JP2006018212A - Method for manufacturing retardation film - Google Patents
Method for manufacturing retardation film Download PDFInfo
- Publication number
- JP2006018212A JP2006018212A JP2004274261A JP2004274261A JP2006018212A JP 2006018212 A JP2006018212 A JP 2006018212A JP 2004274261 A JP2004274261 A JP 2004274261A JP 2004274261 A JP2004274261 A JP 2004274261A JP 2006018212 A JP2006018212 A JP 2006018212A
- Authority
- JP
- Japan
- Prior art keywords
- film
- stretching
- retardation
- width
- cyclic olefin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title abstract description 20
- 229920005989 resin Polymers 0.000 claims abstract description 27
- 239000011347 resin Substances 0.000 claims abstract description 27
- -1 cyclic olefin Chemical class 0.000 claims abstract description 20
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 125000004122 cyclic group Chemical group 0.000 claims description 23
- 229920005672 polyolefin resin Polymers 0.000 claims description 23
- 230000009477 glass transition Effects 0.000 claims description 5
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 36
- 230000001681 protective effect Effects 0.000 abstract description 4
- 239000000178 monomer Substances 0.000 description 24
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 21
- 210000002858 crystal cell Anatomy 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- 238000001816 cooling Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 150000002848 norbornenes Chemical class 0.000 description 4
- 238000007142 ring opening reaction Methods 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Natural products CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920006302 stretch film Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 125000003354 benzotriazolyl group Chemical class N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- ZOLLIQAKMYWTBR-RYMQXAEESA-N cyclododecatriene Chemical compound C/1C\C=C\CC\C=C/CC\C=C\1 ZOLLIQAKMYWTBR-RYMQXAEESA-N 0.000 description 1
- HYPABJGVBDSCIT-UPHRSURJSA-N cyclododecene Chemical compound C1CCCCC\C=C/CCCC1 HYPABJGVBDSCIT-UPHRSURJSA-N 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- UCQHUEOREKHIBP-UHFFFAOYSA-N heptacyclo[9.6.1.14,7.113,16.02,10.03,8.012,17]icosa-5,14-diene Chemical compound C1C(C23)C4C(C=C5)CC5C4C1C3CC1C2C2C=CC1C2 UCQHUEOREKHIBP-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 235000014786 phosphorus Nutrition 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 150000003682 vanadium compounds Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
本発明は、液晶表示装置のコントラスト及び視野角の改善に用いられる位相差フィルムの製造方法に関する。 The present invention relates to a method for producing a retardation film used for improving the contrast and viewing angle of a liquid crystal display device.
近年、液晶表示装置が、パーソナルコンピュータの表示装置等として広く普及してきており、その一つにTN(Twisted Nematic)モード液晶表示装置が挙げられる。しかしながら、TNモード液晶表示装置は、視野角が狭いとともに応答速度が遅いといった問題点があった。そこで、TNモード液晶表示装置のような旋光モードではなく、複屈折モードを利用したVA(Vertical Alignment)モード液晶表示装置が提案されている。このVAモード液晶表示装置としては、液晶セルを構成する基板内面に傾斜面を有する突起等からなるドメイン規制手段を設け、このドメイン規制手段によって液晶分子の配向方向を2方向以上に分割して、液晶セルを通過してくる光量を均一化させることにより見込み角度によって表示輝度が大きく異なる視野角依存性を改善したMVA(Multi-domain Vertical Alignment)モード液晶表示装置が提案されている(例えば、特許文献1参照)。 In recent years, liquid crystal display devices have become widespread as display devices for personal computers, and one of them is a TN (Twisted Nematic) mode liquid crystal display device. However, the TN mode liquid crystal display device has a problem that the viewing angle is narrow and the response speed is slow. Therefore, a VA (Vertical Alignment) mode liquid crystal display device using a birefringence mode instead of an optical rotation mode such as a TN mode liquid crystal display device has been proposed. As this VA mode liquid crystal display device, a domain regulating means comprising a projection having an inclined surface is provided on the inner surface of the substrate constituting the liquid crystal cell, and the orientation direction of the liquid crystal molecules is divided into two or more directions by this domain regulating means, There has been proposed an MVA (Multi-domain Vertical Alignment) mode liquid crystal display device in which the viewing angle dependency is greatly different depending on the expected angle by making the amount of light passing through the liquid crystal cell uniform (for example, a patent) Reference 1).
しかしながら、上記MVAモード液晶表示装置であっても、液晶表示面の法線に対して斜め45°から液晶表示面を見ると、やはりコントラストが低下するといった問題点を有するものであり、この視野角依存性を改善するために二軸性位相差フィルムが用いられている。
このような位相差フィルムの材料としては、ポリカーボネートやポリサルホンに代表されるような高透明性及び高耐熱性の合成樹脂フィルムが用いられてきたが、上記特性に加えて、光弾性係数、波長分散性及び水蒸気透過率等の特性にも優れた環状オレフィン系樹脂フィルムを位相差フィルムとして用いることが考えられる。
However, even the MVA mode liquid crystal display device has a problem that the contrast is lowered when the liquid crystal display surface is viewed at an angle of 45 ° with respect to the normal line of the liquid crystal display surface. In order to improve the dependency, a biaxial retardation film is used.
As a material for such a retardation film, synthetic resin films having high transparency and high heat resistance such as polycarbonate and polysulfone have been used. In addition to the above characteristics, photoelastic coefficient, wavelength dispersion It is conceivable to use a cyclic olefin resin film having excellent properties such as properties and water vapor permeability as a retardation film.
上記位相差フィルムを用いた液晶表示装置として、例えば、特許文献2には、特定の光弾性係数、リタデーションの値をもつ上記の合成樹脂フィルムからなる二軸性位相差フィルムを用いた液晶表示装置が開示されている。 As a liquid crystal display device using the retardation film, for example, Patent Document 2 discloses a liquid crystal display device using a biaxial retardation film made of the above synthetic resin film having a specific photoelastic coefficient and retardation value. Is disclosed.
このような二軸性位相差フィルムと貼合される偏光板は、通常、その長さ方向に吸収軸が形成された上でロール状に巻回されており、液晶表示装置を組み立てるために、偏光板と位相差フィルムとを貼り合わせるにあたっては、偏光板の吸収軸と位相差フィルム面内の遅相軸とを直交させた状態で重ね合わせる必要があるが、従来の二軸性位相差フィルムは縦延伸した後テンター横延伸するのが普通であり、面内の遅相軸が長さ方向に存するものであったため、通常位相差フィルムを枚葉に裁断して偏光板に貼り合わせていた。 In order to assemble a liquid crystal display device, a polarizing plate to be bonded to such a biaxial retardation film is usually wound in a roll shape with an absorption axis formed in the length direction thereof. When laminating the polarizing plate and the retardation film, it is necessary to superimpose the polarizing axis with the absorption axis of the polarizing plate and the slow axis in the plane of the retardation film orthogonal to each other, but the conventional biaxial retardation film In general, the film was stretched in the longitudinal direction and then in the transverse direction of the tenter, and since the in-plane slow axis was in the length direction, the retardation film was usually cut into single sheets and bonded to the polarizing plate. .
このような場合、二軸性位相差フィルムの遅相軸方向を幅方向とすることにより、偏光板と位相差フィルムの連続貼合が実現できるが、位相差フィルムの遅相軸方向が全面にわたり精度良く発現していないと、偏光板吸収軸と位相差フィルム遅相軸が直交しなくなり、液晶セルと組み合わせた場合に視野角補償が十分でなくなったり、コントラストの低下を招くといった問題が発生することがあった。
本発明の目的は、上記問題点に鑑み、充分に大きなフィルム面内のリタデーションRe及びフィルム厚み方向のリタデーションRthを有しており、液晶表示装置の視野角依存性やコントラストを改善することができ、且つ、偏光子の保護フィルムとして兼用可能であるとともに偏光板との貼り合わせ効率に優れた位相差フィルムの製造方法を提供することにある。
なお、最大屈折率方向の屈折率をnx、最大屈折率方向と直交する方向の屈折率をny、厚み方向の屈折率をnzとした場合、上記リタデーションRe及びリタデーションRthは、以下の式で表される。
Re(nm)=|nx−ny|×厚み(nm)
Rth(nm)=|(nx+ny)/2−nz|×厚み(nm)
In such a case, by setting the slow axis direction of the biaxial retardation film as the width direction, continuous bonding of the polarizing plate and the retardation film can be realized, but the slow axis direction of the retardation film covers the entire surface. If not expressed accurately, the polarizing plate absorption axis and retardation film slow axis will not be orthogonal, and problems such as insufficient viewing angle compensation and reduced contrast will occur when combined with a liquid crystal cell. There was a thing.
In view of the above problems, the object of the present invention is to have a sufficiently large retardation Re in the film plane and retardation Rth in the film thickness direction, and can improve the viewing angle dependency and contrast of the liquid crystal display device. And it is providing the manufacturing method of the phase difference film which can be used also as a protective film of a polarizer, and was excellent in the bonding efficiency with a polarizing plate.
The maximum refractive index direction of the refractive index n x, the direction of the refractive index n y orthogonal to the maximum refractive index direction, when the refractive index in the thickness direction is n z, the retardation Re and the retardation Rth is the following It is expressed by an expression.
Re (nm) = | n x -n y | × Thickness (nm)
Rth (nm) = | (n x + n y ) / 2−n z | × thickness (nm)
本発明による位相差フィルムの製造方法は、環状オレフィン系樹脂フィルムをその幅方向に延伸してなる横延伸フィルムを、その長さ方向(縦方向)に延伸した後の縦延伸フィルム幅が、縦延伸倍率をn倍としたときに、(横延伸フィルム幅/√n)の85〜99%となるように制御することを特徴とする。 The method for producing a retardation film according to the present invention is such that a longitudinally stretched film width after stretching a transversely stretched film obtained by stretching a cyclic olefin-based resin film in its width direction in the length direction (longitudinal direction) is longitudinal. When the draw ratio is n times, it is controlled to be 85 to 99% of (laterally stretched film width / √n).
また、本発明による位相差フィルムの製造方法は、環状オレフィン系樹脂フィルムをその幅方向に延伸してなる横延伸フィルムを、その長さ方向(縦方向)に延伸した後の縦延伸フィルム厚みが、縦延伸倍率をn倍としたときに、(横延伸フィルム厚み/√n)の101〜110%となるように制御することを特徴とする。 Moreover, the manufacturing method of the retardation film by this invention is the longitudinal stretch film thickness after extending | stretching the horizontal stretch film formed by extending | stretching the cyclic olefin resin film in the width direction in the length direction (longitudinal direction). When the longitudinal draw ratio is n times, it is controlled to be 101 to 110% of (laterally stretched film thickness / √n).
本発明の位相差フィルムに用いられる環状オレフィン系樹脂としては、特に限定されないが、ノルボルネン系樹脂が好ましく、特に飽和ノルボルネン系樹脂が好ましく、例えば、ノルボルネン系モノマーの開環(共)重合体の水素添加物、ノルボルネン系モノマーとオレフィン系モノマーとの付加共重合体、ノルボルネン系モノマー同士の付加(共)重合体又はこれらの誘導体等が挙げられ、単独で用いられても併用されてもよい。 The cyclic olefin resin used in the retardation film of the present invention is not particularly limited, but a norbornene resin is preferable, and a saturated norbornene resin is particularly preferable. For example, hydrogen of a ring-opening (co) polymer of a norbornene monomer Additives, addition copolymers of norbornene monomers and olefin monomers, addition (co) polymers of norbornene monomers, or derivatives thereof may be used, and these may be used alone or in combination.
上記ノルボルネン系モノマーとしては、ノルボルネン環を有するものであれば、特に限定されず、例えば、ノルボルネン、ノルボルナジエン等の二環体;ジシクロペンタジエン、ジヒドロキシペンタジエン等の三環体;テトラシクロドデセン等の四環体;シクロペンタジエン三量体等の五環体;テトラシクロペンタジエン等の七環体;これらのメチル、エチル、プロピル、ブチル等のアルキル、ビニル等のアルケニル、エチリデン等のアルキリデン、フェニル、トリル、ナフチル等のアリール等の置換体;さらにこれらのエステル基、エーテル基、シアノ基、ハロゲン原子、アルコキシカルボニル基、ピリジル基、水酸基、カルボン酸基、アミノ基、無水酸基、シリル基、エポキシ基、アクリル基、メタクリル基等の炭素、水素以外の元素を含有する基、所謂、極性基を有する置換体等が挙げられ、入手が容易であり、反応性に優れ、得られる位相差フィルムの耐熱性が優れていることから、三環体以上の多環ノルボルネン系モノマーが好ましく、三環体、四環体又は五環体のノルボルネン系モノマーがより好ましい。なお、ノルボルネン系モノマーは、単独で用いられても二種類以上が併用されてもよい。 The norbornene-based monomer is not particularly limited as long as it has a norbornene ring. For example, bicyclic compounds such as norbornene and norbornadiene; Tetracycles; pentacycles such as cyclopentadiene trimers; heptacycles such as tetracyclopentadiene; alkyls such as methyl, ethyl, propyl, and butyl, alkenyls such as vinyl, alkylidenes such as ethylidene, phenyl, and tolyl , Substituents such as aryl such as naphthyl; furthermore, these ester groups, ether groups, cyano groups, halogen atoms, alkoxycarbonyl groups, pyridyl groups, hydroxyl groups, carboxylic acid groups, amino groups, hydroxyl groups-free, silyl groups, epoxy groups, Elements other than carbon and hydrogen, such as acrylic and methacrylic groups A tricyclic or higher polycyclic norbornene because it is easily available, has excellent reactivity, and has excellent heat resistance of the obtained retardation film. Type monomers are preferred, and tricyclic, tetracyclic or pentacyclic norbornene monomers are more preferred. In addition, a norbornene-type monomer may be used independently or 2 or more types may be used together.
また、上記ノルボルネン系モノマーの開環(共)重合体の水素添加物としては、上記ノルボルネン系モノマーを公知の方法で開環重合させた後、残留している二重結合が水素添加されているものが広く用いられ、ノルボルネン系モノマーの単独重合体の水素添加物であってもよいし、異種のノルボルネン系モノマーの共重合体の水素添加物であってもよい。 Further, as the hydrogenated product of the ring-opening (co) polymer of the norbornene monomer, the remaining double bond is hydrogenated after ring-opening polymerization of the norbornene monomer by a known method. These are widely used, and may be a hydrogenated product of a norbornene-based monomer homopolymer or a hydrogenated product of a copolymer of different norbornene-based monomers.
更に、上記ノルボルネン系モノマーとオレフィン系モノマーとの付加共重合体としては、ノルボルネン系モノマーとα−オレフィンとの共重合体、ノルボルネン系モノマーと環状オレフィン系モノマーとの共重合体等が挙げられる。上記α−オレフィンとしては、炭素数が2〜20のα−オレフィンが好ましく、炭素数が2〜10のα−オレフィンがより好ましく、例えば、エチレン、プロピレン、1−ブテン、3−メチル−1−ブテン、1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン等が挙げられ、共重合性が高いことから、エチレンが好ましく、他のα−オレフィンをノルボルネン系モノマーと共重合させる場合にも、エチレンを存在させている方が共重合性が高められる。
上記環状オレフィン系モノマーとしては、例えば、シクロオクタジエン、シクロオクテン、シクロヘキセン、シクロドデセン、シクロドデカトリエン等が挙げられる。
Furthermore, examples of the addition copolymer of the norbornene monomer and the olefin monomer include a copolymer of a norbornene monomer and an α-olefin, a copolymer of a norbornene monomer and a cyclic olefin monomer, and the like. As said alpha olefin, a C2-C20 alpha olefin is preferable, A C2-C10 alpha olefin is more preferable, for example, ethylene, propylene, 1-butene, 3-methyl-1- Butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, etc. Since the copolymerizability is high, ethylene is preferable. Even when other α-olefin is copolymerized with the norbornene-based monomer, the presence of ethylene improves the copolymerizability.
Examples of the cyclic olefin monomer include cyclooctadiene, cyclooctene, cyclohexene, cyclododecene, cyclododecatriene, and the like.
また、上記ノルボルネン系モノマーの開環(共)重合体を得る方法は、例えば、ノルボルネン系モノマーをルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金等の金属のハロゲン化物、硝酸塩もしくはアセチルアセトン化合物と還元剤とからなる触媒系、又は、チタン、タングステン、モリブデン等の金属のハロゲン化物もしくはアセチルアセトン化合物と有機アルミニウム化合物とからなる触媒系等を用いて、溶媒中又は無溶媒で、通常、−50℃〜100℃の重合温度、0〜5MPaの重合圧力で開環(共)重合させることにより得ることができる。 In addition, the method for obtaining the ring-opening (co) polymer of the norbornene-based monomer includes, for example, converting the norbornene-based monomer to a metal halide such as ruthenium, rhodium, palladium, osmium, iridium, platinum, nitrate or acetylacetone compound and a reducing agent. Or a catalyst system comprising a metal halide such as titanium, tungsten or molybdenum or a catalyst system comprising an acetylacetone compound and an organoaluminum compound. It can be obtained by ring-opening (co) polymerization at a polymerization temperature of 0 ° C. and a polymerization pressure of 0 to 5 MPa.
上記ノルボルネン系モノマーとオレフィン系モノマーとの付加共重合体を得る方法は、例えば、モノマー成分を、溶媒中又は無溶媒で、バナジウム化合物と有機アルミニウム化合物(好ましくはハロゲン含有有機アルミニウム化合物)とからなる触媒系の存在下で、通常、−50℃〜100℃の重合温度、0〜5MPaの重合圧力で共重合させることにより得ることができる。 The method for obtaining the addition copolymer of the norbornene monomer and the olefin monomer includes, for example, a monomer component in a solvent or without a solvent, and a vanadium compound and an organoaluminum compound (preferably a halogen-containing organoaluminum compound). In the presence of a catalyst system, it can be usually obtained by copolymerization at a polymerization temperature of −50 ° C. to 100 ° C. and a polymerization pressure of 0 to 5 MPa.
なお、上記ノルボルネン系樹脂の具体例としては、特開平1−240517号公報に記載されているものが挙げられ、商業的に入手できるノルボルネン系樹脂の具体例としては、例えば、ジェイエスアール社製の商品名「アートン」シリーズ、日本ゼオン社製の商品名「ゼオノア」シリーズ、三井化学社製の商品名「アペル」シリーズ等が挙げられる。 Specific examples of the norbornene-based resin include those described in JP-A-1-240517. Specific examples of commercially available norbornene-based resins include those manufactured by JSR Corporation. The product name “Arton” series, the product name “Zeonoa” series manufactured by Nippon Zeon Co., Ltd., the product name “Apel” series manufactured by Mitsui Chemicals, and the like can be mentioned.
本発明の環状オレフィン系樹脂の数平均分子量としては、小さいと得られる位相差フィルムの機械的強度が低下することがある一方、大きいとフィルムの成形性に支障を来たすことがあるので、5000〜50000が好ましく、8000〜30000がより好ましい。なお、環状オレフィン系樹脂の数平均分子量はゲルパーミュエーションクロマトグラフィ法によって測定されたものをいう。 As the number average molecular weight of the cyclic olefin-based resin of the present invention, the mechanical strength of the obtained retardation film may be lowered when it is small, while the moldability of the film may be hindered when it is large. 50000 is preferable, and 8000-30000 is more preferable. In addition, the number average molecular weight of cyclic olefin resin means what was measured by the gel permeation chromatography method.
また、上記環状オレフィン系樹脂には位相差フィルムの機能を阻害しない範囲内において、成形中の環状オレフィン系樹脂の劣化を防止させるためや位相差フィルムの耐熱性、耐紫外線性、平滑性等を向上させるために、フェノール系、リン系等の酸化防止剤;ラクトン系等の熱劣化防止剤;ベンゾフェノン系、ベンゾトリアゾール系、アクリロニトリル系等の紫外線吸収剤;脂肪族アルコールのエステル系、多価アルコールの部分エステル系、部分エーテル系等の滑剤;アミン系等の帯電防止剤等の各種添加剤が添加されていてもよい。なお、添加剤は単独で用いられても二種以上が併用されてもよい。 In addition, the cyclic olefin-based resin has the heat resistance, ultraviolet resistance, smoothness, etc. of the retardation film in order to prevent deterioration of the cyclic olefin-based resin during molding within the range that does not hinder the function of the retardation film. In order to improve, antioxidants such as phenols and phosphoruss; thermal degradation inhibitors such as lactones; UV absorbers such as benzophenones, benzotriazoles and acrylonitriles; esters of aliphatic alcohols, polyhydric alcohols Various additives such as a partial ester type or partial ether type lubricant; an amine type antistatic agent or the like may be added. In addition, an additive may be used independently or 2 or more types may be used together.
本発明の環状オレフィン系樹脂フィルムを成膜する方法としては、従来から汎用されている方法が用いられ、具体的には、環状オレフィン系樹脂を押出機に供給して溶融、混練し、押出機の先端に取り付けた金型からフィルム状に押し出して長尺状の環状オレフィン系樹脂フィルムを成膜する方法、所謂、溶融押出法の他に、環状オレフィン系樹脂を有機溶媒中に溶解してなる溶液をドラム又はバンド上に流延した後に有機溶媒を蒸発させて長尺状の環状オレフィン系樹脂フィルムを成膜する方法、所謂、溶液流延法等が挙げられる。 As a method for forming the cyclic olefin resin film of the present invention, a conventionally used method is used. Specifically, the cyclic olefin resin is supplied to an extruder and melted and kneaded. In addition to the so-called melt-extrusion method, a cyclic olefin resin is dissolved in an organic solvent. Examples thereof include a method of casting a solution on a drum or band and then evaporating the organic solvent to form a long cyclic olefin-based resin film, a so-called solution casting method.
上記環状オレフィン系樹脂フィルムの厚みは、薄いと所望のリタデーションを得ることが困難となる一方、厚いと液晶表示装置の薄型化に不利となるので、50〜200μmが好ましく、80〜150μmがより好ましい。
なお、上記環状オレフィン系樹脂フィルムの厚みが80μmを超える場合には、溶液流延法では有機溶媒を充分に蒸発、除去させることが困難となることがあるので、溶融押出法を用いて環状オレフィン系樹脂フィルムを製造するのが好ましい。
When the thickness of the cyclic olefin-based resin film is thin, it is difficult to obtain a desired retardation. On the other hand, when the thickness is thick, it is disadvantageous for thinning of the liquid crystal display device, so 50-200 μm is preferable, and 80-150 μm is more preferable. .
If the thickness of the cyclic olefin resin film exceeds 80 μm, it may be difficult to sufficiently evaporate and remove the organic solvent by the solution casting method. It is preferable to produce a resin-based resin film.
本発明の位相差フィルムの製造方法においては、まず、上記環状オレフィン系樹脂フィルムをその幅方向(横方向)に延伸して横延伸フィルムを製造する。
具体的には、長尺状の環状オレフィン系樹脂フィルムを連続的に巻き出しながら、環状オレフィン系樹脂のガラス転移温度(Tg)付近の温度領域において、当該フィルムの幅方向の両端部を、テンタークリップ等の任意の把持手段によって把持し、この把持手段を当該フィルムの搬送速度と略同一速度にて搬送方向に移動させながら互いに離間する方向に徐々に変位させることによって、当該フィルムをその幅方向に延伸して拡幅させた後、環状オレフィン系樹脂分子の配向を固定するためにTg未満の温度まで冷却する。
In the method for producing a retardation film of the present invention, first, the above-mentioned cyclic olefin resin film is stretched in the width direction (lateral direction) to produce a laterally stretched film.
Specifically, while continuously unwinding a long cyclic olefin resin film, in the temperature region near the glass transition temperature (Tg) of the cyclic olefin resin, both ends in the width direction of the film are tentered. The film is gripped by an arbitrary gripping means such as a clip, and the film is moved in the width direction by gradually displacing the gripping means in a direction away from each other while moving in the transport direction at substantially the same speed as the transport speed of the film. Then, the film is cooled to a temperature lower than Tg in order to fix the orientation of the cyclic olefin-based resin molecule.
上記環状オレフィン系樹脂フィルムを横方向に延伸する際の環状オレフィン系樹脂フィルムの温度は、位相差フィルムに付与したい補償位相差量によって適宜調整されるが、低いと延伸時に環状オレフィン系樹脂フィルムが破断する虞れがあり、一方、高いと所望のリタデーションを得ることが困難となることがあるので、環状オレフィン系樹脂フィルムのTg〜Tg+20℃の範囲が好ましく、環状オレフィン系樹脂フィルムのTg+2℃〜Tg+10℃の範囲がより好ましい。なお、このTgは示差走査熱量計によって測定されたものをいう。 The temperature of the cyclic olefin resin film when the above-mentioned cyclic olefin resin film is stretched in the transverse direction is appropriately adjusted according to the amount of compensation retardation to be imparted to the retardation film. On the other hand, since it may be difficult to obtain a desired retardation when it is high, the range of Tg to Tg + 20 ° C. of the cyclic olefin resin film is preferable, and Tg of the cyclic olefin resin film + 2 ° C. to 2 ° C. A range of Tg + 10 ° C. is more preferable. The Tg is measured by a differential scanning calorimeter.
また、上記環状オレフィン系樹脂フィルムを横方向に延伸する際の延伸倍率は、低いと配向軸の方向が均一に揃わないことがあり、一方、高いと環状オレフィン系樹脂フィルムにおける幅方向の張力分布にムラが生じ、リタデーションのムラが大きくなることがあるので、1.2〜3.0倍が好ましく、1.5〜2.5倍がより好ましい。
なお、環状オレフィン系樹脂フィルムを幅方向に延伸させた後冷却する前に、環状オレフィン系樹脂分子の配向を揃える目的で熱緩和工程を行ってもよい。
Further, when the stretching ratio in stretching the cyclic olefin-based resin film in the transverse direction is low, the orientation axis direction may not be evenly aligned. Is uneven, and retardation unevenness may be large. Therefore, 1.2 to 3.0 times is preferable, and 1.5 to 2.5 times is more preferable.
In addition, before extending | stretching a cyclic olefin resin film in the width direction and before cooling, you may perform a thermal relaxation process in order to arrange the orientation of a cyclic olefin resin molecule.
このようにして、環状オレフィン系樹脂フィルムを横方向に延伸することにより、延伸方向に環状オレフィン系樹脂分子が配列し、延伸方向の屈折率が大きくなり、横方向に遅相軸が形成された横延伸フィルムを得ることができる。 In this way, by stretching the cyclic olefin resin film in the transverse direction, the cyclic olefin resin molecules are arranged in the stretching direction, the refractive index in the stretching direction is increased, and a slow axis is formed in the transverse direction. A transversely stretched film can be obtained.
この横延伸フィルムの面内におけるリタデーションReは、低いと横延伸フィルムをその長さ方向(幅方向と直交する方向、所謂、縦方向)に延伸しても厚み方向のリタデーションRthが発現しにくくなることがあり、一方、高いと環状オレフィン系樹脂分子が歪み過ぎているのと同じ結果となり、横延伸フィルムを縦方向に延伸させて発現する厚み方向のリタデーションRthを制御することが困難となることがあるので、50〜300nmが好ましく、80〜250nmがより好ましい。 When the retardation Re in the plane of the laterally stretched film is low, even if the laterally stretched film is stretched in the length direction (a direction orthogonal to the width direction, so-called longitudinal direction), the retardation Rth in the thickness direction is hardly expressed. On the other hand, if it is high, the result is the same as when the cyclic olefin-based resin molecule is excessively distorted, and it becomes difficult to control the retardation Rth in the thickness direction expressed by stretching the transversely stretched film in the longitudinal direction. Therefore, 50 to 300 nm is preferable, and 80 to 250 nm is more preferable.
上記横延伸後のフィルムの厚みは、厚いと得られる位相差フィルムを用いて構成された液晶表示装置が厚くなってしまい、薄いと縦方向に延伸時に破断等のリスクが発生するので、30〜120μmが好ましく、35〜80μmがより好ましい。 If the thickness of the film after the transverse stretching is large, a liquid crystal display device constituted by using the obtained retardation film becomes thick, and if it is thin, there is a risk of breakage or the like when stretching in the longitudinal direction. 120 μm is preferable, and 35 to 80 μm is more preferable.
本発明の位相差フィルムの製造方法においては、次に、上記横延伸フィルムをその長さ方向(縦方向)に延伸することにより、横方向に発生した遅相軸と直交する方向に延伸力を加えて位相差フィルムを得る。 In the method for producing a retardation film of the present invention, next, the transversely stretched film is stretched in the length direction (longitudinal direction) to thereby exert a stretching force in a direction perpendicular to the slow axis generated in the transverse direction. In addition, a retardation film is obtained.
この横延伸フィルムをその長さ方向(縦方向)に延伸する方法としては、ロール間ネックイン延伸法、近接ロール延伸法等が適用できるが、位相差を制御し易く環状オレフィン系樹脂フィルムに傷や皺等の不良が発生しにくいといった利点を有するロール間ネックイン延伸法を採用することが望ましい。ロール間ネックイン延伸法とは、フィルム幅に比して十分に長い延伸ゾーンを挟んで位置する一対のニップロール又はS字ラップロールで搬送中のフィルムを挟持するとともに、上流側のロールの周速に対して下流側のロールの周速を大きくすることによって、所望の延伸倍率を得る方法である。なお、このとき横延伸フィルムの幅方向の両端部は拘束を受けない自由端とされており、縦方向の延伸に伴って幅方向にネックイン現象を呈する。 As a method of stretching this transversely stretched film in the length direction (longitudinal direction), an inter-roll neck-in stretching method, a proximity roll stretching method, etc. can be applied, but the phase difference can be easily controlled and the cyclic olefin-based resin film is scratched. It is desirable to adopt a roll-to-roll neck-in stretching method that has the advantage that defects such as cracks and wrinkles are unlikely to occur. The inter-roll neck-in stretching method is a method in which a film being transported is sandwiched between a pair of nip rolls or S-shaped wrap rolls located across a stretching zone that is sufficiently longer than the film width, and the peripheral speed of the upstream roll In contrast, this is a method of obtaining a desired draw ratio by increasing the peripheral speed of the downstream roll. At this time, both end portions in the width direction of the laterally stretched film are free ends that are not restrained, and exhibit a neck-in phenomenon in the width direction along with stretching in the longitudinal direction.
本発明の位相差フィルムの製造方法においては、縦方向に延伸した後の縦延伸フィルム幅が、縦延伸倍率をn倍としたときに、(横延伸フィルム幅/√n)の85〜99%となるように制御する。
一般的に、幅方向を自由端とする縦延伸において非晶性物質のネックイン後の幅は、縦延伸倍率をn倍としたときに1/√n倍になることが知られている。しかしながら、横延伸フィルムを縦延伸する場合には、幅方向に溜まっていた応力が解放されることによって過剰にネックインする現象が起きることを見出した。この過剰なネックイン収縮は、延伸方向とは異なる方向に応力が掛かるために、冷却固化時の配向方向をばらつかせる結果となった。本発明者は、縦延伸時のネックイン温度によってこの現象を制御することが可能であり、炉内温度をTg〜Tg+3℃で縦延伸を行うことによって、ネックイン後の幅を1/√nの85〜99%に抑えることができることを見出し、この発明を完成させたのである。
In the method for producing a retardation film of the present invention, the longitudinally stretched film width after stretching in the longitudinal direction is 85 to 99% of (laterally stretched film width / √n) when the longitudinal stretch ratio is n times. Control to be
In general, it is known that the width after the neck-in of an amorphous substance in longitudinal stretching with the width direction as a free end is 1 / √n times when the longitudinal stretching ratio is n times. However, it has been found that when a transversely stretched film is stretched longitudinally, the phenomenon of excessive neck-in occurs due to the release of stress accumulated in the width direction. This excessive neck-in shrinkage results in a variation in the orientation direction during cooling and solidification because stress is applied in a direction different from the stretching direction. The present inventor can control this phenomenon by the neck-in temperature at the time of longitudinal stretching. By performing longitudinal stretching at a furnace temperature of Tg to Tg + 3 ° C., the width after neck-in is reduced to 1 / √n. The present invention was completed by finding out that it can be suppressed to 85 to 99% of the above.
また、横延伸フィルムを縦方向に延伸する際の延伸倍率は、低いと横延伸フィルムの縦方向における変形量が少な過ぎて充分なリタデーションRthを得ることができないことがあり、一方、高いと横方向に遅相軸を保持するのが困難となり、遂には遅相軸の方向が縦方向に転換してしまい、その結果、遅相軸の方向精度が低下して、偏光板ロールとの連続貼合ができなくなったり、液晶表示装置に用いた場合にコントラスト等の表示品質の低下を招くことがあるので、1.01〜1.40倍が好ましく、1.05〜1.30倍がより好ましい。 On the other hand, if the draw ratio in stretching the transversely stretched film in the longitudinal direction is low, the amount of deformation in the longitudinal direction of the transversely stretched film may be too small to obtain a sufficient retardation Rth. It becomes difficult to hold the slow axis in the direction, and finally the direction of the slow axis is changed to the vertical direction. As a result, the direction accuracy of the slow axis is lowered, and continuous sticking to the polarizing plate roll is performed. When used in a liquid crystal display device, display quality such as contrast may be deteriorated, so 1.01 to 1.40 times is preferable, and 1.05 to 1.30 times is more preferable. .
また、本発明の位相差フィルムの製造方法においては、縦方向に延伸した後の縦延伸フィルムの厚みが、縦延伸倍率をn倍としたときに、(横延伸フィルム厚み/√n)の101〜110%となるように制御する。
前記した如く、一般的に、非晶性物質のネックイン後の厚みは、縦延伸倍率をn倍としたときに1/√n倍になることが知られている。
しかしながら、横延伸フィルムを縦延伸する場合には、幅方向に溜まっていた応力が解放されることによって過剰にネックインする現象が起き、この過剰なネックイン収縮により延伸方向とは異なる方向に応力が掛かるために、冷却固化時の配向方向をばらつかせる結果となった。本発明者は、縦延伸時のネックイン温度によってこの現象を制御することが可能であり、炉内温度をTg〜Tg+3℃で縦延伸を行うことによって、ネックイン後の厚みを1/√nの101〜110%に抑えることができることを見出したのである。
Moreover, in the manufacturing method of the retardation film of this invention, when the thickness of the longitudinally stretched film after extending | stretching to the vertical direction makes the longitudinal draw ratio n times, it is 101 of (laterally stretched film thickness / √n). Control to be ~ 110%.
As described above, it is generally known that the thickness of an amorphous substance after neck-in becomes 1 / √n times when the longitudinal draw ratio is n times.
However, when the transversely stretched film is stretched longitudinally, the phenomenon of excessive neck-in occurs due to the release of the stress accumulated in the width direction, and this excessive neck-in shrinkage causes stress in a direction different from the stretching direction. As a result, the orientation direction during cooling and solidification varied. The present inventor can control this phenomenon by the neck-in temperature at the time of longitudinal stretching. By performing longitudinal stretching at a furnace temperature of Tg to Tg + 3 ° C., the thickness after neck-in can be reduced to 1 / √n. It was found that it can be suppressed to 101 to 110% of the above.
横延伸フィルムを縦方向に延伸する際の延伸倍率は、前記と同様であり、1.01〜1.40倍が好ましく、1.05〜1.30倍がより好ましい。 The draw ratio at the time of extending | stretching a horizontal stretched film to the vertical direction is the same as the above, 1.01-1.40 times are preferable and 1.05-1.30 times are more preferable.
また、本発明の位相差フィルムの製造方法においては、環状オレフィン系樹脂のガラス転移温度をTg(℃)、横延伸温度をTST(℃)、縦延伸温度をTSM(℃)とするとき、Tg≦TSM≦TSTを満足することが好ましい。縦方向延伸の温度をこの範囲に設定することにより、横方向に揃えた配向の向きを乱すことなく、縦方向のわずかな変形で効果的にRth値を発現させることができる。 In the method for producing a retardation film of the present invention, when the glass transition temperature of the cyclic olefin resin is Tg (° C.), the transverse stretching temperature is T ST (° C.), and the longitudinal stretching temperature is T SM (° C.). Tg ≦ TSM ≦ TST is preferably satisfied. By setting the longitudinal stretching temperature within this range, the Rth value can be effectively expressed with a slight deformation in the longitudinal direction without disturbing the orientation direction aligned in the lateral direction.
上述の要領で、横延伸フィルムを縦方向に延伸して得られた位相差フィルムは、熱緩和によるリタデーションRe及びRthの低下を防止するために、環状オレフィン系樹脂のガラス転移温度Tg未満の温度に直ちに冷却されるのがよい。 In the manner described above, the retardation film obtained by stretching the transversely stretched film in the longitudinal direction is a temperature lower than the glass transition temperature Tg of the cyclic olefin resin in order to prevent retardation Re and Rth from being lowered due to thermal relaxation. It should be cooled immediately.
本発明の位相差フィルムの製造方法において得られた位相差フィルムは、液晶表示装置の部品として好適に用いられ、上記位相差フィルムは、単独で用いられても、偏光板と積層一体化させて複合偏光板として用いられても、偏光板にその液晶セル側の保護フィルムの代わりに接着剤を介して積層一体化されて偏光板を形成して用いられてもよい。中でも、液晶表示装置の薄型化及び製造効率を向上させることができることから、その液晶セル側の保護フィルムの代わりに好ましくは水系接着剤を介して位相差フィルムを積層一体化させて偏光板として用いるのが好ましい。 The retardation film obtained in the method for producing a retardation film of the present invention is suitably used as a component of a liquid crystal display device. Even if the retardation film is used alone, the retardation film is laminated and integrated with a polarizing plate. Even if it is used as a composite polarizing plate, the polarizing plate may be used by being laminated and integrated on the polarizing plate through an adhesive instead of the protective film on the liquid crystal cell side. Among them, since the thickness of the liquid crystal display device can be improved and the production efficiency can be improved, the retardation film is preferably laminated and integrated through a water-based adhesive instead of the protective film on the liquid crystal cell side, and used as a polarizing plate. Is preferred.
なお、位相差フィルムを何れの態様で用いる場合も、位相差フィルムの遅相軸と、この位相差フィルムに隣接する偏光板或いは偏光子の吸収軸とが互いに直交するように調整する必要がある。 In any case, the retardation film needs to be adjusted so that the slow axis of the retardation film and the absorption axis of the polarizing plate or polarizer adjacent to the retardation film are orthogonal to each other. .
上記液晶セルとしては、従来から用いられている液晶セルであれば、特に限定されないが、OCBモード、VAモード等が好ましい。VAモードは、電圧オフ状態で液晶分子はその長さ方向を液晶セルの基板に対して垂直方向に向けた状態で立ち、黒表示される。このとき、液晶セルを通過する光における液晶セルの厚み方向の屈折率が大きくなって屈折率異方性が発現し、見る角度によっては光が漏れてしまう。上記位相差フィルムは、その厚み方向の屈折率が小さく、大きくなった液晶セルの厚み方向の屈折率を効果的に緩和して、得られる液晶表示装置の正面コントラストや、見込み角度によるコントラストの変化、所謂、視野角依存性を大幅に改善することができることから、上記位相差フィルムは、特にVAモードに好適なものである。 The liquid crystal cell is not particularly limited as long as it is a conventionally used liquid crystal cell, but an OCB mode, a VA mode, or the like is preferable. In the VA mode, the liquid crystal molecules stand in a state in which the length direction thereof is perpendicular to the substrate of the liquid crystal cell when the voltage is off. At this time, the refractive index in the thickness direction of the liquid crystal cell in the light passing through the liquid crystal cell increases, and refractive index anisotropy appears, and light leaks depending on the viewing angle. The retardation film has a small refractive index in the thickness direction and effectively relaxes the refractive index in the thickness direction of the increased liquid crystal cell, so that the front contrast of the resulting liquid crystal display device and the change in contrast depending on the expected angle Since the so-called viewing angle dependency can be greatly improved, the retardation film is particularly suitable for the VA mode.
本発明の位相差フィルムの製造方法によれば、充分に大きなリタデーションRe及びRthを有しており、液晶表示装置の視野角依存性やコントラストを改善することができ、且つ、偏光子の保護フィルムとして代用可能であるとともに偏光板との貼り合わせ効率に優れた位相差フィルムを得ることができる。 According to the method for producing a retardation film of the present invention, it has sufficiently large retardations Re and Rth, can improve the viewing angle dependency and contrast of a liquid crystal display device, and can protect a polarizer. In addition, a retardation film excellent in bonding efficiency with a polarizing plate can be obtained.
以下に本発明の実施例を挙げて更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(横延伸フィルム1,2の作製)
環状オレフィン系樹脂として熱可塑性飽和ノルボルネン系樹脂(日本ゼオン社製、商品名「ゼオノア#1600」、数平均分子量:20000)を用い、この樹脂を一軸押出機に供給して溶融、混練し、一軸押出機の先端に取り付けたTダイから樹脂温度230℃にて溶融押出を行って、幅500mmで且つ平均厚みが100μmの長尺状の熱可塑性飽和ノルボルネン系樹脂フィルムを得た。なお、この熱可塑性飽和ノルボルネン系樹脂のガラス転移温度Tgを示差走査熱量計(セイコー電子工業社製、商品名「DSC220C」)によって測定したところ、161.0℃であった。
(Production of transversely stretched films 1 and 2)
A thermoplastic saturated norbornene resin (trade name “Zeonor # 1600”, number-average molecular weight: 20000) manufactured by Nippon Zeon Co., Ltd. is used as the cyclic olefin resin, and this resin is supplied to a single screw extruder and melted and kneaded. Melting extrusion was performed at a resin temperature of 230 ° C. from a T die attached to the tip of the extruder to obtain a long thermoplastic saturated norbornene resin film having a width of 500 mm and an average thickness of 100 μm. In addition, it was 161.0 degreeC when the glass transition temperature Tg of this thermoplastic saturated norbornene-type resin was measured with the differential scanning calorimeter (The Seiko Denshi Kogyo make, brand name "DSC220C").
次に、得られた長尺状の熱可塑性飽和ノルボルネン系樹脂フィルムを連続的に巻き出し、このフィルムの幅方向両端部を順次テンタークリップによって把持した後、予熱ゾーン内に供給し155℃に予熱した。その後、この予熱されたフィルムを連続的に延伸ゾーン内に供給して表1に示した温度に設定された延伸ゾーン内を通過させて加熱しながら、テンタークリップを樹脂フィルムの搬送速度と同一速度でもってフィルムの搬送方向に移動させつつ互いに離間する横方向に変位させて、2倍の横延伸倍率にて押出方向に直交する方向(横方向)に延伸した。なお、樹脂フィルムの横方向への延伸が完了した後、テンタークリップで把持したまま160℃雰囲気下で熱緩和を行い、配向方向をフィルム幅方向に揃えた後、そのまま120℃の雰囲気下で配向を固定し、横方向に遅相軸が形成された横延伸フィルムをロール状に連続的に巻き取った。
また、クリップ把持部の影響を除去するために、横延伸フィルムにおける幅方向の両端250mm部分を除去し、全幅を500mmとした。
Next, the obtained long thermoplastic saturated norbornene-based resin film is continuously unwound, and both end portions in the width direction of the film are sequentially held by tenter clips, and then supplied into the preheating zone and preheated to 155 ° C. did. Thereafter, the preheated film is continuously supplied into the stretching zone and passed through the stretching zone set to the temperature shown in Table 1 while being heated, and the tenter clip is moved at the same speed as the resin film transport speed. Thus, the film was moved in the film conveying direction and displaced in the transverse direction away from each other, and stretched in the direction (lateral direction) perpendicular to the extrusion direction at a transverse stretching ratio of 2 times. After the stretching of the resin film in the transverse direction is completed, heat relaxation is performed in a 160 ° C. atmosphere while being held by a tenter clip, and the orientation direction is aligned in the film width direction, and then the orientation is performed in a 120 ° C. atmosphere as it is. The transversely stretched film in which the slow axis was formed in the transverse direction was continuously wound up in a roll shape.
Moreover, in order to remove the influence of a clip holding | grip part, the 250 mm part of the both ends of the width direction in a laterally stretched film was removed, and the full width was 500 mm.
得られた横延伸フィルムにおける面内のリタデーションReを、自動複屈折測定装置(王子計測機器社製、商品名「KOBRA−21ADH」)を用いて、横方向に10mm間隔で測定して平均値を算出した。
また、全幅にわたり、接触式連続厚み計(セイコーEM社製)で10mmピッチで厚みの測定を行った。その結果は表1に示す通りであった。
The in-plane retardation Re in the obtained laterally stretched film was measured at an interval of 10 mm in the lateral direction using an automatic birefringence measuring apparatus (trade name “KOBRA-21ADH” manufactured by Oji Scientific Instruments) and averaged. Calculated.
In addition, the thickness was measured at a pitch of 10 mm with a contact-type continuous thickness meter (manufactured by Seiko EM) over the entire width. The results were as shown in Table 1.
(実施例1,2及び比較例1,2)
上記で得られた横延伸フィルムを、上流側のニップロールから連続的に6.6m/minの一定巻き出し速度で巻き出すとともに、下流側のニップロールに上流側のニップロールの周速度よりも速い巻き取り速度でもって巻き取る一方、巻き出し軸と巻き取り軸との間の空間を巻き出し軸側から順次、予熱ゾーン、延伸ゾーン、冷却ゾーンの三つのゾーンに区画し、このゾーン内に横延伸フィルムを順次、連続的に通過させた。上記予熱ゾーン、延伸ゾーン、冷却ゾーン内の温度をそれぞれ、横延伸フィルムの温度が順次、155℃、162〜165℃、110℃となるように調整して、表2に示した縦延伸倍率にて延伸した位相差フィルムを得た。
得られた位相差フィルムの、縦延伸倍率(n)、縦延伸フィルム幅/(横延伸フィルム幅/√n)で表される幅比率(%)、縦延伸フィルム厚み/(横延伸フィルム厚み/√n)で表される厚み比率(%)、面内のリタデーションRe、厚み方向のリタデーションRth、及び遅相軸方向(軸精度)を測定した。その結果は表2に示す通りであった。
(Examples 1 and 2 and Comparative Examples 1 and 2)
The transversely stretched film obtained above is continuously unwound from the upstream nip roll at a constant unwinding speed of 6.6 m / min, and is wound on the downstream nip roll faster than the peripheral speed of the upstream nip roll. While winding at a speed, the space between the unwinding shaft and the winding shaft is divided into three zones, a preheating zone, a stretching zone, and a cooling zone, sequentially from the unwinding shaft side. Were passed sequentially and sequentially. The temperature in the preheating zone, stretching zone, and cooling zone was adjusted so that the temperature of the transversely stretched film was 155 ° C, 162-165 ° C, and 110 ° C in order, and the longitudinal stretching ratios shown in Table 2 were obtained. Thus, a stretched retardation film was obtained.
The obtained retardation film has a longitudinal stretching ratio (n), a width ratio (%) represented by a longitudinally stretched film width / (laterally stretched film width / √n), a longitudinally stretched film thickness / (a laterally stretched film thickness / The thickness ratio (%) represented by √n), the in-plane retardation Re, the thickness direction retardation Rth, and the slow axis direction (axis accuracy) were measured. The results were as shown in Table 2.
なお、リタデーションRe及びRthは、横延伸フィルムの場合と同様にして測定し、また、遅相軸方向は幅方向を0度として測定した。 The retardations Re and Rth were measured in the same manner as in the case of the transversely stretched film, and the slow axis direction was measured with the width direction being 0 degree.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004274261A JP2006018212A (en) | 2004-06-01 | 2004-09-21 | Method for manufacturing retardation film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004163582 | 2004-06-01 | ||
JP2004274261A JP2006018212A (en) | 2004-06-01 | 2004-09-21 | Method for manufacturing retardation film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006018212A true JP2006018212A (en) | 2006-01-19 |
Family
ID=35792530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004274261A Withdrawn JP2006018212A (en) | 2004-06-01 | 2004-09-21 | Method for manufacturing retardation film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006018212A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007223242A (en) * | 2006-02-24 | 2007-09-06 | Jsr Corp | Manufacturing method for phase difference film, phase difference film, and its use |
WO2007135887A1 (en) | 2006-05-23 | 2007-11-29 | Zeon Corporation | Oriented film of addition polymer of norbornene compound alone, process for producing the same and use thereof |
JP2008242426A (en) * | 2006-12-22 | 2008-10-09 | Nippon Shokubai Co Ltd | Manufacturing method of retardation film |
JP2016176971A (en) * | 2015-03-18 | 2016-10-06 | 株式会社クラレ | Polyvinyl alcohol film |
JP2017182034A (en) * | 2016-03-28 | 2017-10-05 | 住友化学株式会社 | Method of manufacturing polarizing film |
-
2004
- 2004-09-21 JP JP2004274261A patent/JP2006018212A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007223242A (en) * | 2006-02-24 | 2007-09-06 | Jsr Corp | Manufacturing method for phase difference film, phase difference film, and its use |
WO2007135887A1 (en) | 2006-05-23 | 2007-11-29 | Zeon Corporation | Oriented film of addition polymer of norbornene compound alone, process for producing the same and use thereof |
US8609005B2 (en) | 2006-05-23 | 2013-12-17 | Zeon Corporation | Stretched film of addition polymer consisting of norbornene compound, process for producing the same and use thereof |
JP2008242426A (en) * | 2006-12-22 | 2008-10-09 | Nippon Shokubai Co Ltd | Manufacturing method of retardation film |
JP2016176971A (en) * | 2015-03-18 | 2016-10-06 | 株式会社クラレ | Polyvinyl alcohol film |
JP2017182034A (en) * | 2016-03-28 | 2017-10-05 | 住友化学株式会社 | Method of manufacturing polarizing film |
JP2018013810A (en) * | 2016-03-28 | 2018-01-25 | 住友化学株式会社 | Manufacturing method of polarizing film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5587063B2 (en) | Biaxial optical polynorbornene-based film and manufacturing method thereof, integrated optical compensation polarizing plate including the same, manufacturing method thereof, and liquid crystal display device including the film and / or polarizing plate | |
KR101425231B1 (en) | Continuous stretched film, process for producing the stretched film, and use of the stretched film | |
JP2019061291A (en) | Polarizing plate | |
JP2008039808A (en) | Method of manufacturing optical retardation film, optical retardation film, compound polarizing plate and polarizing plate | |
JP2005254812A (en) | Method for producing stretched film made of thermoplastic norbornene resin and retardation film | |
JP2003131036A (en) | Optical film, manufacturing method thereof, and polarizing plate | |
JP2005017435A (en) | Optical retardation compensation film, onjugated polarizer and liquid crystal display | |
JP2008039807A (en) | Method for manufacturing longitudinal uniaxial oriented retardation film and longitudinal uniaxial oriented retardation film | |
JP2005004096A (en) | Phase difference compensating film, method for manufacturing the same composite polarizing plate, polarizing plate, and liquid crystal display device | |
JP2006018212A (en) | Method for manufacturing retardation film | |
JP2010026097A (en) | Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device | |
JP4662855B2 (en) | Method for producing retardation film | |
JP2005010413A (en) | Retardation compensation film, composite polarizing plate, polarizing plate, liquid crystal display device, and manufacturing method of retardation compensation film | |
JP2007256637A (en) | Retardation film and manufacturing method thereof | |
JPWO2006033414A1 (en) | Optical compensation film and display element using the same | |
JP2005309339A (en) | Optical compensating film and manufacturing method for polarizing plate | |
JP2005134768A (en) | Optical film | |
JP2004317812A (en) | Optical retardation compensation film, compound polarizing plate, polarizing plate and liquid crystal display device | |
JP2006308917A (en) | Manufacturing method of retardation film, retardation film, composite polarizing plate, liquid crystal display device and polarizing plate | |
JP2006098806A (en) | Method for manufacturing retardation film | |
JP2004317873A (en) | Optical retardation compensation film, compound polarizing plate, polarizing plate and liquid crystal display device | |
JP2006285136A (en) | Manufacturing method of retardation film, retardation film, composite polarizing plate and polarizing plate | |
JP2007010883A (en) | Method for manufacturing retardation film | |
JP2005055619A (en) | Optical film | |
JP7567983B2 (en) | Thermoplastic norbornene resin, molded body and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070523 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090116 |