[go: up one dir, main page]

JP2006026721A - Passage built-in mount and its production method - Google Patents

Passage built-in mount and its production method Download PDF

Info

Publication number
JP2006026721A
JP2006026721A JP2004212903A JP2004212903A JP2006026721A JP 2006026721 A JP2006026721 A JP 2006026721A JP 2004212903 A JP2004212903 A JP 2004212903A JP 2004212903 A JP2004212903 A JP 2004212903A JP 2006026721 A JP2006026721 A JP 2006026721A
Authority
JP
Japan
Prior art keywords
plate
groove
weld line
welding
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004212903A
Other languages
Japanese (ja)
Inventor
Seitaro Hidaka
晴太郎 日高
Michio Tsukamoto
道夫 塚本
Akihiko Kurata
章彦 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004212903A priority Critical patent/JP2006026721A/en
Publication of JP2006026721A publication Critical patent/JP2006026721A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a passage built-in mount with a constitution where the generation of cracks in a welding line surrounding a groove and the corrosion of the welding line are prevented, and the sealing function of the welding line can be maintained, and to provide its production method. <P>SOLUTION: A plate 22 and a plate 23 are welded in such a manner that a groove 24 is surrounded by friction stir welding to form a welding line 28, and, in the space between the groove 24 and the welding line 28, a brazing filler metal 30 provided between the plate 22 and the plate 23 is melted with friction heat at the time when the welding line 28 is formed by the friction stir welding, thus the plate 22 and the plate 23 are brazed. Alternatively, a thermosetting adhesive is used instead of the brazing filler metal, and the thermosetting adhesive is set by the friction heat. Alternatively, a plurality of grooves 24 are surrounded by the welding line 28, and the plate 22 and the plate 23 are spot-welded at the central part within the welding line. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は流路内蔵型台座及びその製造方法に関する。   The present invention relates to a channel-embedded pedestal and a method for manufacturing the same.

流路内蔵型台座は、例えば家庭用等の固定式もしくは車載用等の可動式の燃料電池発電システムや、列車のエアブレーキシステム等の流体制システムなどの各種の産業分野における各種のシステムに適用されている。即ち、流路内蔵型台座は、これらのシステムを構成する部品や装置などの各種機器を台座表面に取り付けること、前記機器を連結する複雑な配管に代えて内蔵流路(溝)を設けること(内蔵流路を前記配管として機能させること)、更には電気配線なども内蔵することにより、コンパクトに一体化した家庭用の燃料電池発電ユニットなどの固定式ユニットや、車載用の燃料電池発電ユニットなどの可動式ユニットの実現に供されている。   The flow path built-in type pedestal is applied to various systems in various industrial fields, such as stationary fuel cell power generation systems such as fixed or in-vehicle use and flow system such as air brake system for trains. Has been. In other words, the flow channel built-in type pedestal is provided with various devices such as parts and devices constituting these systems on the surface of the pedestal, and provided with a built-in flow channel (groove) instead of the complicated piping connecting the devices ( The built-in flow path functions as the piping), and further, by incorporating electric wiring and the like, a fixed unit such as a household fuel cell power generation unit that is compactly integrated, an in-vehicle fuel cell power generation unit, etc. It is used to realize a movable unit.

例えば、図5に例示する燃料電池発電システムでは、詳細な説明は省略するが、燃料電池本体54の他、これに付属する気化器42、脱硫装置44、COコンバータ46、リフォーマ49、インバータ64などの各種機器やこれらをつなぐ多数の配管や配線などを有しているが、これに流路内蔵型台座を適用することよってコンパクトに一体化した燃料電池発電ユニットを実現することができる。   For example, in the fuel cell power generation system illustrated in FIG. 5, detailed description is omitted, but in addition to the fuel cell main body 54, a vaporizer 42, a desulfurization device 44, a CO converter 46, a reformer 49, an inverter 64, and the like attached thereto. The above-mentioned various devices and a large number of pipes and wirings for connecting them are provided. By applying a built-in channel-type pedestal thereto, a compactly integrated fuel cell power generation unit can be realized.

流路内蔵型台座の具体的な構成例としては、既に様々なものが提案されているが、例えば下記の[特許文献1]で開示されたものを挙げることができる。ここでは、図6〜図8に基づき、従来の流路内蔵型台座の構成例について説明する。図6は従来の流路内蔵型台座の全体構成の概要を示す分解斜視図、図7(a)は前記流路内蔵型台座の一部を詳細に示す平面図、図7(b)は図7(a)のA−A線矢視断面図、図7(c)は図7(a)のB−B線矢視断面拡大図、図8は多数の溝の構成例を示す平面図である。   Various specific configurations of the channel-embedded pedestal have already been proposed. For example, those disclosed in the following [Patent Document 1] can be cited. Here, based on FIGS. 6-8, the structural example of the conventional flow-path built-in type base is demonstrated. 6 is an exploded perspective view showing an outline of the overall configuration of a conventional channel built-in type pedestal, FIG. 7A is a plan view showing a part of the channel built-in type pedestal in detail, and FIG. 7A is a cross-sectional view taken along line AA in FIG. 7A, FIG. 7C is an enlarged cross-sectional view taken along line BB in FIG. 7A, and FIG. 8 is a plan view showing a configuration example of a number of grooves. is there.

図6及び図7に示すように、流路内蔵型台座1は第1プレート及び第2プレートとしてのプレート2と、プレート3とを下記の[特許文献2]などで公知の摩擦攪拌溶接(FSW)で接合してなるものである。流路内蔵型台座1の片側の表面、即ちプレート2の表面2aには、例えば燃料電池発電システムや流体制御システムなどを構成する部品や装置などの各種の機器4が取り付けられている(図6ではプレート表面2a上の機器4を一点鎖線で示している)。即ち、流路内蔵型台座1は機器4を取り付けための台座として機能している。機器4は、プレート3に植え込まれ且つプレート2のボルト孔2bに挿通された植え込みボルト5と、この植え込みボルト5に螺合されたナット6とにより、上プレート2,3とともに締結されて台座表面(プレート表面2a)に固定されている。   As shown in FIGS. 6 and 7, the flow path built-in pedestal 1 includes a plate 2 as a first plate and a second plate, and a plate 3 that are well-known by friction stir welding (FSW) as described in [Patent Document 2] below. ). Various devices 4 such as parts and devices constituting a fuel cell power generation system, a fluid control system, and the like are attached to one surface of the flow path built-in base 1, that is, the surface 2a of the plate 2 (FIG. 6). The device 4 on the plate surface 2a is indicated by a one-dot chain line). That is, the flow path built-in pedestal 1 functions as a pedestal for mounting the device 4. The device 4 is fastened together with the upper plates 2 and 3 by a planting bolt 5 which is implanted in the plate 3 and is inserted into the bolt hole 2b of the plate 2 and a nut 6 which is screwed into the planting bolt 5 and is a base. It is fixed to the surface (plate surface 2a).

プレート3の接合面3aには、エンドミル、フライス盤、ボール盤などの適宜の加工手段によって複数本の溝7が形成されている。これらの溝7は、それぞれ所定の断面積を有し、且つ、適当な長さと方向に形成されている。そして、このプレート3に形成された溝7を覆うようにして(溝7に蓋をするようにして)、プレート2が、プレート3に接合されている。かくして、流路内蔵型台座1の内部には、溝7からなる流体の流路が形成される。また、プレート2には連通孔8が形成されており、溝7は、これらの連通孔8を介して機器4に連通されている。即ち、流路内蔵型台座1には複数本の溝7が流体の流路として内蔵されており、これらの内蔵流路(溝7)が、機器4同士を連結する配管としての機能を担っている。つまり、流路内蔵型台座1は、集積配管としての機能も果たしている。各溝7(内蔵流路)の断面積は、各溝7内を流動する流体の性状、流速及び圧力損失などから決定され、各溝7(内蔵流路)の長さや方向は、各機器4の配置などによって決定される。なお、流路内蔵型台座1が燃料電池発電システムなどに適用される場合、実際には図8に示すように多数の溝7が複雑に形状されることになるが、図6,図7では説明のため単純化している。   On the joint surface 3a of the plate 3, a plurality of grooves 7 are formed by appropriate processing means such as an end mill, a milling machine, or a drilling machine. Each of these grooves 7 has a predetermined cross-sectional area and is formed in an appropriate length and direction. The plate 2 is joined to the plate 3 so as to cover the groove 7 formed in the plate 3 (cover the groove 7). Thus, a fluid flow path composed of the grooves 7 is formed inside the flow path built-in base 1. In addition, communication holes 8 are formed in the plate 2, and the grooves 7 are communicated with the device 4 through these communication holes 8. That is, the channel-equipped pedestal 1 includes a plurality of grooves 7 as fluid channels, and these built-in channels (grooves 7) serve as piping for connecting the devices 4 to each other. Yes. That is, the flow path built-in pedestal 1 also functions as an integrated pipe. The cross-sectional area of each groove 7 (built-in flow path) is determined from the properties, flow velocity, pressure loss, etc. of the fluid flowing in each groove 7, and the length and direction of each groove 7 (built-in flow path) are determined by each device 4. It is decided by the arrangement etc. When the channel-equipped pedestal 1 is applied to a fuel cell power generation system or the like, actually, a large number of grooves 7 are complicatedly formed as shown in FIG. Simplified for illustration.

そして、図7に示すように、溝7の周囲には溶接線10が形成されている。この溶接線10は、前記摩擦攪拌溶接で溝7の周囲を囲むようにプレート2とプレート3とを溶接してなるものであり、プレート2とプレート3とを接合する接合部として機能すると同時に、溝7を流れる流体がプレート2とプレート3との間から漏れるものを防止するためのシール部としても機能する。   As shown in FIG. 7, a weld line 10 is formed around the groove 7. This weld line 10 is formed by welding the plate 2 and the plate 3 so as to surround the periphery of the groove 7 by the friction stir welding, and at the same time functions as a joint for joining the plate 2 and the plate 3. It also functions as a seal part for preventing fluid flowing through the groove 7 from leaking between the plate 2 and the plate 3.

また、溶接線10は溝7の中心から適宜の間隔fを保った位置に形成されている。即ち、溶接線10と溝7との間11には適宜の間隔dが確保されている。摩擦攪拌溶接は摩擦熱によってプレート2とプレート3とを塑性流動させて結合するものであるが、このとき溝7の縁に溶接線10を形成しようとすると、前記摩擦熱の影響が溝7の壁面7aにまで及んで壁面7が塑性変形してしまう。このため、溶接線10と溝7との間11には、前記摩擦熱の影響による壁面7aの塑性変形を防止することができるように適宜の間隔dが確保されている。   Further, the welding line 10 is formed at a position keeping an appropriate distance f from the center of the groove 7. That is, an appropriate distance d is ensured between the weld line 10 and the groove 7. In the friction stir welding, the plate 2 and the plate 3 are joined by plastic flow due to frictional heat. At this time, if an attempt is made to form the weld line 10 at the edge of the groove 7, the influence of the frictional heat causes the effect of the groove 7. The wall surface 7 is plastically deformed up to the wall surface 7a. For this reason, an appropriate distance d is ensured between the welding line 10 and the groove 7 so as to prevent plastic deformation of the wall surface 7a due to the influence of the frictional heat.

特開2002−372198号公報JP 2002-372198 A 特許第2792233号公報Japanese Patent No. 2792233

しかしながら、上記従来の流路内蔵型台座1では、上記のように溶接線10と溝7との間11に間隔dを確保した場合、この溶接線10と溝7との間11においてプレート2とプレート3とが接着されないため、プレート2とプレート3との間に微小な隙間が生じてしまう。   However, in the conventional flow path built-in pedestal 1, when the distance d is ensured between the weld line 10 and the groove 7 as described above, the plate 2 Since the plate 3 is not bonded, a minute gap is generated between the plate 2 and the plate 3.

このため、溝7を流れる流体の圧力などによって溝7(プレート2,3)に繰り返し応力が作用したときに前記隙間が切り欠きとして作用することにより、寿命が低下するおそれがある。また、溝7を流れる流体が前記隙間に浸入して、コンタミを発生する可能性もある。   For this reason, when the stress is repeatedly applied to the groove 7 (plates 2 and 3) due to the pressure of the fluid flowing through the groove 7 and the like, the gap acts as a notch, which may reduce the life. Further, there is a possibility that the fluid flowing in the groove 7 enters the gap and generates contamination.

従って本発明は上記の事情に鑑み、溶接線のシール機能を維持することができる構成の流路内蔵型台座及びその製造方法を提供することを課題とする。   Therefore, in view of the above circumstances, an object of the present invention is to provide a flow path built-in pedestal having a configuration capable of maintaining a sealing function of a weld line and a method for manufacturing the same.

上記課題を解決する第1発明の流路内蔵型台座は、少なくとも2枚の第1プレートと第2プレートとを摩擦攪拌溶接で接合してなるものであり、前記第1プレート又は第2プレートの接合面に形成した溝を流体の流路として内蔵し、且つ、片側又は両側の台座表面に機器が取り付けられる流路内蔵型台座において、
前記摩擦攪拌溶接で前記溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接してなる溶接線を有し、
前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとがろう付けされていることを特徴とする。
The channel-embedded pedestal of the first invention that solves the above-mentioned problem is formed by joining at least two first plates and second plates by friction stir welding, and the first plate or the second plate In the channel built-in type pedestal in which the groove formed in the joining surface is built in as a fluid flow channel, and the device is attached to the pedestal surface on one side or both sides,
A welding line formed by welding the first plate and the second plate so as to surround the periphery of the groove by the friction stir welding;
The first plate and the second plate are brazed between the groove and the weld line.

また、第2発明の流路内蔵型台座は、少なくとも2枚の第1プレートと第2プレートとを摩擦攪拌溶接で接合してなるものであり、前記第1プレート又は第2プレートの接合面に形成した溝を流体の流路として内蔵し、且つ、片側又は両側の台座表面に機器が取り付けられる流路内蔵型台座において、
前記摩擦攪拌溶接で前記溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接してなる溶接線を有し、
前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとが接着剤で接着されていることを特徴とする。
Further, the channel-embedded pedestal of the second invention is formed by joining at least two of the first plate and the second plate by friction stir welding, and is attached to the joining surface of the first plate or the second plate. In the built-in channel type pedestal in which the formed groove is built in as a fluid channel and the device is attached to the pedestal surface on one side or both sides,
A welding line formed by welding the first plate and the second plate so as to surround the periphery of the groove by the friction stir welding;
The first plate and the second plate are bonded with an adhesive between the groove and the weld line.

また、第3発明の流路内蔵型台座は、第1又は第2発明の流路内蔵型台座において、
前記溶接線は複数本の前記溝の周囲を囲んでおり、前記溶接線内の中央部では前記第1プレートと前記第2プレートとをスポット溶接したことを特徴とする。
Further, the flow path built-in pedestal of the third invention is the flow path built-in pedestal of the first or second invention,
The weld line surrounds a plurality of the grooves, and the first plate and the second plate are spot-welded at the center in the weld line.

また、第4発明の流路内蔵型台座の製造方法は、少なくとも2枚の第1プレートと第2プレートとを摩擦攪拌溶接で接合してなるものであり、前記第1プレート又は前記第2プレートの接合面に形成した溝を流体の流路として内蔵し、且つ、片側又は両側の台座表面に機器が取り付けられる流路内蔵型台座の製造方法であって、
前記摩擦攪拌溶接で前記溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接して溶接線を形成し、
前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとの間に設けたろう材を、前記摩擦攪拌溶接で前記溶接線を形成するときの摩擦熱で溶融することにより、前記第1プレートと前記第2プレートとをろう付けすることを特徴とする。
According to a fourth aspect of the present invention, there is provided a manufacturing method of a flow path built-in type pedestal, wherein at least two first plates and second plates are joined by friction stir welding, and the first plate or the second plate A flow path built-in pedestal manufacturing method in which a groove formed in the joint surface is built in as a fluid flow path, and a device is attached to the pedestal surface on one or both sides,
Welding the first plate and the second plate so as to surround the groove by the friction stir welding to form a weld line;
Between the groove and the weld line, by melting the brazing material provided between the first plate and the second plate with frictional heat when forming the weld line by the friction stir welding, The first plate and the second plate are brazed.

また、第5発明の流路内蔵型台座の製造方法は、少なくとも2枚の第1プレートと第2プレートとを摩擦攪拌溶接で接合してなるものであり、前記第1プレート又は前記第2プレートの接合面に形成した溝を流体の流路として内蔵し、且つ、片側又は両側の台座表面に機器が取り付けられる流路内蔵型台座の製造方法であって、
前記摩擦攪拌溶接で前記溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接して溶接線を形成し、
前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとの間に設けた熱硬化型接着剤を、前記摩擦攪拌溶接で前記溶接線を形成するときの摩擦熱で硬化させることにより、前記第1プレートと前記第2プレートとを接着することを特徴とする。
According to a fifth aspect of the present invention, there is provided a manufacturing method of a flow path built-in pedestal, wherein at least two first plates and second plates are joined by friction stir welding, and the first plate or the second plate A flow path built-in pedestal manufacturing method in which a groove formed in the joint surface is built in as a fluid flow path, and a device is attached to the pedestal surface on one or both sides,
Welding the first plate and the second plate so as to surround the groove by the friction stir welding to form a weld line;
Between the groove and the weld line, a thermosetting adhesive provided between the first plate and the second plate is cured by friction heat when the weld line is formed by the friction stir welding. By doing so, the first plate and the second plate are bonded together.

また、第6発明の流路内蔵型台座の製造方法は、第1又は第2発明の流路内蔵型台座の製造方法において、
前記溶接線は複数本の前記溝の周囲を囲み、前記溶接線内の中央部では前記第1プレートと前記第2プレートとをスポット溶接することを特徴とする。
Moreover, the manufacturing method of the flow path type pedestal of the sixth invention is the manufacturing method of the flow path built type pedestal of the first or second invention,
The weld line surrounds a plurality of the grooves, and the first plate and the second plate are spot-welded at a central portion in the weld line.

第1発明の流路内蔵型台座によれば、摩擦攪拌溶接で溝の周囲を囲むように第1プレートと第2プレートとを溶接してなる溶接線を有し、前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとが、ろう付けされていることを特徴とするため、前記溝と前記溶接線との間では、前記第1プレートと前記第2プレートとの間に微小な隙間が生じないことにより、前記隙間による切り欠き効果が生じることもなく、溝を流れる流体が前記隙間に浸入することもない。従って、耐圧強度や耐久性の向上を図ることができる。しかも、摩擦攪拌溶接で溶接線を形成する際の摩擦熱を有効に利用してろう付けを行うことができるため、製造作業の効率化を図ることもできる。   According to the flow path built-in type pedestal of the first aspect of the present invention, it has a weld line formed by welding the first plate and the second plate so as to surround the periphery of the groove by friction stir welding, and the groove and the weld line Since the first plate and the second plate are brazed between the groove and the weld line, the first plate and the second plate are By not forming a minute gap between them, the notch effect due to the gap does not occur, and the fluid flowing through the groove does not enter the gap. Therefore, the pressure strength and durability can be improved. And since brazing can be performed effectively using the frictional heat at the time of forming a weld line by friction stir welding, the efficiency of manufacturing work can also be achieved.

第2発明の流路内蔵型台座によれば、摩擦攪拌溶接で溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接してなる溶接線を有し、前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとが、接着剤で接着されていることを特徴とするため、前記溝と前記溶接線との間では、前記第1プレートと前記第2プレートとの間に微小な隙間が生じないことにより、前記隙間による切り欠き効果が生じることもなく、溝を流れる流体が前記隙間に浸入することもない。従って、耐圧強度や耐久性の向上を図ることができる。   According to the flow path built-in type pedestal of the second aspect of the present invention, it has a weld line formed by welding the first plate and the second plate so as to surround the periphery of the groove by friction stir welding, and the groove and the weld Since the first plate and the second plate are bonded to each other with an adhesive, the first plate and the second plate are between the groove and the weld line. Since a minute gap does not occur between the two plates, the notch effect due to the gap does not occur, and the fluid flowing through the groove does not enter the gap. Therefore, the pressure strength and durability can be improved.

第3発明の流路内蔵型台座によれば、溶接線は複数本の溝の周囲を囲んでおり、前記溶接線内の中央部では第1プレートと第2プレートとをスポット溶接したことを特徴とするため、複数本の溝の周囲を溶接線で囲んでも、前記スッポト溶接の補強によって前記溶接線内の中央部が膨らむ(第1プレートと第2プレートの間の隙間が大きくなる)のを確実に防止することができる。   According to the pedestal with a built-in flow path of the third invention, the weld line surrounds the plurality of grooves, and the first plate and the second plate are spot-welded at the center in the weld line. Therefore, even if the periphery of the plurality of grooves is surrounded by a welding line, the center portion in the welding line swells due to the reinforcement of the spot welding (the gap between the first plate and the second plate increases). It can be surely prevented.

第4発明の流路内蔵型台座の製造方法によれば、摩擦攪拌溶接で溝の周囲を囲むように第1プレートと前記第2プレートとを溶接して溶接線を形成し、前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとの間に設けたろう材を、前記摩擦攪拌溶接で前記溶接線を形成するときの摩擦熱で溶融することにより、前記第1プレートと前記第2プレートとを、ろう付けすることを特徴とするため、前記溝と前記溶接線との間では、前記第1プレートと前記第2プレートとの間に微小な隙間が生じないことにより、前記隙間による切り欠き効果が生じることもなく、溝を流れる流体が前記隙間に浸入することもない。従って、耐圧強度や耐久性の向上を図ることができる。しかも、摩擦攪拌溶接で溶接線を形成する際の摩擦熱を有効に利用してろう付けを行うため、製造作業の効率化を図ることもできる。   According to the manufacturing method of the flow path built-in type pedestal of the fourth invention, the first plate and the second plate are welded so as to surround the groove by friction stir welding to form a weld line, and the groove and the Between the weld lines, the brazing material provided between the first plate and the second plate is melted by the frictional heat generated when the weld line is formed by the friction stir welding, whereby the first plate And the second plate are brazed so that no minute gap is formed between the first plate and the second plate between the groove and the weld line. The notch effect due to the gap does not occur, and the fluid flowing through the groove does not enter the gap. Therefore, the pressure strength and durability can be improved. Moreover, since the brazing is performed by effectively using the frictional heat at the time of forming the weld line by friction stir welding, the efficiency of the manufacturing work can be improved.

また、第5発明の流路内蔵型台座の製造方法によれば、摩擦攪拌溶接で溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接して溶接線を形成し、前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとの間に設けた熱硬化型接着剤を、前記摩擦攪拌溶接で前記溶接線を形成するときの摩擦熱で硬化させることにより、前記第1プレートと前記第2プレートとを、接着することを特徴とするため、前記溝と前記溶接線との間では、前記第1プレートと前記第2プレートとの間に微小な隙間が生じないことにより、前記隙間による切り欠き効果が生じることもなく、溝を流れる流体が前記隙間に浸入することもない。従って、耐圧強度や耐久性の向上を図ることができる。しかも、摩擦攪拌溶接で溶接線を形成する際の摩擦熱を有効に利用して接着を行うため、製造作業の効率化を図ることもできる。   Further, according to the manufacturing method of the flow path built-in type pedestal of the fifth invention, a weld line is formed by welding the first plate and the second plate so as to surround the periphery of the groove by friction stir welding, Between the groove and the weld line, a thermosetting adhesive provided between the first plate and the second plate is cured by friction heat when the weld line is formed by the friction stir welding. Thus, the first plate and the second plate are bonded to each other. Therefore, a minute amount is provided between the groove and the weld line between the first plate and the second plate. Since the gap does not occur, the notch effect due to the gap does not occur, and the fluid flowing through the groove does not enter the gap. Therefore, the pressure strength and durability can be improved. In addition, since the bonding is performed by effectively using the frictional heat when forming the weld line by friction stir welding, the efficiency of the manufacturing operation can be improved.

また、第6発明の流路内蔵型台座の製造方法によれば、溶接線は複数本の溝の周囲を囲み、前記溶接線内の中央部では第1プレートと第2プレートの接合面をスポット溶接することを特徴とするため、複数本の溝の周囲を溶接線で囲んでも、前記スッポト溶接の補強によって前記溶接線内の中央部が膨らむ(第1プレートと第2プレートの間の隙間が大きくなる)のを確実に防止することができる。   According to the sixth aspect of the invention, the welding line surrounds the plurality of grooves, and the joint surface between the first plate and the second plate is spotted at the center of the welding line. Since welding is performed, even if the periphery of the plurality of grooves is surrounded by a weld line, the center portion in the weld line expands due to the reinforcement of the spot welding (the gap between the first plate and the second plate is increased). Can be reliably prevented.

以下、本発明の実施の形態例を図面に基づき詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1(a)は本発明の実施の形態例に係る流路内蔵型台座の製造方法を示す断面図(図1(b)のC−C線矢視断面図)、図1(b)は前記流路内蔵型台座の製造方法を示す平面図(図1(a)のD方向矢視図)、図1(c)は図1(b)のE−E線矢視断面拡大図、図2(a)は前記流路内蔵型台座の構成を示す平面図、図2(b)は図2(a)のF−F線矢視断面図拡大図、図2(c)は図2(a)のG−G矢視断面拡大図である。   1A is a cross-sectional view (a cross-sectional view taken along the line CC of FIG. 1B) showing a method for manufacturing a channel-embedded pedestal according to an embodiment of the present invention, and FIG. FIG. 1C is a plan view showing a manufacturing method of the channel-embedded pedestal (a view taken in the direction of arrow D in FIG. 1A), and FIG. 1C is an enlarged cross-sectional view taken along the line E-E in FIG. 2 (a) is a plan view showing the configuration of the channel-embedded pedestal, FIG. 2 (b) is an enlarged cross-sectional view taken along line FF in FIG. 2 (a), and FIG. 2 (c) is FIG. It is a GG arrow cross-sectional enlarged view of a).

図1及び図2に基づき、本実施の形態例の流路内蔵型台座21の製造法及び構成について説明する。   Based on FIG.1 and FIG.2, the manufacturing method and structure of the flow-path built-in type base 21 of the present Example are demonstrated.

本実施の形態例の流路内蔵型台座21は、第1プレート及び第2プレートとしてのプレート22と、プレート23とを摩擦攪拌溶接(FSW)で接合してなるものである。これらのプレート22とプレート23とを摩擦攪拌溶接(FSW)で接合して一体化するには、まず、プレート22とプレート23とを重ね合わせる。   The flow path built-in type base 21 of this embodiment is formed by joining a plate 22 as a first plate and a second plate and a plate 23 by friction stir welding (FSW). In order to join and integrate these plates 22 and 23 by friction stir welding (FSW), first, the plates 22 and 23 are overlapped.

プレート23の接合面23aには、流路内蔵型台座21が適用されるシステム(例えば燃料電池発電システムや流体制御システムなど)に必要な液体状又はガス状の流体を流すための流路となる溝24が、前もってエンドミル、フライス盤、ボール盤などの適宜の加工手段によって加工されている。なお、流路内蔵型台座21が燃料電池発電システムなどに適用される場合、実際には図8に示すように多数の溝24が複雑に形状されることになるが、図1〜図3では説明のため単純化している。   The joint surface 23a of the plate 23 is a flow path for flowing a liquid or gaseous fluid necessary for a system (for example, a fuel cell power generation system or a fluid control system) to which the flow path built-in base 21 is applied. The groove 24 is processed in advance by an appropriate processing means such as an end mill, a milling machine, or a drilling machine. When the flow path built-in pedestal 21 is applied to a fuel cell power generation system or the like, actually, a number of grooves 24 are complicatedly formed as shown in FIG. Simplified for illustration.

また、プレート22には、片側の台座表面となるプレート22の表面22aに取り付けられる前記システムの構成部品や構成装置など各種の機器(図示省略)と、溝24とを連通するための連通孔25が、前もって適宜の加工手段によって加工されている。各溝24(内蔵流路)の断面積は、各溝24内を流動する流体の性状、流速及び圧力損失などから決定され、各溝24(内蔵流路)の長さや方向は、各機器の配置などによって決定される。   Further, the plate 22 has a communication hole 25 for communicating various devices (not shown) such as system components and components attached to the surface 22a of the plate 22 serving as a pedestal surface on one side with the groove 24. However, it is processed in advance by appropriate processing means. The cross-sectional area of each groove 24 (built-in flow path) is determined from the properties, flow velocity, pressure loss, etc. of the fluid flowing in each groove 24. The length and direction of each groove 24 (built-in flow path) are It is decided by arrangement.

なお、溝24はプレート23の接合面23aに限らず、プレート22の接合面22bに形成してもよく、連通孔25もプレート22に限らず、プレート23に形成してもよい。また、機器はプレート22の表面22aに限らず、他方の片側台座表面となるプレート23の表面23bに設けてもよく、両側の台座表面(プレート表面22a,23b)に設けることもできる。   The groove 24 is not limited to the bonding surface 23 a of the plate 23, and may be formed on the bonding surface 22 b of the plate 22, and the communication hole 25 may be formed on the plate 23 instead of the plate 22. Further, the device is not limited to the surface 22a of the plate 22, but may be provided on the surface 23b of the plate 23 serving as the other one-side pedestal surface, or may be provided on both pedestal surfaces (plate surfaces 22a, 23b).

そして更に、プレート23の接合面23aには、前もって、接合面23aの他の部分よりも少し下がった(凹んだ)段差部29が、適宜の加工手段により、溝24の全周縁に沿い且つ溝24の周縁に接するようにして形成されており、且つ、この段差部29には、ろう材30が設けられている。段差部29は、溝24と溶接線28(詳細後述)との間31(溝24の縁から溶接線28の手前までの範囲)に形成されている。 従って、段差部29に設けられたろう材30も、当然、溝24と溶接線28との間31(溝24の縁から溶接線28の手前までの範囲)に配置されている。   Further, a stepped portion 29 that is slightly lower (dented) than the other portion of the joining surface 23a is formed on the joining surface 23a of the plate 23 in advance along the entire peripheral edge of the groove 24 by an appropriate processing means. The brazing material 30 is provided on the stepped portion 29. The stepped portion 29 is formed 31 (range from the edge of the groove 24 to the front of the weld line 28) between the groove 24 and the weld line 28 (details will be described later). Accordingly, the brazing material 30 provided in the stepped portion 29 is naturally also arranged between the groove 24 and the weld line 28 (range from the edge of the groove 24 to the front of the weld line 28).

このため、プレート22,23を重ね合わせると、溝24と溶接線28の間31では、プレート22とプレート23との間にろう材30が介在されることになる。なお、ろう材30を段差部29に設けるのは、段差部29を形成せずに面一なプレート23の接合面23aにろう材を設けると、当該ろう材を設けた部分以外の部分でプレート22とプレート23との間に当該ろう材による隙間が生じてしまうのを、防止するためである。   For this reason, when the plates 22 and 23 are overlapped, the brazing filler metal 30 is interposed between the plate 22 and the plate 23 at the interval 31 between the groove 24 and the weld line 28. The brazing material 30 is provided on the stepped portion 29. If the brazing material is provided on the joining surface 23a of the flat plate 23 without forming the stepped portion 29, the plate is formed at a portion other than the portion where the brazing material is provided. This is to prevent a gap due to the brazing material from being generated between the plate 22 and the plate 23.

プレート22,23の材料としてはアルミニウム合金板、銅板、ステンレス板などの適宜のもの用いることができるが、ろう材30は後述する摩擦攪拌溶接の摩擦熱によって確実に溶融する必要があるため、プレート22,23の材料よりも融点の低いものを選択する必要がある。   As a material for the plates 22 and 23, an appropriate material such as an aluminum alloy plate, a copper plate, or a stainless steel plate can be used. However, since the brazing material 30 needs to be reliably melted by frictional heat of friction stir welding described later, It is necessary to select a material having a lower melting point than the materials of 22 and 23.

そして、プレート22,23を重ね合わせることにより、ろう材30をプレート22とプレート23との間に介在させた状態にした後、摩擦攪拌溶接機26の先端工具27を、摩擦攪拌溶接の開始点Jに位置させて回転を開始するとともに矢印Hで示すように軸方向(プレート22,23の板厚方向位置)に加圧して、プレート22,23の一体化に適した高さ方向位置(プレート22,23の板厚方向位置)までプレート22に挿入する。即ち、先端工具27の回転によってプレート22との間に発生した摩擦熱によってプレート22が塑性流動状態となることにより、先端工具27をプレート22に挿入することができる(なお、場合によってはプレート23まで先端工具27を挿入するようにしてもよい)。   Then, after the brazing material 30 is interposed between the plates 22 and 23 by overlapping the plates 22 and 23, the tip tool 27 of the friction stir welding machine 26 is moved to the starting point of the friction stir welding. Position J and start rotation, and pressurize in the axial direction (plate thickness direction position of the plates 22 and 23) as indicated by the arrow H, and the height direction position (plate) suitable for the integration of the plates 22 and 23 22 and 23 in the plate thickness direction position). That is, the tip tool 27 can be inserted into the plate 22 by the frictional heat generated between the tip tool 27 and the plate 22 due to the rotation of the tip tool 27 so that the tip tool 27 can be inserted into the plate 22 (in some cases, the plate 23 The tip tool 27 may be inserted up to).

続いて、先端工具27を回転させたまま矢印Hで示すように前記挿入方向と直交する方向に溝24の周縁に沿って移動させる。その結果、先端工具27の回転によって生じる摩擦熱により、プレート22とプレート23とが塑性流動状態となって溶接されることより、溶接線28が形成される。図1には溝24の全周縁の途中まで摩擦攪拌溶接をした状態を示している。   Subsequently, the tip tool 27 is rotated and moved along the peripheral edge of the groove 24 in the direction orthogonal to the insertion direction as indicated by the arrow H. As a result, the plate 22 and the plate 23 are welded in a plastic flow state due to frictional heat generated by the rotation of the tip tool 27, thereby forming a weld line 28. FIG. 1 shows a state in which friction stir welding is performed halfway along the entire periphery of the groove 24.

その後、更に摩擦攪拌溶接を継続することにより、ついには図2に示すように溝24の周囲を囲む溶接線28が形成される。溶接線28は、プレート22とプレート23とを接合する接合部として機能すると同時に、溝7を流れる流体がプレート22とプレート23との間から漏れるものを防止するためのシール部としても機能する。   Thereafter, the friction stir welding is further continued, so that a welding line 28 surrounding the groove 24 is finally formed as shown in FIG. The weld line 28 functions as a joint portion for joining the plate 22 and the plate 23, and also functions as a seal portion for preventing fluid flowing through the groove 7 from leaking between the plate 22 and the plate 23.

但し、摩擦攪拌溶接時の摩擦熱によって溝24の壁面24aが塑性変形をするのを防止するため、溶接線28は溝24の縁ではなく、溝24の中心から適宜の距離fを保った位置に形成されており、溶接線28と溝24との間31に適宜の間隔dが確保されている。   However, in order to prevent the wall surface 24a of the groove 24 from being plastically deformed by frictional heat during friction stir welding, the welding line 28 is not at the edge of the groove 24 but at an appropriate distance f from the center of the groove 24. An appropriate distance d is secured between the weld line 28 and the groove 24.

そして、このような位置に溶接線28を摩擦攪拌溶接で形成するのと同時に、プレート22,23間に介在されているろう材30を、前記摩擦攪拌溶接で溶接線28を形成するときの摩擦熱で溶融させる(プレート22,23間の隙間に溶けたろう材30が充填される)。その結果、溝24と溶接線28の間31では、プレート22とプレート23とがろう材30によってろう付けされた状態となる。従って、この溝24と溶接線28との間31では、プレート22とプレート23との間に微小な隙間が生じないため、前記隙間による切り欠き効果が生じることもなく、溝24を流れる流体が前記隙間に浸入することもない。   And at the same time as forming the welding line 28 at such a position by friction stir welding, the brazing material 30 interposed between the plates 22 and 23 is friction when the welding line 28 is formed by the friction stir welding. It is melted by heat (the molten brazing material 30 is filled in the gap between the plates 22 and 23). As a result, the plate 22 and the plate 23 are brazed by the brazing material 30 between the groove 24 and the weld line 28. Therefore, a minute gap is not formed between the plate 22 and the plate 23 between the groove 24 and the weld line 28, so that the fluid flowing through the groove 24 is not caused by the notch effect due to the gap. It does not enter the gap.

ところで、溝24の周囲を囲むように溶接するとき、溶接線28の位置は基本的にはプレート23上に形成された各溝24の位置に基づき、各溝24の周囲を囲む位置となるように設計される。しかし、これに限定するものでなく、プレート23上の各溝24の位置や、各溝24を流通する流体の性状等によっては、同じ性格の複数の溝24を1つのグループとし、各グループル毎にその周囲を溶接線28で囲むようにしてもよい。   By the way, when welding is performed so as to surround the periphery of the groove 24, the position of the welding line 28 is basically based on the position of each groove 24 formed on the plate 23 so as to surround the periphery of each groove 24. Designed to. However, the present invention is not limited to this. Depending on the position of each groove 24 on the plate 23, the properties of the fluid flowing through each groove 24, and the like, a plurality of grooves 24 having the same characteristics are grouped into one group. You may make it surround the circumference | surroundings by the welding line 28 every time.

図3(a)は溶接線で2本の溝の周囲を囲む場合の流路内蔵型台座の構成例を示す平面図、図3(b)は図3(a)のK−K線矢視断面拡大図、図4(a)は溶接線で3本の溝の周囲を囲む場合の流路内蔵型台座の他の例を示す平面図、図4(b)は図4(a)のL−L線矢視断面拡大図である。   FIG. 3A is a plan view showing a configuration example of a pedestal with a built-in channel in the case where the circumference of two grooves is surrounded by a weld line, and FIG. 3B is a view taken along the line KK in FIG. FIG. 4A is an enlarged cross-sectional view, FIG. 4A is a plan view showing another example of a channel-embedded pedestal in the case where three grooves are surrounded by a weld line, and FIG. 4B is an L diagram in FIG. 4A. FIG.

図3では、位置や流体の性状などの点で同じ性格の3本の溝24の周囲を囲むようにプレート22とプレート23とを摩擦攪拌溶接で溶接して溶接線28を形成している。この場合も、溝24と溶接線28との間31(溝24の縁から溶接線28の手前までの範囲)では、プレート23の接合面23aに段差部29が形成されており、この段差部29に設けられたろう材30が、プレート22とプレート23との間に介在されている。   In FIG. 3, the weld line 28 is formed by welding the plate 22 and the plate 23 by friction stir welding so as to surround the periphery of the three grooves 24 having the same characteristics in terms of position and fluid properties. Also in this case, a step portion 29 is formed on the joint surface 23a of the plate 23 in a region 31 between the groove 24 and the weld line 28 (range from the edge of the groove 24 to the front of the weld line 28). A brazing material 30 provided at 29 is interposed between the plate 22 and the plate 23.

そして、摩擦攪拌溶接で溶接線28を形成する際、同時にプレート22,23間に介在されているろう材30が、前記摩擦攪拌溶接の摩擦熱で溶融する(プレート22,23間の隙間に溶けたろう材30が充填される)。その結果、溝24と溶接線28の間31では、プレート22とプレート23とが、前記ろう材30によってろう付けされた状態となる。従って、この場合も、溝24と溶接線28との間31では、プレート22とプレート23との間に微小な隙間が生じないため、前記隙間による切り欠き効果が生じることもなく、溝24を流れる流体が前記隙間に浸入することもない。   When the weld line 28 is formed by friction stir welding, the brazing material 30 interposed between the plates 22 and 23 is simultaneously melted by the friction heat of the friction stir welding (melted in the gap between the plates 22 and 23). Filled with brazing material 30). As a result, the plate 22 and the plate 23 are brazed by the brazing material 30 between the groove 24 and the weld line 28. Accordingly, also in this case, a minute gap is not generated between the plate 22 and the plate 23 at the gap 31 between the groove 24 and the weld line 28, so that the notch effect due to the gap does not occur, and the groove 24 is formed. The flowing fluid does not enter the gap.

また、図示例では2本の溝24の間においても、プレート23の接合面23aに段差部29が形成されており、この段差部29に設けられたろう材30が、プレート22とプレート23との間に介在されている。従って、このろう材30も前記摩擦攪拌溶接の摩擦熱で溶融するため、2本の溝24の間においても、プレート22とプレート23とが前記ろう材30によってろう付けされた状態となっている。但し、これに限定するものではなく、例えば2本の溝24に同種の流体が流れていることなどの理由から、2本の溝24の間のシール性については特に問われないような場合には、2本の溝24の間ではプレート22とプレート23とをろう付けしなくてもよい。   In the illustrated example, a stepped portion 29 is formed on the joint surface 23 a of the plate 23 between the two grooves 24, and the brazing material 30 provided on the stepped portion 29 is connected to the plate 22 and the plate 23. Is intervening. Therefore, since the brazing material 30 is also melted by the frictional heat of the friction stir welding, the plate 22 and the plate 23 are brazed by the brazing material 30 even between the two grooves 24. . However, the present invention is not limited to this. For example, when the same kind of fluid is flowing in the two grooves 24, the sealing property between the two grooves 24 is not particularly questioned. Does not have to braze the plate 22 and the plate 23 between the two grooves 24.

図4では、位置や流体の性状などの点で同じ性格の3本の溝24の周囲を囲むようにプレート22とプレート23とを摩擦攪拌溶接で溶接して溶接線28を形成している。この場合も、溝24と溶接線28との間31(溝24の縁から溶接線28の手前までの範囲)では、プレート23の接合面23aに段差部29が形成されており、この段差部29に設けられたろう材30が、プレート22とプレート23との間に介在されている。   In FIG. 4, the weld line 28 is formed by welding the plate 22 and the plate 23 by friction stir welding so as to surround the periphery of the three grooves 24 having the same characteristics in terms of position and fluid properties. Also in this case, a step portion 29 is formed on the joint surface 23a of the plate 23 in a region 31 between the groove 24 and the weld line 28 (range from the edge of the groove 24 to the front of the weld line 28). A brazing material 30 provided at 29 is interposed between the plate 22 and the plate 23.

そして、摩擦攪拌溶接で溶接線28を形成する際、同時にプレート22,23間に介在されているろう材30が、前記摩擦攪拌溶接の摩擦熱で溶融する(プレート22,23間の隙間に溶けたろう材30が充填される)。その結果、溝24と溶接線28の間31では、プレート22とプレート23とが、前記ろう材30によってろう付けされた状態となる。従って、この場合も、溝24と溶接線28との間31では、プレート22とプレート23との間に微小な隙間が生じないため、前記隙間による切り欠き効果が生じることもなく、溝24を流れる流体が前記隙間に浸入することもない。   When the weld line 28 is formed by friction stir welding, the brazing material 30 interposed between the plates 22 and 23 is simultaneously melted by the friction heat of the friction stir welding (melted in the gap between the plates 22 and 23). Filled with brazing material 30). As a result, the plate 22 and the plate 23 are brazed by the brazing material 30 between the groove 24 and the weld line 28. Accordingly, also in this case, a minute gap is not generated between the plate 22 and the plate 23 at the gap 31 between the groove 24 and the weld line 28, so that the notch effect due to the gap does not occur, and the groove 24 is formed. The flowing fluid does not enter the gap.

また、図示例では3本の溝24のそれぞれ間においても、プレート23の接合面23aに段差部29が形成されており、この段差部29に設けられたろう材30が、プレート22とプレート23との間に介在されている。従って、このろう材30も前記摩擦攪拌溶接の摩擦熱で溶融するため、2本の溝24の間においても、プレート22とプレート23とが、前記ろう材30によってろう付けされた状態となっている。但し、これに限定するものではなく、例えば3本の溝24に同種の流体が流れていることなどの理由から、2本の溝24の間のシール性については特に問われないような場合には、3本の溝24のそれぞれの間ではプレート22とプレート23とをろう付けしなくてもよい。   Further, in the illustrated example, a stepped portion 29 is formed on the joint surface 23 a of the plate 23 between each of the three grooves 24, and the brazing material 30 provided on the stepped portion 29 is connected to the plate 22 and the plate 23. It is interposed between Accordingly, since the brazing material 30 is also melted by the frictional heat of the friction stir welding, the plate 22 and the plate 23 are brazed by the brazing material 30 between the two grooves 24. Yes. However, the present invention is not limited to this. For example, when the same kind of fluid is flowing in the three grooves 24, the sealing property between the two grooves 24 is not particularly questioned. Does not have to braze the plate 22 and the plate 23 between each of the three grooves 24.

一方、摩擦攪拌溶接で溶接線28を形成するときの摩擦熱が十分にろう材30が伝わないためにろう付けが不十分になること、或いは、ろう付けを行わないことによって、溶接線28内の中央部(隣り合う溝24の間)が膨らむ(プレート22とプレート23の間の隙間が大きくなる)心配がある場合には、溶接線28内の中央部(隣り合う溝24の間)を、アーク電極とレーザ光を同軸に合成する溶接法であるハイブリッド溶接や摩擦攪拌溶接などの適宜の溶接手段によってスポット溶接をすることにより、補強してもよい。図4中の32が、このときのスポット溶接部である。   On the other hand, when the welding wire 28 is formed by friction stir welding, the brazing material 30 does not sufficiently transmit the frictional heat, or brazing becomes insufficient, or by not performing brazing, If there is a concern that the central portion (between adjacent grooves 24) will swell (the gap between the plates 22 and 23 will increase), the central portion (between adjacent grooves 24) in the weld line 28 Further, it may be reinforced by spot welding by an appropriate welding means such as hybrid welding or friction stir welding which is a welding method in which the arc electrode and the laser beam are coaxially combined. Reference numeral 32 in FIG. 4 denotes a spot weld at this time.

更には、図示は省略するが、ろう材30に代えて接着剤を用いて、溝24と溶接線28の間31(溝24の縁から溶接線28の手前までの範囲)におけるプレート22とプレート23とを接着を行うようにしてもよい。なお、ろう材30に代えて接着剤を用いること以外の流路内蔵型台座21の構成や製造方法については上記と同様であるため(図1〜図4参照)、ここでの説明は省略する。   Furthermore, although illustration is omitted, instead of the brazing filler metal 30, an adhesive is used, and the plate 22 and the plate 22 between the groove 24 and the weld line 28 (range from the edge of the groove 24 to the front of the weld line 28). 23 may be bonded together. In addition, since it is the same as that of the above about the structure and manufacturing method of the flow-path built-in type base 21 except using an adhesive agent instead of the brazing material 30 (refer FIGS. 1-4), description here is abbreviate | omitted. .

この場合、接着剤としては摩擦攪拌溶接の摩擦熱に対する耐久性を考慮して、伝熱セメント、セラミックセメントなどの耐熱性の接着剤を用いる必要がある。また、摩擦攪拌溶接で溶接線28を形成するときの摩擦熱を有効に利用するという観点からは、熱硬化型接着剤を用いることも有効である。   In this case, it is necessary to use a heat-resistant adhesive such as heat transfer cement or ceramic cement in consideration of durability against frictional heat of friction stir welding. From the viewpoint of effectively using frictional heat when forming the weld line 28 by friction stir welding, it is also effective to use a thermosetting adhesive.

即ち、摩擦攪拌溶接で1本又は複数本の溝24の周囲を囲むようにプレート22とプレート23とを溶接して溶接線28を形成する際、溝24と溶接線28との間31は、プレート22とプレート23との間に設けた熱硬化型接着剤を、前記摩擦攪拌溶接で前記溶接線28を形成するときの摩擦熱で硬化させることにより、前記プレート22と前記プレート23とを、接着するようにしてもよい。   That is, when the weld line 28 is formed by welding the plate 22 and the plate 23 so as to surround the periphery of one or a plurality of grooves 24 by friction stir welding, a space 31 between the groove 24 and the weld line 28 is: By curing the thermosetting adhesive provided between the plate 22 and the plate 23 with frictional heat when forming the weld line 28 by the friction stir welding, the plate 22 and the plate 23 are You may make it adhere | attach.

以上のように、本発明の実施の形態例の流路内蔵型台座21によれば、摩擦攪拌溶接で溝24の周囲を囲むようにプレート22とプレート23とを溶接してなる溶接線28を有し、溝24と溶接線28との間31は、プレート22とプレート23とがろう付けされているため、溝24と溶接線28との間31では、プレート22とプレート23との間に微小な隙間が生じないことにより、前記隙間による切り欠き効果が生じることもなく、溝24を流れる流体が前記隙間に浸入することもない。従って、耐圧強度や耐久性の向上を図ることができる。しかも、摩擦攪拌溶接で溶接線28を形成する際の摩擦熱を有効に利用してろう付けを行うことができるため、製造作業の効率化を図ることもできる。   As described above, according to the flow path built-in pedestal 21 of the embodiment of the present invention, the welding line 28 formed by welding the plate 22 and the plate 23 so as to surround the periphery of the groove 24 by friction stir welding is provided. Since the plate 22 and the plate 23 are brazed to each other between the groove 24 and the weld line 28, the gap 31 between the groove 24 and the weld line 28 is between the plate 22 and the plate 23. Since the minute gap does not occur, the notch effect due to the gap does not occur, and the fluid flowing through the groove 24 does not enter the gap. Therefore, the pressure strength and durability can be improved. Moreover, since the brazing can be performed by effectively using the frictional heat when forming the weld line 28 by friction stir welding, the efficiency of the manufacturing operation can be improved.

ところで、ろう材30を設ける場合、溶接線24の縁から溶接線28の手前までではなく、溶接線28まで更には溶接線28の外側まで設けることも考えられる。しかし、プレート22,23間の隙間の切り欠き効果や前記隙間への流体の侵入をなくして、耐圧強度や耐久性の向上を図るためには、溝24の縁でプレート22,23間に隙間がなければよいため、ろう材30は溝24と溶接線28の間31(溝24の縁から溶接線28の手前までの範囲)に設けて、少なくとも溝24側がろう付けされていれば十分であり、溶接線28側にろう付けされていない部分があっても特に問題はない。従って、上記のようにろう材30を溝24と溶接線28の間31(溝24の縁から溶接線28の手前までの範囲)に設けることによって、ろう材30を無駄なく有効に利用することができる。更には、摩擦攪拌溶接によって溶接線8を形成する際にプレート22,23の材料にろう材30が混入することもないため、より良好な溶接を行うこともできる。   By the way, when providing the brazing material 30, it is conceivable to provide not only from the edge of the weld line 24 to the front of the weld line 28 but also to the weld line 28 and further to the outside of the weld line 28. However, in order to eliminate the notch effect of the gap between the plates 22 and 23 and the intrusion of fluid into the gap and improve the pressure strength and durability, the gap between the plates 22 and 23 at the edge of the groove 24 is used. Therefore, it is sufficient if the brazing material 30 is provided between the groove 24 and the weld line 28 (in a range from the edge of the groove 24 to the front of the weld line 28), and at least the groove 24 side is brazed. There is no particular problem even if there is an unbrazed portion on the weld line 28 side. Accordingly, by providing the brazing material 30 between the groove 24 and the weld line 28 (range from the edge of the groove 24 to the front of the weld line 28) as described above, the brazing material 30 can be effectively used without waste. Can do. Furthermore, since the brazing filler metal 30 is not mixed into the materials of the plates 22 and 23 when the weld line 8 is formed by friction stir welding, better welding can be performed.

また、本実施の形態例の流路内蔵型台座21によれば、摩擦攪拌溶接で溝24の周囲を囲むようにプレート22とプレート23とを溶接してなる溶接線28を有し、溝24と溶接線28との間31は、プレート22とプレート23とが接着剤で接着されている場合にも、溝24と溶接線28との間31では、プレート22とプレート23との間に微小な隙間が生じないことにより、前記隙間による切り欠き効果が生じることもなく、溝24を流れる流体が隙間に浸入することもない。従って、耐圧強度や耐久性の向上を図ることができる。   Further, according to the flow path built-in type pedestal 21 of the present embodiment, the welding line 28 is formed by welding the plate 22 and the plate 23 so as to surround the periphery of the groove 24 by friction stir welding. 31 between the groove 22 and the weld line 28, even when the plate 22 and the plate 23 are bonded with an adhesive, the gap 31 between the groove 24 and the weld line 28 is very small between the plate 22 and the plate 23. Since no gap is generated, the notch effect due to the gap does not occur, and the fluid flowing through the groove 24 does not enter the gap. Therefore, the pressure strength and durability can be improved.

また、本実施の形態例の流路内蔵型台座21によれば、溶接線28は複数本(図示例では2本又は3本)の溝24の周囲を囲んでおり、溶接線28内の中央部ではプレート22とプレート23とをスポット溶接した場合には、複数本の溝24の周囲を溶接線で囲んでも、前記スッポト溶接の補強によって溶接線28内の中央部が膨らむ(プレート22,23間の隙間が大きくなる)のを確実に防止することができる。   Further, according to the flow path built-in base 21 of the present embodiment, the weld line 28 surrounds the periphery of a plurality of (in the illustrated example, two or three) grooves 24, and the center in the weld line 28. In the case where the plate 22 and the plate 23 are spot welded, even if the periphery of the plurality of grooves 24 is surrounded by a weld line, the center portion in the weld line 28 swells due to the reinforcement of the spot welding (the plates 22 and 23). It is possible to reliably prevent the gap between them from increasing).

また、本実施の形態例の流路内蔵型台座21の製造方法によれば、摩擦攪拌溶接で溝24(1本又は複数本)の周囲を囲むようにプレート22とプレート23とを溶接して溶接線28を形成し、溝24と溶接線28との間31は、プレート22とプレート23との間に設けたろう材30を、摩擦攪拌溶接で溶接線28を形成するときの摩擦熱で溶融することにより、プレート22とプレート23とをろう付けするため、溝27と溶接線27との間31では、プレート22とプレート23との間に微小な隙間が生じないことにより、前記隙間による切り欠き効果が生じることもなく、溝24を流れる流体が前記隙間に浸入することもない。従って、耐圧強度や耐久性の向上を図ることができる。しかも、摩擦攪拌溶接で溶接線28を形成する際の摩擦熱を有効に利用してろう付けを行うため、製造作業の効率化を図ることもできる。   Moreover, according to the manufacturing method of the flow path built-in type pedestal 21 of the present embodiment, the plate 22 and the plate 23 are welded so as to surround the periphery of the groove 24 (one or more) by friction stir welding. The weld line 28 is formed, and the space 31 between the groove 24 and the weld line 28 is melted by the frictional heat generated when the weld line 28 is formed by friction stir welding of the brazing material 30 provided between the plate 22 and the plate 23. Thus, in order to braze the plate 22 and the plate 23, there is no minute gap between the plate 22 and the plate 23 between the groove 27 and the weld line 27. The notch effect does not occur, and the fluid flowing through the groove 24 does not enter the gap. Therefore, the pressure strength and durability can be improved. Moreover, since the brazing is performed by effectively using the frictional heat at the time of forming the weld line 28 by friction stir welding, the efficiency of the manufacturing work can be improved.

また、本実施の形態例の流路内蔵型台座21の製造方法によれば、摩擦攪拌溶接で溝24の周囲を囲むようにプレート22とプレート23とを溶接して溶接線28を形成し、溝24と溶接線28との間31は、プレート22とプレート23との間に設けた熱硬化型接着剤を、摩擦攪拌溶接で溶接線28を形成するときの摩擦熱で硬化させることにより、プレート22とプレート23とを接着することを特徴とするため、溝27と溶接線27との間31では、プレート22とプレート23との間に微小な隙間が生じないことにより、前記隙間による切り欠き効果が生じることもなく、溝を流れる流体が前記隙間に浸入することもない。従って、耐圧強度や耐久性の向上を図ることができる。しかも、摩擦攪拌溶接で溶接線28を形成する際の摩擦熱を有効に利用して接着を行うため、製造作業の効率化を図ることもできる。   Moreover, according to the manufacturing method of the flow path built-in type pedestal 21 of the present embodiment, the welding line 28 is formed by welding the plate 22 and the plate 23 so as to surround the groove 24 by friction stir welding, The space 31 between the groove 24 and the weld line 28 is obtained by curing the thermosetting adhesive provided between the plate 22 and the plate 23 with frictional heat when forming the weld line 28 by friction stir welding. Since the plate 22 and the plate 23 are bonded to each other, the gap 31 between the groove 27 and the weld line 27 does not cause a minute gap between the plate 22 and the plate 23, thereby A notch effect does not occur, and the fluid flowing through the groove does not enter the gap. Therefore, the pressure strength and durability can be improved. In addition, since the bonding is performed by effectively using the frictional heat when forming the weld line 28 by friction stir welding, the efficiency of the manufacturing operation can be improved.

また、本実施の形態例の流路内蔵型台座21の製造方法によれば、溶接線28は複数本(図示例では2本又は3本)の溝24の周囲を囲み、溶接線28内の中央部ではプレート22とプレート23とをスポット溶接するため、複数本の溝24の周囲を溶接線28で囲んでも、前記スッポト溶接の補強によって溶接線28内の中央部が膨らむ(プレート22,23間の隙間が大きくなる)のを確実に防止することができる。   Moreover, according to the manufacturing method of the flow path built-in type pedestal 21 of the present embodiment, the welding line 28 surrounds a plurality of (in the illustrated example, two or three) grooves 24, Since the plate 22 and the plate 23 are spot welded at the center, even if the periphery of the plurality of grooves 24 is surrounded by the weld line 28, the center of the weld line 28 expands due to the reinforcement of the spot welding (the plates 22, 23). It is possible to reliably prevent the gap between them from increasing).

なお、上記実施の形態例の流路内蔵型台座21は2枚のプレート22,23を接合してなるものであるが、必ずしもこれに限定するものではなく、本発明は3枚以上のプレートを接合してなる流路内蔵型台座にも適用することができる。   The channel-embedded pedestal 21 in the above embodiment is formed by joining two plates 22 and 23. However, the present invention is not necessarily limited to this, and the present invention includes three or more plates. It can also be applied to a pedestal with a built-in channel.

また、上記実施の形態例の流路内蔵型台座21ではろう材30を予めプレート23に設けているが、これに限定するものではなく、ろう材30をプレート22に予め設けるようにしてもよい。   Further, in the flow path type pedestal 21 of the above embodiment, the brazing material 30 is provided in advance on the plate 23, but the present invention is not limited to this, and the brazing material 30 may be provided in advance on the plate 22. .

本発明は流路内蔵型台座に関し、溶接線のシール機能を維持する場合に適用して有用なものである。   The present invention relates to a pedestal with a built-in flow path and is useful when applied to maintain a sealing function of a weld line.

(a)は本発明の実施の形態例に係る流路内蔵型台座の製造方法を示す断面図((b)のC−C線矢視断面図)、(b)は前記流路内蔵型台座の製造方法を示す平面図((a)のD方向矢視図)、(c)は(b)のE−E線矢視断面拡大図である。(A) is sectional drawing (C-C arrow sectional drawing of (b)) which shows the manufacturing method of the flow-path built-in type base which concerns on the embodiment of this invention, (b) is the said flow-path built-in type base. The top view (D direction arrow directional view of (a)) which shows the manufacturing method of (a), (c) is the EE arrow directional cross-sectional enlarged view of (b). (a)は前記流路内蔵型台座の構成を示す平面図、(b)は(a)のF−F線矢視断面図拡大図、(c)は(a)のG−G矢視断面拡大図である。(A) is a top view which shows the structure of the said flow-path built-in type base, (b) is the FF arrow directional cross-sectional enlarged view of (a), (c) is the GG arrow directional cross-section of (a). It is an enlarged view. (a)は溶接線で2本の溝の周囲を囲む場合の流路内蔵型台座の構成例を示す平面図、(b)は(a)のK−K線矢視断面拡大図である。(A) is a top view which shows the structural example of the flow-path built-in type base in the case of surrounding the circumference | surroundings of two groove | channels with a weld line, (b) is a KK arrow sectional enlarged view of (a). (a)は溶接線で3本の溝の周囲を囲む場合の流路内蔵型台座の他の例を示す平面図、(b)は(a)のL−L線矢視断面拡大図である。(A) is a top view which shows the other example of a flow-path built-in type base in the case of surrounding the circumference | surroundings of three groove | channels with a welding line, (b) is an LL arrow cross-sectional enlarged view of (a). . 燃料電池発電システムの構成図である。It is a block diagram of a fuel cell power generation system. 従来の流路内蔵型台座の全体構成の概要を示す分解斜視図である。It is a disassembled perspective view which shows the outline | summary of the whole structure of the conventional flow-path built-in type base. (a)は前記流路内蔵型台座の一部を詳細に示す平面図、(b)は(a)のA−A線矢視断面図、(c)は(a)のB−B線矢視断面拡大図である。(A) is a top view which shows a part of said flow-path built-in type base in detail, (b) is the sectional view on the AA line of (a), (c) is the BB line arrow of (a). FIG. 多数の溝の構成例を示す平面図である。It is a top view which shows the structural example of many grooves.

符号の説明Explanation of symbols

21 流路内蔵型台座
22 プレート
22a 表面
22b 接合面
23 プレート
23a 接合面
23b 表面
24 溝
25 連通孔
26 摩擦攪拌溶接機
27 先端工具
28 溶接線
29 段差部
30 ろう材
31 溝と溶接線の間
32 スポット溶接部
21 Plate Built-in Type Base 22 Plate 22a Surface 22b Joint Surface 23 Plate 23a Joint Surface 23b Surface 24 Groove 25 Communication Hole 26 Friction Stir Welding Machine 27 Tip Tool 28 Weld Line 29 Stepped Part 30 Brazing Material 31 Between Groove and Weld Line 32 Spot weld

Claims (6)

少なくとも2枚の第1プレートと第2プレートとを摩擦攪拌溶接で接合してなるものであり、前記第1プレート又は第2プレートの接合面に形成した溝を流体の流路として内蔵し、且つ、片側又は両側の台座表面に機器が取り付けられる流路内蔵型台座において、
前記摩擦攪拌溶接で前記溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接してなる溶接線を有し、
前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとがろう付けされていることを特徴とする流路内蔵型台座。
At least two first plates and second plates are joined by friction stir welding, and a groove formed on the joining surface of the first plate or the second plate is built in as a fluid flow path, and In the pedestal with a built-in flow path in which equipment is attached to the pedestal surface on one side or both sides,
A welding line formed by welding the first plate and the second plate so as to surround the periphery of the groove by the friction stir welding;
The channel-embedded base, wherein the first plate and the second plate are brazed between the groove and the weld line.
少なくとも2枚の第1プレートと第2プレートとを摩擦攪拌溶接で接合してなるものであり、前記第1プレート又は第2プレートの接合面に形成した溝を流体の流路として内蔵し、且つ、片側又は両側の台座表面に機器が取り付けられる流路内蔵型台座において、
前記摩擦攪拌溶接で前記溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接してなる溶接線を有し、
前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとが接着剤で接着されていることを特徴とする流路内蔵型台座。
At least two first plates and second plates are joined by friction stir welding, and a groove formed on the joining surface of the first plate or the second plate is built in as a fluid flow path, and In the pedestal with a built-in flow path in which equipment is attached to the pedestal surface on one side or both sides,
A welding line formed by welding the first plate and the second plate so as to surround the periphery of the groove by the friction stir welding;
The channel-embedded pedestal, wherein the first plate and the second plate are bonded with an adhesive between the groove and the weld line.
請求項1又は2に記載の流路内蔵型台座において、
前記溶接線は複数本の前記溝の周囲を囲んでおり、前記溶接線内の中央部では前記第1プレートと前記第2プレートとをスポット溶接したことを特徴とする流路内蔵型台座。
In the pedestal with a built-in channel according to claim 1 or 2,
The pedestal with a built-in channel, wherein the weld line surrounds a plurality of the grooves, and the first plate and the second plate are spot-welded at a central portion in the weld line.
少なくとも2枚の第1プレートと第2プレートとを摩擦攪拌溶接で接合してなるものであり、前記第1プレート又は前記第2プレートの接合面に形成した溝を流体の流路として内蔵し、且つ、片側又は両側の台座表面に機器が取り付けられる流路内蔵型台座の製造方法であって、
前記摩擦攪拌溶接で前記溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接して溶接線を形成し、
前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとの間に設けたろう材を、前記摩擦攪拌溶接で前記溶接線を形成するときの摩擦熱で溶融することにより、前記第1プレートと前記第2プレートとをろう付けすることを特徴とする流路内蔵型台座の製造方法。
At least two of the first plate and the second plate are joined by friction stir welding, and a groove formed in the joining surface of the first plate or the second plate is built in as a fluid flow path, And it is a manufacturing method of a channel built-in type pedestal in which equipment is attached to the pedestal surface on one side or both sides,
Welding the first plate and the second plate so as to surround the groove by the friction stir welding to form a weld line;
Between the groove and the weld line, by melting the brazing material provided between the first plate and the second plate with frictional heat when forming the weld line by the friction stir welding, A method for manufacturing a channel-embedded pedestal, wherein the first plate and the second plate are brazed.
少なくとも2枚の第1プレートと第2プレートとを摩擦攪拌溶接で接合してなるものであり、前記第1プレート又は前記第2プレートの接合面に形成した溝を流体の流路として内蔵し、且つ、片側又は両側の台座表面に機器が取り付けられる流路内蔵型台座の製造方法であって、
前記摩擦攪拌溶接で前記溝の周囲を囲むように前記第1プレートと前記第2プレートとを溶接して溶接線を形成し、
前記溝と前記溶接線との間は、前記第1プレートと前記第2プレートとの間に設けた熱硬化型接着剤を、前記摩擦攪拌溶接で前記溶接線を形成するときの摩擦熱で硬化させることにより、前記第1プレートと前記第2プレートとを接着することを特徴とする流路内蔵型台座の製造方法。
At least two of the first plate and the second plate are joined by friction stir welding, and a groove formed in the joining surface of the first plate or the second plate is built in as a fluid flow path, And it is a manufacturing method of a channel built-in type pedestal in which equipment is attached to the pedestal surface on one side or both sides,
Welding the first plate and the second plate so as to surround the groove by the friction stir welding to form a weld line;
Between the groove and the weld line, a thermosetting adhesive provided between the first plate and the second plate is cured by friction heat when the weld line is formed by the friction stir welding. Thereby, the first plate and the second plate are bonded to each other.
請求項1又は2に記載の流路内蔵型台座の製造方法において、
前記溶接線は複数本の前記溝の周囲を囲み、前記溶接線内の中央部では前記第1プレートと前記第2プレートとをスポット溶接することを特徴とする流路内蔵型台座の製造方法。
In the manufacturing method of the channel-embedded pedestal according to claim 1 or 2,
The weld line surrounds a plurality of the grooves, and the first plate and the second plate are spot-welded at a central portion in the weld line.
JP2004212903A 2004-07-21 2004-07-21 Passage built-in mount and its production method Withdrawn JP2006026721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212903A JP2006026721A (en) 2004-07-21 2004-07-21 Passage built-in mount and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212903A JP2006026721A (en) 2004-07-21 2004-07-21 Passage built-in mount and its production method

Publications (1)

Publication Number Publication Date
JP2006026721A true JP2006026721A (en) 2006-02-02

Family

ID=35893671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212903A Withdrawn JP2006026721A (en) 2004-07-21 2004-07-21 Passage built-in mount and its production method

Country Status (1)

Country Link
JP (1) JP2006026721A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036648A (en) * 2006-08-02 2008-02-21 Keihin Ram Tech Co Ltd Joining material joining method and joining material joining structure
JP2008221321A (en) * 2007-03-15 2008-09-25 Mazda Motor Corp Friction spot welding method
WO2010095335A1 (en) * 2009-02-23 2010-08-26 日本軽金属株式会社 Method of producing liquid-cooled jacket
JP2011011232A (en) * 2009-07-02 2011-01-20 Nippon Light Metal Co Ltd Method for manufacturing heat-transfer plate and heat-transfer plate
US8061579B2 (en) * 2008-03-20 2011-11-22 Ut-Battelle, Llc Friction stir method for forming structures and materials
JP2013091103A (en) * 2012-12-28 2013-05-16 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
WO2018154939A1 (en) * 2017-02-22 2018-08-30 日本軽金属株式会社 Joining method
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
WO2021095333A1 (en) * 2019-11-15 2021-05-20 日立造船株式会社 Anti-corrosion structure and anti-corrosion structure production method
CN114378422A (en) * 2020-10-21 2022-04-22 天津大学 A comprehensive adjustment method for the assembly quality of friction stir welded joints
CN114734160A (en) * 2022-05-11 2022-07-12 哈尔滨工业大学 A composite connection process of point bearing surface sealing

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036648A (en) * 2006-08-02 2008-02-21 Keihin Ram Tech Co Ltd Joining material joining method and joining material joining structure
JP2008221321A (en) * 2007-03-15 2008-09-25 Mazda Motor Corp Friction spot welding method
US8061579B2 (en) * 2008-03-20 2011-11-22 Ut-Battelle, Llc Friction stir method for forming structures and materials
WO2010095335A1 (en) * 2009-02-23 2010-08-26 日本軽金属株式会社 Method of producing liquid-cooled jacket
JP2010194545A (en) * 2009-02-23 2010-09-09 Nippon Light Metal Co Ltd Method of manufacturing liquid-cooled jacket
JP2011011232A (en) * 2009-07-02 2011-01-20 Nippon Light Metal Co Ltd Method for manufacturing heat-transfer plate and heat-transfer plate
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
JP2013091103A (en) * 2012-12-28 2013-05-16 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
WO2018154939A1 (en) * 2017-02-22 2018-08-30 日本軽金属株式会社 Joining method
CN109803785A (en) * 2017-02-22 2019-05-24 日本轻金属株式会社 Joint method
JPWO2018154939A1 (en) * 2017-02-22 2019-06-27 日本軽金属株式会社 Bonding method
WO2021095333A1 (en) * 2019-11-15 2021-05-20 日立造船株式会社 Anti-corrosion structure and anti-corrosion structure production method
JP2021079389A (en) * 2019-11-15 2021-05-27 日立造船株式会社 Corrosion-resistant structure and corrosion-resistant structure manufacturing method
JP7336100B2 (en) 2019-11-15 2023-08-31 日立造船株式会社 Anti-corrosion structure and method for manufacturing anti-corrosion structure
CN114378422A (en) * 2020-10-21 2022-04-22 天津大学 A comprehensive adjustment method for the assembly quality of friction stir welded joints
CN114378422B (en) * 2020-10-21 2023-03-14 天津大学 Comprehensive adjusting method for assembling quality of friction stir welding joint
CN114734160A (en) * 2022-05-11 2022-07-12 哈尔滨工业大学 A composite connection process of point bearing surface sealing
CN114734160B (en) * 2022-05-11 2023-01-03 哈尔滨工业大学 Composite connection process for sealing point bearing surface

Similar Documents

Publication Publication Date Title
JP2006026721A (en) Passage built-in mount and its production method
US7017792B2 (en) Integrated piping plate, machining method for same, machining apparatus for same, and machining equipment for same
JP6461056B2 (en) Arc spot welding method for joining dissimilar materials, joining auxiliary member, and dissimilar material welding joint
JP4908476B2 (en) T-type joint welding method
JP4558793B2 (en) Exhaust gas system and method for coupling components of an exhaust gas system
WO2018056172A1 (en) Spot welding method for joining different materials, joining assistance member, and different material welded joint
JP2014147962A (en) Member joining method, member-joined structure and joined pipe
WO2018042680A1 (en) Arc-spot welding method for joining different materials, joining auxiliary member, and different materials welding joint
JP2010155275A (en) Weld joint and method for manufacturing the same
WO2018123716A1 (en) Arc welding method for multimaterial joining, joining assistance member, multimaterial welded joint, and plate material equipped with joining assistance member
CN100418692C (en) friction point joint construction
JP2009241116A (en) Welding method of metallic material and joined body of metallic material
WO2018042681A1 (en) Arc-spot welding method for joining different materials, joining auxiliary member, and different materials welding joint
JP2025067996A (en) Method and apparatus for additive friction stir manufactured transition joints
JP5166201B2 (en) Pressure vessel manufacturing method, manufacturing apparatus, and pressure vessel
WO2018055982A1 (en) Arc welding method for joining different materials, joining assistance member, and different material welded joint
JP2006037223A (en) Cooling plate
CN100488701C (en) Projection soldering structure of power head member for thermal expansion valve
JP2009095881A (en) Method for manufacturing welded structural member
JPH1052772A (en) Method for manufacturing honeycomb panel and honeycomb structure
JP2018034167A (en) Arc-welding method for jointing different materials, joint assisting member, and different-material welded joint
JP2005515361A (en) Nozzle clamping nut for injection valve and method of manufacturing the nozzle clamping nut
WO2024079808A1 (en) Cooling floor member and method for manufacturing cooling floor member
JP5057161B2 (en) Manufacturing method of welded joint
JP2004524165A (en) Lining device for plate heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002