[go: up one dir, main page]

JP2006012875A - Semiconductor device cooling device - Google Patents

Semiconductor device cooling device Download PDF

Info

Publication number
JP2006012875A
JP2006012875A JP2004183278A JP2004183278A JP2006012875A JP 2006012875 A JP2006012875 A JP 2006012875A JP 2004183278 A JP2004183278 A JP 2004183278A JP 2004183278 A JP2004183278 A JP 2004183278A JP 2006012875 A JP2006012875 A JP 2006012875A
Authority
JP
Japan
Prior art keywords
condenser
evaporator
cooling device
cooling
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004183278A
Other languages
Japanese (ja)
Inventor
Akira Ikeda
明 池田
Masao Nakano
雅夫 中野
Hiromasa Ashitani
博正 芦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004183278A priority Critical patent/JP2006012875A/en
Publication of JP2006012875A publication Critical patent/JP2006012875A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】高発熱の半導体素子を限られた空間で高発熱量の放熱を実現する冷却装置を提供する。
【解決手段】CPU(半導体素子)1を冷却する蒸発器2と凝縮器3と液ポンプ4とを順次配管によって閉回路に接続し、凝縮器3を冷却するファン5を備え、凝縮器3を副凝縮器6と主凝縮器3に分割し、副凝縮器6を蒸発器2上に設置する。
【選択図】図2
The present invention provides a cooling device that realizes heat radiation with a high heat generation amount in a limited space in a semiconductor element with high heat generation.
An evaporator 2, a condenser 3 and a liquid pump 4 for cooling a CPU (semiconductor element) 1 are connected to a closed circuit sequentially by piping, and a fan 5 for cooling the condenser 3 is provided. The sub condenser 6 and the main condenser 3 are divided, and the sub condenser 6 is installed on the evaporator 2.
[Selection] Figure 2

Description

本発明は、コンピュータのCPU等の高発熱半導体素子を冷却する冷却装置に係わり、凝縮器の構造に関するものである。   The present invention relates to a cooling device that cools a highly heat-generating semiconductor element such as a CPU of a computer, and relates to a condenser structure.

コンピュータのCPU等の高発熱体である半導体素子を冷却するにあたり、サーバー等の大型コンピュータにおいては空冷式冷却装置では限界があり、狭いスペースでより大きな冷却能力を得るために冷媒循環式の冷却装置が提案されている(例えば、特許文献1参照)。   In cooling a semiconductor element which is a high heating element such as a CPU of a computer, there is a limit in an air cooling type cooling device in a large computer such as a server, and in order to obtain a larger cooling capacity in a narrow space, a refrigerant circulation type cooling device Has been proposed (see, for example, Patent Document 1).

図8は、従来の冷媒循環式冷却装置を組み込んだ1Uサーバーの平面模式図で、図9は同側面図である。   FIG. 8 is a schematic plan view of a 1U server incorporating a conventional refrigerant circulation cooling device, and FIG. 9 is a side view thereof.

図8と図9において、CPU1の表面に伝熱性材料を介して接触させた蒸発器2を設置し、蒸発器から凝縮器3、液ポンプ4へは配管により循環回路を構成するように接続され、循環回路内部には冷媒が封入されている。凝縮器近傍には送風用のファン5が設置され、それらがいずれもサーバー本体の内部に収容されている。この構成によって、CPU1などの発熱体の熱を蒸発器2内の冷媒の相変化の潜熱により吸収し、凝縮器3で大気に放熱することによりCPU1などの発熱体の温度を所定の温度以下に保つことが出来る。   8 and 9, an evaporator 2 brought into contact with the surface of the CPU 1 through a heat transfer material is installed, and the evaporator is connected to the condenser 3 and the liquid pump 4 so as to constitute a circulation circuit by piping. A refrigerant is sealed inside the circulation circuit. A fan 5 for blowing air is installed in the vicinity of the condenser, and all of them are housed inside the server body. With this configuration, the heat of the heating element such as the CPU 1 is absorbed by the latent heat of the phase change of the refrigerant in the evaporator 2 and is dissipated to the atmosphere by the condenser 3, thereby reducing the temperature of the heating element such as the CPU 1 to a predetermined temperature or less. I can keep it.

図10は、従来の2個のCPUを持つ1Uサーバーに冷媒循環式冷却装置を組み込んだ場合の平面模式図で、第1蒸発器2aと第2蒸発器2bの接続は分流に伴う困難さを避けるため直列に接続されており、第1蒸発器2aで一部蒸発した冷媒が第2蒸発器2bへと導かれる構造である。   FIG. 10 is a schematic plan view when a refrigerant circulation type cooling device is incorporated in a conventional 1U server having two CPUs, and the connection between the first evaporator 2a and the second evaporator 2b is difficult due to the diversion. In order to avoid this, the refrigerant is connected in series, and the refrigerant partially evaporated in the first evaporator 2a is guided to the second evaporator 2b.

図11は、図8に示す冷媒循環式冷却装置の冷媒状態を示すモリエル線図である。図11で冷媒の状態を説明すると、液域の点Aの状態で蒸発器2へ入った冷媒は、CPU1から吸熱して2相域の点Bの状態で凝縮器3へと送られ、凝縮器3で放熱して液域の点Cの状態で液ポンプ4によりわずかに圧力を高められて蒸発器2へ再度送り込まれることとなる。
特開2003−318341号公報
FIG. 11 is a Mollier diagram showing the refrigerant state of the refrigerant circulation cooling device shown in FIG. Referring to FIG. 11, the state of the refrigerant is explained. The refrigerant that has entered the evaporator 2 at the point A in the liquid region absorbs heat from the CPU 1 and is sent to the condenser 3 at the point B in the two-phase region. The heat is dissipated in the vessel 3, and the pressure is slightly increased by the liquid pump 4 in the state of the point C in the liquid region, and is sent again to the evaporator 2.
JP 2003-318341 A

蒸発器において、吸熱量が多くて冷媒が気液混合域を超えて過熱蒸気域に入ると、潜熱利用が出来ず冷却性能が極端に悪化するため、最大発熱時でも気液混合域内にとどまるよう冷媒量を調節することが必要である。   In the evaporator, if the amount of heat absorption is large and the refrigerant enters the superheated steam area beyond the gas-liquid mixing area, the latent heat cannot be used and the cooling performance is extremely deteriorated, so that it remains in the gas-liquid mixing area even at the maximum heat generation. It is necessary to adjust the amount of refrigerant.

最近は、CPUの性能向上に伴いその発熱量も増大しており冷却器の更なる性能向上の要望が高くなっているのが実情である。   Recently, the amount of heat generation has increased with the improvement in CPU performance, and the demand for further improvement in the performance of the cooler is increasing.

そこで本発明は、限られた空間で高発熱量の放熱を実現する冷却装置を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a cooling device that realizes heat radiation with a high calorific value in a limited space.

この目的を達成するため本発明の冷却装置は、半導体素子を冷却する蒸発器と凝縮器と液ポンプを順次配管によって閉回路に接続し、前記凝縮器を冷却するファンを備えた半導
体素子の冷却装置において、蒸発器上に放熱器を設置することにより、限られた空間で高発熱を実現する冷却装置を提供出来る。
In order to achieve this object, the cooling device of the present invention comprises an evaporator, a condenser, and a liquid pump for cooling a semiconductor element, which are connected to a closed circuit sequentially by piping, and the cooling of the semiconductor element provided with a fan for cooling the condenser. In the apparatus, by installing a radiator on the evaporator, a cooling apparatus that realizes high heat generation in a limited space can be provided.

本発明によれば、主凝縮器の容量を増大させること無く、発熱量増大に対応する半導体素子の冷却装置を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the cooling device of the semiconductor element corresponding to the emitted-heat amount increase can be provided, without increasing the capacity | capacitance of a main condenser.

また、万一液ポンプが故障して冷媒の循環がなくなった場合でも、蒸発器上に放熱器もしくは副凝縮器を有することから、蒸発器の温度上昇速度を遅らせることが出来、半導体素子の保護回路が働くまでの時間的な余裕を生む効果がある。   In addition, even if the liquid pump breaks down and the refrigerant circulates, the evaporator has a radiator or sub-condenser so that the temperature rise rate of the evaporator can be delayed, protecting the semiconductor elements. This has the effect of creating a time margin until the circuit works.

更に、複数の発熱体に対応する場合には、第二蒸発器に入る冷媒の乾き度を小さくできるため第二蒸発器出口の冷媒状態が過熱蒸気域に入り込む危険性を防止でき、信頼性の高い冷却装置となる。   Furthermore, in the case of dealing with a plurality of heating elements, the dryness of the refrigerant entering the second evaporator can be reduced, so that the risk of the refrigerant state at the outlet of the second evaporator entering the superheated steam region can be prevented, and reliability can be improved. High cooling device.

請求項1に記載の発明は、凝縮器を分割して蒸発器上に副凝縮器を設けたことにより、放熱量の一部を放熱できるため主凝縮器の放熱能力を大きくすること無く冷却装置の放熱量を増大できる。   According to the first aspect of the present invention, since the condenser is divided and the sub-condenser is provided on the evaporator, a part of the heat radiation can be dissipated so that the heat radiation capacity of the main condenser is not increased. The amount of heat released can be increased.

請求項2に記載の発明は、複数の半導体素子に合わせて複数の蒸発器を配設し、直列に接続された複数の蒸発器上のそれぞれに副凝縮器を設けたことにより主凝縮器の放熱能力を大きくすること無く冷却装置の放熱量を増大できると共に、蒸発器出口の冷媒状態を気液混合域に保持できる。   According to the second aspect of the present invention, a plurality of evaporators are arranged in accordance with a plurality of semiconductor elements, and a sub-condenser is provided on each of the plurality of evaporators connected in series. The heat radiation amount of the cooling device can be increased without increasing the heat radiation capacity, and the refrigerant state at the evaporator outlet can be maintained in the gas-liquid mixing zone.

請求項3に記載の発明は、蒸発器上に放熱器を設け蒸発器で受熱した熱量の一部を放熱するため凝縮器の能力を増加させることなく冷却装置の冷却能力を増大させることができる。   The invention according to claim 3 can increase the cooling capacity of the cooling device without increasing the capacity of the condenser because a radiator is provided on the evaporator to dissipate part of the heat received by the evaporator. .

本発明による半導体素子の冷却装置は小型高性能の電子機器の発達にともなって発熱量が増加した高発熱半導体素子の冷却を限られたスペースの中で実現するものであり、実施の形態について、図面を参照しながら説明する。   The semiconductor element cooling device according to the present invention realizes cooling of a high heat generation semiconductor element whose calorific value has increased with the development of a small and high performance electronic device in a limited space. This will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1による1UサーバーのCPU冷却装置を示す平面模式図で、図2は同側面模式図である。
(Embodiment 1)
1 is a schematic plan view showing a CPU cooling device of a 1U server according to Embodiment 1 of the present invention, and FIG. 2 is a schematic side view thereof.

図示する1UサーバーのCPUの冷却装置において、CPU1に密着設置された蒸発器2内で加熱されて気液混合状態となった冷媒は蒸発器2上に設けた副凝縮器6で一部放熱した後に主凝縮3で凝縮液化し液ポンプ4で再び蒸発器2へ送り込まれる。   In the cooling device for the CPU of the 1U server shown in the figure, the refrigerant that has been heated in the evaporator 2 in close contact with the CPU 1 and is in a gas-liquid mixed state is partially radiated by the sub-condenser 6 provided on the evaporator 2. Later, it is condensed and liquefied by the main condensing unit 3 and sent again to the evaporator 2 by the liquid pump 4.

図3は、本発明の本発明の実施の形態1によるCPU冷却装置の冷媒状態を示すモリエル線図である。冷媒の状態を図3で説明すると、点Aで蒸発器2に入った冷媒は発熱体1により点B迄加熱されて副凝縮器6へ送られ、放熱して点C1の状態で主凝縮器3へ移り、さらに放熱されて液域にある点Cの状態で液ポンプ4に吸引される。   FIG. 3 is a Mollier diagram showing the refrigerant state of the CPU cooling device according to the first embodiment of the present invention. The state of the refrigerant will be described with reference to FIG. 3. The refrigerant that has entered the evaporator 2 at the point A is heated to the point B by the heating element 1 and sent to the subcondenser 6, and dissipates the heat in the state of the point C1. 3, the heat is further radiated and the liquid pump 4 is sucked in the state of the point C in the liquid region.

従って必要放熱量を副凝縮器6と主凝縮器3で分担することとなり主凝縮器3の能力を増加させることなく冷却装置の放熱能力を増加させることが出来る。   Therefore, the necessary heat radiation amount is shared by the sub-condenser 6 and the main condenser 3, and the heat radiation capacity of the cooling device can be increased without increasing the capacity of the main condenser 3.

(実施の形態2)
図4は、本発明の実施の形態2による1UサーバーのCPU冷却装置を示す平面模式図で、蒸発器を2個設置した場合である。
(Embodiment 2)
FIG. 4 is a schematic plan view showing a CPU cooling device of a 1U server according to Embodiment 2 of the present invention, in which two evaporators are installed.

図示するCPUの冷却装置において、第一のCPU(図示せず)に密着設置された第一蒸発器2a内で加熱されて気液混合状態となった冷媒は、第一蒸発器2a上に設けた第一副凝縮器6aで一部放熱した後、第二CPU(図示せず)に密着設置された第二蒸発器2b内で加熱されて気液混合状態となった冷媒が蒸発器上に設けた第二副凝縮器6bで一部放熱した後、主凝縮器3で凝縮液化し液ポンプ4で再び第一蒸発器2aへ送り込まれる。   In the CPU cooling apparatus shown in the figure, the refrigerant that is heated in the first evaporator 2a placed in close contact with the first CPU (not shown) and is in a gas-liquid mixed state is provided on the first evaporator 2a. After the heat is partially dissipated by the first sub-condenser 6a, the refrigerant that is heated in the second evaporator 2b closely attached to the second CPU (not shown) and is in a gas-liquid mixed state is put on the evaporator. After the heat is partially dissipated by the provided second sub-condenser 6b, it is condensed and liquefied by the main condenser 3 and sent again to the first evaporator 2a by the liquid pump 4.

図5は、本発明の実施の形態2によるCPU冷却装置の冷媒状態を示すモリエル線図である。冷媒の状態を図5で説明すると、点Aは第一蒸発器2aの入口、点B1は第一蒸発器2aの出口、点C1は第一副凝縮器6aの出口、点Bは第二蒸発器2bの出口、点C2は第二副凝縮器6bの出口、点Cは主凝縮器3の出口を表す。   FIG. 5 is a Mollier diagram showing the refrigerant state of the CPU cooling device according to the second embodiment of the present invention. The state of the refrigerant will be described with reference to FIG. 5. Point A is the inlet of the first evaporator 2a, point B1 is the outlet of the first evaporator 2a, point C1 is the outlet of the first sub-condenser 6a, and point B is the second evaporation. The outlet of the condenser 2b, the point C2 represents the outlet of the second sub-condenser 6b, and the point C represents the outlet of the main condenser 3.

冷却装置全体の放熱量として主凝縮器3の放熱量(C2−C)に加えて副凝縮器6a,6bで放熱される放熱量(B1−C1)と(B2−C2)を加えることにより、主凝縮器3の容量を増加させることなく冷却装置の放熱能力を増加させることが出来る。   By adding the heat radiation amount (B1-C1) and (B2-C2) radiated by the sub-condensers 6a and 6b in addition to the heat radiation amount (C2-C) of the main condenser 3 as the heat radiation amount of the entire cooling device, The heat dissipation capability of the cooling device can be increased without increasing the capacity of the main condenser 3.

更に副凝縮器6aで(B1−C1)の放熱を行うことにより点Bをその分、液リッチな方向へ移動させることが出来る。   Further, by performing heat dissipation of (B1-C1) by the sub-condenser 6a, the point B can be moved in the liquid rich direction accordingly.

(実施の形態3)
図6は、本発明の実施の形態3による1UサーバーのCPU冷却装置を示す平面模式図である。図示するCPUの冷却装置において、CPU1に密着設置された蒸発器2内で加熱されて気液混合状態となった冷媒は、凝縮器3で凝縮液化し液ポンプ4で再び蒸発器2へ送り込まれる。CPU1から蒸発器2へ移動した熱量の一部は蒸発器2上に設置された放熱器7により冷却され、残りの熱量が冷媒により凝縮器3に導かれる。
(Embodiment 3)
FIG. 6 is a schematic plan view showing a CPU cooling device for a 1U server according to Embodiment 3 of the present invention. In the CPU cooling apparatus shown in the figure, the refrigerant that has been heated in the evaporator 2 closely attached to the CPU 1 and is in a gas-liquid mixed state is condensed by the condenser 3 and sent to the evaporator 2 again by the liquid pump 4. . A part of the amount of heat transferred from the CPU 1 to the evaporator 2 is cooled by the radiator 7 installed on the evaporator 2, and the remaining amount of heat is guided to the condenser 3 by the refrigerant.

図7は、本発明の実施の形態3によるCPU冷却装置の冷媒状態を示すモリエル線図である。冷媒の状態を図7で説明すると、点Aで蒸発器2に入った冷媒は発熱体1により点B迄加熱されて凝縮器3へ移り、放熱されて液域にある点Cの状態で液ポンプ4に吸引される。CPU1の発熱量の一部は放熱器7で放熱されるため、蒸発器2での受熱熱量はその分減少する。   FIG. 7 is a Mollier diagram showing the refrigerant state of the CPU cooling device according to the third embodiment of the present invention. The state of the refrigerant will be described with reference to FIG. 7. The refrigerant that has entered the evaporator 2 at the point A is heated to the point B by the heating element 1 and transferred to the condenser 3, and is radiated and liquefied at the point C in the liquid region. It is sucked into the pump 4. Since a part of the heat generated by the CPU 1 is radiated by the radiator 7, the amount of heat received by the evaporator 2 is reduced accordingly.

従って、必要放熱量を放熱器7と凝縮器3で分担することとなり、凝縮器3の能力を増加させることなく冷却装置の放熱能力を増加させることが出来る。   Therefore, the required heat radiation amount is shared by the radiator 7 and the condenser 3, and the heat radiation capacity of the cooling device can be increased without increasing the capacity of the condenser 3.

本発明の実施の形態1による1UサーバーのCPU冷却装置を示す平面模式図1 is a schematic plan view showing a CPU cooling device of a 1U server according to Embodiment 1 of the present invention. 同CPU冷却装置の側面模式図Side view of the CPU cooling device 同CPU冷却装置の冷媒状態を示すモリエル線図Mollier diagram showing refrigerant state of the CPU cooling device 本発明の実施の形態2による1UサーバーのCPU冷却装置を示す平面模式図Plane | planar schematic diagram which shows CPU cooling device of 1U server by Embodiment 2 of this invention 同CPU冷却装置の冷媒状態を示すモリエル線図Mollier diagram showing refrigerant state of the CPU cooling device 本発明の実施の形態3による1UサーバーのCPU冷却装置を示す平面模式図The plane schematic diagram which shows the CPU cooling device of 1U server by Embodiment 3 of this invention 同CPU冷却装置の冷媒状態を示すモリエル線図Mollier diagram showing refrigerant state of the CPU cooling device 従来例の冷媒循環式冷却装置を組み込んだ1Uサーバーの平面模式図Plane schematic diagram of a 1U server incorporating a conventional refrigerant circulation cooling device 同側面模式図Same side schematic diagram 従来の2個のCPUを持つ1Uサーバーに冷媒循環式冷却装置を組み込んだ場合の平面模式図A schematic plan view of a refrigerant circulation cooling device built into a conventional 1U server with two CPUs 図8に示す冷媒循環式冷却装置の冷媒状態を示すモリエル線図Mollier diagram showing the refrigerant state of the refrigerant circulation cooling device shown in FIG.

符号の説明Explanation of symbols

1 CPU(半導体素子)
2 蒸発器
3 凝縮器(主凝縮器)
4 液ポンプ
5 ファン
6 副凝縮器
7 放熱器
1 CPU (semiconductor element)
2 Evaporator 3 Condenser (Main condenser)
4 Liquid pump 5 Fan 6 Sub-condenser 7 Radiator

Claims (3)

半導体素子を冷却する蒸発器と凝縮器と液ポンプとを順次配管によって閉回路に接続し、前記凝縮器を冷却するファンを備えた半導体素子の冷却装置において、前記凝縮器を副凝縮器と主凝縮器に分割し、前記副凝縮器を前記蒸発器上に設置することを特徴とする半導体素子の冷却装置。 An evaporator, a condenser, and a liquid pump for cooling a semiconductor element are sequentially connected to a closed circuit by piping, and the semiconductor element cooling apparatus includes a fan for cooling the condenser. A cooling device for a semiconductor device, wherein the cooling device is divided into condensers, and the sub-condenser is installed on the evaporator. 複数の半導体素子に合わせて複数の蒸発器を配設し、前記蒸発器すべての上に副凝縮器を設置することを特徴とする請求項1に記載の半導体素子の冷却装置。 The cooling device for a semiconductor device according to claim 1, wherein a plurality of evaporators are arranged in accordance with the plurality of semiconductor devices, and a sub-condenser is installed on all of the evaporators. 半導体素子を冷却する蒸発器と凝縮器と液ポンプとを順次配管によって閉回路に接続し、前記凝縮器を冷却するファンを備えた半導体素子の冷却装置において、前記蒸発器上に放熱器を設置したことを特徴とする半導体素子の冷却装置。 In a semiconductor device cooling apparatus having a fan for cooling the condenser, an evaporator for cooling the semiconductor device, a condenser, and a liquid pump are sequentially connected to the closed circuit by piping, and a radiator is installed on the evaporator. A cooling device for a semiconductor element, characterized by comprising:
JP2004183278A 2004-06-22 2004-06-22 Semiconductor device cooling device Pending JP2006012875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183278A JP2006012875A (en) 2004-06-22 2004-06-22 Semiconductor device cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183278A JP2006012875A (en) 2004-06-22 2004-06-22 Semiconductor device cooling device

Publications (1)

Publication Number Publication Date
JP2006012875A true JP2006012875A (en) 2006-01-12

Family

ID=35779790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183278A Pending JP2006012875A (en) 2004-06-22 2004-06-22 Semiconductor device cooling device

Country Status (1)

Country Link
JP (1) JP2006012875A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041737A1 (en) * 2006-09-28 2008-04-10 Sanyo Electric Co., Ltd. Cooling apparatus
US8130497B2 (en) 2008-11-19 2012-03-06 Hitachi, Ltd. Blade server
WO2013102980A1 (en) * 2012-01-04 2013-07-11 日本電気株式会社 Cooling device and electronic apparatus using same
JP2014116385A (en) * 2012-12-07 2014-06-26 Panasonic Corp Cooler and electric car and electronic apparatus mounting the same
CN109887895A (en) * 2019-03-04 2019-06-14 四川长虹空调有限公司 Semiconductor device heat sink
US11493278B2 (en) 2018-11-27 2022-11-08 Fujitsu Limited Evaporator and cooling system
US11716831B2 (en) 2019-04-22 2023-08-01 Mitsubishi Electric Corporation Electronic device
US12241772B2 (en) 2019-09-11 2025-03-04 Lam Research Corporation Flow metrology calibration for improved processing chamber matching in substrate processing systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041737A1 (en) * 2006-09-28 2008-04-10 Sanyo Electric Co., Ltd. Cooling apparatus
US8130497B2 (en) 2008-11-19 2012-03-06 Hitachi, Ltd. Blade server
WO2013102980A1 (en) * 2012-01-04 2013-07-11 日本電気株式会社 Cooling device and electronic apparatus using same
JPWO2013102980A1 (en) * 2012-01-04 2015-05-11 日本電気株式会社 COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
JP2014116385A (en) * 2012-12-07 2014-06-26 Panasonic Corp Cooler and electric car and electronic apparatus mounting the same
US11493278B2 (en) 2018-11-27 2022-11-08 Fujitsu Limited Evaporator and cooling system
CN109887895A (en) * 2019-03-04 2019-06-14 四川长虹空调有限公司 Semiconductor device heat sink
US11716831B2 (en) 2019-04-22 2023-08-01 Mitsubishi Electric Corporation Electronic device
US12241772B2 (en) 2019-09-11 2025-03-04 Lam Research Corporation Flow metrology calibration for improved processing chamber matching in substrate processing systems

Similar Documents

Publication Publication Date Title
US20090225515A1 (en) Thermal bus or junction for the removal of heat from electronic components
JP4997215B2 (en) Server device
CN104487794B (en) Cooling device, electric vehicle and electronic equipment equipped with the cooling device
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
JP4773260B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US20050286230A1 (en) Apparatuses and methods for cooling electronic devices in computer systems
US20040187501A1 (en) Phase-change refrigeration apparatus with thermoelectric cooling element and methods
US20090056911A1 (en) Electronic apparatus
JP6269478B2 (en) Electronic substrate cooling structure and electronic device using the same
JP2018194197A (en) Heat pipe and electronic equipment
JP2006012875A (en) Semiconductor device cooling device
US20130042636A1 (en) Heat transfer system with integrated evaporator and condenser
WO2017150415A1 (en) Cooling system, cooler, and cooling method
JP2005019907A (en) Cooling system
JPH1187586A (en) Cooling structure for multi-chip module
JP6107665B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
CN111447803A (en) Electric box cooling device using absorption cooling
JP5938574B2 (en) Cooling device and electric vehicle equipped with the same
JP5934886B2 (en) Cooling device and electric vehicle equipped with the same
JP2005019906A (en) Cooling device and operation method thereof
US8191385B2 (en) Two-stage expansion cooling system and evaporator thereof
KR100782022B1 (en) Radiators for Electronic Components
JP7057710B2 (en) Cooling system
JP2005019903A (en) Semiconductor device cooling system
KR200313979Y1 (en) Radiate goods for all-in-won pc