority Critical patent/JP2006028274A/en
Publication of JP2006028274A publication Critical patent/JP2006028274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an epoxy resin composition that has excellent dimensional stability of prepreg when used as a resin material for prepreg, controls peeling off of an inorganic flame retardant while having sufficient flame retardance and has heat resistance dealing with treatment temperature of lead-free solder and prepreg using the composition. <P>SOLUTION: The epoxy resin composition is obtained by adding at least 20-50 parts wt. of a phenoxy resin and/or acrylonitrile-butadiene rubber and 100-300 parts wt. of magnesium hydroxide to 100 parts wt. of a dicyclopentadiene type epoxy resin and/or a naphthalene type epoxy resin. The prepreg is obtained by impregnating or coating a substrate with the epoxy resin composition, drying and semicuring the epoxy resin composition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エポキシ樹脂組成物およびこれを用いたプリプレグに関し、さらに詳しくは、多層プリント配線板に用いられるプリプレグ用の樹脂材などとして好適なエポキシ樹脂組成物およびこれを用いたプリプレグに関するものである。   The present invention relates to an epoxy resin composition and a prepreg using the same, and more particularly to an epoxy resin composition suitable as a resin material for a prepreg used in a multilayer printed wiring board and a prepreg using the same. .

一般に、電気・電子部品の実装を高密度化するため、多層プリント配線板が用いられている。この種の多層プリント配線板は、表面にカバーレイフィルムが被覆された複数のプリント配線板を、各プリント配線板の間にプリプレグを挟んで積層し、この積層体を圧着プレスした後、所定部分に孔を開けてメッキを施し、各プリント配線板の所定の配線パターン間を導通することなどにより製造されている。   In general, a multilayer printed wiring board is used in order to increase the mounting density of electric / electronic components. This type of multilayer printed wiring board is formed by laminating a plurality of printed wiring boards whose surfaces are covered with a cover lay film with prepregs sandwiched between the printed wiring boards, and pressing the laminated body with a predetermined portion. It is manufactured by, for example, opening and plating and conducting between predetermined wiring patterns of each printed wiring board.

近年、この種の多層プリント配線板は、より高密度化・多層化が図られてきている。そのため、多層プリント配線板に必然的に多く用いられるプリプレグにもその特性の向上、特に、収縮、熱膨張などの寸法安定性の向上に対する要請が厳しくなってきている。   In recent years, this type of multilayer printed wiring board has been made higher in density and multilayer. For this reason, prepregs that are inevitably used in multilayer printed wiring boards are increasingly required to improve their characteristics, particularly to improve dimensional stability such as shrinkage and thermal expansion.

従来、プリプレグ用の樹脂材としては、寸法安定性および接着性などに優れたエポキシ樹脂に難燃剤が添加されたエポキシ樹脂組成物などが知られている。   Conventionally, as a resin material for a prepreg, an epoxy resin composition in which a flame retardant is added to an epoxy resin excellent in dimensional stability and adhesiveness is known.

上記エポキシ樹脂組成物中のエポキシ樹脂としては、具体的には、寸法安定性や、ベンゼン環を有することから比較的難燃性に優れるフェノールノボラック型エポキシ樹脂などが用いられてきたが、最近では、さらに高い寸法安定性を得るため、フェノールノボラック型エポキシ樹脂よりも剛直な主鎖を有するジシクロペンタジエン型エポキシ樹脂などを用いたエポキシ樹脂組成物が検討されている。   As the epoxy resin in the epoxy resin composition, specifically, a phenol novolac type epoxy resin having a relatively excellent flame retardancy because of having dimensional stability and a benzene ring has been used recently. In order to obtain higher dimensional stability, an epoxy resin composition using a dicyclopentadiene type epoxy resin having a rigid main chain rather than a phenol novolac type epoxy resin has been studied.

また、上記エポキシ樹脂組成物中の難燃剤としては、少量の添加量で高い難燃効果を有するハロゲン系難燃剤やリン系難燃剤などが用いられてきたが、最近では、地球環境への配慮などから、ハロゲンやリンを含有しない無機系難燃剤への代替が検討されている。   In addition, as flame retardants in the above epoxy resin composition, halogen flame retardants and phosphorus flame retardants having a high flame retardant effect with a small addition amount have been used, but recently, consideration for the global environment Therefore, alternatives to inorganic flame retardants that do not contain halogen or phosphorus are being studied.

このような状況下、例えば、特許文献1には、変性ジシクロペンタジエン型エポキシ樹脂に対して、無機系難燃剤として水酸化アルミニウムを多量に添加したエポキシ樹脂組成物およびこれを用いたプリプレグが記載されている。   Under such circumstances, for example, Patent Document 1 describes an epoxy resin composition obtained by adding a large amount of aluminum hydroxide as an inorganic flame retardant to a modified dicyclopentadiene type epoxy resin and a prepreg using the same. Has been.

一方、上記プリント配線基板に半導体素子を実装する際の半田材としては、これまで鉛半田が用いられてきたが、上記難燃剤の場合と同様に地球環境への配慮などから、最近では、鉛半田よりも処理温度が約20℃程度高い鉛フリー半田(処理温度は約280℃程度)が用いられるようになってきている。   On the other hand, lead solder has been used as a solder material for mounting a semiconductor element on the printed wiring board. However, in consideration of the global environment as in the case of the flame retardant, lead has recently been used. Lead-free solder whose processing temperature is about 20 ° C. higher than that of solder (processing temperature is about 280 ° C.) has been used.

特開2001−122949号公報JP 2001-122949 A

しかしながら、従来のエポキシ樹脂組成物、プリプレグでは次のような問題があった。   However, the conventional epoxy resin composition and prepreg have the following problems.

すなわち、ジシクロペンタジエン型エポキシ樹脂は、プリプレグ用の樹脂材として用いた場合に、プリプレグの寸法安定性には優れるものの、ベンゼン環を有するフェノールノボラック型エポキシ樹脂に比較して、難燃性に劣る。また、水酸化アルミニウムなどの無機系難燃剤は、同程度の添加量のハロゲン系難燃剤、リン系難燃剤に比較すると、難燃性に劣る。   That is, the dicyclopentadiene type epoxy resin, when used as a resin material for a prepreg, is excellent in dimensional stability of the prepreg, but is inferior in flame retardancy compared to a phenol novolac type epoxy resin having a benzene ring. . Moreover, inorganic flame retardants, such as aluminum hydroxide, are inferior to a flame retardance compared with the halogenated flame retardant and phosphorus flame retardant of the same addition amount.

そのため、これらを用いて、例えば、UL規格の94−V0を満足するような十分な難燃性を付与しようとすると、特許文献1に記載のように、無機系難燃剤を多量に添加する必要があった。   Therefore, if it is going to give sufficient flame retardance which satisfies 94-V0 of UL specification using these, it is necessary to add a large amount of inorganic flame retardants as described in patent documents 1, for example. was there.

ところが、剛直な主鎖を有するエポキシ樹脂中に無機難燃剤を多量に添加すると、多層プリント配線板の製造工程において、プリプレグ表面から無機系難燃剤が剥がれ落ち、これによりカバーレイフィルムの基材とプリプレグとの接着性が悪くなるといった問題があった。   However, when a large amount of an inorganic flame retardant is added to an epoxy resin having a rigid main chain, the inorganic flame retardant peels off from the prepreg surface in the manufacturing process of the multilayer printed wiring board, and this causes the base material of the coverlay film to be peeled off. There was a problem that the adhesiveness with the prepreg deteriorated.

また、多層プリント配線板の積層時に行われる打ち抜き加工において、打ち抜き後のプリプレグのエッジ部分から無機系難燃剤が剥がれ落ち、これにより多層プリント配線板の製品不良が発生し易くなるといった問題があった。   Further, in the punching process performed when the multilayer printed wiring board is laminated, the inorganic flame retardant is peeled off from the edge portion of the prepreg after the punching, thereby causing a problem that the product failure of the multilayer printed wiring board is likely to occur. .

また、無機系難燃剤として水酸化アルミニウムを添加したエポキシ樹脂組成物を樹脂材として用いたプリプレグにより多層プリント配線板を製造した場合、この多層プリント配線板に鉛フリー半田を用いて半導体素子を実装しようとすると、その処理温度で水酸化アルミニウムが脱水吸熱反応を起こし、これによりガスが発生し、基板表面にふくれが生じるといった問題があった。この種のふくれは、特に、ガス透過性に欠ける導体配線上で生じる。   In addition, when a multilayer printed wiring board is manufactured with a prepreg using an epoxy resin composition added with aluminum hydroxide as an inorganic flame retardant as a resin material, a semiconductor element is mounted on the multilayer printed wiring board using lead-free solder. When trying to do so, there is a problem that aluminum hydroxide causes a dehydration endothermic reaction at the processing temperature, thereby generating gas and causing blistering on the substrate surface. This type of blistering occurs particularly on conductor wiring that lacks gas permeability.

そこで、本発明が解決しようとする課題は、プリプレグ用の樹脂材として用いた場合にプリプレグの寸法安定性に優れ、十分な難燃性を有しつつ無機系難燃剤の剥がれ落ちを抑制でき、さらに、鉛フリー半田の処理温度に対応できる耐熱性を有するエポキシ樹脂組成物およびこれを用いたプリプレグを提供することにある。   Therefore, the problem to be solved by the present invention is excellent in dimensional stability of the prepreg when used as a resin material for prepreg, and can suppress peeling of the inorganic flame retardant while having sufficient flame retardancy, Furthermore, it is providing the epoxy resin composition which has heat resistance which can respond to the processing temperature of lead-free solder, and a prepreg using the same.

上記課題を解決するため、本発明に係るエポキシ樹脂組成物は、ジシクロペンタジエン型エポキシ樹脂および/またはナフタレン型エポキシ樹脂100重量部に対して、フェノキシ樹脂および/またはアクリロニトリル−ブタジエンゴム20〜50重量部、水酸化マグネシウム100〜300重量部を少なくとも含有してなることを要旨とする。   In order to solve the above-mentioned problems, the epoxy resin composition according to the present invention has a phenoxy resin and / or acrylonitrile-butadiene rubber in an amount of 20 to 50 weights with respect to 100 parts by weight of a dicyclopentadiene type epoxy resin and / or a naphthalene type epoxy resin. And at least 100 to 300 parts by weight of magnesium hydroxide.

また、本発明に係るプリプレグは、上記エポキシ樹脂組成物を基材に含浸または塗布し、乾燥半硬化させてなることを要旨とする。   The gist of the prepreg according to the present invention is that the epoxy resin composition is impregnated or coated on a base material and dried and semi-cured.

上記エポキシ樹脂組成物によれば、無機系難燃剤として水酸化マグネシウムを用いているので、ハロゲン系難燃剤、リン系難燃剤を用いた場合と比較して地球環境などに優しい。また、水酸化マグネシウムを多量に含有しているので、十分な難燃性を有する。   According to the epoxy resin composition, since magnesium hydroxide is used as the inorganic flame retardant, it is friendly to the global environment as compared with the case where a halogen flame retardant and a phosphorus flame retardant are used. Moreover, since it contains a large amount of magnesium hydroxide, it has sufficient flame retardancy.

また、水酸化マグネシウムを多量に含有していても、改質剤としてフェノキシ樹脂および/またはアクリロニトリル−ブタジエンゴムを特定量含有しているので、水酸化マグネシウムが樹脂中に包埋され易く、水酸化マグネシウムの剥がれ落ちが生じ難い。   Even if it contains a large amount of magnesium hydroxide, it contains a specific amount of phenoxy resin and / or acrylonitrile-butadiene rubber as a modifier, so that magnesium hydroxide is easily embedded in the resin, Magnesium does not peel off easily.

また、水酸化アルミニウムよりも脱水吸熱反応開始温度が20℃以上高い水酸化マグネシウムを用いているので、鉛フリー半田の処理温度に対応できる耐熱性を有する。   Moreover, since magnesium hydroxide whose dehydration endothermic reaction start temperature is 20 ° C. or more higher than that of aluminum hydroxide is used, it has heat resistance that can cope with the processing temperature of lead-free solder.

一方、上記プリプレグによれば、上記エポキシ樹脂組成物を用いているので、寸法安定性、難燃性に優れる。   On the other hand, according to the prepreg, since the epoxy resin composition is used, the dimensional stability and flame retardancy are excellent.

また、プリプレグから水酸化マグネシウムが剥がれ難いので、多層プリント配線板の製造工程において、カバーレイフィルムの基材とプリプレグとの接着性に優れる。また、水酸化マグネシウムの剥がれ落ちに起因する多層プリント配線板の製品不良も抑制できる。   Moreover, since magnesium hydroxide is difficult to peel off from the prepreg, the adhesive property between the base material of the coverlay film and the prepreg is excellent in the manufacturing process of the multilayer printed wiring board. Moreover, the product defect of the multilayer printed wiring board resulting from peeling off of magnesium hydroxide can also be suppressed.

また、多層プリント配線板の製造工程において、鉛フリー半田の処理温度に曝されてもガスが発生し難いので、基板表面にふくれが生じ難い。   Further, in the manufacturing process of the multilayer printed wiring board, even if it is exposed to the processing temperature of lead-free solder, it is difficult for gas to be generated.

以下、発明の実施の形態について詳細に説明する。本発明に係るエポキシ樹脂組成物(以下、「本組成物」という。)は、ジシクロペンタジエン型エポキシ樹脂および/またはナフタレン型エポキシ樹脂に対して、特定量のフェノキシ樹脂および/またはアクリロニトリル−ブタジエンゴム、水酸化マグネシウムを少なくとも含有してなる。   Hereinafter, embodiments of the present invention will be described in detail. The epoxy resin composition according to the present invention (hereinafter referred to as “the present composition”) is a specific amount of phenoxy resin and / or acrylonitrile-butadiene rubber relative to dicyclopentadiene type epoxy resin and / or naphthalene type epoxy resin. And containing at least magnesium hydroxide.

本組成物において、ジシクロペンタジエン型エポキシ樹脂とは、ジシクロペンタジエン骨格を分子中に有するエポキシ樹脂をいう。また、ナフタレン型エポキシ樹脂とは、ナフタレン骨格を分子中に有するエポキシ樹脂をいう。   In the present composition, the dicyclopentadiene type epoxy resin refers to an epoxy resin having a dicyclopentadiene skeleton in the molecule. The naphthalene type epoxy resin means an epoxy resin having a naphthalene skeleton in the molecule.

本組成物では、ジシクロペンタジエン型エポキシ樹脂またはナフタレン型エポキシ樹脂の何れか一方を含有していても良いし、ジシクロペンタジエン型エポキシ樹脂およびナフタレン型エポキシ樹脂の双方を含有していても良い。   This composition may contain either a dicyclopentadiene type epoxy resin or a naphthalene type epoxy resin, or may contain both a dicyclopentadiene type epoxy resin and a naphthalene type epoxy resin.

また、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂ともに2種以上混合されていても良い。   Two or more kinds of dicyclopentadiene type epoxy resins and naphthalene type epoxy resins may be mixed.

上記ジシクロペンタジエン型エポキシ樹脂としては、具体的には、下記化1で表されるものなどが挙げられる。   Specific examples of the dicyclopentadiene type epoxy resin include those represented by the following chemical formula (1).

Figure 2006028274
Figure 2006028274

上記ナフタレン型エポキシ樹脂としては、具体的には、下記化2〜9で表されるものなどが挙げられる。好ましくは、化9で表されるものを用いると良い。   Specific examples of the naphthalene type epoxy resin include those represented by the following chemical formulas 2 to 9. Preferably, what is represented by Chemical formula 9 is used.

Figure 2006028274
Figure 2006028274

Figure 2006028274
Figure 2006028274

Figure 2006028274
Figure 2006028274

Figure 2006028274
Figure 2006028274

Figure 2006028274
Figure 2006028274

Figure 2006028274
Figure 2006028274

Figure 2006028274
Figure 2006028274

Figure 2006028274
Figure 2006028274

本組成物において、フェノキシ樹脂、アクリロニトリル−ブタジエンゴム(以下、「NBR」という。)は、樹脂改質剤として用いられるもので、主に水酸化マグネシウムを上記エポキシ樹脂中へ包埋し易くするために添加される。   In the present composition, phenoxy resin and acrylonitrile-butadiene rubber (hereinafter referred to as “NBR”) are used as a resin modifier, mainly for making it easy to embed magnesium hydroxide in the epoxy resin. To be added.

本組成物では、フェノキシ樹脂またはNBRの何れか一方を含有していても良いし、フェノキシ樹脂およびNBRの双方を含有していても良い。好ましくは、上記エポキシ樹脂との相溶性、耐熱性に優れることから、フェノキシ樹脂を含有しているのが望ましい。   In the present composition, either one of phenoxy resin and NBR may be contained, or both of phenoxy resin and NBR may be contained. Preferably, it contains a phenoxy resin because it is compatible with the epoxy resin and has excellent heat resistance.

上記フェノキシ樹脂とは、ビスフェノールAなどとエピクロロヒドリンから得られるポリエーテルのことである。   The phenoxy resin is a polyether obtained from bisphenol A and epichlorohydrin.

また、上記フェノキシ樹脂は、難燃性などに優れることから、リンを含有するリン含有フェノキシ樹脂であっても良い。   Moreover, since the said phenoxy resin is excellent in a flame retardance etc., the phosphorus containing phenoxy resin containing phosphorus may be sufficient.

一方、NBRは、そのまま用いても良いが、エポキシ樹脂との相溶性の観点から、カルボキシル基、アミノ基などの官能基によりその末端が変性された末端変性NBRであった方が好ましい。また、NBRの性状としては、液体状のものであっても良い。もちろん、その両者を合わせた末端変性液状NBRであっても良い。   On the other hand, NBR may be used as it is, but from the viewpoint of compatibility with the epoxy resin, it is preferably a terminal-modified NBR whose terminal is modified with a functional group such as a carboxyl group or an amino group. The NBR property may be liquid. Of course, it may be a terminal-modified liquid NBR in which both are combined.

本組成物において、水酸化マグネシウムは、無機難燃剤として用いられるもので、主にエポキシ樹脂に難燃性を付与するために添加される。   In this composition, magnesium hydroxide is used as an inorganic flame retardant, and is mainly added to impart flame retardancy to the epoxy resin.

本組成物において、上記水酸化マグネシウムの粒子表面は、エポキシシラン、アミノシラン、アクリルシラン、ビニルシランなどのシラン系もしくはチタネート系などのカップリング剤により表面処理が施されていても良い。水酸化マグネシウムに表面処理を施せば、樹脂中に一層包埋され易くなり、水酸化マグネシウムの剥がれ落ちをより少なくできるなどの利点がある。   In the present composition, the surface of the magnesium hydroxide particles may be surface-treated with a coupling agent such as silane or titanate such as epoxy silane, amino silane, acrylic silane, or vinyl silane. If surface treatment is applied to magnesium hydroxide, it becomes easier to be embedded in the resin, and there is an advantage that the magnesium hydroxide can be less peeled off.

本組成物は、上記エポキシ樹脂100重量部に対して、フェノキシ樹脂および/またはNBRを20〜50重量部、好ましくは、25〜45重量部、水酸化マグネシウムを100〜300重量部、好ましくは、150〜250重量部の範囲内で含有している。   This composition is 20 to 50 parts by weight of phenoxy resin and / or NBR, preferably 25 to 45 parts by weight, and 100 to 300 parts by weight of magnesium hydroxide, preferably 100 parts by weight of the epoxy resin. It is contained within the range of 150 to 250 parts by weight.

フェノキシ樹脂および/またはNBRの含有量が20重量部未満になると、十分な改質効果が得られずに水酸化マグネシウムの剥がれ落ちが激しくなる傾向が見られるため好ましくない。また、フェノキシ樹脂および/またはNBRの含有量が50重量部を越えると、プリプレグ用の樹脂材として用いた場合に、カバーレイフィルムの基材とプリプレグとの接着性が悪くなる(ピール強度が低下する)傾向が見られるので好ましくない。   When the content of the phenoxy resin and / or NBR is less than 20 parts by weight, it is not preferable because a sufficient modification effect cannot be obtained and the magnesium hydroxide tends to peel off. In addition, when the content of phenoxy resin and / or NBR exceeds 50 parts by weight, the adhesion between the base material of the coverlay film and the prepreg is deteriorated when used as a resin material for prepreg (the peel strength is reduced). This is not preferable because a tendency is seen.

一方、水酸化マグネシウムの含有量が100重量部未満になると、十分な難燃性が得られなくなる傾向があるので好ましくない。また、水酸化マグネシウムの含有量が300重量部を越えると、水酸化マグネシウムの剥がれ落ちが生じたり、高コスト化を招くため好ましくない。   On the other hand, if the content of magnesium hydroxide is less than 100 parts by weight, it is not preferable because sufficient flame retardancy tends to be obtained. On the other hand, if the content of magnesium hydroxide exceeds 300 parts by weight, it is not preferable because the magnesium hydroxide peels off or costs increase.

本組成物中には、上記成分以外にも、必要に応じて、一般に添加される添加剤、例えば、硬化剤、硬化促進剤、水酸化マグネシウム以外の無機系難燃剤、難燃助剤、無機充填剤、酸化防止剤、着色剤などが、本組成物の物性を損なわない範囲で1種または2種以上添加されていても良い。   In the present composition, in addition to the above components, additives that are generally added as necessary, for example, curing agents, curing accelerators, inorganic flame retardants other than magnesium hydroxide, flame retardant aids, inorganic 1 type, or 2 or more types may be added in the range which does not impair the physical property of this composition, such as a filler, antioxidant, and a coloring agent.

また、本組成物の製造方法としては、特に限定されるものではなく、公知の製造方法を用いることができる。例えば、上記成分と溶剤、必要に応じて他の添加剤などを配合し、これらをミキサー、ブレンダーなどで均一に混合するなどして本組成物を製造することができ、特に限定されるものではない。   Moreover, it does not specifically limit as a manufacturing method of this composition, A well-known manufacturing method can be used. For example, the present composition can be produced by blending the above components and solvent, if necessary, other additives, etc., and mixing them uniformly with a mixer, blender, etc. Absent.

次に、上記本組成物を用いたプリプレグ(以下、「本プリプレグ」という。)について説明する。本プリプレグは、上記本組成物を基材に含浸または塗布し、乾燥半硬化させてなる。   Next, a prepreg using the present composition (hereinafter referred to as “the present prepreg”) will be described. The present prepreg is obtained by impregnating or coating the above-described composition on a substrate and drying and semi-curing the composition.

本プリプレグにおいて、基材としては、具体的には、ガラスクロス、ガラス不織布、ガラスペーパー、紙、有機系の不織布を含む有機繊維などが挙げられ、特に限定されるものではない。なお、基材の形状や厚みなどは、目的とする多層プリント配線板の形状などを考慮して適宜変更可能なものである。   In the present prepreg, specific examples of the substrate include glass cloth, glass nonwoven fabric, glass paper, paper, organic fibers including organic nonwoven fabric, and the like, and are not particularly limited. Note that the shape and thickness of the base material can be appropriately changed in consideration of the shape of the target multilayer printed wiring board.

また、本プリプレグの製造方法としては、特に限定されるものではなく、公知の製造方法を用いることができる。例えば、本組成物を上記基材に含浸または塗布した後、乾燥機中で約120〜200℃、0.5〜10分間程度乾燥させることにより、半硬化状態(Bステージ)のプリプレグを製造することができ、特に限定されるものではない。   Moreover, it does not specifically limit as a manufacturing method of this prepreg, A well-known manufacturing method can be used. For example, after impregnating or applying the present composition to the substrate, the prepreg in a semi-cured state (B stage) is produced by drying in a dryer at about 120 to 200 ° C. for about 0.5 to 10 minutes. There is no particular limitation.

以下に本発明を実施例により具体的に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

(供試材料および製造元など)
本実施例および比較例において使用した供試材料を製造元、商品名などとともに示す。なお、一部の供試材料については、本発明者らにより合成したものを用いた。
(Test material and manufacturer)
The test materials used in the present examples and comparative examples are shown together with the manufacturer, product name, and the like. Some of the test materials were synthesized by the present inventors.

・ジシクロペンタジエン型エポキシ樹脂[大日本インキ化学工業(株)製、商品名「EPICLON HP−7200H」]
・ナフタレン型エポキシ樹脂[大日本インキ化学工業(株)製、商品名「EPICLON EXA−4700」]
・リン含有フェノキシ樹脂[東都化成(株)製、商品名「フェノトート ERF−001M30」]
・フェノキシ樹脂[東都化成(株)製、商品名「フェノトート YP−50EK35」]
・液状NBR[日本ゼオン(株)製、商品名「Nipol 1312」]
・末端変性液状NBR[日本ゼオン(株)製、商品名「Nipol DN601」]
・水酸化マグネシウムA[協和化学工業(株)製、商品名「キスマ8」]
・水酸化マグネシウムB
水酸化マグネシウムBは、蒸留水1Lに上記水酸化マグネシウムAを100g入れ、撹拌しながら、3−(2−アミノエチル)アミノプロピルトリメトキシシラン1gを添加し、1時間表面処理を施した後、100℃で乾燥して得たものであり、シランカップリング処理されている。
・水酸化アルミニウム
比較用の水酸化アルミニウムは、上記水酸化マグネシウムBのシランカップリング処理において、水酸化マグネシウムAに代えて、水酸化アルミニウム[住友化学工業(株)製、商品名「CL303」]を用いた以外は同様にして合成したものであり、シランカップリング処理されている。
・フェノール型硬化剤[大日本インキ化学工業(株)製、商品名「TD−2090−60M」]
・ガラスクロス[日東紡(株)製、商品名「WEA05E53SP」、厚さ約55μm]
・ Dicyclopentadiene type epoxy resin [Dainippon Ink Chemical Co., Ltd., trade name “EPICLON HP-7200H”]
・ Naphthalene type epoxy resin [Dainippon Ink Chemical Co., Ltd., trade name “EPICLON EXA-4700”]
Phosphorus-containing phenoxy resin [manufactured by Toto Kasei Co., Ltd., trade name “Phenotote ERF-001M30”]
・ Phenoxy resin [manufactured by Toto Kasei Co., Ltd., trade name “Phenototo YP-50EK35”]
-Liquid NBR [made by Nippon Zeon Co., Ltd., trade name “Nipol 1312”]
End-modified liquid NBR [manufactured by Nippon Zeon Co., Ltd., trade name “Nipol DN601”]
Magnesium hydroxide A [Kyowa Chemical Industry Co., Ltd., trade name “Kisuma 8”]
・ Magnesium hydroxide B
Magnesium hydroxide B was added with 100 g of the above magnesium hydroxide A in 1 L of distilled water, and 1 g of 3- (2-aminoethyl) aminopropyltrimethoxysilane was added with stirring and surface treatment was performed for 1 hour. It was obtained by drying at 100 ° C. and was subjected to silane coupling treatment.
Aluminum hydroxide For comparison, aluminum hydroxide was replaced with magnesium hydroxide A in the silane coupling treatment of magnesium hydroxide B. Aluminum hydroxide [manufactured by Sumitomo Chemical Co., Ltd., trade name “CL303”] This was synthesized in the same manner except that was used, and was subjected to silane coupling treatment.
・ Phenol type curing agent [Dainippon Ink Chemical Co., Ltd., trade name "TD-2090-60M"]
・ Glass cloth [manufactured by Nittobo Co., Ltd., trade name “WEA05E53SP”, thickness of about 55 μm]

(エポキシ樹脂組成物およびプリプレグの作製)
初めに、後述する表1、2に示した配合割合となるように、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、リン含有フェノキシ樹脂、フェノキシ樹脂、液状NBR、末端変性液状NBR、フェノール型硬化剤をメチルエチルケトン(MEK)とジメチルホルムアミド(DMF)に溶解し、水酸化マグネシウムA、水酸化マグネシウムB、水酸化アルミニウムを添加して混合撹拌した後、トリフェニルホスフィンを加え、再度撹拌することにより、本実施例1〜14に係る各エポキシ樹脂組成物を含む含浸液、比較例1〜10に係る各エポキシ樹脂組成物を含む含浸液を作製した。
(Production of epoxy resin composition and prepreg)
First, dicyclopentadiene-type epoxy resin, naphthalene-type epoxy resin, phosphorus-containing phenoxy resin, phenoxy resin, liquid NBR, terminal-modified liquid NBR, phenol-type curing so as to have the blending ratio shown in Tables 1 and 2 described later. By dissolving the agent in methyl ethyl ketone (MEK) and dimethylformamide (DMF), adding magnesium hydroxide A, magnesium hydroxide B and aluminum hydroxide, mixing and stirring, adding triphenylphosphine and stirring again, The impregnation liquid containing each epoxy resin composition according to Examples 1 to 14 and the impregnation liquid including each epoxy resin composition according to Comparative Examples 1 to 10 were prepared.

次いで、含浸コータを用いてガラスクロスを上記各含浸液中に浸漬し、コンマロールで塗工厚を制御しながら、熱風乾燥(温度約120℃、10分間)することにより、本実施例1〜14に係るBステージの各プリプレグ(厚さ約80μm)、比較例1〜10に係るBステージの各プリプレグ(厚さ約80μm)を作製した。   Next, the glass cloth was immersed in each of the above impregnating solutions using an impregnation coater, and dried with hot air (temperature of about 120 ° C., 10 minutes) while controlling the coating thickness with a comma roll. Each prepreg (thickness: about 80 μm) of the B stage according to 14 and each prepreg (thickness: about 80 μm) of the B stage according to Comparative Examples 1 to 10 were produced.

(評価方法)
以上のように作製した各組成物、プリプレグについて、線膨張係数、レジンフロー、難燃性、無機難燃剤の剥がれ落ち、鉛フリー半田耐熱性、180°ピール強度の各項目について評価を行った。以下に各項目についての評価方法を簡単に説明する。
(Evaluation methods)
Each composition and prepreg produced as described above were evaluated for each of the following items: linear expansion coefficient, resin flow, flame retardancy, peeling of inorganic flame retardant, lead-free solder heat resistance, and 180 ° peel strength. The evaluation method for each item is briefly described below.

(1.線熱膨張係数)
半硬化状態(Bステージ)の各プリプレグを面圧8.5MPa、温度120℃×15分→180℃×60分の2段階で硬化させた。次いで、JIS K7194「プラスチックの熱機械分析による線膨張率試験方法」に準拠し、硬化後の各プリプレグの線膨張係数を測定した。この際、試験片としては、角柱状試験片(一辺が5mm、厚さ2mm)を用いた。また、測定温度は25℃〜250℃までの範囲内、昇温温度は5℃/minとした。なお、試験装置の検出棒の直径はφ3mmである。
(1. Linear thermal expansion coefficient)
Each prepreg in a semi-cured state (B stage) was cured in two stages, with a surface pressure of 8.5 MPa and a temperature of 120 ° C. × 15 minutes → 180 ° C. × 60 minutes. Subsequently, the linear expansion coefficient of each prepreg after curing was measured in accordance with JIS K7194 “Method for testing linear expansion coefficient by thermomechanical analysis of plastics”. At this time, a prismatic test piece (one side was 5 mm, thickness was 2 mm) was used as the test piece. The measurement temperature was in the range from 25 ° C. to 250 ° C., and the temperature elevation temperature was 5 ° C./min. The diameter of the detection rod of the test apparatus is φ3 mm.

本評価では、試験片の厚み方向の線膨張係数が50ppm/℃以下にある場合を合格(○)とし、50ppm/℃を越える場合を不合格(×)とした。   In this evaluation, the case where the linear expansion coefficient in the thickness direction of the test piece was 50 ppm / ° C. or less was determined to be acceptable (◯), and the case where it exceeded 50 ppm / ° C. was determined to be unacceptable (x).

(2.レジンフロー)
Bステージの各プリプレグに直径6mmの穴を形成し、硬化前のプリプレグの穴寸法(図1参照)を投影機により測定した。次いで、その試験片を2枚のポリイミドフィルム(厚さ50μm)の間に挟み、面圧8.5MPa、温度120℃×15分→180℃×60分の2段階で硬化させた。次いで、硬化後のプリプレグの穴寸法(図1参照)を投影機により測定した。
(2. Resin flow)
A hole having a diameter of 6 mm was formed in each prepreg of the B stage, and the hole size (see FIG. 1) of the prepreg before curing was measured by a projector. Next, the test piece was sandwiched between two polyimide films (thickness 50 μm), and cured in two stages, with a surface pressure of 8.5 MPa and a temperature of 120 ° C. × 15 minutes → 180 ° C. × 60 minutes. Subsequently, the hole size (refer FIG. 1) of the prepreg after hardening was measured with the projector.

この結果より、次の数1を用いて硬化前後の面積変化率を算出し、この面積変化率が5%以下である場合には合格(○)とし、5%を越える場合には不合格(×)とした。   From this result, the area change rate before and after curing is calculated using the following equation (1). If this area change rate is 5% or less, it is accepted (◯), and if it exceeds 5%, it is rejected ( X).

Figure 2006028274
Figure 2006028274

(3.難燃性)
Bステージの各プリプレグを面圧8.5MPa、温度120℃×15分→180℃×60分の2段階で硬化させた。次いで、UL規格の94−V0に準拠し、硬化後の各プリプレグの難燃性を評価した。UL94−V0を満足する場合を合格(○)とし、満足しない場合を不合格(×)とした。
(3. Flame resistance)
Each prepreg of the B stage was cured in two stages, with a surface pressure of 8.5 MPa and a temperature of 120 ° C. × 15 minutes → 180 ° C. × 60 minutes. Next, the flame retardancy of each prepreg after curing was evaluated according to UL standard 94-V0. The case where UL94-V0 was satisfied was determined to be acceptable (◯), and the case where it was not satisfied was determined to be unacceptable (x).

(4.無機難燃剤の剥がれ落ち)
Bステージの各プリプレグを90°に折り曲げ、無機系難燃剤の剥がれ落ちが発生するか否か目視にて確認した。無機系難燃剤の剥がれ落ちが発生しない場合を合格(○)とし、剥がれ落ちが発生する場合を不合格(×)とした。
(4. Removal of inorganic flame retardant)
Each prepreg of the B stage was bent at 90 °, and it was visually confirmed whether or not the inorganic flame retardant peeled off. The case where the inorganic flame retardant did not peel off was determined to be acceptable (O), and the case where the inorganic flame retardant occurred was determined to be unacceptable (X).

(5.鉛フリー半田耐熱性)
Cu箔/Bステージの各プリプレグ/Cu箔の順に積層した各積層体を、面圧8.5MPa、温度120℃×15分→180℃×60分の2段階で硬化させ、銅張両面板(一辺が3cm、厚さ230μm)を作製した。次いで、約280℃の半田浴に各銅張両面板を約20秒間浮かべた。
(5. Lead-free solder heat resistance)
Each laminated body laminated in the order of each prepreg / Cu foil of Cu foil / B stage was cured in two stages with a surface pressure of 8.5 MPa and a temperature of 120 ° C. × 15 minutes → 180 ° C. × 60 minutes. One side was 3 cm and the thickness was 230 μm). Next, each copper clad double-sided plate was floated in a solder bath at about 280 ° C. for about 20 seconds.

約20秒後に銅張両面板の表面がふくれなかった場合を合格(○)とし、ふくれた場合を不合格(×)とした。   The case where the surface of the copper-clad double-sided board did not bulge after about 20 seconds was determined to be acceptable (◯), and the case where it bulged was regarded as unacceptable (x).

(6.180°ピール強度)
2枚のポリイミドフィルム(厚さ50μm)の間に、Bステージの各プリプレグを挟み込み、面圧8.5MPa、温度120℃×15分→180℃×60分の2段階で硬化させて試験片(一辺が1cm、厚さ180μm)を作製した。次いで、JIS K6854−2「接着剤−はく離接着強さ試験方法−第2部:180度はく離」に準拠し、180°ピール強度を測定した。なお、ポリイミドフィルムをつかみ、剥離する速度は、20mm/minとした。
(6. 180 ° peel strength)
Each prepreg of the B stage is sandwiched between two polyimide films (thickness 50 μm) and cured in two stages with a surface pressure of 8.5 MPa and a temperature of 120 ° C. × 15 minutes → 180 ° C. × 60 minutes. One side was 1 cm and thickness was 180 μm). Subsequently, the 180 ° peel strength was measured in accordance with JIS K6854-2 “Adhesive—Peeling peel strength test method—Part 2: 180 degree peel”. The speed at which the polyimide film was grasped and peeled was 20 mm / min.

試験片の180°ピール強度が8N/cm以上のものを合格(○)とし、8N/cm未満のものを不合格(×)とした。   A specimen having a 180 ° peel strength of 8 N / cm or more was regarded as acceptable (◯), and a specimen less than 8 N / cm was regarded as unacceptable (x).

以下の表1および2に本組成物の配合割合および評価結果を示す。   Tables 1 and 2 below show the blending ratio and evaluation results of this composition.

Figure 2006028274
Figure 2006028274

Figure 2006028274
Figure 2006028274

上記表1、2によれば、比較例に係るエポキシ樹脂組成物およびプリプレグは、何れかの評価項目に難点があることが分かる。   According to the said Table 1, 2, it turns out that the epoxy resin composition and prepreg which concern on a comparative example have a difficulty in either evaluation item.

より具体的には、比較例1および比較例2は、無機系難燃剤として、水酸化マグネシウムよりも耐熱性に劣る水酸化アルミニウムを含んでいるので、鉛フリー半田の処理温度(約280℃)に耐え得る耐熱性を有していないことが分かる。   More specifically, Comparative Example 1 and Comparative Example 2 contain aluminum hydroxide that is inferior in heat resistance to magnesium hydroxide as an inorganic flame retardant, so the processing temperature of lead-free solder (about 280 ° C.) It can be seen that it does not have heat resistance that can withstand.

また、比較例3および比較例4は、改質剤であるリン含有フェノキシ樹脂、フェノキシ樹脂が規定量より少ないので、多量に添加された水酸化マグネシウムを樹脂中に十分に包埋できず、水酸化マグネシウムの剥がれ落ちが発生したことが分かる。   Further, in Comparative Examples 3 and 4, since the phosphorus-containing phenoxy resin and phenoxy resin, which are modifiers, are less than the specified amount, magnesium hydroxide added in a large amount cannot be embedded sufficiently in the resin, It can be seen that the magnesium oxide peeled off.

また、比較例5および比較例6は、改質剤であるリン含有フェノキシ樹脂、フェノキシ樹脂が規定量より多いので、ポリイミドフィルムとの接着性が悪化し、180°ピール強度が低下したことが分かる。   Moreover, since the comparative example 5 and the comparative example 6 have more phosphorus-containing phenoxy resin and phenoxy resin which are modifiers than a prescribed amount, it turns out that adhesiveness with a polyimide film deteriorated and 180 degree peel strength fell. .

また、比較例7および比較例8は、改質剤である液状NBR、末端変性液状NBRが規定量より少ないので、多量に添加された水酸化マグネシウムを樹脂中に十分に包埋できず、水酸化マグネシウムの剥がれ落ちが発生したことが分かる。   In Comparative Example 7 and Comparative Example 8, since the liquid NBR and terminal-modified liquid NBR that are the modifiers are less than the specified amount, the magnesium hydroxide added in a large amount cannot be embedded sufficiently in the resin. It can be seen that the magnesium oxide peeled off.

また、比較例9および比較例10は、改質剤である液状NBR、末端変性液状NBRが規定量より多いので、ポリイミドフィルムとの接着性が悪化し、180°ピール強度が低下したことが分かる。   Moreover, since the comparative example 9 and the comparative example 10 have more liquid NBR and terminal modified | denatured liquid NBR which are modifiers than a prescribed amount, it turns out that adhesiveness with a polyimide film deteriorated and 180 degree peel strength fell. .

これらに対し、本実施例に係るエポキシ樹脂組成物およびプリプレグによれば全ての評価項目を満足している。したがって、本実施例に係るエポキシ樹脂組成物は、硬化時に樹脂流動を起こし難く、これを用いたプリプレグは寸法安定性に優れる。また、本実施例に係るエポキシ樹脂組成物およびプリプレグは、十分な難燃性を有しつつ無機系難燃剤の剥がれ落ちを抑制でき、さらに、鉛フリー半田の処理温度に対応できる耐熱性を有していることが確認できた。   On the other hand, according to the epoxy resin composition and prepreg according to this example, all the evaluation items are satisfied. Therefore, the epoxy resin composition according to this example hardly causes resin flow during curing, and a prepreg using the epoxy resin composition is excellent in dimensional stability. In addition, the epoxy resin composition and the prepreg according to the present example have sufficient flame resistance, can suppress peeling of the inorganic flame retardant, and have heat resistance that can correspond to the processing temperature of lead-free solder. I was able to confirm.

硬化前後の各プリプレグに形成した穴を模式的に示した平面図である。It is the top view which showed typically the hole formed in each prepreg before and behind hardening.

Claims (2)

ジシクロペンタジエン型エポキシ樹脂および/またはナフタレン型エポキシ樹脂100重量部に対して、フェノキシ樹脂および/またはアクリロニトリル−ブタジエンゴム20〜50重量部、水酸化マグネシウム100〜300重量部を少なくとも含有してなるエポキシ樹脂組成物。   Epoxy containing at least 20 to 50 parts by weight of phenoxy resin and / or acrylonitrile-butadiene rubber and 100 to 300 parts by weight of magnesium hydroxide with respect to 100 parts by weight of dicyclopentadiene type epoxy resin and / or naphthalene type epoxy resin Resin composition. 請求項1に記載のエポキシ樹脂組成物を基材に含浸または塗布し、乾燥半硬化させてなるプリプレグ。   A prepreg obtained by impregnating or coating a base material with the epoxy resin composition according to claim 1 and drying and curing it.
JP2004206709A 2004-07-14 2004-07-14 Epoxy resin composition and prepreg using the same Pending JP2006028274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206709A JP2006028274A (en) 2004-07-14 2004-07-14 Epoxy resin composition and prepreg using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206709A JP2006028274A (en) 2004-07-14 2004-07-14 Epoxy resin composition and prepreg using the same

Publications (1)

Publication Number Publication Date
JP2006028274A true JP2006028274A (en) 2006-02-02

Family

ID=35895018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206709A Pending JP2006028274A (en) 2004-07-14 2004-07-14 Epoxy resin composition and prepreg using the same

Country Status (1)

Country Link
JP (1) JP2006028274A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129662A1 (en) * 2006-05-08 2007-11-15 Sekisui Chemical Co., Ltd. Insulating material, process for producing electronic part/device, and electronic part/device
JP2008174662A (en) * 2007-01-19 2008-07-31 Sumitomo Bakelite Co Ltd Resin composition, insulating resin sheet with film or metallic foil, multilayered printed circuit board and semiconductor device
WO2008090614A1 (en) * 2007-01-25 2008-07-31 Panasonic Electric Works Co., Ltd. Prepreg, printed wiring board, multilayer circuit board and process for manufacturing printed wiring board
JP2009007469A (en) * 2007-06-28 2009-01-15 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate and semiconductor device
JP2013543035A (en) * 2010-11-08 2013-11-28 東レ株式会社 Epoxy resin composition, prepreg, and fiber reinforced composite material for fiber reinforced composite material
GB2512992A (en) * 2013-02-13 2014-10-15 Hexcel Composites Ltd Fire retardant epoxy resin formulations and their use
JP2023024510A (en) * 2017-09-11 2023-02-16 味の素株式会社 resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129662A1 (en) * 2006-05-08 2007-11-15 Sekisui Chemical Co., Ltd. Insulating material, process for producing electronic part/device, and electronic part/device
JPWO2007129662A1 (en) * 2006-05-08 2009-09-17 積水化学工業株式会社 Insulating material, method of manufacturing electronic component device, and electronic component device
JP2008174662A (en) * 2007-01-19 2008-07-31 Sumitomo Bakelite Co Ltd Resin composition, insulating resin sheet with film or metallic foil, multilayered printed circuit board and semiconductor device
JP5554500B2 (en) * 2007-01-25 2014-07-23 パナソニック株式会社 Prepreg, printed wiring board, multilayer circuit board, and method for manufacturing printed wiring board
WO2008090614A1 (en) * 2007-01-25 2008-07-31 Panasonic Electric Works Co., Ltd. Prepreg, printed wiring board, multilayer circuit board and process for manufacturing printed wiring board
KR101077435B1 (en) 2007-01-25 2011-10-26 파나소닉 전공 주식회사 Prepreg, printed wiring board, multilayer circuit board and process for manufacturing printed wiring board
US8409704B2 (en) 2007-01-25 2013-04-02 Panasonic Corporation Prepreg, printed wiring board, multilayer circuit board, and process for manufacturing printed wiring board
JP2009007469A (en) * 2007-06-28 2009-01-15 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminate and semiconductor device
JP2013543035A (en) * 2010-11-08 2013-11-28 東レ株式会社 Epoxy resin composition, prepreg, and fiber reinforced composite material for fiber reinforced composite material
US9957387B2 (en) 2010-11-08 2018-05-01 Toray Industries, Inc. Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
GB2512992A (en) * 2013-02-13 2014-10-15 Hexcel Composites Ltd Fire retardant epoxy resin formulations and their use
GB2512992B (en) * 2013-02-13 2015-10-07 Hexcel Composites Ltd Fire retardant epoxy resin formulations and their use
JP2023024510A (en) * 2017-09-11 2023-02-16 味の素株式会社 resin composition
JP7439888B2 (en) 2017-09-11 2024-02-28 味の素株式会社 resin composition

Similar Documents

Publication Publication Date Title
JP5576930B2 (en) Epoxy resin composition for prepreg, prepreg, and multilayer printed wiring board
JP5378620B2 (en) LAMINATED BOARD AND PRINTED WIRING BOARD MANUFACTURING METHOD
JPWO2011068157A1 (en) Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production
JP2010222408A (en) Resin composition for flexible printed wiring board, resin film, prepreg, metal foil with resin, flexible printed wiring board
JP2010251700A (en) Flame retardant resin composition for printed circuit board reinforced in peeling strength, printed circuit board using the same, and manufacturing method thereof
JP2009144052A (en) Resin composition for printed circuit board, insulating layer with supporting substrate, laminate, and printed circuit board
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
JP2017059779A (en) Method for manufacturing printed wiring board
JPWO2007097209A1 (en) Epoxy resin composition
JP2002069270A (en) Flame-retardant halogen-free epoxy resin composition and use thereof
JP2005105061A (en) Resin composition, conductive foil with resin, prepreg, sheet, sheet with conductive foil, laminated plate and printed wiring board
JP2009176889A (en) Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor
JP2006028274A (en) Epoxy resin composition and prepreg using the same
JP2003105167A (en) Flame-retardant resin composition and adhesive sheet for semiconductor device using the same, cover lay film and flexible printed circuit board
JP2008231235A (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, cover-lay film and copper-clad laminate
JP2011051247A (en) Metal foil with thermosetting resin composition layer, metal clad laminated plate, and printed wiring board
JP5040102B2 (en) Prepreg and laminate
JP2006108314A (en) Metal plated board, manufacturing method thereof, flexible printed wiring board, and multilayer printed wiring board
JP2008195846A (en) Resin composition for printed circuit board, electrical insulation material with substrate, and metal-clad laminated board
JP6303257B2 (en) Pre-preg compatible with semi-additive process and metal-clad laminate using the same
JP2005105182A (en) Resin composition, prepreg and laminate
JP2722402B2 (en) Adhesive composition for flexible printed circuit boards
JP2017171814A (en) Adhesive sheet for printed wiring board
JP2006028275A (en) Prepreg sheet with protective film and method for producing the same
JP2824149B2 (en) Coverlay film