[go: up one dir, main page]

JP2006027421A - Transporting device using linear motor - Google Patents

Transporting device using linear motor Download PDF

Info

Publication number
JP2006027421A
JP2006027421A JP2004208443A JP2004208443A JP2006027421A JP 2006027421 A JP2006027421 A JP 2006027421A JP 2004208443 A JP2004208443 A JP 2004208443A JP 2004208443 A JP2004208443 A JP 2004208443A JP 2006027421 A JP2006027421 A JP 2006027421A
Authority
JP
Japan
Prior art keywords
linear motor
magnetic pole
track
detection sensor
pole detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004208443A
Other languages
Japanese (ja)
Other versions
JP4506319B2 (en
Inventor
Mitsuyoshi Kuroda
光義 黒田
Tsutomu Araya
勉奥野 敦 新谷
Atsushi Okuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asyst Shinko Inc
Original Assignee
Asyst Shinko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asyst Shinko Inc filed Critical Asyst Shinko Inc
Priority to JP2004208443A priority Critical patent/JP4506319B2/en
Publication of JP2006027421A publication Critical patent/JP2006027421A/en
Application granted granted Critical
Publication of JP4506319B2 publication Critical patent/JP4506319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transporting device using a linear motor including a permanent magnet installed on a track to serve as the primary side, capable of improving the conventional problem such that the motor efficiency is dropped to a significant degree owing to a deviation generated in the magnetic pole phase sensed by a magnetic pole sensor from the magnetic pole phase required to control the primary side of the linear motor while it is running on a curved track or a track part with convergence and/or divergence. <P>SOLUTION: The transporting device using the linear motor is equipped with a bogie mechanism 7 installed proprietarily for installation of the magnetic pole sensor 8, which is furnished with a guide roller 7f so as to make movement perpendicularly to the longitudinal direction of the permanent magnet 5bx in case it intrudes to a curved track or a track with convergence or divergence and is confronting the permanent magnet 5bx where the magnetic pole sensor 8 is confronting. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、半導体や、液晶表示装置等の製造工程において、基板が収納されたカセット等の物品を搬送するためのリニアモータ式搬送装置に関し、より詳しくは、駆動手段として、前記カセット等の被搬送物の搬送軌道に沿って交互に極性を異にして配置される永久磁石を2次側とするリニアモータを利用するに当り、磁極の位置を的確に検出する磁極検知センサの配置機構に関するものである。   The present invention relates to a linear motor type transfer device for transferring an article such as a cassette in which a substrate is stored in a manufacturing process of a semiconductor or a liquid crystal display device, for example. Arrangement mechanism of magnetic pole detection sensor that accurately detects the position of the magnetic pole when using a linear motor having a permanent magnet as a secondary side that is alternately arranged with different polarities along the conveyance path of the object to be conveyed It is about.

従来、病院、倉庫または工場などにおいて、所定の軌道に沿って搬送台車を走行させ、この搬送台車によって被搬送物(半導体基板を収納したカセットほかの積荷)を搬送する搬送システムが広く採用されている。例えば、このような搬送システムは、病院などにおいて食器や医療用器具等を搬送する搬送台車として用いられたり、倉庫等において、資材を移動する搬送台車として用いられたり、あるいは、工場等において、液晶基板や半導体ウエハ搬送装置として用いられている。   Conventionally, in hospitals, warehouses, factories, etc., a transport system that travels a transport cart along a predetermined track and transports an object to be transported (a cassette or other cargo containing a semiconductor substrate) by this transport cart has been widely adopted. Yes. For example, such a transport system is used as a transport cart for transporting tableware, medical instruments, etc. in hospitals, etc., used as a transport cart for moving materials in warehouses, etc., or in a factory, etc. Used as a substrate or semiconductor wafer transfer device.

ところで、搬送台車は、非接触給電、トロリー等による外部電源からの給電、あるいは自ら積載するバッテリによりリニアモータほかの駆動手段に電力を受け、自走している。そして、搬送台車の走行方向を規制する軌道に沿って走行する。この際、搬送台車の軌道の種類は基本的に図3(a)、(b)、(c)に示されるように夫々直線部31、曲線部32、合流分岐部33よりなっている。 By the way, the transport cart is self-propelled by receiving electric power from a driving means other than a linear motor by contactless power feeding, power feeding from an external power source such as a trolley, or a battery loaded by itself. And it drive | works along the track | orbit which regulates the traveling direction of a conveyance trolley | bogie. At this time, the type of track of the transport carriage basically includes a straight portion 31, a curved portion 32, and a junction branching portion 33 as shown in FIGS. 3 (a), (b), and (c).

一方、搬送台車は、その機構の概要を示す図4に示す構成となっている。この図4において、搬送台車41の矢印で表示する進行方向に対して前後に2個の給電トランス42a、42bが設けられている。これは、給電トランス1個では、搬送台車41の走行に必要な電力が不足するためである。また、分岐機構を持つ搬送台車41の場合、左右どちらかに1次給電線43があるか分からないため、搬送台車41の左右に給電トランスを配している。
従って、非接触給電方式の場合、通常、1台の搬送台車41に対して進行方向右側の給電トランス42a、42bと進行方向左側の給電トランス42c、42dの合計4個の給電トランスが設けられている。もちろん、進行方向左側の給電トランス42c、42dを利用するときは左側に1次給電線43が配置され、進行方向右側の給電トランス42a、42bを利用するときは右側に1次給電線43が配置されている。
On the other hand, the conveyance cart has a configuration shown in FIG. In FIG. 4, two power supply transformers 42 a and 42 b are provided on the front and rear sides in the traveling direction indicated by the arrow of the transport carriage 41. This is because one power supply transformer lacks electric power necessary for traveling the transport carriage 41. Further, in the case of the transport carriage 41 having a branching mechanism, it is not known whether the primary power supply line 43 is present on either the left or right side, and thus power feeding transformers are disposed on the left and right sides of the transport carriage 41.
Therefore, in the case of the non-contact power supply method, a total of four power supply transformers, that is, power supply transformers 42a and 42b on the right side in the traveling direction and power supply transformers 42c and 42d on the left side in the traveling direction are provided for one transport carriage 41. Yes. Of course, when using the power supply transformers 42c and 42d on the left side in the traveling direction, the primary power supply line 43 is arranged on the left side. When using the power supply transformers 42a and 42b on the right side in the traveling direction, the primary power supply line 43 is arranged on the right side. Has been.

なお、図示しない地上のコントローラと、搬送台車41との通信は、電力線重畳通信によって行われているので、それぞれの給電トランス42a、42b、42c、42dは通信トランスも兼ねている。または、通信トランスを兼ねる代りに別途、通信トランス(図示せず)を配置することもできる。
44はリニアモータ1次側で、搬送台車41の軌道に対向する所定位置に設置され、軌道に沿って極性を異にする永久磁石を交互に配置したリニアモータ2次側(図示せず)とで所謂リニアモータを構成している。
Since communication between the ground controller (not shown) and the carriage 41 is performed by power line superimposition communication, each of the power supply transformers 42a, 42b, 42c, and 42d also serves as a communication transformer. Alternatively, instead of serving as a communication transformer, a communication transformer (not shown) can be arranged separately.
44 is a linear motor primary side, which is installed at a predetermined position facing the track of the transport carriage 41, and a linear motor secondary side (not shown) in which permanent magnets having different polarities are alternately arranged along the track. This constitutes a so-called linear motor.

45は磁極検知センサで、搬送台車41の軌道の中央部に対向する位置に設置され、前記リニアモータ2次側永久磁石を順次検出し、この検出信号に基づいて前記リニアモータ1次側の巻き線(図示せず)の励磁方向の切替を行い、リニアモータを構成する1次側と2次側の各磁束の相互作用で軌道に沿った推進力を搬送台車41に与える。
46はエンコーダで、前記磁極検出センサ45とは搬送台車41の進行方向において反対側に位置して設置され、磁極検出毎に計数値を搬送台車の進行方向に応じて増減し、搬送台車41の現在位置を確認する。
A magnetic pole detection sensor 45 is installed at a position facing the central portion of the track of the transport carriage 41 and sequentially detects the linear motor secondary side permanent magnets. Based on the detection signal, the linear motor primary side winding is detected. The excitation direction of the line (not shown) is switched, and a propulsive force along the track is applied to the transport carriage 41 by the interaction of the primary and secondary magnetic fluxes constituting the linear motor.
Reference numeral 46 denotes an encoder, which is installed on the opposite side to the magnetic pole detection sensor 45 in the traveling direction of the transport carriage 41, and increases or decreases the count value according to the traveling direction of the transport carriage for each magnetic pole detection. Check the current position.

前記リニアモータ関連要素の直線軌道における状況を模式的に示すと図5に示す通りである。同図5において、図4との対応要素は同一符号で示し、その説明は重複を避けて省略する。47はリニアモータ2次側を構成する永久磁石で、その極性は交互に逆極性をなし、図示のように配列される。
このように図5に示す直線軌道をリニアモータ1次側44が走行する際には、磁極検知センサ45は各磁極47の中央箇所に対向しつつ磁極を検出していくことができ、正確な磁極位置検出に伴って、リニアモータ1次側44の図示しない巻き線に対して電流切替タイミングを的確に実施することができ、リニアモータの効率をアップすることができる。
FIG. 5 schematically shows the situation of the linear motor-related elements in a straight track. In FIG. 5, elements corresponding to those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted to avoid duplication. Reference numeral 47 denotes a permanent magnet that constitutes the secondary side of the linear motor. The polarities of the permanent magnets are alternately opposite to each other and are arranged as shown.
Thus, when the linear motor primary side 44 travels on the linear track shown in FIG. 5, the magnetic pole detection sensor 45 can detect the magnetic pole while facing the central portion of each magnetic pole 47, and the accurate Along with the detection of the magnetic pole position, the current switching timing can be accurately performed on the winding (not shown) of the linear motor primary side 44, and the efficiency of the linear motor can be increased.

ところで、図6(図5と均等箇所には同一符号を付し詳細な説明は省略する)に示されるように、曲線をなす軌道L1においてはこれに沿う交互に極性を異にする一連の永久磁石47のセンターラインL2も曲線をなす。この結果、リニアモータ1次側のセンターラインL3と前記永久磁石47のセンターラインL2との関係から、磁極検知センサ45の磁極検知位置は磁極検知センサ45の中心から外れることとなる。
このような現象は図7に示す合流分岐箇所においても同様な現象を生じるとともに合流分岐箇所はリニアモータ2次側永久磁石列の合流・分岐という構成上影響がさらに増大する。
By the way, as shown in FIG. 6 (the same reference numerals are given to the same parts as in FIG. 5 and the detailed description is omitted), in the curved track L1, a series of permanent different polarities along this is provided. The center line L2 of the magnet 47 also forms a curve. As a result, the magnetic pole detection position of the magnetic pole detection sensor 45 deviates from the center of the magnetic pole detection sensor 45 due to the relationship between the center line L 3 on the primary side of the linear motor and the center line L 2 of the permanent magnet 47.
Such a phenomenon also occurs at the junction branching portion shown in FIG. 7, and the junction branching portion further increases the influence on the configuration of the junction and branching of the linear motor secondary side permanent magnet array.

以上述べた先行技術とは別に本願発明に関する先行技術としての特許文献に視点を移すと、まず、ボギー機構を有するリニアモータ走行搬送台車について開示されている特許文献1及び特許文献2があるが、これらには、磁極検知センサについての記述がない。また、速度検出センサや位置センサについての記述はあるが、いずれのセンサも軌道上に設置されている
従って、後述する磁極検知センサを、その設置専用のボギー機構上に設けることを要旨とする本願各発明とは、磁極検知センサの設置構成及びセンサの種類の2点で相違する。
また、特許文献3には、磁気センサを有するリニアモータ式搬送手段の記載がある。しかし、センサ設置専用のボギー機構は開示されておらず、磁極検知センサを、その設置専用のボギー機構上に設置することを要旨とする本願各発明と相違する。
実開平6−29303 実開平6−29304 特公平6−30522
When the viewpoint is shifted to the patent document as the prior art related to the present invention separately from the prior art described above, first, there are Patent Document 1 and Patent Document 2 disclosed for the linear motor traveling conveyance carriage having a bogie mechanism. These do not describe the magnetic pole detection sensor. In addition, although there is a description of the speed detection sensor and the position sensor, both sensors are installed on the track. Therefore, the present application is intended to provide a magnetic pole detection sensor described later on a bogie mechanism dedicated to the installation. Each invention differs from the invention in two respects: the installation configuration of the magnetic pole detection sensor and the type of sensor.
Further, Patent Document 3 describes a linear motor type conveying unit having a magnetic sensor. However, a bogie mechanism dedicated to sensor installation is not disclosed, and is different from the inventions of the present application whose main point is to install a magnetic pole detection sensor on a bogie mechanism dedicated to installation.
6-29303 6-29304 JP 6-30522

前記背景技術の欄で述べた先行技術において、特許文献1〜3に開示の各技術には、リニアモータの2次側であって、1次側の軌道に沿って配置される磁性を交互に異にして配置される永久磁石を検知する磁極検知センサの開示がない。
ところで、前記図5に示す搬送台車及びこれに搭載されたリニアモータ1次側の直線走行では、リニアモータ2次側をなし、交互にNS極性となるように搬送台車の軌道に沿って配置される永久磁石を磁極検知センサにより適正に検出でき何等の支障を生じることなく搬送台車は正常に走行できる。
In the prior art described in the section of the background art, each technique disclosed in Patent Literatures 1 to 3 alternately includes magnets arranged on the secondary side of the linear motor and along the primary side track. There is no disclosure of a magnetic pole detection sensor for detecting differently arranged permanent magnets.
Incidentally, in the linear carriage on the primary side of the conveyance carriage and the linear motor mounted thereon shown in FIG. 5, the linear motor secondary side is formed and arranged along the track of the conveyance carriage so as to have NS polarity alternately. The permanent magnet can be properly detected by the magnetic pole detection sensor, and the carriage can normally run without any trouble.

一方、図6に示す曲線部を搬送台車が走行する際には、磁極検知センサ45の位置が一連の永久磁石47のセンターラインを大きく外れ、実際の搬送台車に搭載のリニアモータ1次側44直下において対向する永久磁石47の配置と磁極検知センサにて検出した永久磁石47の配置がずれていた。ついては、磁極検知センサ45の検知信号によってリニアモータ1次側の巻き線の励磁電流を制御するため、結果として効率の悪いリニアモータの駆動となることのほか過負荷異常なども多発していた。
特に、図7に示す合流分岐部におけるリニアモータ2次側の永久磁石47の配置は、単なる曲線部における場合に比べて複雑であり、更に、実際のリニアモータ1次側直下における永久磁石47の配置と、磁極センサ45で検出した永久磁石47が別の経路から分岐点に移行する永久磁石47を検出するなど、検出した永久磁石配列がずれる傾向があった。
On the other hand, when the transport carriage travels on the curved portion shown in FIG. 6, the position of the magnetic pole detection sensor 45 greatly deviates from the center line of the series of permanent magnets 47, and the linear motor primary side 44 mounted on the actual transport carriage. The arrangement of the permanent magnets 47 facing directly below and the arrangement of the permanent magnets 47 detected by the magnetic pole detection sensor were shifted. As a result, the exciting current of the winding on the primary side of the linear motor is controlled by the detection signal of the magnetic pole detection sensor 45. As a result, the inefficient linear motor is driven and overload abnormalities frequently occur.
In particular, the arrangement of the permanent magnets 47 on the secondary side of the linear motor in the junction branching portion shown in FIG. 7 is more complicated than in the case of a simple curved portion. Further, the permanent magnets 47 directly below the actual primary side of the linear motor 47 are arranged. There is a tendency that the arrangement of the detected permanent magnets is shifted, for example, the permanent magnet 47 detected by the magnetic pole sensor 45 detects the permanent magnet 47 that moves from another path to the branch point.

なお、前記図6、図7に示されるいずれの場合も磁極検知センサがリニアモータ1次側の幅方向及び長手方向の中央部に配置できれば、上記の問題点は緩和されるが、リニアモータ1次側に磁極検知センサを埋め込むと、リニアモータ1次側巻き線に流入する電流による磁界を検出する可能性があり、これを防止することは原理的に困難である。加えて、実際にはリニアモータを構成する1次側電磁石と2次側永久磁石の相互の対向面は効率向上の観点から、ギャップは実用上の最小寸法に設定されており、この位置に磁極センサを配置することは困難である。 In both cases shown in FIGS. 6 and 7, if the magnetic pole detection sensor can be arranged at the central portion in the width direction and the longitudinal direction on the linear motor primary side, the above problem can be alleviated, but the linear motor 1. If a magnetic pole detection sensor is embedded on the secondary side, there is a possibility of detecting a magnetic field due to the current flowing into the primary winding of the linear motor, and it is theoretically difficult to prevent this. In addition, the gap between the primary electromagnet and the secondary permanent magnet constituting the linear motor is actually set to the smallest practical size from the viewpoint of improving efficiency. It is difficult to place the sensor.

そこで、本発明の目的は、リニアモータ1次側巻き線の励磁によって発生する磁界の影響を受けることなく、かつ、リニアモータにより駆動される搬送台車の軌道が曲線或いは合流分岐箇所であっても、リニアモータ1次側の巻き線の励磁切替信号を得る磁極検知センサがリニアモータの2次側であって、搬送台車の軌道に沿って配置される永久磁石を、直線軌道に準じて正確に検知し得る機構を提供することにある。 Accordingly, an object of the present invention is not affected by the magnetic field generated by the excitation of the primary winding of the linear motor, and even if the track of the transport carriage driven by the linear motor is a curve or a junction branch point. The magnetic pole detection sensor that obtains the excitation switching signal of the winding on the primary side of the linear motor is the secondary side of the linear motor, and the permanent magnet arranged along the trajectory of the transport carriage is accurately conformed to the linear trajectory. It is to provide a mechanism that can be detected.

課題を解決するための手段及び効果Means and effects for solving the problems

上記の課題を解決するため、請求項1に記載のリニアモータ式搬送装置は、巻き線と、この巻き線の励磁切替に伴って交番磁束を発生する1次側を構成する可動部と、当該可動部の軌道に沿って敷設され、異なる極性の永久磁石が交互に敷設された2次側を構成する固定部と、から構成されるリニアモータによって駆動制御を受ける搬送台車であって、前記永久磁石の正負各磁極検出用センサと、1乃至複数のボギー機構と、を有し、前記1乃至複数のボギー機構のうち、磁極検出用センサを配置する専用のボギー機構を有することを特徴とする。 In order to solve the above-described problem, a linear motor-type conveyance device according to claim 1 includes a winding, a movable part that constitutes a primary side that generates an alternating magnetic flux in accordance with excitation switching of the winding, A transport carriage that is driven along a track of a movable part, and that is driven by a linear motor that includes a fixed part that constitutes a secondary side in which permanent magnets of different polarities are alternately laid. It has a positive and negative magnetic pole detection sensor for magnets and one or more bogie mechanisms, and has a dedicated bogie mechanism for arranging magnetic pole detection sensors among the one or more bogie mechanisms. .

この請求項1に係る発明によれば、搬送台車の軌道に沿って極性を交互に変えて配置されるリニアモータにおける2次側永久磁石の磁極検知用センサの位置が各永久磁石の中心部に対向するように自動的に調整される。
従って、搬送台車の軌道中、曲線、分岐箇所を搬送台車が通過する場合においてもリニアモータの効率は直線軌道とほぼ同一とすることができる。
因みに、図8に示すようにリニアモータ2次側の永久磁石47と磁極検知センサ45との曲線軌道上の関係はボギー機構に磁極検知センサを設置した場合は実線の通りであるのに対してボギー機構以外の箇所(搬送台車本体)にセンサを固定した場合は点線の通りで、
永久磁石47と磁極検知センサ45との相互関係において、前記効果を裏付けている。
According to the first aspect of the present invention, the position of the magnetic pole detection sensor of the secondary permanent magnet in the linear motor arranged by alternately changing the polarity along the track of the transport carriage is at the center of each permanent magnet. It is automatically adjusted to face each other.
Therefore, the efficiency of the linear motor can be made substantially the same as that of the linear track even when the transfer cart passes through the curve and branching points in the track of the transport cart.
Incidentally, as shown in FIG. 8, the relationship between the permanent magnet 47 on the secondary motor side and the magnetic pole detection sensor 45 on the curved track is as shown by the solid line when the magnetic pole detection sensor is installed in the bogie mechanism. When the sensor is fixed to a place other than the bogie mechanism (the transport carriage body), it is as shown by the dotted line.
The above-mentioned effect is supported by the mutual relationship between the permanent magnet 47 and the magnetic pole detection sensor 45.

請求項2に記載のリニアモータ式搬送装置は、巻き線と、この巻き線の励磁切替に伴って交番磁束を発生する1次側を構成する可動部と、当該可動部の軌道に沿って敷設され、異なる極性の永久磁石が交互に敷設された2次側を構成する固定部と、から構成されるリニアモータによって駆動制御を受ける搬送台車であって、前記永久磁石の正負各磁極検出用センサと、唯一のボギー機構と、を有し、前記ボギー機構には、磁極検出用センサを配置することを特徴とする。
この請求項2に係る発明によれば、請求項1の効果に加え、ボギー機構はリニアモータ2次側の磁極検知センサ専用のもののみであるため、搬送台車全体の機構を簡素化することができる。
The linear motor type transfer device according to claim 2 is laid along a winding, a movable part that constitutes a primary side that generates an alternating magnetic flux in accordance with excitation switching of the winding, and a track of the movable part. And a conveyance carriage that is driven and controlled by a linear motor that is configured by a linear motor composed of secondary magnets alternately arranged with permanent magnets of different polarities, and for detecting positive and negative magnetic poles of the permanent magnets. And a single bogie mechanism, and a magnetic pole detection sensor is disposed in the bogie mechanism.
According to the second aspect of the invention, in addition to the effect of the first aspect, the bogie mechanism is only for the magnetic pole detection sensor on the secondary motor secondary side, so the mechanism of the entire transport carriage can be simplified. it can.

請求項3に記載のリニアモータ式搬送装置は、請求項1又は2に記載のリニアモータ式搬送装置において、ボギー機構が所定の軌道の進行方向に対して常に直角方向に位置する方向規制手段を備えていることを特徴とする。
この請求項3に係る発明によれば、請求項1及び請求項2の効果は元よりボギー機構に設置された磁極検知センサの移動軌跡は、搬送台車の軌道が曲線状の場合であってもリニアモータ2次側における一連の永久磁石の中央部を通過できるように設定できるので、磁極検知センサの磁極検知精度を向上させることができる。
The linear motor type conveying apparatus according to claim 3 is the linear motor type conveying apparatus according to claim 1 or 2, wherein the bogie mechanism is provided with a direction regulating means that is always positioned in a direction perpendicular to the traveling direction of the predetermined track. It is characterized by having.
According to the invention of claim 3, the effects of claims 1 and 2 are based on the fact that the movement trajectory of the magnetic pole detection sensor installed in the bogie mechanism is the case where the trajectory of the transport carriage is curved. Since it can set so that it can pass through the center part of a series of permanent magnets on the secondary side of the linear motor, the magnetic pole detection accuracy of the magnetic pole detection sensor can be improved.

請求項4に記載のリニアモータ式搬送装置は、請求項3に記載のリニアモータ式搬送装置において、方向規制手段が軌道の両側に位置するガイド面に対してボギー機構の両側に位置する各1対のガイドローラを接触させるように構成したことを特徴とする。
この請求項4に係る発明によれば、請求項3の効果は基よりボギー機構を搬送台車の軌道に対して常に直角方向を維持させることができる。
According to a fourth aspect of the present invention, there is provided the linear motor type conveyance device according to the third aspect, wherein each of the direction regulating means is located on both sides of the bogie mechanism with respect to the guide surfaces located on both sides of the track. It is characterized by comprising a pair of guide rollers in contact with each other.
According to the fourth aspect of the present invention, the effect of the third aspect of the invention is that the bogie mechanism can always be maintained in a direction perpendicular to the track of the transport carriage.

請求項5に記載のリニアモータ式搬送装置は、請求項1乃至4のいずれかに記載のリニアモータ式搬送装置において、搬送台車への給電を非接触給電方式で行うことを特徴とする。
この請求項5に係る発明によれば、請求項1乃至4の効果は元より非接触による搬送台車への給電のほか搬送台車と地上との通信を行うことができる。
According to a fifth aspect of the present invention, there is provided the linear motor type conveyance device according to any one of the first to fourth aspects, wherein power is supplied to the conveyance carriage by a non-contact power supply method.
According to the fifth aspect of the present invention, the effects of the first to fourth aspects can be communicated between the transport carriage and the ground in addition to the non-contact power supply to the transport carriage.

以下、本発明の好適な実施の形態について図面を参照しつつ説明する。本実施形態に係るリニアモータ式搬送装置は、半導体製造装置における基板を収納したカセットの搬送システムあるいは、病院における各種器具の搬送システム等において、搬送台車の所定の軌道に沿って配置されたリニアモータの2次側を構成する一連の永久磁石を順次磁極検知センサにて検出する機構である。とりわけ本願各発明の主眼としている構成は、軌道に含まれる曲線個所あるいは合流分岐個所における永久磁石を検出するための磁極検知センサの設置機構である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The linear motor type transfer apparatus according to the present embodiment is a linear motor arranged along a predetermined track of a transfer carriage in a transfer system for a cassette storing substrates in a semiconductor manufacturing apparatus or a transfer system for various instruments in a hospital. This is a mechanism for sequentially detecting a series of permanent magnets constituting the secondary side of the magnetic pole using a magnetic pole detection sensor. In particular, the main configuration of each invention of the present application is an installation mechanism of a magnetic pole detection sensor for detecting a permanent magnet at a curved portion or a junction branch portion included in a track.

このような技術の実施の形態を、図1を参照しつつ説明する。図1において、1は搬送台車の走行路を規制する軌道である。2はガイド面で軌道1に沿って形成されている。3は搬送台車で、前記半導体基板収納用カセットほか病院搬送システムにおける各種器具等を搭載し前記軌道1に沿って走行する。4は搬送台車用走行輪で、搬送台車3を軌道1に沿って移動させる機能と、後述するリニアモータの1次側及び2次側のギャップを一定に保つ作用を担う。 An embodiment of such a technique will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a track that regulates the travel path of the transport carriage. A guide surface 2 is formed along the track 1. Reference numeral 3 denotes a transport carriage, which travels along the track 1 with the semiconductor substrate storage cassette and other instruments used in a hospital transport system. Reference numeral 4 denotes a traveling carriage traveling wheel, which has a function of moving the transportation carriage 3 along the track 1 and a function of keeping a gap between a primary side and a secondary side of a linear motor to be described later constant.

5aはリニアモータの1次側で、図示しない巻き線及び鉄心より構成され、巻き線の電流方向の切り替えに伴って、磁束の発生方向を変化させる周知の構成よりなっている。5bはリニアモータの2次側で、軌道1に沿って極性を順次異にする永久磁石5bxから構成され、リニアモータ1次側5aと2次側5bとでリニアモータ5を構成している。6はエンコーダで、搬送台車3に搭載され、後述する磁極センサが検知するリニアモータ2次側を構成する永久磁石の磁極間を、制御に必要なパルス数に分割し、計数値を1つずつ増していく。これによって、リニアモータ1次側コイルの励磁位相の制御を行うと同時に、搬送台車3の移動距離ひいては当該搬送台車の現在位置を検出することができる。 Reference numeral 5a denotes a primary side of the linear motor, which is composed of a winding and an iron core (not shown), and has a well-known configuration that changes the direction of magnetic flux generation in accordance with the switching of the current direction of the winding. 5b is a secondary side of the linear motor, which is composed of permanent magnets 5bx having different polarities along the track 1, and the linear motor 5 is composed of the linear motor primary side 5a and the secondary side 5b. Reference numeral 6 denotes an encoder which is mounted on the transport carriage 3 and divides the magnetic poles of the permanent magnet constituting the linear motor secondary side detected by a magnetic pole sensor, which will be described later, into the number of pulses necessary for control, and counts one by one. It will increase. As a result, the excitation phase of the linear motor primary coil can be controlled, and at the same time, the moving distance of the transport carriage 3 and the current position of the transport carriage can be detected.

以上の構成は本願各発明の前提となる構成であるが、以降、本願各発明の要旨をなす構成について述べると次の通りである。
即ち、図1及び図2を参照して、7はボギー機構で、基材7aは、搬送台車3に固定される支持部材7bに対して水平方向に対して軸7cに回動自在に枢着されている。7dはガイドローラで、基材7aの両端部において夫々1対をなして、腕部材7eに回動自在に取り付けられている。そして、このガイドローラ7dは、4個全てガイド壁2に接しており、搬送台車3の走行に伴って転動する。7fはボギー機構用走行輪で、基材7aの両側の適所から下方に伸びる支持部材7gに回動自在に支持され、搬送台車3の軌道1に沿う走行に伴い、軌道1の表面を転動する。8は磁極検知センサで、磁束が構成要素としてのホール素子(図示せず)と鎖交することによって磁極検出信号を出す公知の構成である。そして、この磁極検知センサ8は基材7aから下方に伸びる支持部材7hに支持され、前記リニアモータ2次側5bに対して適正な空隙を保つように調整されている。
The above configuration is a premise of each invention of the present application. Hereinafter, the configuration forming the gist of each invention of the present application will be described as follows.
That is, referring to FIGS. 1 and 2, reference numeral 7 denotes a bogie mechanism, and the base material 7 a is pivotally attached to a shaft 7 c in a horizontal direction with respect to a support member 7 b fixed to the transport carriage 3. Has been. Reference numerals 7d denote guide rollers, which are paired at both ends of the base material 7a and are rotatably attached to the arm member 7e. The four guide rollers 7d are in contact with the guide wall 2 and roll as the transport carriage 3 travels. 7f is a bogie mechanism traveling wheel, which is rotatably supported by a supporting member 7g extending downward from an appropriate position on both sides of the base material 7a, and rolls on the surface of the track 1 as the transport carriage 3 travels along the track 1. To do. Reference numeral 8 denotes a magnetic pole detection sensor, which has a known configuration that outputs a magnetic pole detection signal by interlinking a magnetic flux with a Hall element (not shown) as a constituent element. The magnetic pole detection sensor 8 is supported by a support member 7h extending downward from the base material 7a, and is adjusted so as to maintain an appropriate gap with respect to the linear motor secondary side 5b.

次に、図1、図2に開示した構成の作用について述べる。
先ず、搬送台車3は、図示しない制御装置によるリニアモータ1次側5aの巻き線への電流切替制御によってリニアモータ5に推力を発生し、搬送台車3は走行を開始する。
この際、磁極検知センサ8が順次リニアモータ2次側5bを構成する永久磁石5bxを順次検知し、そのタイミングにおいて、都度リニアモータ1次側巻き線の励磁電流方向を切り替え、搬送台車3は走行を継続するとともにエンコーダ6の計数値が増し、これによって搬送台車3の現在位置を確認できる。
また、走行車輪4は軌道1上を転動し搬送台車3を走行させるとともに、リニアモータ5の1次側5a及び2次側5bの各磁極面における対向面相互間のギャップを一定に保つ。
Next, the operation of the configuration disclosed in FIGS. 1 and 2 will be described.
First, the transport carriage 3 generates thrust in the linear motor 5 by current switching control to the winding of the linear motor primary side 5a by a control device (not shown), and the transport carriage 3 starts running.
At this time, the magnetic pole detection sensor 8 sequentially detects the permanent magnet 5bx constituting the linear motor secondary side 5b, and at that timing, the excitation current direction of the linear motor primary side winding is switched each time, and the transport carriage 3 runs. And the count value of the encoder 6 increases, whereby the current position of the transport carriage 3 can be confirmed.
Further, the traveling wheel 4 rolls on the track 1 to cause the transport carriage 3 to travel, and keeps the gap between the opposing surfaces of the magnetic surfaces of the primary side 5a and the secondary side 5b of the linear motor 5 constant.

次に、本願各発明の要旨をなす構成としてのボギー機構7の作用を説明する。
図1に示すように搬送台車3の軌道1上における進行方向が直線から曲線に移行する場合、搬送台車3の方向変更に先だって4個のガイドローラ7dがガイド面2に接して転動する過程において、基材7aは、幾何学的原理からリニアモータ2次側5bを構成する永久磁石5bxの長手方向の中心線に平行に規制される。これに伴い、磁極検知センサ8は永久磁石5bxの長手方向の中心部に対向しつつ移動する。
この作用に伴って磁極検知センサ8は軌道1が直線である場合は元より曲線部であってもリニアモータ2次側5bを構成する一連の永久磁石5bxを正確に検知し、リニアモータ1次側5aの巻き線への適切な励磁切替制御を可能としている。これによりリニアモータ5を効率よく駆動させながら、搬送台車3を走行させることができる。
Next, the operation of the bogie mechanism 7 as a configuration constituting the gist of each invention of the present application will be described.
As shown in FIG. 1, when the traveling direction of the transport carriage 3 on the track 1 changes from a straight line to a curved line, a process in which the four guide rollers 7 d roll in contact with the guide surface 2 before changing the direction of the transport carriage 3. The base material 7a is regulated parallel to the longitudinal center line of the permanent magnet 5bx constituting the linear motor secondary side 5b from the geometrical principle. Accordingly, the magnetic pole detection sensor 8 moves while facing the central portion in the longitudinal direction of the permanent magnet 5bx.
With this action, when the track 1 is a straight line, the magnetic pole detection sensor 8 accurately detects a series of permanent magnets 5bx constituting the linear motor secondary side 5b even if it is originally a curved portion, and the linear motor primary. Appropriate excitation switching control to the winding of the side 5a is enabled. As a result, the transport carriage 3 can be driven while the linear motor 5 is driven efficiently.

図1において、搬送台車3の走行輪4はボギー機構を有していない構成をしめしたが、磁極検知センサのボギー機構7以外に、搬送台車走行輪4もボギー機構を備えるようにしてもよい。 In FIG. 1, the traveling wheel 4 of the transport carriage 3 is configured not to have a bogie mechanism. However, in addition to the bogie mechanism 7 of the magnetic pole detection sensor, the transport carriage travel wheel 4 may also include a bogie mechanism. .

図1において、搬送台車にはガイドローラを用いていないが、必要に応じてガイドローラを設ける構成としてもよい。 In FIG. 1, a guide roller is not used in the transport carriage, but a guide roller may be provided if necessary.

本発明の好適な実施形態を示す平面視概略構成図である。It is a planar view schematic block diagram which shows suitable embodiment of this invention. 図1の要部切欠側面図である。It is a principal part notch side view of FIG. 搬送台車の走行路の形態を示す平面視概念図であり、(a)は直線走行路(b)は曲線走行路、(c)は合流分岐路の例を示す。It is a planar view conceptual diagram which shows the form of the traveling path of a conveyance trolley, (a) shows a linear traveling path (b) as a curved traveling path, (c) shows the example of a merge branch road. 搬送台車の構成を示す斜視図である。It is a perspective view which shows the structure of a conveyance trolley | bogie. リニアモータ方式搬送装置搬の模式概念図である。It is a schematic conceptual diagram of a linear motor system conveying apparatus carrying. 搬送台車が曲線部を走行する場合の状況を説明するための平面視模式図である。It is a plane view schematic diagram for demonstrating the condition in case a conveyance trolley drive | works a curved part. 搬送台車が合流分岐部を走行する場合の状況を説明するための平面視模式図である。It is a plane view schematic diagram for demonstrating the condition in case a conveyance trolley drive | works a merge branch part. 本願各発明の効果を説明するための平面視模式図である。It is a plane view schematic diagram for demonstrating the effect of each invention of this application.

符号の説明Explanation of symbols

1 軌道
2 ガイド面
3 搬送台車
5 リニアモータ
5a リニアモータ1次側
5b リニアモータ2次側
5bx 永久磁石
7 ボギー機構
7d ガイドローラ
8 磁極検知センサ
42a〜42d 給電トランス
43 1次給電線
DESCRIPTION OF SYMBOLS 1 Track | truck 2 Guide surface 3 Carriage cart 5 Linear motor 5a Linear motor primary side 5b Linear motor secondary side 5bx Permanent magnet 7 Bogie mechanism 7d Guide roller 8 Magnetic pole detection sensors 42a-42d Feeding transformer 43 Primary feeding line

Claims (5)

巻き線と、この巻き線の励磁切替に伴って交番磁束を発生する1次側を構成する可動部と、当該可動部の軌道に沿って敷設され、異なる極性の永久磁石が交互に敷設された2次側を構成する固定部と、から構成されるリニアモータによって駆動制御を受ける搬送台車であって、前記永久磁石の正負各磁極検出用センサと、1乃至複数のボギー機構と、を有し、
前記1乃至複数のボギー機構のうち、磁極検出用センサを配置する専用のボギー機構を有することを特徴とするリニアモータ式搬送装置。
Winding, a movable part that constitutes a primary side that generates an alternating magnetic flux in accordance with excitation switching of the winding, and permanent magnets of different polarities are alternately laid along the track of the moving part. A transport carriage that is driven and controlled by a linear motor that comprises a fixed part that constitutes the secondary side, and includes a positive and negative magnetic pole detection sensor for the permanent magnet, and one or more bogie mechanisms. ,
A linear motor type conveying apparatus having a dedicated bogie mechanism for arranging a magnetic pole detection sensor among the one or more bogie mechanisms.
巻き線と、この巻き線の励磁切替に伴って交番磁束を発生する1次側を構成する可動部と、当該可動部の軌道に沿って敷設され、異なる極性の永久磁石が交互に敷設された2次側を構成する固定部と、から構成されるリニアモータによって駆動制御を受ける搬送台車であって、前記永久磁石の正負各磁極検出用センサと、唯一のボギー機構と、を有し、
前記ボギー機構には、磁極検出用センサ第2の処理を配置することを特徴とするリニアモータ式搬送装置。
Winding, a movable part that constitutes a primary side that generates an alternating magnetic flux in accordance with excitation switching of the winding, and permanent magnets of different polarities are alternately laid along the track of the moving part. A carriage that is driven and controlled by a linear motor that comprises a fixed portion that constitutes the secondary side, and has a positive and negative magnetic pole detection sensor for the permanent magnet, and a single bogie mechanism,
The bogie mechanism is provided with a magnetic pole detection sensor second process, and the linear motor type conveying apparatus.
ボギー機構が所定の軌道の進行方向に対して常に直角方向に位置する方向規制手段を備えていることを特徴とする請求項1又は2に記載のリニアモータ式搬送装置。   The linear motor-type conveyance device according to claim 1 or 2, wherein the bogie mechanism is provided with direction restricting means that is always positioned in a direction perpendicular to the traveling direction of the predetermined trajectory. 方向規制手段が軌道の両側に位置するガイド面に対してボギー機構の両側に位置する各1対のガイドローラを当接させるように構成したことを特徴とする請求項3に記載のリニアモータ式搬送装置。   4. The linear motor system according to claim 3, wherein each of the pair of guide rollers located on both sides of the bogie mechanism is in contact with the guide surfaces located on both sides of the track. Conveying device. 搬送台車への給電を非接触給電方式で行うことを特徴とする請求項1乃至4の何れかに記載のリニアモータ式搬送装置。
5. The linear motor type transfer device according to claim 1, wherein power is supplied to the transfer carriage by a non-contact power supply method.
JP2004208443A 2004-07-15 2004-07-15 Linear motor type conveyor Expired - Fee Related JP4506319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208443A JP4506319B2 (en) 2004-07-15 2004-07-15 Linear motor type conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208443A JP4506319B2 (en) 2004-07-15 2004-07-15 Linear motor type conveyor

Publications (2)

Publication Number Publication Date
JP2006027421A true JP2006027421A (en) 2006-02-02
JP4506319B2 JP4506319B2 (en) 2010-07-21

Family

ID=35894286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208443A Expired - Fee Related JP4506319B2 (en) 2004-07-15 2004-07-15 Linear motor type conveyor

Country Status (1)

Country Link
JP (1) JP4506319B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237728A (en) * 2007-03-28 2008-10-09 Asyst Technologies Japan Inc Transporting system having fireproof door, rail device having fireproof door, and transporting system
WO2011081455A3 (en) * 2009-12-30 2011-10-27 한국과학기술원 Power line communication control method and apparatus for online electric vehicle
WO2014175033A1 (en) 2013-04-22 2014-10-30 村田機械株式会社 Position detection device, position detection method and moving body system
WO2014175032A1 (en) 2013-04-22 2014-10-30 村田機械株式会社 Moving body system and drive method of moving body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630522B2 (en) * 1985-11-21 1994-04-20 神鋼電機株式会社 Linear motor type transport device
JPH09128052A (en) * 1995-11-02 1997-05-16 Japan Tobacco Inc Self-traveling carriage
JPH10315960A (en) * 1997-05-15 1998-12-02 Daifuku Co Ltd Conveyance facility
JPH11180300A (en) * 1997-12-25 1999-07-06 Daifuku Co Ltd Transporting equipment utilizing linear motor
JP2000142386A (en) * 1998-11-05 2000-05-23 Toyota Autom Loom Works Ltd Conveying truck
JP2001057712A (en) * 1999-08-18 2001-02-27 Toyota Autom Loom Works Ltd Linear motor driven carrying vehicle
JP2001157312A (en) * 1999-09-17 2001-06-08 Toyota Autom Loom Works Ltd Carrier car driven by linear motor
JP2004217409A (en) * 2003-01-17 2004-08-05 Shinko Electric Co Ltd Carrying device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630522B2 (en) * 1985-11-21 1994-04-20 神鋼電機株式会社 Linear motor type transport device
JPH09128052A (en) * 1995-11-02 1997-05-16 Japan Tobacco Inc Self-traveling carriage
JPH10315960A (en) * 1997-05-15 1998-12-02 Daifuku Co Ltd Conveyance facility
JPH11180300A (en) * 1997-12-25 1999-07-06 Daifuku Co Ltd Transporting equipment utilizing linear motor
JP2000142386A (en) * 1998-11-05 2000-05-23 Toyota Autom Loom Works Ltd Conveying truck
JP2001057712A (en) * 1999-08-18 2001-02-27 Toyota Autom Loom Works Ltd Linear motor driven carrying vehicle
JP2001157312A (en) * 1999-09-17 2001-06-08 Toyota Autom Loom Works Ltd Carrier car driven by linear motor
JP2004217409A (en) * 2003-01-17 2004-08-05 Shinko Electric Co Ltd Carrying device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237728A (en) * 2007-03-28 2008-10-09 Asyst Technologies Japan Inc Transporting system having fireproof door, rail device having fireproof door, and transporting system
WO2011081455A3 (en) * 2009-12-30 2011-10-27 한국과학기술원 Power line communication control method and apparatus for online electric vehicle
WO2014175033A1 (en) 2013-04-22 2014-10-30 村田機械株式会社 Position detection device, position detection method and moving body system
WO2014175032A1 (en) 2013-04-22 2014-10-30 村田機械株式会社 Moving body system and drive method of moving body
KR20150132876A (en) 2013-04-22 2015-11-26 무라다기카이가부시끼가이샤 Position detection device, position detection method and moving body system
EP2990259A4 (en) * 2013-04-22 2016-12-14 Murata Machinery Ltd MOBILE BODY SYSTEM AND METHOD FOR DRIVING THE MOBILE BODY
US9871478B2 (en) 2013-04-22 2018-01-16 Murata Machinery, Ltd. Moving body system and method for driving moving body
US9871434B2 (en) 2013-04-22 2018-01-16 Murata Machinery, Ltd. Position detection device to determine a moving distance of a moving body
KR101870218B1 (en) * 2013-04-22 2018-06-22 무라다기카이가부시끼가이샤 Position detection device, position detection method and moving body system
KR101900721B1 (en) * 2013-04-22 2018-09-20 무라다기카이가부시끼가이샤 Moving body system and drive method of moving body

Also Published As

Publication number Publication date
JP4506319B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
KR101454302B1 (en) Magnetically levitated transportation system for display manufacturing equipment
US10239418B2 (en) Multi-trajectory track and mover system
TW201341287A (en) Article transport facility
JP2021164396A (en) Linear motor transfer system and operation method therefor
KR20210104134A (en) Magnetic levitation system, carrier for magnetic levitation system, vacuum system, and method of transporting carrier
JP4506319B2 (en) Linear motor type conveyor
JP4304625B2 (en) Tracked cart system
JP2000191140A (en) Carrier system using linear motor
JPH02206306A (en) Linear motor type conveyor apparatus
JP2019048694A (en) Container holding device, container conveyor, and control method of container conveyor
JP2547403B2 (en) Magnetic levitation transport device for vacuum equipment
JP2602810B2 (en) Floating transfer device
TW201221386A (en) Power supply line holding structure
JP2012010444A (en) Carrier vehicle system
JP2007279936A (en) Carrying vehicle system
JP2976504B2 (en) Magnetic levitation transfer device
JPH0556085B2 (en)
KR100615551B1 (en) Linear Motor Carrier with Swivel
JP4321222B2 (en) Magnetic suction ceiling suspension carriage
JP7299107B2 (en) Guide mechanism for carriage and sorting conveyor
JPS61132005A (en) Levitating conveyor
KR20070030662A (en) Trolley bogie system
JPS61224807A (en) Levitating conveyor
JP2713885B2 (en) Floating transfer device
JP2005086858A (en) Moving magnet type linear motor for transportation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100203

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20100215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees