[go: up one dir, main page]

JP2006010923A - Clear hard coat film, its manufacturing method, and antireflection film using the same - Google Patents

Clear hard coat film, its manufacturing method, and antireflection film using the same Download PDF

Info

Publication number
JP2006010923A
JP2006010923A JP2004186190A JP2004186190A JP2006010923A JP 2006010923 A JP2006010923 A JP 2006010923A JP 2004186190 A JP2004186190 A JP 2004186190A JP 2004186190 A JP2004186190 A JP 2004186190A JP 2006010923 A JP2006010923 A JP 2006010923A
Authority
JP
Japan
Prior art keywords
film
hard coat
layer
refractive index
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004186190A
Other languages
Japanese (ja)
Inventor
Masataka Takimoto
正高 瀧本
Takeshi Tanaka
武志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004186190A priority Critical patent/JP2006010923A/en
Publication of JP2006010923A publication Critical patent/JP2006010923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clear hard coat film and a method for manufacturing a clear hard coat film having an excellent antistatic function, physical properties of a film and flatness and free from interference irregularity or increase in haze even when a hard coat layer is formed in ≥1.2 m coating width, and to provide an antireflection film having excellent antireflection property using the above film. <P>SOLUTION: The method for manufacturing a clear hard coat film is carried out by applying at least two or more layers of clear hard coat layers in ≥1.2 m coating width on a transparent plastic substrate, wherein at least one layer of the layers contains an active energy ray curable resin. At least a coating liquid for the layer in the substrate side and a coating liquid for the layer in the surface side are simultaneously applied and layered into two or more layers, and then dried and cured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、クリアハードコートフィルム及びその製造方法、並びにそれを用いた反射防止フィルムに関し、より詳しくは優れた帯電防止機能、膜物性、平面性を有し、干渉ムラやヘイズ上昇のないクリアハードコートフィルム及びその製造方法、並びにそれを用いた反射防止性に優れた反射防止フィルムに関する。   The present invention relates to a clear hard coat film, a method for producing the same, and an antireflection film using the same, and more specifically, clear hard having excellent antistatic function, film physical properties, and flatness and free from uneven interference and haze increase. The present invention relates to a coating film, a method for producing the same, and an antireflection film excellent in antireflection using the same.

液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)のような画像表示装置は、ますます大型化される傾向にあり、その表示面はその視認性を高めるために、蛍光灯等の外部光源から照射された光線の反射が少ないことのみならず、最表面に位置することにより傷の付きにくい特性(耐傷性ともいう)が求められている。   Image display devices such as liquid crystal display devices (LCDs) and plasma display panels (PDPs) tend to be increasingly larger, and the display surface is exposed to external light sources such as fluorescent lamps in order to increase its visibility. There is a demand not only for less reflection of the irradiated light beam, but also for the property of being hardly scratched (also called scratch resistance) by being located on the outermost surface.

上記外部光源から照射された光線の反射は、画像表示装置の表面に反射防止膜を設けることで軽減することが出来る。反射防止膜は、表示面の上に屈折率の小さい低屈折率層を設けた単層構成、または、金属酸化物の透明薄膜を積層させた多層膜が従来から用いられてきた。   Reflection of light rays emitted from the external light source can be reduced by providing an antireflection film on the surface of the image display device. As the antireflection film, a single layer structure in which a low refractive index layer having a low refractive index is provided on a display surface or a multilayer film in which a transparent thin film of metal oxide is laminated has been conventionally used.

反射防止積層体に用いられる反射防止膜は、金属酸化物の透明薄膜を積層させた多層膜が一般的に用いられ、広い波長域で反射率を下げるために複数の透明薄膜を用いている。金属酸化物の透明薄膜は、物理蒸着(PVD)法、化学蒸着(CVD)法により形成することが知られている。金属酸化物の透明薄膜は反射防止膜として優れた光学的性質を有しているが、蒸着による形成方法は生産性が低く大量生産に適していない。蒸着法に代えて、透明支持体上に光学的機能層を塗布により形成して反射防止膜を製造する方法も提案されている。この場合、ゾルゲル法により金属酸化物薄膜を形成することが一般的であるが、屈折率の調整のし易さ、安定性等から金属酸化物微粒子をバインダー溶液に分散し薄膜を形成する方法もとられている。その際、光学的機能層を塗布により形成する場合、特に広幅である場合には光学的機能層が薄膜である為、透明支持体の平面性が重要である。   As the antireflection film used for the antireflection laminate, a multilayer film in which transparent thin films of metal oxide are laminated is generally used, and a plurality of transparent thin films are used in order to lower the reflectance in a wide wavelength range. It is known that a transparent thin film of metal oxide is formed by a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method. A transparent thin film of metal oxide has excellent optical properties as an antireflection film, but the formation method by vapor deposition has low productivity and is not suitable for mass production. Instead of the vapor deposition method, a method of manufacturing an antireflection film by forming an optical functional layer on a transparent support by coating has also been proposed. In this case, it is common to form a metal oxide thin film by a sol-gel method, but there is also a method of forming a thin film by dispersing metal oxide fine particles in a binder solution in view of ease of adjusting the refractive index and stability. It has been taken. In this case, when the optical functional layer is formed by coating, the planarity of the transparent support is important because the optical functional layer is a thin film, particularly when it is wide.

一方、反射防止積層体はフィルム製造時や偏光板、表示装置への貼り合わせ工程、パネル作製時に、静電気等によるゴミの付着も起き易く故障発生が多い。その為、導電性を改善する目的で、イオン性高分子化合物や導電性微粒子を含有する導電性層(帯電防止層ともいう)を支持体の一方の面に設けることがある。導電性層を設ける位置としては、ハードコート層よりも基材に近い側に0.2μm程度の膜厚で設ける方法、ハードコート層に導電性を付与する方法、反射防止積層体の中屈折率層または高屈折率層に導電性を持たせる方法等が知られている。   On the other hand, in the antireflection laminate, dust is easily attached due to static electricity or the like at the time of film production, a step of bonding to a polarizing plate or a display device, or panel production, and failure often occurs. Therefore, for the purpose of improving the conductivity, a conductive layer containing an ionic polymer compound or conductive fine particles (also referred to as an antistatic layer) may be provided on one surface of the support. The conductive layer is provided at a position closer to the substrate than the hard coat layer with a film thickness of about 0.2 μm, a method for imparting conductivity to the hard coat layer, and the medium refractive index of the antireflection laminate. A method of imparting conductivity to a layer or a high refractive index layer is known.

上記方法の中で、ハードコート層よりも基材に近い側に帯電防止層を設ける方法の場合、帯電防止層と表面までに距離があるため帯電防止性や表面比抵抗低減効果が小さく、また十分な帯電防止機能を持たせるために帯電防止剤を多量に帯電防止層に添加すると、膜が脆くなりクラック、傷等が入りやすい等の欠点があった。   Among the above methods, when the antistatic layer is provided on the side closer to the substrate than the hard coat layer, the antistatic property and the surface specific resistance reduction effect are small due to the distance between the antistatic layer and the surface. When a large amount of an antistatic agent is added to the antistatic layer in order to provide a sufficient antistatic function, there are disadvantages such as the film becomes brittle and cracks, scratches, etc. are likely to occur.

その為、帯電防止性を保ちつつ、上記耐傷性を維持するためには、ハードコート性を持つ帯電防止層を設ければ良いが、活性エネルギー線硬化樹脂に帯電防止性能を有する材料を混合するとハードコート性が劣化したり、高価な帯電防止材料を使用するためコストアップになることがある。   Therefore, in order to maintain the scratch resistance while maintaining antistatic properties, an antistatic layer having a hard coat property may be provided, but when an active energy ray curable resin is mixed with a material having antistatic properties. Hard coat properties may be deteriorated, and cost may increase due to the use of expensive antistatic materials.

また微粒子等を分散したタイプの帯電防止材料で帯電防止性を付与する硬化樹脂層は、ハードコート性が十分に得られて表面比抵抗が下がるほどの膜厚で設けると、ヘイズが上昇し透過率も低下する。特に無機の帯電防止材料は帯電防止性は非常に優れているが、一方でコストが高く膜厚アップ等によりコストアップにつながる。   In addition, a cured resin layer that imparts antistatic properties with a type of antistatic material in which fine particles and the like are dispersed is provided with a film thickness sufficient to provide sufficient hard coat properties and lower surface specific resistance. The rate also drops. In particular, inorganic antistatic materials are extremely superior in antistatic properties, but on the other hand, the cost is high and the cost increases due to the increase in film thickness.

上記透過率の低下やヘイズを上昇させずに帯電防止性能を得た上で、尚かつコスト削減をするためには、一般的な帯電性の硬化樹脂層を基材側に設けてハードコート性を確保し、この上に更に帯電防止性の硬化樹脂層を表面側に積層して設ければ良い。   In order to obtain antistatic performance without lowering the transmittance and increasing haze, and to reduce costs, a hard coating property is provided by providing a general chargeable cured resin layer on the substrate side. And an antistatic cured resin layer may be further laminated on the surface side.

しかしながら、基材側の硬化樹脂層を塗布した後に乾燥・硬化を行い、更に表面側の帯電防止性能を有する樹脂層を塗布した後に乾燥・硬化を行うと、乾燥工程を2回通過する為に平面性が劣化する問題があり、上記反射防止積層体を塗布する際に支障が生ずる。特に塗布幅が1.2m以上の広幅ではより顕著な問題となった。   However, drying and curing after applying the cured resin layer on the substrate side, and further drying and curing after applying the resin layer having antistatic performance on the surface side, the drying process passes twice. There is a problem that the flatness deteriorates, and a problem occurs when the antireflection laminate is applied. In particular, when the coating width is 1.2 m or more, the problem becomes more prominent.

この問題を解決する手段として、分子内に帯電防止性能を有する基含む帯電防止性を有する紫外線硬化樹脂を、帯電防止性の紫外線硬化樹脂層が未硬化の状態で積層し、2層同時に硬化して硬化樹脂層を設けることが開示されている(例えば、特許文献1参照。)。   As a means to solve this problem, an anti-static UV curable resin containing an anti-static group in the molecule is laminated with the anti-static UV curable resin layer uncured, and two layers are cured simultaneously. Providing a cured resin layer is disclosed (for example, see Patent Document 1).

しかしながら、帯電防止機能を有する基を含んでいるとはいえ、樹脂であるためその帯電防止性は不十分である。そこで、上記のように無機の帯電防止剤を使用することで帯電防止性能をより向上させることは出来るが、無機の帯電防止剤を用いて硬化樹脂層とした場合に着色やヘイズがあるものが多い。   However, although it contains a group having an antistatic function, the antistatic property is insufficient because it is a resin. Therefore, the antistatic performance can be further improved by using an inorganic antistatic agent as described above, but when an inorganic antistatic agent is used to form a cured resin layer, there is a color or haze. Many.

また、基材側樹脂層を硬化後、表面側樹脂層を積層すると表面側樹脂層/基材側樹脂層の界面が発生し、この界面で反射が生じ、この反射光が基材側樹脂層の界面の反射光や最表面の反射光と干渉して干渉ムラが発生して反射防止積層体として好ましくない場合がある。更に硬化樹脂に無機の微粒子が分散されたものの場合、膜厚を薄くして塗布を行うと基材側樹脂層の表面で塗布性や分散が乱れてムラになり、透過率の低下やヘイズの上昇を招き易いという問題があった。
特許2877854号公報
Further, when the surface side resin layer is laminated after curing the substrate side resin layer, an interface of the surface side resin layer / substrate side resin layer is generated, reflection occurs at this interface, and this reflected light is reflected on the substrate side resin layer. Interference with the reflected light at the interface and the reflected light on the outermost surface may cause interference unevenness, which is not preferable as an antireflection laminate. Furthermore, in the case where inorganic fine particles are dispersed in a cured resin, when coating is performed with a thin film thickness, the coating property and dispersion are disturbed on the surface of the substrate-side resin layer, resulting in unevenness and a decrease in transmittance or haze. There was a problem that it was easy to raise.
Japanese Patent No. 2877754

本発明は上記課題に鑑み成されたものであり、その目的は1.2m以上の塗布幅でハードコート層を設けても、優れた帯電防止機能、膜物性、平面性を有し、干渉ムラやヘイズ上昇のないクリアハードコートフィルム及びその製造方法、並びにそれを用いた反射防止性に優れた反射防止フィルムを提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to provide an excellent antistatic function, film physical properties, and flatness even when a hard coat layer is provided with a coating width of 1.2 m or more, and interference unevenness. Another object of the present invention is to provide a clear hard coat film having no haze increase and a method for producing the same, and an antireflection film excellent in antireflection using the same.

本発明の上記課題は以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

(請求項1)
透明プラスチック基材上に塗布幅1.2m以上で少なくとも2層以上のクリアハードコート層を設け、その少なくともいずれかの層に活性エネルギー線硬化樹脂を含むクリアハードコートフィルムの製造方法であって、少なくとも基材側の層の塗布液と表面側の層の塗布液とを2層以上同時重層塗布し、次いで乾燥・硬化させることを特徴とするクリアハードコートフィルムの製造方法。
(Claim 1)
A method for producing a clear hard coat film comprising a clear hard coat layer having a coating width of 1.2 m or more on a transparent plastic substrate and comprising an active energy ray curable resin in at least one of the layers, A method for producing a clear hard coat film, comprising simultaneously applying two or more layers of at least a substrate-side layer coating solution and a surface-side layer coating solution, followed by drying and curing.

(請求項2)
前記同時重層塗布した直後に、塗膜が半硬化状態になるように活性エネルギー線照射を行い、次いで乾燥・硬化を行うことを特徴とする請求項1に記載のクリアハードコートフィルムの製造方法。
(Claim 2)
2. The method for producing a clear hard coat film according to claim 1, wherein immediately after the simultaneous multilayer coating is applied, active energy ray irradiation is performed so that the coating film is in a semi-cured state, followed by drying and curing.

(請求項3)
前記活性エネルギー線硬化樹脂を含むクリアハードコート層の少なくとも1層が、導電性金属酸化物微粒子を含むことを特徴とする請求項1または2に記載のクリアハードコートフィルムの製造方法。
(Claim 3)
The method for producing a clear hard coat film according to claim 1 or 2, wherein at least one of the clear hard coat layers containing the active energy ray-curable resin contains conductive metal oxide fine particles.

(請求項4)
前記導電性金属酸化物微粒子がSn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W、及びVからなる群から選択される少なくとも1つの元素を主成分とする導電性金属酸化物微粒子若しくは複合酸化物微粒子であることを特徴とする請求項3に記載のクリアハードコートフィルムの製造方法。
(Claim 4)
The conductive metal oxide fine particles are mainly composed of at least one element selected from the group consisting of Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W, and V. 4. The method for producing a clear hard coat film according to claim 3, wherein the method is a fine particle or a complex oxide fine particle.

(請求項5)
前記活性エネルギー線硬化樹脂が多官能のアクリレート樹脂を主成分とすることを特徴とする請求項1〜4のいずれか1項に記載のクリアハードコートフィルムの製造方法。
(Claim 5)
The said active energy ray hardening resin has polyfunctional acrylate resin as a main component, The manufacturing method of the clear hard coat film of any one of Claims 1-4 characterized by the above-mentioned.

(請求項6)
請求項1〜5のいずれか1項に記載のクリアハードコートフィルムの製造方法によって製造されたことを特徴とするクリアハードコートフィルム。
(Claim 6)
A clear hard coat film produced by the method for producing a clear hard coat film according to any one of claims 1 to 5.

(請求項7)
請求項6に記載のクリアハードコートフィルム表面上に反射防止層を設けたことを特徴とする反射防止フィルム。
(Claim 7)
An antireflection film comprising an antireflection layer on the surface of the clear hard coat film according to claim 6.

本発明により、1.2m以上の塗布幅でハードコート層を設けても、優れた帯電防止機能、膜物性、平面性を有し、干渉ムラやヘイズ上昇のないクリアハードコートフィルム及びその製造方法、並びにそれを用いた反射防止性に優れた反射防止フィルムを提供することが出来る。   According to the present invention, even if a hard coat layer is provided with a coating width of 1.2 m or more, a clear hard coat film having excellent antistatic function, film physical properties, flatness and free from uneven interference and haze increase, and a method for producing the same In addition, an antireflection film excellent in antireflection properties using the same can be provided.

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

本発明者は鋭意検討を行った結果、透明プラスチック基材上に塗布幅1.2m以上で少なくとも2層以上のクリアハードコート層を設け、その少なくともいずれかの層に活性エネルギー線硬化樹脂を含むクリアハードコートフィルムの製造方法であって、少なくとも基材側の層の塗布液と表面側の層の塗布液とを2層以上同時重層塗布し、次いで乾燥・硬化させることを特徴とするクリアハードコートフィルムの製造方法により、本発明の目的が達成されることを見出したものである。特に、前記同時重層塗布した直後に、塗膜が半硬化状態になるように活性エネルギー線照射を行い、次いで乾燥・硬化を行うことが好ましい。   As a result of intensive studies, the inventor provided at least two clear hard coat layers with a coating width of 1.2 m or more on a transparent plastic substrate, and at least one of the layers contains an active energy ray curable resin. A method for producing a clear hard coat film, wherein at least two layers of a substrate-side layer coating solution and a surface-side layer coating solution are simultaneously applied, and then dried and cured. It has been found that the object of the present invention is achieved by a method for producing a coated film. In particular, immediately after the simultaneous multilayer coating, it is preferable to perform active energy ray irradiation so that the coating film is in a semi-cured state, and then to dry and cure.

即ち、基材側の樹脂層が未硬化の状態で表面側の樹脂層を設けること、特に基材側の樹脂層の上に乾燥工程を経ずに表面側の樹脂層をwet on wetで積層することが本発明の効果を得る上で必要な条件である。   That is, a resin layer on the surface side is provided in a state where the resin layer on the substrate side is uncured, and in particular, the resin layer on the surface side is laminated on the substrate side resin layer without a drying step by wet on wet. This is a necessary condition for obtaining the effect of the present invention.

これは、基材側樹脂層を塗布後、乾燥・硬化を行ったり表面側樹脂層の塗布位置まで搬送したりして基材側樹脂層が空気に触れることで、基材側樹脂層表面に酸素が取り込まれ硬化阻害が起こる場合がある。特に表面側樹脂層を薄くした場合、基材側樹脂層の表面に取り込まれた酸素の影響を顕著に受けるので好ましくない。   This is because after the substrate side resin layer is applied, it is dried and cured, or transported to the application position of the surface side resin layer, and the substrate side resin layer touches the air, so that the surface of the substrate side resin layer is exposed. Oxygen may be taken in and curing inhibition may occur. In particular, when the surface-side resin layer is thinned, it is not preferable because the influence of oxygen taken into the surface of the substrate-side resin layer is significantly affected.

この問題に対し本発明者は、上記したように乾燥工程を経ずに基材側の樹脂層の上に表面側の樹脂層をwet on wetで同時重層することで、界面の混合を最も良好な状態に調整出来る為、微粒子の分散を維持しつつ、基材側樹脂層と表面側樹脂層の造膜をうまく制御出来、優れた帯電防止効果、透過率の低下やヘイズの上昇を抑えることが出来ることを見出したものである。特に、基材側の樹脂層と表面側の樹脂層を同時重層塗布直後に活性エネルギー線を照射して塗膜を半硬化した状態で、乾燥・硬化することにより、基材側樹脂層からのラジカルの供給により酸素による硬化阻害を防止出来、また、同時重層する膜厚、および各層の厚みの割合、乾燥条件などにもよるが塗布直後に乾燥すると混合しやすいことがありこの場合に導電性微粒子などを含んだ層と含まない層が完全に混合してしまうと粒子の濃度が相対的に下がるので導電性が低下して好ましくない。そこで同時重層塗布直後に活性エネルギー線を照射して塗膜を半硬化すると塗膜の流動性が小さくなり、重層した層同士が必要以上に混合しないように出来ることを見出したものである。   In order to solve this problem, the present inventor achieved the best mixing of the interface by simultaneously layering the resin layer on the surface side on the substrate side resin layer by wet-on-wet without passing through the drying step as described above. Since it can be adjusted to the desired state, the film formation of the base resin layer and the surface resin layer can be controlled well while maintaining the dispersion of fine particles, and excellent antistatic effect, reduction in transmittance and increase in haze are suppressed. It has been found that can be. In particular, the resin layer on the substrate side and the resin layer on the surface side are irradiated with active energy rays immediately after the simultaneous multilayer coating, and the coating film is semi-cured and then dried and cured, so that By supplying radicals, inhibition of curing by oxygen can be prevented, and depending on the film thickness of the simultaneous layering, the ratio of the thickness of each layer, drying conditions, etc. If a layer containing fine particles and a layer containing no fine particles are completely mixed, the concentration of particles is relatively lowered, which is not preferable because the conductivity is lowered. Thus, it has been found that when an active energy ray is irradiated immediately after the simultaneous multilayer coating and the coating film is semi-cured, the fluidity of the coating film becomes small and the stacked layers can be prevented from being mixed more than necessary.

特開2000−71392号公報には第1のハードコート層と第2のハードコート層を積層しそのいずれかのハードコート層に平均粒径0.01〜10μmの範囲を満たす無機或いは有機の微粒子を含有するハードコートフィルムまたはシートが記載されている。この場合にハードコート層に配合可能な無機若しくは有機の微粒子としては活性エネルギー線硬化樹脂中で良好な透明性を保持する微粒子である必要があると記載されているが、本発明に係る方法によれば帯電防止性を有する樹脂層を薄くすることが出来るので配合する微粒子はそれほど良好な透明性を保持していなくても使用することが出来る。特に前述のように帯電防止性を有する微粒子の場合は着色している場合が多いので、本発明の方法は特に有用である。その結果、本発明の方法によれば非常に良好な帯電防止性、高い透過率及び透明性、低いヘイズを全て高いレベルで兼ね備えたハードコート層を得ることが出来る。更に帯電防止剤は高価な場合が多いが、この方法によれば帯電防止剤を含んだ層を薄くすることが出来るのでコストダウンも出来る。   Japanese Patent Application Laid-Open No. 2000-71392 discloses inorganic or organic fine particles in which a first hard coat layer and a second hard coat layer are laminated and any one of the hard coat layers satisfies an average particle size range of 0.01 to 10 μm. Hard coat films or sheets containing are described. In this case, it is described that the inorganic or organic fine particles that can be blended in the hard coat layer need to be fine particles that maintain good transparency in the active energy ray curable resin. Therefore, since the resin layer having antistatic properties can be thinned, the fine particles to be blended can be used even if they do not have so good transparency. In particular, the fine particles having antistatic properties as described above are often colored, and therefore the method of the present invention is particularly useful. As a result, according to the method of the present invention, it is possible to obtain a hard coat layer having very good antistatic properties, high transmittance and transparency, and low haze all at a high level. Further, the antistatic agent is often expensive, but according to this method, the layer containing the antistatic agent can be thinned, so that the cost can be reduced.

また従来のように第1のハードコート層を設けた後乾燥・硬化し、次いで第2のハードコート層を積層した後更に乾燥・硬化する方法では、乾燥・硬化による平面性の劣化が見られたが、本発明の方法によれば乾燥が一回で済む為に、塗布幅1.2m以上の塗布の場合でも平面性の劣化が見られず、精密な反射防止層の塗布が可能なハードコートフィルムを提供することが出来る。   In addition, in the conventional method in which the first hard coat layer is provided and then dried and cured, and then the second hard coat layer is laminated and then further dried and cured, flatness deterioration due to drying and curing is observed. However, according to the method of the present invention, since drying is performed only once, even when the coating width is 1.2 m or more, the flatness is not deteriorated, and a hardware capable of applying a precise antireflection layer is possible. A coated film can be provided.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

最初に、本発明に係るクリアハードコート層について述べる。   First, the clear hard coat layer according to the present invention will be described.

本発明に係るクリアハードコート層は、後述する透明プラスチック基材上に少なくとも活性エネルギー線硬化樹脂を含む層を少なくとも2層以上設けたことを特徴とする。   The clear hard coat layer according to the present invention is characterized in that at least two or more layers containing an active energy ray-curable resin are provided on a transparent plastic substrate described later.

(活性エネルギー線硬化樹脂)
本発明のクリアハードコート層に用いられる活性エネルギー線硬化樹脂としては、紫外線や電子線のような活性エネルギー線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることが出来る。
(Active energy ray curable resin)
The active energy ray curable resin used in the clear hard coat layer of the present invention is directly irradiated by active energy rays such as ultraviolet rays or electron beams, or indirectly undergoes a polymerization reaction by receiving the action of a photopolymerization initiator. A monomer or oligomer having two or more functional groups can be used.

本発明では、特に紫外線により硬化する紫外線硬化樹脂を含有する層であることが好ましく、耐擦り傷性に優れたクリアハードコートフィルムを得ることが出来る。   In the present invention, a layer containing an ultraviolet curable resin that is cured by ultraviolet rays is particularly preferable, and a clear hard coat film having excellent scratch resistance can be obtained.

紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることが出来る。   Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. I can do it.

紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、若しくはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートと記載した場合、メタクリレートを包含するものとする)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59−151110号等を参照)。   In general, UV-curable acrylic urethane-based resins are obtained by further reacting 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate) with a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. Can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (for example, see JP-A-59-151110).

紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59−151112号を参照)。   The UV curable polyester acrylate resin can be easily obtained by reacting polyester polyol with 2-hydroxyethyl acrylate or 2-hydroxy acrylate monomer (see, for example, JP-A-59-151112). .

紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させたものを挙げることが出来る(例えば、特開平1−105738号)。この光反応開始剤としては、ベンゾイン誘導体、オキシムケトン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体等のうちから、1種若しくは2種以上を選択して使用することが出来る。   Specific examples of the ultraviolet curable epoxy acrylate resin include those obtained by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoinitiator added thereto (for example, JP-A-1- No. 105738). As this photoreaction initiator, one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.

また、本発明では特に、紫外線硬化型ポリオールアクリレート系樹脂を用いることが好ましく、この様な化合物としては、例えば多官能アクリレート樹脂等が挙げられる。ここで、多官能アクリレート樹脂とは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。   In the present invention, it is particularly preferable to use an ultraviolet curable polyol acrylate resin, and examples of such a compound include polyfunctional acrylate resins. Here, the polyfunctional acrylate resin is a compound having two or more acryloyloxy groups and / or methacryloyloxy groups in the molecule.

多官能アクリレート樹脂のモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートが挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。また、活性エネルギー線硬化樹脂は、分子中に水酸基を有することが好ましい。   Examples of the monomer of the polyfunctional acrylate resin include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethanetriacrylate. Acrylate, tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, Dipenta Lithritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, Tetramethylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerin trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol teto Methacrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate. These compounds are used alone or in admixture of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient. Moreover, it is preferable that active energy ray cured resin has a hydroxyl group in a molecule | numerator.

上記紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(以上、旭電化工業株式会社製)、或いはコーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(以上、広栄化学工業株式会社製)、或いはセイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業株式会社製)、或いはKRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー株式会社)、或いはRC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(以上、大日本インキ化学工業株式会社製)、或いはオーレックスNo.340クリヤ(中国塗料株式会社製)、或いはサンラッドH−601(三洋化成工業株式会社製)、或いはSP−1509、SP−1507(昭和高分子株式会社製)、或いはRCC−15C(グレース・ジャパン株式会社製)、アロニックスM−6100、M−8030、M−8060(以上、東亞合成株式会社製)或いはこの他の市販のものから適宜選択して利用出来る。   As the ultraviolet curable resin, Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (manufactured by Asahi Denka Kogyo Co., Ltd.), or KOEI HARD A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT- 102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP-10 , DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 Manufactured by Kogyo Co., Ltd.), or KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (above, Daicel UCB Corporation), or RC-5015, RC-5016, RC-5020, RC-5031, RC-5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.) or Aulex No. 340 clear (manufactured by China Paint Co., Ltd.), Sunrad H-601 (manufactured by Sanyo Chemical Industries, Ltd.), SP-1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.), or RCC-15C (Grace Japan Co., Ltd.) (Manufactured by company), Aronix M-6100, M-8030, M-8060 (above, manufactured by Toagosei Co., Ltd.) or other commercially available ones can be used.

また、活性エネルギー線硬化樹脂の硬化促進のために、光重合開始剤を活性エネルギー線硬化樹脂に対して2〜30質量%含有することが好ましい。光重合開始剤としては、光照射によりカチオン重合を開始させるルイス酸を放出するオニウム塩の複塩の一群が特に好ましい。   Moreover, it is preferable to contain 2-30 mass% of photoinitiators with respect to active energy ray hardening resin for hardening acceleration | stimulation of active energy ray hardening resin. As the photopolymerization initiator, a group of double salts of onium salts that release a Lewis acid that initiates cationic polymerization by light irradiation is particularly preferable.

かかる代表的なものは下記一般式(a)で表される化合物である。   A typical example is a compound represented by the following general formula (a).

一般式(a)
〔(R1a(R2b(R3c(R4dZ〕+w〔MeXv-w
式中、カチオンはオニウムであり、ZはS、Se、Te、P、As、Sb、Bi、O、ハロゲン(例えばI、Br、Cl)、又はN=N(ジアゾ)であり、R1、R2、R3、R4は同一であっても異なっていてもよい有機の基である。a、b、c、dはそれぞれ0〜3の整数であって、a+b+c+dはZの価数に等しい。Meはハロゲン化物錯体の中心原子である金属又は半金属(metalloid)であり、B、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Co等である。Xはハロゲンであり、wはハロゲン化錯体イオンの正味の電荷であり、vはハロゲン化錯体イオン中のハロゲン原子の数である。vから中心原子Meの価数を減じたものがwとなる。
General formula (a)
[(R 1 ) a (R 2 ) b (R 3 ) c (R 4 ) d Z] + w [MeX v ] −w
Wherein cation is onium, Z is S, Se, Te, P, As, Sb, Bi, O, halogen (eg, I, Br, Cl), or N = N (diazo), R 1 , R 2 , R 3 and R 4 are organic groups which may be the same or different. a, b, c, and d are each an integer of 0 to 3, and a + b + c + d is equal to the valence of Z. Me is a metal or metalloid which is a central atom of a halide complex, and B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co, etc. X is halogen, w is the net charge of the halogenated complex ion, and v is the number of halogen atoms in the halogenated complex ion. The value obtained by subtracting the valence of the central atom Me from v is w.

上記一般式(a)で表される化合物の陰イオン〔MeXv-wの具体例としては、テトラフルオロボレート(BF4 -)、テトラフルオロホスフェート(PF4 -)、テトラフルオロアンチモネート(SbF4 -)、テトラフルオロアルセネート(AsF4 -)、ヘキサクロロアンチモネート(SbCl4 -)等を挙げることが出来る。更に陰イオン〔MeXv-wには(OH-)の陰イオンも用いることが出来る。また、その他の陰イオンとしては過塩素酸イオン(ClO4 -)、トリフルオロメチル亜硫酸イオン(CF3SO3 -)、フルオロスルホン酸イオン(FSO3 -)、トルエンスルホン酸イオン、トリニトロベンゼン酸陰イオン等を挙げることが出来る。 Specific examples of the anion [MeX v ] -w of the compound represented by the general formula (a) include tetrafluoroborate (BF 4 ), tetrafluorophosphate (PF 4 ), tetrafluoroantimonate (SbF 4 -), tetrafluoro arsenate titanate (AsF 4 -), hexachloroantimonate (SbCl 4 -) and the like. Furthermore, an anion of (OH ) can also be used as the anion [MeX v ] −w . Other anions include perchlorate ion (ClO 4 ), trifluoromethyl sulfite ion (CF 3 SO 3 ), fluorosulfonate ion (FSO 3 ), toluenesulfonate ion, and trinitrobenzene acid anion. An ion etc. can be mentioned.

この様なオニウム塩の中でも特に芳香族オニウム塩をカチオン重合開始剤として使用するのが特に有効であり、中でも特開昭50−151996号、同50−158680号等に記載の芳香族ハロニウム塩、特開昭50−151997号、同52−30899号、同59−55420号、同55−125105号等に記載のVIA族芳香族オニウム塩、特開昭56−8428号、同56−149402号、同57−192429号等に記載のオキソスルホニウム塩、特公昭49−17040号等に記載の芳香族ジアゾニウム塩、米国特許第4,139,655号等に記載のチオピリリウム塩等が好ましい。また、アルミニウム錯体や光分解性ケイ素化合物系重合開始剤等を挙げることが出来る。上記カチオン重合開始剤と、ベンゾフェノン、ベンゾインイソプロピルエーテル、チオキサントンなどの光増感剤を併用することが出来る。   Among these onium salts, it is particularly effective to use an aromatic onium salt as a cationic polymerization initiator, and among them, aromatic halonium salts described in JP-A Nos. 50-151996 and 50-158680, Group VIA aromatic onium salts described in JP-A Nos. 50-151997, 52-30899, 59-55420, and 55-125105, JP-A Nos. 56-8428 and 56-149402, The oxosulfonium salts described in JP-A-57-192429, aromatic diazonium salts described in JP-B-49-17040, thiopyrylium salts described in US Pat. No. 4,139,655, and the like are preferable. Moreover, an aluminum complex, a photodegradable silicon compound type | system | group polymerization initiator, etc. can be mentioned. The cationic polymerization initiator can be used in combination with a photosensitizer such as benzophenone, benzoin isopropyl ether, or thioxanthone.

活性エネルギー線硬化樹脂層には、更にアクリルまたはメタクリル樹脂としては分子量10〜50万のアルコール溶解性アクリル樹脂を好ましく用いることが出来る。具体的には、アルキル(メタ)アクリレート重合体またはアルキル(メタ)アクリレート共重合体、例えばn−ブチルメタクリレート、イソブチルメタクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート等の共重合体が好ましく用いられるが、共重合成分としてはこれらに限定されるものではない。市販品としては、ダイヤナールBR−50、BR−51、BR−52、BR−60、BR−64、BR−65、BR−70、BR−73、BR−75、BR−76、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−89、BR−90、BR−93、BR−95、BR−96、BR−100、BR−101、BR−102、BR−105、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118(以上、三菱レーヨン(株)製)等が使用出来る。   For the active energy ray-curable resin layer, an alcohol-soluble acrylic resin having a molecular weight of 100 to 500,000 can be preferably used as the acrylic or methacrylic resin. Specifically, an alkyl (meth) acrylate polymer or an alkyl (meth) acrylate copolymer, for example, a copolymer such as n-butyl methacrylate, isobutyl methacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, is preferably used. The copolymer component is not limited to these. Commercially available products include Dianal BR-50, BR-51, BR-52, BR-60, BR-64, BR-65, BR-70, BR-73, BR-75, BR-76, BR-77. , BR-79, BR-80, BR-82, BR-83, BR-85, BR-87, BR-88, BR-89, BR-90, BR-93, BR-95, BR-96, BR -100, BR-101, BR-102, BR-105, BR-107, BR-108, BR-112, BR-113, BR-115, BR-116, BR-117, BR-118 (above, Mitsubishi Can be used.

アクリル樹脂またはメタクリル樹脂のTg(ガラス転移点)は30℃以下であることが好ましい。Tgは、Rheometrics社製のSOLIDS ANALYZER−RSAIIを用いて、周波数(Freqency)を100rad/sec、歪み(strain)を8.0×10-4として測定し、tanδのピーク値になる温度をガラス転移点(Tg)として得ることが出来る。 The acrylic resin or methacrylic resin preferably has a Tg (glass transition point) of 30 ° C. or lower. Tg is measured using a SOLIDS ANALYZER-RSAII manufactured by Rheometrics with a frequency of 100 rad / sec and a strain of 8.0 × 10 −4 , and the temperature at which the peak value of tan δ reaches the glass transition. It can be obtained as a point (Tg).

本発明に係るクリアハードコート層は、基材側のハードコート層用の塗布液または表面側のハードコート層用の塗布液に導電性金属酸化物微粒子が分散されていることが、本発明の目的である帯電防止機能を付与する上で好ましい。より好ましくは、基材側に帯電防止機能のない樹脂層を塗設し、表面側に帯電防止機能を有する樹脂層を塗設することである。この構成により、帯電防止層を表面付近に位置させることが出来るため、帯電防止性や表面比抵抗低減効果を十分に得ることが出来、更に基材側に帯電防止機能のない樹脂層を塗設することにより十分なハードコート性を付与出来るため、従来の帯電防止剤を多量に帯電防止層に添加する際に発生する膜の脆さやクラック、傷等が入りやすい等の欠点を改善出来る。   In the clear hard coat layer according to the present invention, the conductive metal oxide fine particles are dispersed in the base-side hard coat layer coating liquid or the surface-side hard coat layer coating liquid. It is preferable for imparting an antistatic function as an object. More preferably, a resin layer having no antistatic function is coated on the substrate side, and a resin layer having an antistatic function is coated on the surface side. With this configuration, the antistatic layer can be positioned near the surface, so that sufficient antistatic properties and surface resistivity reduction effects can be obtained, and a resin layer having no antistatic function is coated on the substrate side. As a result, sufficient hard coat properties can be imparted, so that it is possible to improve defects such as brittleness, cracks, and scratches that are easily generated when a large amount of conventional antistatic agents are added to the antistatic layer.

該層の膜厚は基材側の樹脂層>表面側の樹脂層であることが好ましく、基材側の樹脂層の膜厚が1μm〜20μmの範囲であり、かつ表面側の樹脂層の膜厚が0.2〜5μmの範囲であることが好ましい。更に好ましくは、基材側の樹脂層の膜厚が2〜7μmで、表面側の樹脂層の膜厚が0.5〜3μmである。この構成の場合、帯電防止性を有する樹脂層が薄いため、配合する微粒子はそれほど良好な透明性を保持していなくても使用することが出来る。特に帯電防止性を有する微粒子の場合は着色している場合が多いので、上記構成は特に有用である。   The film thickness of the layer is preferably the resin layer on the substrate side> the resin layer on the surface side, the film thickness of the resin layer on the substrate side is in the range of 1 μm to 20 μm, and the film of the resin layer on the surface side The thickness is preferably in the range of 0.2 to 5 μm. More preferably, the thickness of the resin layer on the substrate side is 2 to 7 μm, and the thickness of the resin layer on the surface side is 0.5 to 3 μm. In the case of this configuration, since the resin layer having antistatic properties is thin, the fine particles to be blended can be used even if the transparency is not so good. In particular, the above structure is particularly useful in the case of fine particles having antistatic properties because they are often colored.

表面側の樹脂層の帯電防止剤がSn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W、及びVからなる群から選択される少なくとも1つの元素を主成分とする微粒子であることが好ましく、その含有量は該樹脂層の固形分の10〜90質量%であり、好ましくは20〜70質量%である。   Antistatic agent for the resin layer on the surface side is fine particles mainly composed of at least one element selected from the group consisting of Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W, and V. The content is preferably 10 to 90% by mass, and preferably 20 to 70% by mass, based on the solid content of the resin layer.

本発明の帯電防止機能を有する層の表面比抵抗は1011Ω/□(25℃、55%RH)以下に調整されることが好ましく、更に好ましくは、1010Ω/□(25℃、55%RH)以下であり、特に好ましくは、109Ω/□(25℃、55%RH)以下である。 The surface specific resistance of the layer having an antistatic function of the present invention is preferably adjusted to 10 11 Ω / □ (25 ° C., 55% RH) or less, more preferably 10 10 Ω / □ (25 ° C., 55 % RH) or less, and particularly preferably 10 9 Ω / □ (25 ° C., 55% RH) or less.

ここで、表面比抵抗値の測定の詳細は実施例に記載するが、試料を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定する。   Here, although details of the measurement of the surface specific resistance value are described in the Examples, the sample was conditioned for 24 hours under the conditions of 25 ° C. and 55% RH, and a terraohm meter model VE-30 manufactured by Kawaguchi Electric Co., Ltd. was used. Use to measure.

本発明に係る帯電防止剤は、前記Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W及びVからなる群から選択される少なくとも一つの元素を主成分として含有し、かつ、体積抵抗率が107Ω・cm以下であるような導電性材料が好ましく用いられる。 The antistatic agent according to the present invention contains at least one element selected from the group consisting of Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W and V as a main component, and A conductive material having a volume resistivity of 10 7 Ω · cm or less is preferably used.

前記帯電防止剤としては、上記の元素を有する金属酸化物、複合酸化物等が挙げられる。   Examples of the antistatic agent include metal oxides and composite oxides having the above elements.

金属酸化物の例としては、ZnO、TiO2、SnO2、Al23、In23、SiO2、MgO、BaO、MoO2、V25等、或いはこれらの複合酸化物が好ましく、特にZnO、In23、TiO2及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiO2に対してはNb、Ta等の添加、またSnO2に対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01〜25mol%の範囲が好ましいが、0.1〜15mol%の範囲が特に好ましい。 As an example of the metal oxide, ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 2 , V 2 O 5 , or a composite oxide thereof is preferable. In particular, ZnO, In 2 O 3 , TiO 2 and SnO 2 are preferred. Examples of containing different atoms include, for example, addition of Al and In to ZnO, addition of Nb and Ta to TiO 2 , and addition of Sb, Nb and halogen elements to SnO 2 . Addition is effective. The amount of these different atoms added is preferably in the range of 0.01 to 25 mol%, particularly preferably in the range of 0.1 to 15 mol%.

また、これらの導電性を有するこれら金属酸化物粉体の体積抵抗率は107Ω・cm以下、特に105Ω・cm以下である。 In addition, the volume resistivity of these metal oxide powders having conductivity is 10 7 Ω · cm or less, particularly 10 5 Ω · cm or less.

また、他の帯電防止剤としては、イオン性高分子化合物を併用することも出来る。   As other antistatic agents, an ionic polymer compound can be used in combination.

イオン性高分子化合物としては、特公昭49−23828号、同49−23827号、同47−28937号にみられるようなアニオン性高分子化合物;特公昭55−734号、特開昭50−54672号、特公昭59−14735号、同57−18175号、同57−18176号、同57−56059号などにみられるような、主鎖中に解離基をもつアイオネン型ポリマー;特公昭53−13223号、同57−15376号、特公昭53−45231号、同55−145783号、同55−65950号、同55−67746号、同57−11342号、同57−19735号、特公昭58−56858号、特開昭61−27853、同62−9346にみられるような、側鎖中にカチオン性解離基をもつカチオン性ペンダント型ポリマー;等を挙げることが出来る。   Examples of the ionic polymer compound include anionic polymer compounds such as those described in JP-B-49-23828, JP-A-49-23827, and JP-A-47-28937; JP-B-55-734, JP-A-50-54672 Ionene type polymers having a dissociating group in the main chain, as seen in JP-B Nos. 59-14735, 57-18175, 57-18176, 57-56059, etc .; No. 57-15376, No. 53-45231, No. 55-145783, No. 55-65950, No. 55-67746, No. 57-11342, No. 57-19735, No. 58-56858. No., JP-A 61-27853, 62-9346, and a cationic pendant type poly having a cationic dissociation group in the side chain. Over; and the like can be mentioned.

特に好ましいイオン性高分子化合物としては、下記一般式〔1〕及び〔1a〕、〔1b〕の構造のユニットを有するポリマーが挙げられる。   Particularly preferred ionic polymer compounds include polymers having units of the following general formulas [1], [1a] and [1b].

Figure 2006010923
Figure 2006010923

Figure 2006010923
Figure 2006010923

式中R3、R4、R5、R6は炭素数1〜4の置換或いは未置換のアルキル基を表し、R3とR4及び/またはR5とR6が結合してピペラジンなどの含窒素複素環を形成してもよい。A、B及びDはそれぞれ炭素数2〜10の置換或いは未置換のアルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基、−R7COR8−、−R9COOR10OCOR11−、−R12OCR13COOR14−、−R15−(OR16m−、−R17CONHR18NHCOR19−、−R20OCONHR21NHCOR22−または−R25NHCONHR24NHCONHR25−を表す。R7、R8、R9、R11、R12、R14、R15、R16、R17、R19、R20、R22、R23及びR25はアルキレン基、R10、R13、R18、R21及びR24はそれぞれ置換または未置換のアルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基、アルキレンアリーレン基から選ばれる連結基、mは1〜4の正の整数を表し、X-はアニオンを表す。 In the formula, R 3 , R 4 , R 5 and R 6 each represent a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and R 3 and R 4 and / or R 5 and R 6 are bonded to each other such as piperazine. A nitrogen-containing heterocycle may be formed. A, B and D are each a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, an arylene group, an alkenylene group, an arylenealkylene group, -R 7 COR 8 -, - R 9 COOR 10 OCOR 11 -, - R 12 OCR 13 COOR 14 -, - R 15 - (oR 16) m -, - R 17 CONHR 18 NHCOR 19 -, - R 20 OCONHR 21 NHCOR 22 - or -R 25 NHCONHR 24 NHCONHR 25 - represents a. R 7 , R 8 , R 9 , R 11 , R 12 , R 14 , R 15 , R 16 , R 17 , R 19 , R 20 , R 22 , R 23 and R 25 are alkylene groups, R 10 , R 13 , R 18 , R 21 and R 24 are each a linking group selected from a substituted or unsubstituted alkylene group, alkenylene group, arylene group, arylene alkylene group and alkylene arylene group, m represents a positive integer of 1 to 4, X represents an anion.

但し、Aがアルキレン基、ヒドロキシアルキレン基或いは、アリーレンアルキレン基である時には、Bがアルキレン基、ヒドロキシルアルキレン基或いはアリーレンアルキレン基ではないことが好ましい。   However, when A is an alkylene group, a hydroxyalkylene group or an arylenealkylene group, it is preferable that B is not an alkylene group, a hydroxylalkylene group or an arylenealkylene group.

Eは単なる結合手、−NHCOR26CONH−またはDから選ばれる基を表す。R26は置換或いは未置換のアルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基、またはアルキレンアリーレン基を表す。 E represents a group selected from a simple bond, —NHCOR 26 CONH— or D. R 26 represents a substituted or unsubstituted alkylene group, alkenylene group, arylene group, arylene alkylene group, or alkylene arylene group.

1、Z2は−N=C−基は共に5員または6員環を形成するのに必要な非金属原子群(≡N+[X-]−なる4級塩の形でEに連結してもよい)を表す。 Z 1 and Z 2 are linked to E in the form of a quaternary salt of a group of nonmetallic atoms (≡N + [X ] — necessary for forming a 5-membered or 6-membered ring together with —N═C— group. May be).

nは5〜300の整数を表す。   n represents an integer of 5 to 300.

中でも、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく、ダイオキシンの発生防止等環境安全性の観点から、塩素イオンを含まず、かつ、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく用いられる。   Among them, a quaternary ammonium cationic polymer having molecular crosslinking is particularly preferable, and a quaternary ammonium cationic polymer not containing chlorine ions and having molecular crosslinking is particularly preferably used from the viewpoint of environmental safety such as prevention of dioxin generation.

以下に、本発明に係るイオン性高分子化合物の具体例を挙げるが本発明はこれらに限定されない。   Specific examples of the ionic polymer compound according to the present invention are given below, but the present invention is not limited thereto.

Figure 2006010923
Figure 2006010923

Figure 2006010923
Figure 2006010923

Figure 2006010923
Figure 2006010923

Figure 2006010923
Figure 2006010923

Figure 2006010923
Figure 2006010923

Figure 2006010923
Figure 2006010923

Figure 2006010923
Figure 2006010923

本発明に用いられるイオン性高分子化合物は、これを単独で用いてもよいし、或いは数種類のイオン性高分子化合物を組み合わせて使用してもよい。本発明に係るクリアハードコート層の表面側の樹脂層におけるイオン性高分子化合物の含有量は、該樹脂層の固形分の2〜50質量%であり、好ましくは5〜30質量%である。   The ionic polymer compound used in the present invention may be used alone or in combination with several kinds of ionic polymer compounds. The content of the ionic polymer compound in the resin layer on the surface side of the clear hard coat layer according to the present invention is 2 to 50% by mass, preferably 5 to 30% by mass, based on the solid content of the resin layer.

更に、本発明においては、屈折率を調整したり、滑り性、耐傷性或いは防眩性を付与するため、帯電防止機能のない樹脂層及び帯電防止機能を有する樹脂層中に微粒子を添加をすることが好ましい。特に、表面側の活性エネルギー硬化樹脂層中に微粒子を屈折率上昇剤として添加することが好ましい。添加する微粒子として、無機金属微粒子が好ましく、例えば、無機金属微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることが出来る。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウムなどが好ましく用いられる。   Furthermore, in the present invention, in order to adjust the refractive index and to provide slipperiness, scratch resistance or antiglare properties, fine particles are added to a resin layer having no antistatic function and a resin layer having an antistatic function. It is preferable. In particular, it is preferable to add fine particles as a refractive index increasing agent in the active energy curable resin layer on the surface side. As the fine particles to be added, inorganic metal fine particles are preferable. For example, as the inorganic metal fine particles, silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, Mention may be made of talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. In particular, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.

また、本発明に用いられる金属酸化物微粒子はコア/シェル構造を有していてもよく、コア/シェル構造では、シェルをコアの周りに1層形成させてもよいし、更に複数層のシェルを形成させてもよい。また、コア領域は、シェルにより完全に被覆されていることが好ましいが、部分的に被覆された状態でもよい。コアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム、酸化亜鉛、酸化セリウム、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ等を用いることが出来るが、ルチル型の酸化チタンを主成分とすることが好ましい。   Further, the metal oxide fine particles used in the present invention may have a core / shell structure. In the core / shell structure, one shell may be formed around the core, or a plurality of shells may be formed. May be formed. The core region is preferably completely covered with the shell, but may be partially covered. For the core, titanium oxide (rutile type, anatase type, amorphous type, etc.), zirconium oxide, zinc oxide, cerium oxide, tin-doped indium oxide, antimony-doped tin oxide, etc. can be used. It is preferable that titanium is a main component.

シェルは金属の酸化物から形成することが好ましく、具体的には、酸化アルミニウム、酸化ジルコニウム、酸化珪素からなる群から選択される少なくとも1種を含むことが好ましく、特に酸化珪素が好ましい。   The shell is preferably formed from a metal oxide. Specifically, the shell preferably includes at least one selected from the group consisting of aluminum oxide, zirconium oxide, and silicon oxide, and silicon oxide is particularly preferable.

また有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコーン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物に加えることが出来る。特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)が挙げられる。   Organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicone resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, and melamine resin powder. Polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, or polyfluoroethylene resin powder can be added to the ultraviolet curable resin composition. Particularly preferred are cross-linked polystyrene particles (for example, SX-130H, SX-200H, SX-350H, manufactured by Soken Chemical) and polymethyl methacrylate-based particles (for example, MX150, MX300, manufactured by Soken Chemical).

これらの微粒子粉末の平均粒径としては、0.005〜5μmが好ましく0.01〜4μmであることが特に好ましい。また、粒径の異なる2種以上の微粒子を含有することが好ましい。紫外線硬化樹脂組成物と微粒子の割合は、樹脂組成物100質量部に対して、0.1〜30質量部となるように配合することが望ましい。   The average particle size of these fine particle powders is preferably 0.005 to 5 μm, and particularly preferably 0.01 to 4 μm. Moreover, it is preferable to contain 2 or more types of microparticles | fine-particles from which a particle size differs. The proportion of the ultraviolet curable resin composition and the fine particles is desirably blended so as to be 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition.

本発明に係るハードコート層の屈折率は、低反射性フィルムを得るための光学設計上から屈折率が1.55以上であることが好ましく、1.55〜2.0、特に1.6〜1.7であることが好ましい。ハードコート層の屈折率は添加する微粒子或いは無機バインダーの屈折率や含有量によって調整することが出来る。   The refractive index of the hard coat layer according to the present invention is preferably 1.55 or more from the viewpoint of optical design for obtaining a low reflective film, 1.55 to 2.0, particularly 1.6 to It is preferably 1.7. The refractive index of a hard-coat layer can be adjusted with the refractive index and content of the microparticles | fine-particles or inorganic binder to add.

この様にして形成されたハードコート層は、JIS B 0601に規定される中心線平均粗さRaが1〜50nmのハードコート層であっても、Raが0.1〜1μm程度の防眩層であってもよい。   Even if the hard coat layer formed in this way is a hard coat layer having a center line average roughness Ra of 1 to 50 nm as defined in JIS B 0601, an anti-glare layer having an Ra of about 0.1 to 1 μm. It may be.

ハードコート層の塗設方法について説明する。   A method for coating the hard coat layer will be described.

基材側の帯電防止機能のない樹脂層を第1ハードコート層、表面側の帯電防止機能を有する樹脂層を第2ハードコート層とした時に、第1及び第2ハードコート層の塗設方法は任意であるが、生産段階ではグラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押し出しコーター、エアードクターコーター、スリットコーター等公知の方法を用いることが出来る。   When the resin layer having no antistatic function on the substrate side is the first hard coat layer and the resin layer having the antistatic function on the surface side is the second hard coat layer, the first and second hard coat layer coating methods In the production stage, known methods such as a gravure coater, spinner coater, wire bar coater, roll coater, reverse coater, extrusion coater, air doctor coater, slit coater can be used.

第1ハードコート層を塗設した後に、該層を乾燥した後、第2ハードコート層を塗設し紫外線硬化/乾燥させる従来の方法では、平面性の劣化や層間での干渉縞の発生が見られるが、本発明は、第1ハードコート層の上に乾燥工程を経ずに、第2ハードコート層をwet on wetで積層し、2層を同時に紫外線を使用して硬化/乾燥する方法である。   In the conventional method in which the first hard coat layer is applied, the layer is dried, and then the second hard coat layer is applied and UV cured / dried, flatness is deteriorated and interference fringes are generated between the layers. As can be seen, the present invention is a method of laminating a second hard coat layer wet-on-wet on a first hard coat layer without curing, and curing / drying the two layers simultaneously using ultraviolet light. It is.

この塗設方法によれば、第1ハードコート層からのラジカルの供給により酸素による硬化阻害を防止出来、第1ハードコート層を塗設後乾燥を行ったり第2ハードコート層の塗設位置まで搬送したりして第1ハードコート層が空気に触れることで、第1ハードコート層表面に酸素が取り込まれることによる硬化阻害を回避することが出来る。   According to this coating method, the inhibition of curing by oxygen can be prevented by supplying radicals from the first hard coat layer, and drying can be performed after the first hard coat layer is coated or the coating position of the second hard coat layer is reached. When the first hard coat layer is exposed to air by being conveyed, it is possible to avoid inhibition of curing due to oxygen being taken into the surface of the first hard coat layer.

特に本発明の帯電防止層を第2ハードコート層に適用し、層厚を薄くした場合、第1ハードコート層の表面に取り込まれた酸素の影響を顕著に受けるので、本発明の同時重層塗布方式は本発明の目的を達成する上で優れた方式である。   In particular, when the antistatic layer of the present invention is applied to the second hard coat layer and the layer thickness is reduced, the influence of oxygen taken into the surface of the first hard coat layer is significantly affected. The system is an excellent system for achieving the object of the present invention.

更に、上記したように乾燥工程を経ずに第1ハードコート層の上に第2ハードコート層をwet on wetで積層することにより、界面の混合を最も良好な状態に調整することが出来、微粒子の分散を維持しながら酸素による影響のない造膜を行うことが出来、より強固な膜形成が可能になる。更に第1ハードコート層と第2ハードコート層の界面をなくし界面起因による干渉ムラも防止出来る。   Furthermore, as described above, by laminating the second hard coat layer on the first hard coat layer without passing through the drying step, the interface mixing can be adjusted to the best state, Film formation without the influence of oxygen can be performed while maintaining the dispersion of fine particles, and a stronger film can be formed. Further, the interface between the first hard coat layer and the second hard coat layer is eliminated, and interference unevenness due to the interface can be prevented.

前記第1ハードコート層の上に乾燥工程を経ずに、第2ハードコート層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。本発明では、複数のスリットを有するスロットダイによる同時重層が好ましい。   In order to laminate the second hard coat layer on the first hard coat layer without a drying process, the layers are stacked one after another by an extrusion coater or simultaneously by a slot die having a plurality of slits. Multiple layers may be formed. In the present invention, simultaneous multi-layering by a slot die having a plurality of slits is preferable.

また、基材側の第1ハードコート層の塗布液及び表面側の第2ハードコート層の塗布液を同時重層塗布した直後に、塗膜が半硬化状態になるように活性エネルギー線照射を行うことが好ましい。塗膜を半硬化状態にすることにより、塗膜粘度を上昇させることが出来、比較的粘度の低い塗布液の場合、層境界での上記金属酸化物粒子の拡散を抑制出来る為、添加した機能性粒子の性能を損なわずに層を形成することが出来る。   Also, immediately after the simultaneous application of the coating solution for the first hard coat layer on the substrate side and the coating solution for the second hard coat layer on the surface side, irradiation with active energy rays is performed so that the coating film becomes semi-cured. It is preferable. By making the coating film semi-cured, the viscosity of the coating film can be increased. In the case of a coating solution having a relatively low viscosity, the diffusion of the metal oxide particles at the layer boundary can be suppressed. The layer can be formed without impairing the performance of the conductive particles.

塗布直後の活性エネルギー線の照射は、後述する光源を塗布機と塗布方向に直列に配置すればよく、例えば塗布幅方向にグラスファイバーを介して活性エネルギー線を導き照射する方法等もとることが出来る。塗布から活性エネルギー線を照射するまでの時間は、3分以内が好ましく、1分以内が更に好ましく、30秒以内が特に好ましい。   The irradiation of active energy rays immediately after coating may be performed by arranging a light source, which will be described later, in series with the coating machine and the coating direction, for example, a method of guiding and irradiating active energy rays through the glass fiber in the coating width direction. I can do it. The time from application to irradiation with active energy rays is preferably within 3 minutes, more preferably within 1 minute, and particularly preferably within 30 seconds.

活性エネルギー線源としては紫外線を使用することが好ましく、高圧水銀灯、低圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク等の光源が利用出来る。照射条件はそれぞれのランプによって異なるが、照射光量は20〜10000mJ/cm2程度あればよく、好ましくは、50〜2000mJ/cm2である。照射時間は0.5秒〜5分がよく、紫外線硬化性樹脂の硬化効率、作業効率から3秒〜2分がより好ましい。フィラーを含まないクリア塗膜の硬化には高圧水銀灯、フィラーを含む場合や厚膜の硬化にはメタルハライドランプが一般的に使用される。また第2ハードコート層の硬化には電子線を利用することも可能で、具体的にはコックロフトワルト型、バンデクラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000KeV、好ましくは100〜300KeVのエネルギーを有する電子線が利用出来る。 Ultraviolet light is preferably used as the active energy ray source, and light sources such as a high pressure mercury lamp, a low pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, and a xenon arc can be used. The irradiation conditions vary depending on individual lamps, but the amount of light irradiated may be any degree 20~10000mJ / cm 2, preferably from 50~2000mJ / cm 2. The irradiation time is preferably 0.5 seconds to 5 minutes, and more preferably 3 seconds to 2 minutes in view of the curing efficiency and work efficiency of the ultraviolet curable resin. In general, a high-pressure mercury lamp is used for curing a clear coating film that does not contain a filler, and a metal halide lamp is used for curing a thick film when it contains a filler. It is also possible to use an electron beam to cure the second hard coat layer. Specifically, the cockloftwald type, the bandecraft type, the resonant transformer type, the insulated core transformer type, the linear type, the dynamitron type, the high frequency An electron beam having an energy of 50 to 1000 KeV, preferably 100 to 300 KeV, emitted from various electron beam accelerators such as a mold can be used.

活性エネルギー線硬化樹脂層を塗設する際の溶媒としては、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、或いはこれらを混合し利用出来る。好ましくは、プロピレングリコールモノ(炭素数1〜4のアルキル基)アルキルエーテルまたはプロピレングリコールモノ(炭素数1〜4のアルキル基)アルキルエーテルエステルを5質量%以上、更に好ましくは5〜80質量%以上含有する溶媒が用いられる。   As a solvent for coating the active energy ray-curable resin layer, for example, a hydrocarbon, an alcohol, a ketone, an ester, a glycol ether, or other solvent is appropriately selected, or these are mixed. Available. Preferably, propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether or propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is 5% by mass or more, more preferably 5 to 80% by mass or more. The containing solvent is used.

次いで、本発明のハードコートフィルム上に反射防止層が設けられた反射防止フィルムの構成について説明する。   Next, the configuration of the antireflection film in which an antireflection layer is provided on the hard coat film of the present invention will be described.

本発明の反射防止フィルムの基本的な構成を説明する。例えば、反射防止フィルムは、透明プラスチック基材/ハードコート層/低屈折率層、透明プラスチック基材/ハードコート層/高屈折率層/低屈折率層、透明プラスチック基材/ハードコート層/中屈折率層/高屈折率層/低屈折率層の順序の層構成を有する。上記ハードコート層は、前記したように少なくとも2層構成のハードコート層であり、ハードコート層の屈折率が、中屈折率層若しくは高屈折率層の屈折率を有していてもよい。透明支持体、中屈折率層、高屈折率層及び低屈折率層は、以下の関係を満足する屈折率を有する。   The basic structure of the antireflection film of the present invention will be described. For example, the antireflection film is made of transparent plastic substrate / hard coat layer / low refractive index layer, transparent plastic substrate / hard coat layer / high refractive index layer / low refractive index layer, transparent plastic substrate / hard coat layer / medium. It has a layer structure in the order of refractive index layer / high refractive index layer / low refractive index layer. The hard coat layer is a hard coat layer having at least two layers as described above, and the refractive index of the hard coat layer may have a refractive index of a medium refractive index layer or a high refractive index layer. The transparent support, the middle refractive index layer, the high refractive index layer, and the low refractive index layer have a refractive index that satisfies the following relationship.

低屈折率層の屈折率<透明プラスチック基材の屈折率<中屈折率層の屈折率<高屈折率層の屈折率。   The refractive index of the low refractive index layer <the refractive index of the transparent plastic substrate <the refractive index of the medium refractive index layer <the refractive index of the high refractive index layer.

中屈折率層、高屈折率層及び低屈折率層を有する反射防止フィルムでは、特開昭59−50401号に記載されているように、中屈折率層が下記数式(1)を、高屈折率層が下記数式(2)を、低屈折率層が下記数式(3)をそれぞれ満足することにより、反射防止フィルムとしての平均反射率を更に下げる設計が可能となり好ましい。   In an antireflection film having a medium refractive index layer, a high refractive index layer, and a low refractive index layer, as described in JP-A No. 59-50401, the medium refractive index layer represents the following formula (1), When the refractive index layer satisfies the following mathematical formula (2) and the low refractive index layer satisfies the following mathematical formula (3), it is possible to further reduce the average reflectance as an antireflection film.

(hλ/4)×0.7<n33<(hλ/4)×1.3・・・数式(1)
数式(1)中でも、hは正の整数(一般に1、2または3)であり、n3は中屈折率層の屈折率であり、そして、d3は中屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
(Hλ / 4) × 0.7 <n 3 d 3 <(hλ / 4) × 1.3 (1)
In formula (1), h is a positive integer (generally 1, 2 or 3), n 3 is the refractive index of the medium refractive index layer, and d 3 is the film thickness (nm) of the medium refractive index layer. It is. Further, λ is a wavelength, which is a value in the range of 350 to 800 (nm).

(jλ/4)×0.7<n44<(jλ/4)×1.3・・・数式(2)
数式(2)中でも、jは正の整数(一般に1、2または3)であり、n4は高屈折率層の屈折率であり、そして、d4は高屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
(Jλ / 4) × 0.7 <n 4 d 4 <(jλ / 4) × 1.3 (2)
In formula (2), j is a positive integer (generally 1, 2 or 3), n 4 is the refractive index of the high refractive index layer, and d 4 is the film thickness (nm) of the high refractive index layer. It is. Further, λ is a wavelength, which is a value in the range of 350 to 800 (nm).

(kλ/4)×0.7<n55<(kλ/4)×1.3・・・数式(3)
数式(3)中でも、kは正の奇数(一般に1)であり、n5は低屈折率層の屈折率であり、そして、d5は低屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
(Kλ / 4) × 0.7 <n 5 d 5 <(kλ / 4) × 1.3 (3)
In Equation (3), k is a positive odd number (generally 1), n 5 is the refractive index of the low refractive index layer, and d 5 is the film thickness (nm) of the low refractive index layer. Further, λ is a wavelength, which is a value in the range of 350 to 800 (nm).

また、本発明においては、ハードコート層或いは高屈折率層に凹凸を付与して防眩性反射防止フィルムとすることも好ましい。   Moreover, in this invention, it is also preferable to give an unevenness | corrugation to a hard-coat layer or a high refractive index layer, and to set it as an anti-glare antireflection film.

この他、透明プラスチック基材/ハードコート層(防眩層)/高屈折率層/低屈折率層/高屈折率層/低屈折率層の順の層構成も好ましい構成である。表面の低屈折率層に防眩性を付与することも出来、表面に防眩層を設けてもよい。   In addition, a layer configuration in the order of transparent plastic substrate / hard coat layer (antiglare layer) / high refractive index layer / low refractive index layer / high refractive index layer / low refractive index layer is also a preferable configuration. An antiglare property can be imparted to the low refractive index layer on the surface, and an antiglare layer may be provided on the surface.

〈高屈折率層及び中屈折率〉
本発明においては、反射率の低減のために、透明プラスチック基材若しくはハードコート層を付与した透明プラスチック基材と低屈折率層との間に、高屈折率層を設けることが好ましい。また、透明プラスチック基材と高屈折率層との間に中屈折率層を設けることは、反射率の低減のために更に好ましい。高屈折率層の屈折率は、1.55〜2.30であることが好ましく、1.57〜2.20であることが更に好ましい。中屈折率層の屈折率は、透明支持体の屈折率と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましい。高屈折率層及び中屈折率層の厚さは、5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。高屈折率層及び中屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。高屈折率層及び中屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることが更に好ましく、3H以上であることが最も好ましい。
<High refractive index layer and medium refractive index>
In the present invention, in order to reduce the reflectance, it is preferable to provide a high refractive index layer between the transparent plastic substrate or the transparent plastic substrate provided with the hard coat layer and the low refractive index layer. In addition, it is more preferable to provide an intermediate refractive index layer between the transparent plastic substrate and the high refractive index layer in order to reduce the reflectance. The refractive index of the high refractive index layer is preferably 1.55 to 2.30, and more preferably 1.57 to 2.20. The refractive index of the medium refractive index layer is adjusted to be an intermediate value between the refractive index of the transparent support and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.55-1.80. The thickness of the high refractive index layer and the medium refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The haze of the high refractive index layer and the medium refractive index layer is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less. The strength of the high refractive index layer and the medium refractive index layer is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher, with a pencil hardness of 1 kg.

本発明における中、高屈折率層は下記一般式(1)で表される有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物を含有する塗布液を塗布し乾燥させて形成させた屈折率1.55〜2.5の層であることが好ましい。   In the present invention, the high refractive index layer is formed by applying and drying a coating solution containing a monomer, oligomer or hydrolyzate of an organic titanium compound represented by the following general formula (1). A layer of .55 to 2.5 is preferred.

一般式(1)
Ti(OR14
式中、R1としては炭素数1〜8の脂肪族炭化水素基がよいが、好ましくは炭素数1〜4の脂肪族炭化水素基である。また、有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物は、アルコキシド基が加水分解を受けて−Ti−O−Ti−のように反応して架橋構造を作り、硬化した層を形成する。
General formula (1)
Ti (OR 1 ) 4
In the formula, R 1 is preferably an aliphatic hydrocarbon group having 1 to 8 carbon atoms, preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms. Moreover, the monomer, oligomer, or hydrolyzate thereof of an organic titanium compound reacts like -Ti-O-Ti- when an alkoxide group is hydrolyzed to form a crosslinked structure, thereby forming a cured layer.

本発明に用いられる有機チタン化合物のモノマー、オリゴマーとしては、Ti(OCH34、Ti(OC254、Ti(O−n−C374、Ti(O−i−C374、Ti(O−n−C494、Ti(O−n−C374の2〜10量体、Ti(O−i−C374の2〜10量体、Ti(O−n−C494の2〜10量体等が好ましい例として挙げられる。これらは単独で、または2種以上組み合わせて用いることが出来る。中でもTi(O−n−C374、Ti(O−i−C374、Ti(O−n−C494、Ti(O−n−C374の2〜10量体、Ti(O−n−C494の2〜10量体が特に好ましい。 Examples of the monomer or oligomer of the organic titanium compound used in the present invention include Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (On-C 3 H 7 ) 4 , Ti (O-i- C 3 H 7) 4, Ti (O-n-C 4 H 9) 4, Ti (O-n-C 3 H 7) 4 2-10 mer, Ti (O-i-C 3 H 7) Preferred examples include 4 to 10 mer of 4 and 2 to 10 mer of Ti (On-C 4 H 9 ) 4 . These may be used alone or in combination of two or more. Of these Ti (O-n-C 3 H 7) 4, Ti (O-i-C 3 H 7) 4, Ti (O-n-C 4 H 9) 4, Ti (O-n-C 3 H 7 ) 4 to 10-mer and Ti (On-C 4 H 9 ) 4 to 10-mer are particularly preferable.

本発明における中、高屈折率層用塗布液は、水と後述する有機溶媒が順次添加された溶液中に上記有機チタン化合物を添加することが好ましい。水を後から添加した場合は、加水分解/重合が均一に進行せず、白濁が発生したり、膜強度が低下する。水と有機溶媒は添加された後、良く混合させるために攪拌し混合溶解されていることが好ましい。   In the present invention, it is preferable that the organic titanium compound is added to a solution in which water and an organic solvent described later are sequentially added to the coating solution for the high refractive index layer. When water is added later, hydrolysis / polymerization does not proceed uniformly, and white turbidity occurs or film strength decreases. After the water and the organic solvent are added, it is preferable that they are stirred and mixed and dissolved in order to mix well.

また、別法として有機チタン化合物と有機溶媒を混合させておき、この混合溶液を、上記水と有機溶媒の混合攪拌された溶液中に添加することも好ましい態様である。   Further, as another method, it is also a preferred embodiment that an organic titanium compound and an organic solvent are mixed and this mixed solution is added to the mixed and stirred solution of water and the organic solvent.

また、水の量は有機チタン化合物1モルに対して、0.25〜3モルの範囲であることが好ましい。0.25モル未満であると、加水分解、重合の進行が不十分で膜強度が低下する。3モルを超えると加水分解、重合が進行し過ぎて、TiO2の粗大粒子が発生し白濁するため好ましくない。従って水の量は上記範囲で調整する必要がある。 Moreover, it is preferable that the quantity of water is the range of 0.25-3 mol with respect to 1 mol of organic titanium compounds. When the amount is less than 0.25 mol, hydrolysis and polymerization are not sufficiently progressed and the film strength is lowered. If it exceeds 3 moles, hydrolysis and polymerization will proceed excessively, resulting in generation of coarse TiO 2 particles and white turbidity. Therefore, the amount of water needs to be adjusted within the above range.

また、水の含有率は塗布液総量に対して10質量%未満であることが好ましい。水の含有率を塗布液総量に対して10質量%以上にすると、塗布液の経時安定が劣り白濁を生じたりするため好ましくない。   Moreover, it is preferable that the content rate of water is less than 10 mass% with respect to the coating liquid total amount. If the water content is 10% by mass or more with respect to the total amount of the coating solution, it is not preferable because the stability of the coating solution with time deteriorates and white turbidity occurs.

本発明に用いられる有機溶媒としては、水混和性の有機溶媒であることが好ましい。水混和性の有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。これらの有機溶媒の使用量は、前述したように、水の含有率が塗布液総量に対して10質量%未満であるように、水と有機溶媒のトータルの使用量を調整すればよい。   The organic solvent used in the present invention is preferably a water-miscible organic solvent. Examples of the water-miscible organic solvent include alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol, etc.), many Monohydric alcohols (for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, etc.), polyvalent Alcohol ethers (eg, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether) , Ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethylene glycol mono Phenyl ether, propylene glycol monophenyl ether, etc.), amines (eg, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenediamine) , Triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine, tetramethylpropylenediamine, etc.), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.), heterocyclic rings (For example, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, etc.), sulfoxides (for example, dimethyl sulfoxide, etc.), sulfones (for example, , Sulfolane and the like), urea, acetonitrile, acetone and the like, and alcohols, polyhydric alcohols, and polyhydric alcohol ethers are particularly preferable. The amount of these organic solvents used may be adjusted as described above so that the water content is less than 10% by mass with respect to the total amount of the coating solution.

本発明に用いられる有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物は、単独で用いる場合は、塗布液に含まれる固形分に対し50.0質量%〜98.0質量%を占めていることが望ましい。固形分比率は50質量%〜90質量%がより好ましく、55質量%〜90質量%が更に好ましい。この他、塗布組成物には有機チタン化合物のポリマー(予め有機チタン化合物の加水分解を行って架橋したもの)或いは酸化チタン微粒子を添加することも好ましい。   The monomer, oligomer or hydrolyzate thereof used in the present invention occupies 50.0% by mass to 98.0% by mass with respect to the solid content contained in the coating solution when used alone. It is desirable. The solid content ratio is more preferably 50% by mass to 90% by mass, and further preferably 55% by mass to 90% by mass. In addition, it is also preferable to add to the coating composition a polymer of an organic titanium compound (a product obtained by crosslinking the organic titanium compound in advance by hydrolysis) or titanium oxide fine particles.

本発明における高屈折率層及び中屈折率層は、微粒子として金属酸化物粒子を含んでもよく、更にバインダーポリマーを含んでもよい。   The high refractive index layer and middle refractive index layer in the present invention may contain metal oxide particles as fine particles, and may further contain a binder polymer.

上記塗布液調製法で加水分解/重合した有機チタン化合物と金属酸化物粒子を組み合わせると、金属酸化物粒子と加水分解/重合した有機チタン化合物とが強固に接着し、粒子のもつ硬さと均一膜の柔軟性を兼ね備えた強い塗膜を得ることが出来る。   When the organic titanium compound hydrolyzed / polymerized by the coating liquid preparation method and the metal oxide particles are combined, the metal oxide particles and the hydrolyzed / polymerized organic titanium compound are firmly bonded, and the hardness and uniform film of the particles It is possible to obtain a strong coating film having both flexibility.

高屈折率層及び中屈折率層に用いる金属酸化物粒子は、屈折率が1.80〜2.80であることが好ましく、1.90〜2.80であることが更に好ましい。金属酸化物粒子の1次粒子の重量平均径は、1〜150nmであることが好ましく、1〜100nmであることが更に好ましく、1〜80nmであることが最も好ましい。層中での金属酸化物粒子の重量平均径は、1〜200nmであることが好ましく、5〜150nmであることがより好ましく、10〜100nmであることが更に好ましく、10〜80nmであることが最も好ましい。金属酸化物粒子の平均粒径は、20〜30nm以上であれば光散乱法により、20〜30nm以下であれば電子顕微鏡写真により測定される。金属酸化物粒子の比表面積は、BET法で測定された値として、10〜400m2/gであることが好ましく、20〜200m2/gであることが更に好ましく、30〜150m2/gであることが最も好ましい。 The metal oxide particles used for the high refractive index layer and the medium refractive index layer preferably have a refractive index of 1.80 to 2.80, and more preferably 1.90 to 2.80. The weight average diameter of the primary particles of the metal oxide particles is preferably 1 to 150 nm, more preferably 1 to 100 nm, and most preferably 1 to 80 nm. The weight average diameter of the metal oxide particles in the layer is preferably 1 to 200 nm, more preferably 5 to 150 nm, still more preferably 10 to 100 nm, and more preferably 10 to 80 nm. Most preferred. The average particle diameter of the metal oxide particles is measured by a light scattering method if it is 20-30 nm or more, and by an electron micrograph if it is 20-30 nm or less. The specific surface area of metal oxide particles, as measured values by the BET method is preferably from 10 to 400 m 2 / g, more preferably from 20 to 200 m 2 / g, with 30 to 150 m 2 / g Most preferably it is.

金属酸化物粒子の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物であり、具体的には二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、及び酸化ジルコニウムが挙げられる。中でも、酸化チタン、酸化錫及び酸化インジウムが特に好ましい。金属酸化物粒子は、これらの金属の酸化物を主成分とし、更に他の元素を含むことが出来る。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びS等が挙げられる。   Examples of the metal oxide particles include at least one selected from Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S. Specific examples of the metal oxide include titanium dioxide (eg, rutile, rutile / anatase mixed crystal, anatase, amorphous structure), tin oxide, indium oxide, zinc oxide, and zirconium oxide. Of these, titanium oxide, tin oxide, and indium oxide are particularly preferable. The metal oxide particles are mainly composed of oxides of these metals and can further contain other elements. The main component means a component having the largest content (mass%) among the components constituting the particles. Examples of other elements include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S.

金属酸化物粒子は表面処理されていることが好ましい。表面処理は、無機化合物または有機化合物を用いて実施することが出来る。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。中でも、シランカップリング剤が最も好ましい。   The metal oxide particles are preferably surface-treated. The surface treatment can be performed using an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include alumina, silica, zirconium oxide and iron oxide. Of these, alumina and silica are preferable. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, a silane coupling agent is most preferable.

具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。   Specific examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane. Methoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxy Propyltriethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ-acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, Examples include N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.

また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。   Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimeth Shishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.

これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。   Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, and γ-methacryloyloxypropylmethyldiethoxy having a disubstituted alkyl group with respect to silicon Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, and γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxyp Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.

2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。   Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and its hydrolyzate.

カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施出来る。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。   The surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and allowing the dispersion to stand at a temperature from room temperature to 60 ° C. for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid), organic acids (for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.

これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の有機チタン化合物及び金属酸化物粒子の表面が反応し易く、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えることも好ましい。この加水分解に用いた水も有機チタン化合物の加水分解/重合に用いることが出来る。   These silane coupling agents are preferably hydrolyzed with a necessary amount of water in advance. When the silane coupling agent is hydrolyzed, the surfaces of the organic titanium compound and the metal oxide particles described above are easy to react and a stronger film is formed. It is also preferable to add a hydrolyzed silane coupling agent to the coating solution in advance. The water used for this hydrolysis can also be used for the hydrolysis / polymerization of the organic titanium compound.

本発明では2種類以上の表面処理を組み合わせて処理されていても構わない。金属酸化物粒子の形状は、米粒状、球形状、立方体状、紡錘形状或いは不定形状であることが好ましい。2種類以上の金属酸化物粒子を高屈折率層及び中屈折率層に併用してもよい。   In the present invention, the treatment may be performed by combining two or more kinds of surface treatments. The shape of the metal oxide particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape. Two or more kinds of metal oxide particles may be used in combination in the high refractive index layer and the middle refractive index layer.

高屈折率層及び中屈折率層中の金属酸化物粒子の割合は、5〜90質量%であることが好ましく、より好ましくは10〜85質量%であり、更に好ましくは20〜80質量%である。微粒子を含有する場合に、前述の有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物の割合は、塗布液に含まれる固形分に対し1〜50質量%であり、好ましくは1〜40質量%、更に好ましくは1〜30質量%である。   The ratio of the metal oxide particles in the high refractive index layer and the medium refractive index layer is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, and still more preferably 20 to 80% by mass. is there. In the case of containing fine particles, the proportion of the monomer, oligomer or hydrolyzate thereof described above is 1 to 50% by mass, preferably 1 to 40% by mass, based on the solid content contained in the coating liquid. More preferably, it is 1-30 mass%.

上記金属酸化物粒子は、媒体に分散した分散体の状態で、高屈折率層及び中屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。   The metal oxide particles are supplied to a coating solution for forming a high refractive index layer and a medium refractive index layer in a dispersion state dispersed in a medium. As a dispersion medium for metal oxide particles, it is preferable to use a liquid having a boiling point of 60 to 170 ° C. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ester (eg, methyl acetate, ethyl acetate). , Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Group hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

また金属酸化物粒子は、分散機を用いて媒体中に分散することが出来る。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。   The metal oxide particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.

本発明における高屈折率層及び中屈折率層は、架橋構造を有するポリマー(以下、架橋ポリマーともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。   In the high refractive index layer and the medium refractive index layer in the present invention, it is preferable to use a polymer having a crosslinked structure (hereinafter also referred to as a crosslinked polymer) as a binder polymer. Examples of the crosslinked polymer include polymers having a saturated hydrocarbon chain such as polyolefin (hereinafter collectively referred to as polyolefin), and crosslinked products such as polyether, polyurea, polyurethane, polyester, polyamine, polyamide, and melamine resin. Among them, a crosslinked product of polyolefin, polyether and polyurethane is preferred, a crosslinked product of polyolefin and polyether is more preferred, and a crosslinked product of polyolefin is most preferred. Further, it is further preferable that the crosslinked polymer has an anionic group. The anionic group has a function of maintaining the dispersion state of the inorganic fine particles, and the crosslinked structure has a function of imparting a film forming ability to the polymer and strengthening the film. The anionic group may be directly bonded to the polymer chain or may be bonded to the polymer chain via a linking group, but is bonded to the main chain as a side chain via the linking group. Is preferred.

アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることが更に好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。   Examples of the anionic group include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono). Of these, sulfonic acid groups and phosphoric acid groups are preferred. Here, the anionic group may be in a salt state. The cation that forms a salt with the anionic group is preferably an alkali metal ion. Moreover, the proton of the anionic group may be dissociated. The linking group that binds the anionic group and the polymer chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof. The crosslinked polymer which is a preferable binder polymer is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure. In this case, the ratio of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. preferable. The repeating unit may have two or more anionic groups.

アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基または4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基または4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。尚、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位或いは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。   The crosslinked polymer having an anionic group may contain other repeating units (a repeating unit having neither an anionic group nor a crosslinked structure). Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring. The amino group or quaternary ammonium group has a function of maintaining the dispersed state of the inorganic fine particles, like the anionic group. The benzene ring has a function of increasing the refractive index of the high refractive index layer. The amino group, the quaternary ammonium group, and the benzene ring can obtain the same effect even if they are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure.

上記アミノ基または4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基または4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、或いは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基または4級アンモニウム基は、2級アミノ基、3級アミノ基または4級アンモニウム基であることが好ましく、3級アミノ基または4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基または4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1〜12のアルキル基であり、更に好ましくは炭素数1〜6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または4級アンモニウム基とポリマー鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基または4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることが更に好ましく、0.1〜28質量%であることが最も好ましい。   In the crosslinked polymer containing a repeating unit having an amino group or a quaternary ammonium group as a constituent unit, the amino group or quaternary ammonium group may be directly bonded to the polymer chain, or may be a side chain via a linking group. May be bonded to the polymer chain, but the latter is more preferred. The amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, more preferably a tertiary amino group or a quaternary ammonium group. The group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably carbon number. 1 to 6 alkyl groups. The counter ion of the quaternary ammonium group is preferably a halide ion. The linking group that connects the amino group or quaternary ammonium group to the polymer chain is a divalent group selected from —CO—, —NH—, —O—, an alkylene group, an arylene group, and combinations thereof. Is preferred. When the crosslinked polymer includes a repeating unit having an amino group or a quaternary ammonium group, the ratio is preferably 0.06 to 32% by mass, more preferably 0.08 to 30% by mass, Most preferably, it is 0.1-28 mass%.

架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1〜50質量%、より好ましくは5〜40質量%、更に好ましくは10〜30質量%使用される。また、アミノ基または4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基または4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3〜33質量%使用される。塗布液の塗布と同時または塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることが出来る。   The cross-linked polymer is prepared by blending a monomer for generating a cross-linked polymer to prepare a coating solution for forming a high refractive index layer and a medium refractive index layer, and is generated by a polymerization reaction simultaneously with or after coating of the coating solution. Is preferred. Each layer is formed with the production of the crosslinked polymer. The monomer having an anionic group functions as a dispersant for inorganic fine particles in the coating solution. The monomer having an anionic group is preferably used in an amount of 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass with respect to the inorganic fine particles. The monomer having an amino group or a quaternary ammonium group functions as a dispersion aid in the coating solution. The monomer having an amino group or a quaternary ammonium group is preferably used in an amount of 3 to 33% by mass based on the monomer having an anionic group. These monomers can be made to function effectively before application of the coating liquid by a method of forming a crosslinked polymer by a polymerization reaction simultaneously with or after application of the coating liquid.

本発明に用いられるモノマーとしては、2個以上のエチレン性不飽和基を有するモノマーが最も好ましいが、その例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基または4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM−21、PM−2(日本化薬(株)製)、AntoxMS−60、MS−2N、MS−NH4(日本乳化剤(株)製)、アロニックスM−5000、M−6000、M−8000シリーズ(東亞合成化学工業(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX−8289(第一工業製薬(株)製)、NKエステルCB−1、A−SA(新中村化学工業(株)製)、AR−100、MR−100、MR−200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基または4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC−1615(第一工業製薬(株)製)等が挙げられる。   As the monomer used in the present invention, a monomer having two or more ethylenically unsaturated groups is most preferable, and examples thereof include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di ( (Meth) acrylate, 1,4-dichlorohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester Terpolyacrylate), vinylbenzene and its derivatives (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinylsulfone (eg, divinylsulfone), acrylamide (E.g., methylenebisacrylamide) and methacrylamide. Commercially available monomers may be used as the monomer having an anionic group and the monomer having an amino group or a quaternary ammonium group. As a commercially available monomer having a commercially available anionic group, KAYAMAPMPM-21, PM-2 (manufactured by Nippon Kayaku Co., Ltd.), Antox MS-60, MS-2N, MS-NH4 (manufactured by Nippon Emulsifier Co., Ltd.) , Aronix M-5000, M-6000, M-8000 series (manufactured by Toagosei Chemical Industry Co., Ltd.), Biscote # 2000 series (manufactured by Osaka Organic Chemical Industry Co., Ltd.), New Frontier GX-8289 (Daiichi Kogyo Seiyaku) NK ester CB-1, A-SA (manufactured by Shin-Nakamura Chemical Co., Ltd.), AR-100, MR-100, MR-200 (manufactured by Eighth Chemical Industry Co., Ltd.), and the like. It is done. Examples of commercially available monomers having a commercially available amino group or quaternary ammonium group include DMAA (manufactured by Osaka Organic Chemical Industry Co., Ltd.), DMAEA, DMAPAA (manufactured by Kojin Co., Ltd.), and Bremer QA (Nippon Yushi Co., Ltd.). ) And New Frontier C-1615 (Daiichi Kogyo Seiyaku Co., Ltd.).

ポリマーの重合反応は、光重合反応または熱重合反応を用いることが出来る。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる後述する熱重合開始剤、及び光重合開始剤が挙げられる。   For the polymerization reaction of the polymer, a photopolymerization reaction or a thermal polymerization reaction can be used. A photopolymerization reaction is particularly preferable. A polymerization initiator is preferably used for the polymerization reaction. For example, the thermal polymerization initiator mentioned later used in order to form the binder polymer of a hard-coat layer, and a photoinitiator are mentioned.

重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2〜10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。   A commercially available polymerization initiator may be used as the polymerization initiator. In addition to the polymerization initiator, a polymerization accelerator may be used. The addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to 10% by mass of the total amount of monomers. The coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Moreover, it may heat after the photopolymerization reaction after application | coating, and may additionally process the thermosetting reaction of the formed polymer.

中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式または芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることが出来る。   For the medium refractive index layer and the high refractive index layer, it is preferable to use a polymer having a relatively high refractive index. Examples of the polymer having a high refractive index include polystyrene, styrene copolymer, polycarbonate, melamine resin, phenol resin, epoxy resin, and polyurethane obtained by reaction of cyclic (alicyclic or aromatic) isocyanate and polyol. . Polymers having other cyclic (aromatic, heterocyclic, alicyclic) groups and polymers having halogen atoms other than fluorine as substituents can also be used with a high refractive index.

(低屈折率層)
低屈折率層としては、熱または電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)の架橋からなる低屈折率層、ゾルゲル法による低屈折率層、または微粒子とバインダーポリマーを用い、微粒子間または微粒子内部に空隙を有する低屈折率層等が用いられるが、本発明に係る低屈折率層は、主として微粒子とバインダーポリマーを用いる低屈折率層であることが好ましい。特に粒子内部に空隙を有する(中空微粒子ともいう)低屈折率層である場合、より屈折率を低下することが出来好ましい。但し、低屈折率層の屈折率は、低ければ反射防止性能が良化するため好ましいが、低屈折率層の強度付与の観点では困難となる。このバランスから、低屈折率層の屈折率は1.45以下であることが好ましく、更に1.30〜1.50であることが好ましく、1.35〜1.49であることがより好ましく、1.35〜1.45であることが特に好ましい。
(Low refractive index layer)
Examples of the low refractive index layer include a low refractive index layer formed by crosslinking a fluorine-containing resin that is crosslinked by heat or ionizing radiation (hereinafter also referred to as “fluorinated resin before crosslinking”), a low refractive index layer by a sol-gel method, or fine particles. And a binder polymer, and a low refractive index layer or the like having voids between or inside the fine particles is used. The low refractive index layer according to the present invention may be a low refractive index layer mainly using fine particles and a binder polymer. preferable. In particular, a low refractive index layer having voids inside the particles (also referred to as hollow fine particles) is preferable because the refractive index can be further lowered. However, if the refractive index of the low refractive index layer is low, it is preferable because the antireflection performance is improved, but it is difficult from the viewpoint of imparting strength to the low refractive index layer. From this balance, the refractive index of the low refractive index layer is preferably 1.45 or less, further preferably 1.30 to 1.50, more preferably 1.35 to 1.49, It is particularly preferably 1.35 to 1.45.

また、上記低屈折率層の調製方法は適宜組み合わせて用いても構わない。   Moreover, you may use combining the preparation method of the said low-refractive-index layer suitably.

架橋前の含フッ素樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることが出来る。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入出来ることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。   Preferred examples of the fluorine-containing resin before crosslinking include a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group. Specific examples of the fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (produced by Osaka Organic Chemicals) or M-2020 (produced by Daikin)), fully or partially fluorinated vinyl ethers, etc. Is mentioned. As monomers for imparting a crosslinkable group, glycidyl methacrylate, vinyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, vinyl glycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule. , Vinyl monomers having a carboxyl group, hydroxyl group, amino group, sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.). The latter can introduce a crosslinked structure after copolymerization by adding a compound that reacts with a functional group in the polymer and one or more reactive groups. No. 147739. Examples of the crosslinkable group include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene group. When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, it is a thermosetting type. In the case of crosslinking by irradiation with light (preferably ultraviolet rays, electron beams, etc.) by a combination of an ethylenically unsaturated group and a photo radical generator, or an epoxy group and a photo acid generator, the ionizing radiation curable type is used.

また上記モノマー加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることが出来る。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。   Further, in addition to the above monomers, a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking. The monomer that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers (methyl vinyl ether) Etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamides (N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides, Ronitoriru derivatives and the like can be mentioned. In addition, it is also preferable to introduce a polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties. For example, polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.

架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。   The proportion of each of the above monomers used to form the fluorinated copolymer before crosslinking is preferably 20 to 70 mol%, more preferably 40 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer. The amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.

含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることが出来る。   The fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means such as solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization.

架橋前の含フッ素樹脂は、市販されており使用することが出来る。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。   The fluorine-containing resin before crosslinking is commercially available and can be used. Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opstar (JSR), etc. Can be mentioned.

架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。   The low refractive index layer containing a cross-linked fluororesin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.

架橋した含フッ素樹脂を構成成分とする低屈折率層が後述する無機粒子を含有することは、屈折率調整の点から好ましい。また無機微粒子は、表面処理を施して用いることも好ましい。表面処理法としてはプラズマ放電処理やコロナ放電処理のような物理的表面処理とカップリング剤を使用する化学的表面処理があるが、カップリング剤の使用が好ましい。カップリング剤としては、オルガノアルコキシ金属化合物(例、チタンカップリング剤、シランカップリング剤等)が好ましく用いられる。無機微粒子がシリカの場合はシランカップリング剤による処理が特に有効である。   It is preferable from the viewpoint of refractive index adjustment that the low refractive index layer containing a crosslinked fluorine-containing resin as a constituent component contains inorganic particles described later. The inorganic fine particles are preferably used after being subjected to a surface treatment. The surface treatment method includes physical surface treatment such as plasma discharge treatment and corona discharge treatment and chemical surface treatment using a coupling agent, but the use of a coupling agent is preferred. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent, etc.) is preferably used. When the inorganic fine particles are silica, treatment with a silane coupling agent is particularly effective.

また、低屈折率層用の素材として、各種ゾルゲル素材を用いることも出来る。この様なゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びその加水分解物を用いることが出来る。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。   Various sol-gel materials can also be used as the material for the low refractive index layer. As such a sol-gel material, metal alcoholates (alcohols such as silane, titanium, aluminum, and zirconium), organoalkoxy metal compounds, and hydrolysates thereof can be used. In particular, alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. In addition, organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, γ-glycidyloxypropyltrialkoxysilane, γ-glycidyloxypropylmethyl dialkoxysilane, β- (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, γ-methacryloyloxypropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, γ-chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds ( For example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, etc.). In particular, the use of a fluorine-containing silane compound is preferable in terms of lowering the refractive index of the layer and imparting water and oil repellency.

低屈折率層として、無機若しくは有機の微粒子を用い、微粒子間または微粒子内のミクロボイドとして形成した層を用いることも好ましい。微粒子の平均粒径は、0.5〜200nmであることが好ましく、1〜100nmであることがより好ましく、3〜70nmであることが更に好ましく、5〜40nmの範囲であることが最も好ましい。微粒子の粒径は、なるべく均一(単分散)であることが好ましい。   As the low refractive index layer, it is also preferable to use a layer formed using inorganic or organic fine particles and forming microvoids between or within the fine particles. The average particle diameter of the fine particles is preferably 0.5 to 200 nm, more preferably 1 to 100 nm, still more preferably 3 to 70 nm, and most preferably in the range of 5 to 40 nm. The particle diameter of the fine particles is preferably as uniform (monodispersed) as possible.

無機微粒子としては、非晶質であることが好ましい。無機微粒子は、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、金属酸化物または金属ハロゲン化物からなることが更に好ましく、金属酸化物または金属フッ化物からなることが最も好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。二種類の金属を含む無機化合物を用いてもよい。好ましい無機化合物の具体例としては、SiO2、またはMgF2であり、特に好ましくはSiO2である。 The inorganic fine particles are preferably amorphous. The inorganic fine particles are preferably made of a metal oxide, nitride, sulfide or halide, more preferably a metal oxide or a metal halide, and most preferably a metal oxide or a metal fluoride. . As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferable, and Mg, Ca, B and Si are more preferable. An inorganic compound containing two kinds of metals may be used. Specific examples of preferred inorganic compounds are SiO 2 and MgF 2 , and particularly preferred is SiO 2 .

無機微粒子内にミクロボイドを有する粒子は、例えば、粒子を形成するシリカの分子を架橋させることにより形成することが出来る。シリカの分子を架橋させると体積が縮小し、粒子が多孔質になる。ミクロボイドを有する(多孔質)無機微粒子は、ゾル−ゲル法(特開昭53−112732号、特公昭57−9051号に記載)または析出法(APPLIED OPTICS,27巻,3356頁(1988)記載)により、分散物として直接合成することが出来る。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることも出来る。市販の多孔質無機微粒子(例えば、SiO2ゾル)を用いてもよい。 Particles having microvoids in the inorganic fine particles can be formed, for example, by crosslinking silica molecules forming the particles. Crosslinking silica molecules reduces the volume and makes the particles porous. (Porous) inorganic fine particles having microvoids are prepared by a sol-gel method (described in JP-A-53-112732 and JP-B-57-9051) or a precipitation method (described in APPLIED OPTICS, 27, 3356 (1988)). Can be directly synthesized as a dispersion. Further, the powder obtained by the drying / precipitation method can be mechanically pulverized to obtain a dispersion. Commercially available porous inorganic fine particles (for example, SiO 2 sol) may be used.

これらの無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)が好ましい。   These inorganic fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol) and ketone (for example, methyl ethyl ketone, methyl isobutyl ketone) are preferable.

有機微粒子も非晶質であることが好ましい。有機微粒子は、モノマーの重合反応(例えば乳化重合法)により合成されるポリマー微粒子であることが好ましい。有機微粒子のポリマーはフッ素原子を含むことが好ましい。ポリマー中のフッ素原子の割合は、35〜80質量%であることが好ましく、45〜75質量%であることが更に好ましい。また、有機微粒子内に、例えば、粒子を形成するポリマーを架橋させ、体積を縮小させることによりミクロボイドを形成させることも好ましい。粒子を形成するポリマーを架橋させるためには、ポリマーを合成するためのモノマーの20モル%以上を多官能モノマーとすることが好ましい。多官能モノマーの割合は、30〜80モル%であることが更に好ましく、35〜50モル%であることが最も好ましい。上記有機微粒子の合成に用いられるモノマーとしては、含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例として、フルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類及びフッ素化ビニルエーテル類が挙げられる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例としては、オレフィン類(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例えば、スチレン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル類(例えば、メチルビニルエーテル)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例えば、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド類及びアクリルニトリル類が挙げられる。多官能モノマーの例としては、ジエン類(例えば、ブタジエン、ペンタジエン)、多価アルコールとアクリル酸とのエステル(例えば、エチレングリコールジアクリレート、1,4−シクロヘキサンジアクリレート、ジペンタエリスリトールヘキサアクリレート)、多価アルコールとメタクリル酸とのエステル(例えば、エチレングリコールジメタクリレート、1,2,4−シクロヘキサンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート)、ジビニル化合物(例えば、ジビニルシクロヘキサン、1,4−ジビニルベンゼン)、ジビニルスルホン、ビスアクリルアミド類(例えば、メチレンビスアクリルアミド)及びビスメタクリルアミド類が挙げられる。   The organic fine particles are also preferably amorphous. The organic fine particles are preferably polymer fine particles synthesized by polymerization reaction of monomers (for example, emulsion polymerization method). The organic fine particle polymer preferably contains a fluorine atom. The proportion of fluorine atoms in the polymer is preferably 35 to 80% by mass, and more preferably 45 to 75% by mass. It is also preferable to form microvoids in the organic fine particles by, for example, cross-linking the polymer forming the particles and reducing the volume. In order to crosslink the polymer forming the particles, it is preferable to use 20 mol% or more of the monomer for synthesizing the polymer as a polyfunctional monomer. The ratio of the polyfunctional monomer is more preferably 30 to 80 mol%, and most preferably 35 to 50 mol%. Examples of the monomer used for the synthesis of the organic fine particles include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene) as examples of monomers containing fluorine atoms used to synthesize fluorine-containing polymers. , Perfluoro-2,2-dimethyl-1,3-dioxole), fluorinated alkyl esters of acrylic acid or methacrylic acid, and fluorinated vinyl ethers. A copolymer of a monomer containing a fluorine atom and a monomer not containing a fluorine atom may be used. Examples of monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate). , Methacrylates (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate), styrenes (eg, styrene, vinyl toluene, α-methyl styrene), vinyl ethers (eg, methyl vinyl ether), vinyl esters ( Examples thereof include vinyl acetate and vinyl propionate), acrylamides (for example, N-tert-butylacrylamide, N-cyclohexylacrylamide), methacrylamides and acrylonitriles. Examples of polyfunctional monomers include dienes (eg, butadiene, pentadiene), esters of polyhydric alcohols and acrylic acid (eg, ethylene glycol diacrylate, 1,4-cyclohexane diacrylate, dipentaerythritol hexaacrylate), Esters of polyhydric alcohol and methacrylic acid (for example, ethylene glycol dimethacrylate, 1,2,4-cyclohexanetetramethacrylate, pentaerythritol tetramethacrylate), divinyl compounds (for example, divinylcyclohexane, 1,4-divinylbenzene), divinyl Examples include sulfones, bisacrylamides (eg, methylenebisacrylamide) and bismethacrylamides.

粒子間のミクロボイドは、微粒子を少なくとも2個以上積み重ねることにより形成することが出来る。尚、粒径が等しい(完全な単分散の)球状微粒子を最密充填すると、26体積%の空隙率の微粒子間ミクロボイドが形成される。粒径が等しい球状微粒子を単純立方充填すると、48体積%の空隙率の微粒子間ミクロボイドが形成される。実際の低屈折率層では、微粒子の粒径の分布や粒子内ミクロボイドが存在するため、空隙率は上記の理論値からかなり変動する。空隙率を増加させると、低屈折率層の屈折率が低下する。微粒子を積み重ねてミクロボイドを形成すると、微粒子の粒径を調整することで、粒子間ミクロボイドの大きさも適度の(光を散乱せず、低屈折率層の強度に問題が生じない)値に容易に調節出来る。更に、微粒子の粒径を均一にすることで、粒子間ミクロボイドの大きさも均一である光学的に均一な低屈折率層を得ることが出来る。これにより、低屈折率層は微視的にはミクロボイド含有多孔質膜であるが、光学的或いは巨視的には均一な膜にすることが出来る。粒子間ミクロボイドは、微粒子及びポリマーによって低屈折率層内で閉じていることが好ましい。閉じている空隙には、低屈折率層表面に開かれた開口と比較して、低屈折率層表面での光の散乱が少ないとの利点もある。   Microvoids between particles can be formed by stacking at least two fine particles. When spherical particles having the same particle diameter (completely monodispersed) are closely packed, microvoids between particles with a porosity of 26% by volume are formed. When spherical fine particles having the same particle diameter are simply filled with cubic particles, microvoids between fine particles having a porosity of 48% by volume are formed. In an actual low-refractive index layer, the particle size distribution of fine particles and intra-particle microvoids exist, so the porosity varies considerably from the above theoretical value. When the porosity is increased, the refractive index of the low refractive index layer is lowered. When microvoids are formed by stacking fine particles, the size of the microvoids can be adjusted to an appropriate value (does not scatter light and cause no problem with the strength of the low refractive index layer) by adjusting the particle size of the fine particles. You can adjust. Furthermore, by making the particle diameters of the fine particles uniform, it is possible to obtain an optically uniform low refractive index layer in which the size of microvoids between particles is uniform. As a result, the low refractive index layer is microscopically a microvoided porous film, but can be made optically or macroscopically uniform. The interparticle microvoids are preferably closed in the low refractive index layer by fine particles and a polymer. The closed air gap also has an advantage that light scattering on the surface of the low refractive index layer is less than that of an opening opened on the surface of the low refractive index layer.

ミクロボイドを形成することにより、低屈折率層の巨視的屈折率は、低屈折率層を構成する成分の屈折率の和よりも低い値になる。層の屈折率は、層の構成要素の体積当たりの屈折率の和になる。微粒子やポリマーのような低屈折率層の構成成分の屈折率は1よりも大きな値であるのに対して、空気の屈折率は1.00である。その為、ミクロボイドを形成することによって、屈折率が非常に低い低屈折率層を得ることが出来る。   By forming the microvoids, the macroscopic refractive index of the low refractive index layer becomes lower than the sum of the refractive indexes of the components constituting the low refractive index layer. The refractive index of the layer is the sum of the refractive indices per volume of the layer components. The refractive index of the constituent component of the low refractive index layer such as fine particles or polymer is larger than 1, whereas the refractive index of air is 1.00. Therefore, a low refractive index layer having a very low refractive index can be obtained by forming microvoids.

また、本発明ではSiO2の中空微粒子を用いることも好ましい態様である。 In the present invention, it is also a preferred embodiment to use SiO 2 hollow fine particles.

本発明でいう中空微粒子とは、粒子壁を有しその内部が空洞であるような粒子をいい、例えば前述の微粒子内部にミクロボイドを有するSiO2粒子を更に有機珪素化合物(テトラエトキシシラン等のアルコキシシラン類)で表面を被覆しその細孔入り口を閉塞して形成された粒子である。或いは前記粒子壁内部の空洞が溶媒または気体で満たされていてもよく、例えば空気の場合は中空微粒子の屈折率は、通常のシリカ(屈折率=1.46)と比較して著しく低くすることが出来る(屈折率=1.44〜1.34)。この様な中空SiO2微粒子を添加することにより、低屈折率層の更なる低屈折率化が可能となる。 The hollow fine particles referred to in the present invention are particles having a particle wall and a hollow inside. For example, SiO 2 particles having microvoids inside the fine particles described above are further converted to organosilicon compounds (alkoxy such as tetraethoxysilane). These are particles formed by covering the surface with silanes and closing the pore entrance. Alternatively, the cavity inside the particle wall may be filled with a solvent or gas. For example, in the case of air, the refractive index of the hollow fine particles should be significantly lower than that of ordinary silica (refractive index = 1.46). (Refractive index = 1.44 to 1.34). By adding such hollow SiO 2 fine particles, the refractive index of the low refractive index layer can be further reduced.

上記無機微粒子内にミクロボイドを有する粒子を中空にする調製方法は、特開2001−167637号公報、2001−233611号公報に記載されている方法に準じればよく、また本発明では市販の中空SiO2微粒子を用いることが出来る。市販の粒子の具体例としては、触媒化成工業社製P−4等が挙げられる。 The method for preparing particles having microvoids in the inorganic fine particles may be in accordance with the methods described in JP-A Nos. 2001-167737 and 2001-233611. In the present invention, commercially available hollow SiO Two fine particles can be used. Specific examples of commercially available particles include P-4 manufactured by Catalytic Chemical Industry Co., Ltd.

低屈折率層は、5〜50質量%の量のポリマーを含むことが好ましい。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持出来るように調整する。ポリマーの量は、低屈折率層の全量の10〜30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応により形成することが好ましい。上記(1)〜(3)のうちの二つまたは全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、または(1)〜(3)全ての組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。   The low refractive index layer preferably contains the polymer in an amount of 5 to 50% by mass. The polymer has a function of adhering fine particles and maintaining the structure of a low refractive index layer including voids. The amount of the polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids. The amount of the polymer is preferably 10 to 30% by mass of the total amount of the low refractive index layer. In order to adhere the fine particles with the polymer, (1) the polymer is bonded to the surface treatment agent of the fine particles, (2) the fine particles are used as a core, and a polymer shell is formed around the fine particles. It is preferable to use a polymer as the binder. The polymer to be bonded to the surface treatment agent (1) is preferably the shell polymer (2) or the binder polymer (3). The polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer. The polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer and performing a polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to carry out a combination of two or all of the above (1) to (3), and to carry out a combination of (1) and (3) or (1) to (3) all of the combinations. Particularly preferred. (1) Surface treatment, (2) shell, and (3) binder will be described sequentially.

(1)表面処理
微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類出来る。化学的表面処理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子がSiO2からなる場合は、シランカップリング剤による表面処理が特に有効に実施出来る。具体的なシランカップリング剤の例としては、前記したシランカップリング剤が好ましく用いられる。
(1) Surface treatment It is preferable that the fine particles (particularly inorganic fine particles) are subjected to a surface treatment to improve the affinity with the polymer. The surface treatment can be classified into physical surface treatment such as plasma discharge treatment and corona discharge treatment, and chemical surface treatment using a coupling agent. It is preferable to carry out only chemical surface treatment or a combination of physical surface treatment and chemical surface treatment. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Particles when made of SiO 2, surface treatment with a silane coupling agent can be particularly effectively conducted. As a specific example of the silane coupling agent, the above-described silane coupling agent is preferably used.

カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施出来る。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。   The surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and allowing the dispersion to stand at a temperature from room temperature to 60 ° C. for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid), organic acids (for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.

(2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステルまたはポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35〜80質量%のフッ素原子を含むことが好ましく、45〜75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。
(2) Shell The polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain. A polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred. Polyacrylic acid esters or polymethacrylic acid esters are preferred, and esters of fluorine-substituted alcohols with polyacrylic acid or polymethacrylic acid are most preferred. The refractive index of the shell polymer decreases as the content of fluorine atoms in the polymer increases. In order to lower the refractive index of the low refractive index layer, the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms. The polymer containing a fluorine atom is preferably synthesized by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom. Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Mention may be made of esters of fluorinated vinyl ethers and fluorine-substituted alcohols with acrylic acid or methacrylic acid.

シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。   The polymer forming the shell may be a copolymer composed of a repeating unit containing a fluorine atom and a repeating unit not containing a fluorine atom. The repeating unit containing no fluorine atom is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer containing no fluorine atom. Examples of ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic acid esters (eg, methyl acrylate, ethyl acrylate, acrylic acid 2- Ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene and its derivatives (for example, styrene, divinylbenzene, vinyltoluene, α-methylstyrene), vinyl ether ( For example, methyl vinyl ether), vinyl esters (for example, vinyl acetate, vinyl propionate, vinyl cinnamate), acrylamide (for example, N-tertbutylacrylamide, N-cyclohexylacrylic) Amides), methacrylamide and acrylonitrile.

後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5〜90体積%含まれていることが好ましく、15〜80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。   When the binder polymer (3) described later is used in combination, a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking. The shell polymer may have crystallinity. When the glass transition temperature (Tg) of the shell polymer is higher than the temperature at the time of forming the low refractive index layer, it is easy to maintain microvoids in the low refractive index layer. However, if Tg is higher than the temperature at which the low refractive index layer is formed, the fine particles are not fused, and the low refractive index layer may not be formed as a continuous layer (resulting in a decrease in strength). In that case, it is desirable to use a binder polymer (3) described later in combination, and form the low refractive index layer as a continuous layer with the binder polymer. By forming a polymer shell around the fine particles, core-shell fine particles are obtained. The core-shell fine particles preferably contain 5 to 90% by volume of a core composed of inorganic fine particles, and more preferably 15 to 80% by volume. Two or more kinds of core-shell fine particles may be used in combination. Further, inorganic fine particles having no shell and core-shell particles may be used in combination.

(3)バインダー
バインダーポリマーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。2以上のエチレン性不飽和基を有するモノマーの代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用出来る。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
(3) Binder The binder polymer is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain. The binder polymer is preferably crosslinked. The polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups. Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (for example, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol). Tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives For example, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloyl ethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg, divinyl sulfone), acrylamide (eg, methylene bisacrylamide) and methacrylamide Can be mentioned. The polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound. Instead of or in addition to the monomer having two or more ethylenically unsaturated groups, a crosslinked structure may be introduced into the binder polymer by the reaction of a crosslinkable group. Examples of crosslinkable functional groups include isocyanate groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carbonyl groups, hydrazine groups, carboxyl groups, methylol groups, and active methylene groups. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. The cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group. As the polymerization initiator used for the polymerization reaction and the crosslinking reaction of the binder polymer, a thermal polymerization initiator or a photopolymerization initiator is used, and the photopolymerization initiator is more preferable. Examples of photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone. Examples of benzoins include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Examples of benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.

バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。   The binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time as or after the coating of the low refractive index layer, by a polymerization reaction (further crosslinking reaction if necessary). Even if a small amount of polymer (for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) is added to the coating solution for the low refractive index layer Good.

また、本発明の低屈折率層或いは他の屈折率層には滑り剤を添加することが好ましく、滑り性を付与することによって耐傷性を改善することが出来る。滑り剤としては、シリコーンオイルまたはワックス状物質が好ましく用いられる。例えば、下記一般式で表される化合物が好ましい。   Moreover, it is preferable to add a slipping agent to the low refractive index layer or other refractive index layers of the present invention, and scratch resistance can be improved by imparting slipperiness. As the slip agent, silicone oil or a wax-like substance is preferably used. For example, a compound represented by the following general formula is preferable.

一般式 R1COR2
式中、R1は炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基を表す。アルキル基またはアルケニル基が好ましく、更に炭素原子数が16以上のアルキル基またはアルケニル基が好ましい。R2は−OM1基(M1はNa、K等のアルカリ金属を表す)、−OH基、−NH2基、または−OR3基(R3は炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基、好ましくはアルキル基またはアルケニル基を表す)を表し、R2としては−OH基、−NH2基または−OR3基が好ましい。具体的には、ベヘン酸、ステアリン酸アミド、ペンタコ酸等の高級脂肪酸またはその誘導体、天然物としてこれらの成分を多く含んでいるカルナバワックス、蜜蝋、モンタンワックスも好ましく使用出来る。特公昭53−292号公報に開示されているようなポリオルガノシロキサン、米国特許第4,275,146号明細書に開示されているような高級脂肪酸アミド、特公昭58−33541号公報、英国特許第927,446号明細書または特開昭55−126238号公報及び同58−90633号公報に開示されているような高級脂肪酸エステル(炭素数が10〜24の脂肪酸と炭素数が10〜24のアルコールのエステル)、そして米国特許第3,933,516号明細書に開示されているような高級脂肪酸金属塩、特開昭51−37217号公報に開示されているような炭素数10までのジカルボン酸と脂肪族または環式脂肪族ジオールからなるポリエステル化合物、特開平7−13292号公報に開示されているジカルボン酸とジオールからのオリゴポリエステル等を挙げることが出来る。
General formula R 1 COR 2
In the formula, R 1 represents a saturated or unsaturated aliphatic hydrocarbon group having 12 or more carbon atoms. An alkyl group or an alkenyl group is preferable, and an alkyl group or alkenyl group having 16 or more carbon atoms is more preferable. R 2 represents —OM 1 group (M 1 represents an alkali metal such as Na or K), —OH group, —NH 2 group, or —OR 3 group (R 3 represents a saturated or unsaturated group having 12 or more carbon atoms. R 2 represents a saturated aliphatic hydrocarbon group, preferably an alkyl group or an alkenyl group, and R 2 is preferably an —OH group, —NH 2 group, or —OR 3 group. Specifically, higher fatty acids such as behenic acid, stearamide, and pentacoic acid, or derivatives thereof, and carnauba wax, beeswax, and montan wax containing many of these components as natural products can also be preferably used. Polyorganosiloxane as disclosed in JP-B-53-292, higher fatty acid amide as disclosed in US Pat. No. 4,275,146, JP-B 58-33541, British patent No. 927,446 or JP-A-55-126238 and 58-90633, higher fatty acid esters (fatty acids having 10 to 24 carbon atoms and 10 to 24 carbon atoms). Esters of alcohols), and higher fatty acid metal salts as disclosed in U.S. Pat. No. 3,933,516, dicarboxylic acids having up to 10 carbon atoms as disclosed in JP-A-51-37217 A polyester compound comprising an acid and an aliphatic or cycloaliphatic diol, a dicarboxylic acid disclosed in JP-A-7-13292, It can be mentioned oligo polyester or the like from the Le.

例えば、低屈折率層に使用する滑り剤の添加量は0.01mg/m2〜10mg/m2が好ましい。 For example, the amount of slip agent to be used in the low refractive index layer is preferably 0.01mg / m 2 ~10mg / m 2 .

反射防止フィルムの各層またはその塗布液には、前述した成分(金属酸化物粒子、ポリマー、分散媒体、重合開始剤、重合促進剤)以外に、重合禁止剤、レベリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防止剤や接着付与剤を添加してもよい。   In addition to the above-mentioned components (metal oxide particles, polymer, dispersion medium, polymerization initiator, polymerization accelerator), each layer of the antireflection film or its coating solution is a polymerization inhibitor, leveling agent, thickener, anti-coloring agent. An agent, an ultraviolet absorber, a silane coupling agent, an antistatic agent or an adhesion promoter may be added.

反射防止フィルムの各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2,681,294号)により、塗布により形成することが出来る。2以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号及び原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。   Each layer of the antireflection film is applied by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating or extrusion coating (US Pat. No. 2,681,294). Can be formed. Two or more layers may be applied simultaneously. For the method of simultaneous application, US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, 3,526,528 and Yuji Harasaki, Coating Engineering, page 253, It is described in Asakura Shoten (1973).

本発明では、低反射積層体の製造方法において、前記調製した塗布液を支持体に塗布した後乾燥する際に、好ましくは60℃以上で乾燥することが好ましく、80℃以上で乾燥することが更に好ましい。また、露点20℃以下で乾燥することが好ましく、15℃以下で乾燥することが更に好ましい。更に支持体に塗布した後10秒以内に乾燥が開始されることが好ましく、上記条件と組み合わせることが、本発明の効果を得る上で好ましい製造方法である。   In the present invention, in the method for producing a low reflection laminate, when the prepared coating solution is applied to a support and then dried, it is preferably dried at 60 ° C. or higher, and may be dried at 80 ° C. or higher. Further preferred. Further, drying at a dew point of 20 ° C. or lower is preferable, and drying at 15 ° C. or lower is more preferable. Furthermore, drying is preferably started within 10 seconds after coating on the support, and combining with the above conditions is a preferable production method for obtaining the effects of the present invention.

(透明プラスチック基材)
次に、本発明で用いることの出来る透明プラスチック基材について説明する。
(Transparent plastic substrate)
Next, the transparent plastic substrate that can be used in the present invention will be described.

本発明に用いられる透明プラスチック基材としては、製造が容易であること、活性エネルギー線硬化型樹脂層との接着性が良好である、光学的に等方性である、光学的に透明であること等が好ましい要件として挙げられ、下記基材フィルムが好ましく用いられる。   The transparent plastic substrate used in the present invention is easy to manufacture, has good adhesion to the active energy ray-curable resin layer, is optically isotropic, and is optically transparent. That is mentioned as a preferable requirement, and the following base film is preferably used.

本発明でいう透明とは、可視光の透過率60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。   The term “transparent” as used in the present invention means that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.

上記の性質を有していれば特に限定はないが、例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテート、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム,ポリカーボネートフィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオネア(以上、日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることが出来る。中でも、セルローストリアセテートフィルム、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)が好ましく、本発明においては、特にセルロースエステルフィルム(例えば、コニカタック 製品名KC8UX2MW、KC4UX2MW、KC8UY、KC4UY、KC5UN、KC12UR(コニカミノルタオプト(株)製))が、製造上、コスト面、透明性、等方性、接着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。   Although it will not specifically limit if it has said property, For example, a cellulose-ester type film, a polyester-type film, a polycarbonate-type film, a polyarylate-type film, a polysulfone (a polyether sulfone is also included) type film, a polyethylene terephthalate, polyethylene Polyester film such as naphthalate, polyethylene film, polypropylene film, cellophane, cellulose diacetate film, cellulose triacetate, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, Polycarbonate film, cycloolefin polymer film (Arton (manufactured by JSR), Onex, Zeonea (above, ZEON Corporation), polymethylpentene film, polyetherketone film, polyetherketoneimide film, polyamide film, fluororesin film, nylon film, polymethylmethacrylate film, acrylic film, glass plate, etc. Can be mentioned. Among them, cellulose triacetate film, polycarbonate film, and polysulfone (including polyethersulfone) are preferable, and in the present invention, cellulose ester film (for example, Konica Katak product names KC8UX2MW, KC4UX2MW, KC8UY, KC4UNY, KC5UN, KC12UR (Konica Minolta) (Manufactured by Opt Co., Ltd.)) is preferably used from the viewpoints of production, cost, transparency, isotropy, adhesion and the like. These films may be films produced by melt casting film formation or films produced by solution casting film formation.

基材フィルムの光学特性としては膜厚方向のリターデーションRtが0nm〜300nm、面内方向のリターデーションR0が0nm〜1000nmのものが好ましく用いられる。 The optical properties of the substrate film thickness direction retardation R t is 0Nm~300nm, retardation R 0 in the plane direction those 0nm~1000nm is preferably used.

本発明においては、基材フィルムとしてはセルロースエステルフィルムを用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。   In the present invention, it is preferable to use a cellulose ester film as the substrate film. As the cellulose ester, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are preferable. Among them, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate propionate are preferably used.

特にアセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースの混合脂肪酸エステルを有する基材フィルムが好ましく用いられる。   In particular, when the substitution degree of the acetyl group is X and the substitution degree of the propionyl group or butyryl group is Y, a base film having a mixed fatty acid ester of cellulose in which X and Y are in the following ranges is preferably used.

2.3≦X+Y≦3.0
0.1≦Y≦1.2
特に、2.5≦X+Y≦2.85
0.3≦Y≦1.2であることが好ましい。
2.3 ≦ X + Y ≦ 3.0
0.1 ≦ Y ≦ 1.2
In particular, 2.5 ≦ X + Y ≦ 2.85
It is preferable that 0.3 ≦ Y ≦ 1.2.

本発明に係る基材フィルムとして、セルロースエステルを用いる場合、セルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることが出来る。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することが出来る。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることが出来る。   When cellulose ester is used as the base film according to the present invention, the cellulose used as a raw material for the cellulose ester is not particularly limited, and examples thereof include cotton linter, wood pulp (derived from coniferous tree, derived from broadleaf tree), kenaf and the like. . Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively. When the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride), these cellulose esters use an organic solvent such as acetic acid or an organic solvent such as methylene chloride, and It can be obtained by reacting with a cellulose raw material using a protic catalyst.

アシル化剤が酸クロライド(CH3COCl、C25COCl、C37COCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10−45804号に記載の方法等を参考にして合成することが出来る。また、本発明に用いられるセルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。 When the acylating agent is acid chloride (CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl), the reaction is carried out using a basic compound such as an amine as a catalyst. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804. In addition, the cellulose ester used in the present invention is obtained by mixing and reacting the amount of the acylating agent in accordance with the degree of substitution. In the cellulose ester, these acylating agents react with hydroxyl groups of cellulose molecules. Cellulose molecules are composed of many glucose units linked together, and the glucose unit has three hydroxyl groups. The number of acyl groups derived from these three hydroxyl groups is called the degree of substitution (mol%). For example, cellulose triacetate has acetyl groups bonded to all three hydroxyl groups of the glucose unit (actually 2.6 to 3.0).

本発明に用いられるセルロースエステルとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基またはブチレート基が結合したセルロースの混合脂肪酸エステルが特に好ましく用いられる。尚、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。   The cellulose ester used in the present invention is a mixed fatty acid ester of cellulose in which a propionate group or a butyrate group is bonded in addition to an acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, or cellulose acetate propionate butyrate. Is particularly preferably used. The butyryl group forming butyrate may be linear or branched.

プロピオネート基を置換基として含むセルロースアセテートプロピオネートは耐水性に優れ、液晶画像表示装置用のフィルムとして有用である。   Cellulose acetate propionate containing a propionate group as a substituent has excellent water resistance and is useful as a film for liquid crystal image display devices.

アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することが出来る。   The measuring method of the substitution degree of an acyl group can be measured according to the provisions of ASTM-D817-96.

セルロースエステルの数平均分子量は、70000〜250000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、更に好ましくは、80000〜150000である。   The number average molecular weight of the cellulose ester is preferably 70000 to 250,000, since it has a high mechanical strength when molded and an appropriate dope viscosity, and more preferably 80000 to 150,000.

これらセルロースエステルは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造されることが好ましい。   These cellulose esters are pressurized by applying a cellulose ester solution (dope) generally called a solution casting film forming method onto, for example, an endless metal belt for infinite transport or a support for casting of a rotating metal drum. It is preferable to manufacture the dope from a die by casting (casting).

これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解出来、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、1,3−ジメチル−2−イミダゾリジノン等を挙げることが出来るが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。   The organic solvent used for the preparation of these dopes is preferably capable of dissolving the cellulose ester and having an appropriate boiling point, for example, methylene chloride, methyl acetate, ethyl acetate, amyl acetate, methyl acetoacetate, acetone, tetrahydrofuran 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2 -Propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3 , 3,3-pentafluoro-1-propanol, nitroethane, 1,3-dimethyl-2-imidazolidinone, etc. It is possible, organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone, methyl acetoacetate, and the like are preferable organic solvents (i.e., good solvent), and as.

また、下記の製膜工程に示すように、溶媒蒸発工程において流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30〜80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。   Moreover, as shown in the following film forming process, it is used from the viewpoint of preventing foaming in the web when the solvent is dried from the web (dope film) formed on the casting support in the solvent evaporation process. The boiling point of the organic solvent is preferably 30 to 80 ° C. For example, the good solvent described above has a boiling point of methylene chloride (boiling point 40.4 ° C), methyl acetate (boiling point 56.32 ° C), acetone (boiling point 56.56 ° C). 3 ° C.), ethyl acetate (boiling point 76.82 ° C.) and the like.

上記記載の良溶媒の中でも溶解性に優れるメチレンクロライド或いは酢酸メチルが好ましく用いられる。   Among the good solvents described above, methylene chloride or methyl acetate, which is excellent in solubility, is preferably used.

上記有機溶媒の他に、0.1質量%〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。特に好ましくは5〜30質量%で前記アルコールが含まれることが好ましい。これらは上記記載のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。   It is preferable to contain 0.1 mass%-40 mass% of C1-C4 alcohol other than the said organic solvent. It is particularly preferable that the alcohol is contained at 5 to 30% by mass. After casting the dope described above onto a casting support, the solvent starts to evaporate and the alcohol ratio increases and the web (dope film) gels, making the web strong and peeling from the casting support. It is also used as a gelling solvent for facilitating the dissolution, and when these ratios are small, it also has a role of promoting the dissolution of the cellulose ester of the non-chlorine organic solvent.

炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることが出来る。   Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like.

これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70質量%〜95質量%に対してエタノール5質量%〜30質量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることも出来る。このとき、冷却溶解法によりドープを調製してもよい。   Of these solvents, ethanol is preferred because it has good dope stability, relatively low boiling point, good drying properties, and no toxicity. It is preferable to use a solvent containing 5% by mass to 30% by mass of ethanol with respect to 70% by mass to 95% by mass of methylene chloride. Methyl acetate can be used in place of methylene chloride. At this time, the dope may be prepared by a cooling dissolution method.

本発明で用いられるセルロースエステルフィルムは少なくとも幅手方向に延伸されたものが好ましく、特に溶液流延工程で残留溶媒量が3質量%〜40質量%である時に幅手方向に1.01倍〜1.5倍に延伸されたものであることが好ましい。より好ましくは幅手方向と長手方向に2軸延伸することであり、残留溶媒料が3質量%〜40質量%である時に幅手方向及び長手方向に、各々1.01倍〜1.5倍に延伸されることが望ましい。この様なすることにより、平面性及び光拡散性に優れた光拡散性フィルムを得ることが出来る。   The cellulose ester film used in the present invention is preferably at least stretched in the width direction, and is 1.01 times to the width direction when the residual solvent amount is 3% by mass to 40% by mass in the solution casting process. The film is preferably stretched 1.5 times. More preferably, biaxial stretching is performed in the width direction and the longitudinal direction, and when the residual solvent is 3% by mass to 40% by mass, the width direction and the longitudinal direction are 1.01 times to 1.5 times, respectively. It is desirable to be stretched. By doing in this way, the light diffusable film excellent in planarity and light diffusibility can be obtained.

尚、残留溶媒量は下記の式により表される。   The residual solvent amount is represented by the following formula.

残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mはウェブ(溶媒を含有したセルロースエステルフィルム)の任意時点における質量、NはMのウェブを110℃で3時間乾燥させた時の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass of the web (cellulose ester film containing the solvent) at an arbitrary point in time, and N is the mass when the web of M is dried at 110 ° C. for 3 hours.

更に、2軸延伸しナーリング加工をすることによって、長尺状光学フィルムのロール状での保管中の巻き形状の劣化を著しく改善することが出来る。   Furthermore, by performing biaxial stretching and knurling, it is possible to remarkably improve the deterioration of the winding shape during storage of the long optical film in the form of a roll.

本発明においては、二軸延伸されたセルロースエステルフィルムは、光透過率が90%以上、より好ましくは93%以上の透明支持体であることが好ましい。   In the present invention, the biaxially stretched cellulose ester film is preferably a transparent support having a light transmittance of 90% or more, more preferably 93% or more.

本発明に係るセルロースエステルフィルム支持体は、その厚さが10μm〜100μmのものが好ましく、更に好ましくは40μm〜80μmであり、透湿性は、JIS Z 0208(25℃、90%RH)に準じて測定した値として、200g/m2・24時間以下であることが好ましく、更に好ましくは、10〜180g/m2・24時間以下であり、特に好ましくは、160g/m2・24時間以下である。特には、膜厚10μm〜80μmで透湿性が上記範囲内であることが好ましい。 The cellulose ester film support according to the present invention preferably has a thickness of 10 μm to 100 μm, more preferably 40 μm to 80 μm, and moisture permeability conforms to JIS Z 0208 (25 ° C., 90% RH). The measured value is preferably 200 g / m 2 · 24 hours or less, more preferably 10 to 180 g / m 2 · 24 hours or less, and particularly preferably 160 g / m 2 · 24 hours or less. . In particular, it is preferable that the film thickness is 10 μm to 80 μm and the moisture permeability is within the above range.

本発明においては、長尺フィルムを用いることが好ましく、具体的には、100m〜5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、基材フィルムの幅は1.3〜4mであることが好ましい。   In the present invention, it is preferable to use a long film, and specifically, a film having a length of about 100 m to 5000 m is shown, which is usually provided in a roll shape. Moreover, it is preferable that the width | variety of a base film is 1.3-4 m.

本発明の反射防止フィルムにセルロースエステルフィルムを用いる場合、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤等を好ましく用いることが出来る。   When a cellulose ester film is used for the antireflection film of the present invention, it is preferable to contain the following plasticizer. Examples of plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, glycolate plasticizers, citrate ester plasticizers, and polyesters. A plasticizer or the like can be preferably used.

リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることが出来る。その他のカルボン酸エステルの例には、トリメチロールプロパントリベンゾエート、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。   For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy For trimellitic acid plasticizers such as ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, dicyclohexyl phthalate, tributyl trimellitate, triphenyl trimellitate, triethyl For pyromellitic acid ester plasticizers such as trimellitate, tetrabutylpyromellitate, In the case of glycolate plasticizers such as lupyromelitate and tetraethylpyromellitate, triacetin, tributyrin, ethylphthalylethyl glycolate, methylphthalylethyl glycolate, butylphthalylbutyl glycolate, etc. Citrate, tri-n-butyl citrate, acetyl triethyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n- (2-ethylhexyl) citrate and the like can be preferably used. Examples of other carboxylic acid esters include trimethylolpropane tribenzoate, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters.

ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることが出来る。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4−シクロヘキシルジカルボン酸等を用いることが出来る。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、1,4−ブチレングリコール、1,3−ブチレングリコール、1,2−ブチレングリコール等を用いることが出来る。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、2種以上混合して用いてもよい。   As the polyester plasticizer, a copolymer of a dibasic acid such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid and a glycol can be used. The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid and the like can be used. As the glycol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used. These dibasic acids and glycols may be used alone or in combination of two or more.

これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1質量%〜20質量%が好ましく、特に好ましくは、3質量%〜13質量%である。   The amount of these plasticizers used is preferably 1% by mass to 20% by mass and particularly preferably 3% by mass to 13% by mass with respect to the cellulose ester in terms of film performance, processability and the like.

本発明の反射防止フィルム用の長尺フィルムには、紫外線吸収剤が好ましく用いられる。   For the long film for the antireflection film of the present invention, an ultraviolet absorber is preferably used.

紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。   As the ultraviolet absorber, those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.

本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。   Specific examples of the ultraviolet absorber preferably used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these.

ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。   Specific examples of the benzotriazole-based ultraviolet absorbers include the following ultraviolet absorbers, but the present invention is not limited thereto.

UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。
UV-1: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole UV-2: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole UV-3 : 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole UV-4: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole UV-5: 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl) benzotriazole UV-6: 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
UV-7: 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole UV-8: 2- (2H-benzotriazol-2-yl) -6 (Linear and side chain dodecyl) -4-methylphenol (TINUVIN171, manufactured by Ciba)
UV-9: Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl- 4-Hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate (TINUVIN109, manufactured by Ciba)
Moreover, although the following specific example is shown as a benzophenone series ultraviolet absorber, this invention is not limited to these.

UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
UV-10: 2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV-12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
As the ultraviolet absorber preferably used in the present invention, a benzotriazole-based ultraviolet absorber and a benzophenone-based ultraviolet absorber that are highly transparent and excellent in preventing the deterioration of the polarizing plate and the liquid crystal are preferable, and unnecessary coloring is less. A benzotriazole-based ultraviolet absorber is particularly preferably used.

また、特開2001−187825に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。   Moreover, the ultraviolet absorber whose distribution coefficient described in Unexamined-Japanese-Patent No. 2001-187825 is 9.2 or more improves the surface quality of a long film, and is excellent also in applicability | paintability. In particular, it is preferable to use an ultraviolet absorber having a distribution coefficient of 10.1 or more.

また、特開平6−148430号に記載の一般式(1)または一般式(2)、特願2000−156039の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等が市販されている。   Further, the polymer ultraviolet absorbers described in the general formula (1) or general formula (2) described in JP-A-6-148430 and the general formulas (3), (6), and (7) of Japanese Patent Application No. 2000-156039 ( Alternatively, an ultraviolet absorbing polymer) is also preferably used. As a polymer ultraviolet absorber, PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) and the like are commercially available.

また、本発明に用いられるセルロースエステルフィルムには滑り性を付与するため、前記活性エネルギー線硬化型樹脂層で記載したものと同様の微粒子を用いることが出来る。中でもSiO2微粒子が好ましい。 Moreover, in order to provide slipperiness to the cellulose-ester film used for this invention, the microparticles | fine-particles similar to what was described in the said active energy ray hardening-type resin layer can be used. Of these, SiO 2 fine particles are preferred.

本発明に用いられるセルロースエステルフィルムに添加される微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5〜16nmであり、特に好ましくは、5〜12nmである。これらの微粒子は0.1〜5μmの粒径の2次粒子を形成してセルロースエステルフィルムに含まれることが好ましく、好ましい平均粒径は0.1〜2μmであり、更に好ましくは0.2〜0.6μmである。これにより、フィルム表面に高さ0.1〜1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることが出来る。   The primary average particle diameter of the fine particles added to the cellulose ester film used in the present invention is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm. These fine particles preferably form secondary particles having a particle diameter of 0.1 to 5 μm and are contained in the cellulose ester film, and the preferable average particle diameter is 0.1 to 2 μm, more preferably 0.2 to 0.6 μm. Thereby, the unevenness | corrugation about 0.1-1.0 micrometer high can be formed in the film surface, and, thereby, appropriate slipperiness can be given to the film surface.

本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって、1次平均粒子径とした。   The primary average particle diameter of the fine particles used in the present invention is measured by observing particles with a transmission electron microscope (magnification 500,000 to 2,000,000 times), observing 100 particles, and using the average value, the primary value is measured. The average particle size was taken.

微粒子の見掛比重としては、70g/リットル以上が好ましく、更に好ましくは、90〜200g/リットルであり、特に好ましくは、100〜200g/リットルである。見掛比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、本発明のように固形分濃度の高いドープを調製する際には、特に好ましく用いられる。   The apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter. A larger apparent specific gravity makes it possible to make a high-concentration dispersion, which improves haze and agglomerates, and is preferable when preparing a dope having a high solid content concentration as in the present invention. Are particularly preferably used.

1次粒子の平均径が20nm以下、見掛比重が70g/リットル以上のSiO2微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000〜1200℃にて空気中で燃焼させることで得ることが出来る。また例えばアエロジル200V、アエロジルR972V(以上、日本アエロジル(株)製)の商品名で市販されており、それらを使用することが出来る。 SiO 2 fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, it is marketed by the brand name of Aerosil 200V and Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and can use them.

上記記載の見掛比重はSiO2微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出したものである。 The apparent specific gravity described above is calculated by the following formula by measuring a weight of SiO 2 fine particles in a graduated cylinder and measuring the weight at that time.

見掛比重(g/リットル)=SiO2質量(g)/SiO2の容積(リットル)
本発明に用いられる微粒子の分散液を調製する方法としては、例えば以下に示すような3種類が挙げられる。
Apparent specific gravity (g / liter) = SiO 2 mass (g) / SiO 2 volume (liter)
Examples of the method for preparing the fine particle dispersion used in the present invention include the following three types.

《調製方法A》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。微粒子分散液をドープ液に加えて攪拌する。
<< Preparation Method A >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the dope solution and stirred.

《調製方法B》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。別に溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに前記微粒子分散液を加えて攪拌する。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
<< Preparation Method B >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. Separately, a small amount of cellulose triacetate is added to the solvent and dissolved by stirring. The fine particle dispersion is added to this and stirred. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.

《調製方法C》
溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに微粒子を加えて分散機で分散を行う。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
<< Preparation Method C >>
Add a small amount of cellulose triacetate to the solvent and dissolve with stirring. Fine particles are added to this and dispersed by a disperser. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.

調製方法AはSiO2微粒子の分散性に優れ、調製方法CはSiO2微粒子が再凝集しにくい点で優れている。中でも、上記記載の調製方法BはSiO2微粒子の分散性と、SiO2微粒子が再凝集しにくい等、両方に優れている好ましい調製方法である。 Preparation method A is excellent in the dispersibility of SiO 2 fine particles, and preparation method C is excellent in that the SiO 2 fine particles are difficult to re-aggregate. Among them, the preparation method B described above is a dispersion of SiO 2 particles, a preferred preparation method SiO 2 particles have excellent reagglomeration hardly like, both.

《分散方法》
SiO2微粒子を溶剤などと混合して分散する時のSiO2の濃度は5質量%〜30質量%が好ましく、10質量%〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度は高い方が、添加量に対する液濁度は低くなる傾向があり、ヘイズ、凝集物が良化するため好ましい。
《Distribution method》
The concentration of SiO 2 when the SiO 2 fine particles are mixed with a solvent and dispersed is preferably 5 to 30% by mass, more preferably 10 to 25% by mass, and most preferably 15 to 20% by mass. A higher dispersion concentration is preferable because liquid turbidity with respect to the added amount tends to be low, and haze and aggregates are improved.

使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。   The solvent used is preferably lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like. Although it does not specifically limit as solvents other than a lower alcohol, It is preferable to use the solvent used at the time of film forming of a cellulose ester.

セルロースエステルに対するSiO2微粒子の添加量はセルロースエステル100質量部に対して、SiO2微粒子は0.01質量部〜5.0質量部が好ましく、0.05質量部〜1.0質量部が更に好ましく、0.1質量部〜0.5質量部が最も好ましい。添加量は多い方が、動摩擦係数に優れ、添加量が少ない方が、凝集物が少なくなる。 The addition amount of SiO 2 fine particles to the cellulose ester relative to 100 parts by weight of cellulose ester, SiO 2 fine particles is preferably 5.0 parts by 0.01 parts by weight, 0.05 parts by weight to 1.0 parts by weight is more Preferably, 0.1 mass part-0.5 mass part is the most preferable. The larger the added amount, the better the dynamic friction coefficient, and the smaller the added amount, the less aggregates.

分散機は通常の分散機が使用出来る。分散機は大きく分けてメディア分散機とメディアレス分散機に分けられる。SiO2微粒子の分散にはメディアレス分散機がヘイズが低く好ましい。メディア分散機としてはボールミル、サンドミル、ダイノミルなどが挙げられる。メディアレス分散機としては超音波型、遠心型、高圧型などがあるが、本発明においては高圧分散装置が好ましい。高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置で処理する場合、例えば、管径1〜2000μmの細管中で装置内部の最大圧力条件が9.807MPa以上であることが好ましい。更に好ましくは19.613MPa以上である。またその際、最高到達速度が100m/秒以上に達するもの、伝熱速度が420kJ/時間以上に達するものが好ましい。 As the disperser, a normal disperser can be used. Dispersers can be broadly divided into media dispersers and medialess dispersers. For dispersion of SiO 2 fine particles, a medialess disperser is preferred because of low haze. Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type. In the present invention, a high pressure disperser is preferable. The high pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube. When processing with a high-pressure dispersion apparatus, for example, the maximum pressure condition inside the apparatus is preferably 9.807 MPa or more in a thin tube having a tube diameter of 1 to 2000 μm. More preferably, it is 19.613 MPa or more. Further, at that time, those having a maximum reaching speed of 100 m / second or more and those having a heat transfer speed of 420 kJ / hour or more are preferable.

上記のような高圧分散装置には、Microfluidics Corporation社製超高圧ホモジナイザ(商品名マイクロフルイダイザ)或いはナノマイザ社製ナノマイザがあり、他にもマントンゴーリン型高圧分散装置、例えば、イズミフードマシナリ製ホモジナイザ、三和機械(株)社製UHN−01等が挙げられる。   Examples of the high-pressure dispersing apparatus include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing apparatuses such as homogenizer manufactured by Izumi Food Machinery. And UHN-01 manufactured by Sanwa Machinery Co., Ltd.

また、微粒子を含むドープを流延支持体に直接接するように流延することが、滑り性が高く、ヘイズが低いフィルムが得られるので好ましい。   In addition, casting a dope containing fine particles so as to be in direct contact with the casting support is preferable because a film having high slip properties and low haze can be obtained.

また、流延後に剥離して乾燥されロール状に巻き取られた後、本発明に係る光学薄膜層が設けられる。加工若しくは出荷されるまでの間、汚れや静電気によるゴミ付着等から製品を保護するために通常、包装加工がなされる。この包装材料については、上記目的が果たせれば特に限定されないが、フィルムからの残留溶媒の揮発を妨げないものが好ましい。具体的には、ポリエチレン、ポリエステル、ポリプロピレン、ナイロン、ポリスチレン、紙、各種不織布等が挙げられる。繊維がメッシュクロス状になったものは、より好ましく用いられる。   Moreover, after peeling and drying after casting and winding up into a roll, the optical thin film layer according to the present invention is provided. Until processing or shipment, packaging is usually performed in order to protect the product from dirt, static electricity, and the like. The packaging material is not particularly limited as long as the above purpose can be achieved, but a material that does not hinder volatilization of the residual solvent from the film is preferable. Specific examples include polyethylene, polyester, polypropylene, nylon, polystyrene, paper, various non-woven fabrics, and the like. Those in which the fibers are mesh cloth are more preferably used.

本発明に用いられるセルロースエステルフィルムは、複数のドープを用いた共流延法等による多層構成を有するものであってもよい。   The cellulose ester film used in the present invention may have a multilayer structure by a co-casting method using a plurality of dopes.

共流延とは、異なったダイを通じて2層または3層構成にする逐次多層流延方法、2つまたは3つのスリットを有するダイ内で合流させ2層または3層構成にする同時多層流延方法、逐次多層流延と同時多層流延を組み合わせた多層流延方法のいずれであっても良い。   Co-casting is a sequential multilayer casting method in which two or three layers are configured through different dies, and a simultaneous multilayer casting method in which two or three slits are combined in a die having two or three slits. Any of the multilayer casting methods combining sequential multilayer casting and simultaneous multilayer casting may be used.

また、本発明で用いられるセルロースエステルは、フィルムにした時の輝点異物が少ないものが、支持体として好ましく用いられる。本発明において、輝点異物とは、2枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステルフィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステルフィルムを観察した時に、光源の光がもれて見える点のことである。   In addition, the cellulose ester used in the present invention is preferably used as a support having a small amount of bright spot foreign matter when formed into a film. In the present invention, the bright spot foreign material is a structure in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose ester film is arranged between them, and light from a light source is applied from one side to the other side. When the cellulose ester film is observed, the light from the light source appears to leak.

このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物の発生は、セルロースエステルに含まれる未酢化のセルロースがその原因の1つと考えられ、対策としては、未酢化のセルロース量の少ないセルロースエステルを用いることや、また、セルロースエステルを溶解したドープ液の濾過等により、除去、低減が可能である。また、フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロースエステルの含有量が少なくなるほど輝点異物は少なくなる傾向がある。   At this time, the polarizing plate used for the evaluation is desirably composed of a protective film having no bright spot foreign matter, and a polarizing plate using a glass plate for protecting the polarizer is preferably used. The occurrence of bright spot foreign matter is considered to be one of the causes of unacetylated cellulose contained in the cellulose ester. As countermeasures, the use of cellulose ester with a small amount of unacetylated cellulose, It can be removed and reduced by filtering the dissolved dope solution. Further, the thinner the film thickness, the smaller the number of bright spot foreign matter per unit area, and the lower the content of cellulose ester contained in the film, the fewer bright spot foreign matter.

輝点異物は、輝点の直径0.01mm以上のものが200個/cm2以下であることが好ましく、更に好ましくは、100個/cm2以下、50個/cm2以下、30個/cm2以下、10個/cm2以下であることが好ましいが、特に好ましくは、0であることである。 The bright spot foreign matter having a bright spot diameter of 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, 50 pieces / cm 2 or less, 30 pieces / cm. 2 or less, preferably 10 pieces / cm 2 or less, but it is particularly preferred that a 0.

また、0.005mm〜0.01mmの輝点についても200個/cm2以下であることが好ましく、更に好ましくは、100個/cm2以下、50個/cm2以下、30個/cm2以下、10個/cm2以下であることが好ましいが、特に好ましいのは、輝点が0の場合である。0.005mm以下の輝点についても少ないものが好ましい。 Moreover, it is preferable that it is 200 pieces / cm < 2 > or less also about 0.005 mm-0.01 mm bright spot, More preferably, it is 100 pieces / cm < 2 > or less, 50 pieces / cm < 2 > or less, 30 pieces / cm < 2 > or less. The number is preferably 10 / cm 2 or less, but particularly preferred is the case where the bright spot is zero. A thing with few also about a bright spot of 0.005 mm or less is preferable.

輝点異物を濾過によって除去する場合、セルロースエステルを単独で溶解させたものを濾過するよりも可塑剤を添加混合した組成物を濾過することが輝点異物の除去効率が高く好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知のものが好ましく用いられるが、セラミックス、金属等も好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく、更に好ましくは、30μm以下、10μm以下であるが、特に好ましくは、5μm以下のものである。   When removing bright spot foreign matter by filtration, it is preferable to filter the composition in which a plasticizer is added and mixed, rather than filtering a cellulose ester dissolved alone, because the bright spot foreign matter removal efficiency is high. As the filter medium, conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluororesins such as tetrafluoroethylene resin are preferably used, but ceramics, metals and the like are also preferably used. The absolute filtration accuracy is preferably 50 μm or less, more preferably 30 μm or less, and 10 μm or less, and particularly preferably 5 μm or less.

これらは、適宜組み合わせて使用することも出来る。濾材はサーフェースタイプでもデプスタイプでも用いることが出来るが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。   These can also be used in combination as appropriate. The filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.

本発明の反射防止フィルムの活性エネルギー線硬化樹脂層を設けた側と反対側の面にはバックコート層を設けることが好ましい。バックコート層は、活性エネルギー線硬化樹脂層やその他の層を設けることで生じるカールを矯正するために設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることが出来る。尚、バックコート層は好ましくはブロッキング防止層を兼ねて塗設され、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために微粒子が添加されることが好ましい。   It is preferable to provide a backcoat layer on the surface opposite to the side on which the active energy ray-curable resin layer of the antireflection film of the present invention is provided. The back coat layer is provided in order to correct curl caused by providing an active energy ray-curable resin layer or other layers. That is, the degree of curling can be balanced by imparting the property of being rounded with the surface on which the backcoat layer is provided facing inward. The back coat layer is preferably applied also as an anti-blocking layer. In that case, it is preferable that fine particles are added to the back coat layer coating composition in order to provide an anti-blocking function.

バックコート層に添加される微粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることが出来る。微粒子は珪素を含むものがヘイズが低くなる点で好ましく、特に二酸化珪素が好ましい。   As fine particles added to the back coat layer, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, and oxidation. Mention may be made of indium, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low haze, and silicon dioxide is particularly preferable.

これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることが出来る。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することが出来る。   These fine particles are commercially available under the trade names of, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (manufactured by Nippon Aerosil Co., Ltd.). . Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used. Examples of the polymer include silicone resin, fluorine resin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.

これらの中でもでアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。本発明で用いられる反射防止フィルムは、活性エネルギー線硬化樹脂層の裏面側の動摩擦係数が0.9以下、特に0.1〜0.9であることが好ましい。   Among these, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large anti-blocking effect while keeping haze low. The antireflection film used in the present invention preferably has a dynamic friction coefficient on the back side of the active energy ray-curable resin layer of 0.9 or less, particularly 0.1 to 0.9.

バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%好ましくは0.1〜10質量%であることが好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく0.5%以下であることが好ましく、特に0.0〜0.1%であることが好ましい。   The fine particles contained in the backcoat layer are 0.1 to 50% by weight, preferably 0.1 to 10% by weight, based on the binder. When the back coat layer is provided, the increase in haze is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.0 to 0.1%.

バックコート層は、具体的にはセルロースエステルフィルムを溶解させる溶媒または膨潤させる溶媒を含む組成物を塗布することによって行われる。用いる溶媒としては、溶解させる溶媒及び/または膨潤させる溶媒の混合物の他更に溶解させない溶媒を含む場合もあり、これらを透明樹脂フィルムのカール度合いや樹脂の種類によって適宜の割合で混合した組成物及び塗布量を用いて行う。   Specifically, the back coat layer is formed by applying a composition containing a solvent for dissolving or swelling a cellulose ester film. The solvent used may include a solvent to be dissolved and / or a solvent to be swollen in addition to a solvent to be swelled, a composition in which these are mixed at an appropriate ratio depending on the degree of curling of the transparent resin film and the type of resin, and This is done using the coating amount.

カール防止機能を強めたい場合は、用いる溶媒組成を溶解させる溶媒及び/または膨潤させる溶媒の混合比率を大きくし、溶解させない溶媒の比率を小さくするのが効果的である。この混合比率は好ましくは(溶解させる溶媒及び/または膨潤させる溶媒):(溶解させない溶媒)=10:0〜1:9で用いられる。この様な混合組成物に含まれる、透明樹脂フィルムを溶解または膨潤させる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルムなどがある。溶解させない溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノール或いは炭化水素類(トルエン、キシレン)などがある。   In order to enhance the curl prevention function, it is effective to increase the mixing ratio of the solvent for dissolving the solvent composition to be used and / or the solvent for swelling, and to decrease the ratio of the solvent not to be dissolved. This mixing ratio is preferably (solvent to be dissolved and / or solvent to be swollen) :( solvent to be dissolved) = 10: 0 to 1: 9. Solvents that dissolve or swell the transparent resin film contained in such a mixed composition include, for example, dioxane, acetone, methyl ethyl ketone, N, N-dimethylformamide, methyl acetate, ethyl acetate, trichloroethylene, methylene chloride, and ethylene chloride. , Tetrachloroethane, trichloroethane, chloroform and the like. Examples of the solvent that does not dissolve include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, cyclohexanol, and hydrocarbons (toluene, xylene).

これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、或いはスプレー塗布、インクジェット塗布等を用いて透明樹脂フィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体或いは共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることが出来るが、これらに限定されるものではない。例えば、アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが市販されており、この中から好ましいモノを適宜選択することも出来る。   It is preferable to apply these coating compositions on the surface of the transparent resin film with a wet film thickness of 1 to 100 μm using a gravure coater, dip coater, reverse coater, wire bar coater, die coater, spray coating, ink jet coating or the like. Is particularly preferably 5 to 30 μm. Examples of the resin used as the binder of the backcoat layer include vinyl chloride-vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, vinyl acetate-vinyl alcohol copolymer, partially hydrolyzed vinyl chloride-vinyl acetate copolymer. Polymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, ethylene-vinyl alcohol copolymer, chlorinated polyvinyl chloride, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, etc. Vinyl polymer or copolymer, nitrocellulose, cellulose acetate propionate (preferably acetyl group substitution degree 1.8-2.3, propionyl group substitution degree 0.1-1.0), diacetyl cellulose, cellulose Cellulose derivatives such as acetate butyrate resin, maleic acid and / or Or acrylic acid copolymer, acrylic ester copolymer, acrylonitrile-styrene copolymer, chlorinated polyethylene, acrylonitrile-chlorinated polyethylene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, acrylic resin Rubber resins such as polyvinyl acetal resin, polyvinyl butyral resin, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, polyether resin, polyamide resin, amino resin, styrene-butadiene resin, butadiene-acrylonitrile resin, Examples thereof include, but are not limited to, silicone resins and fluorine resins. For example, as an acrylic resin, Acrypet MD, VH, MF, V (manufactured by Mitsubishi Rayon Co., Ltd.), Hyperl M-4003, M-4005, M-4006, M-4202, M-5000, M-5001, M-4501 (manufactured by Negami Kogyo Co., Ltd.), Dialnal BR-50, BR-52, BR-53, BR-60, BR-64, BR-73, BR-75, BR-77, BR-79, BR -80, BR-82, BR-83, BR-85, BR-87, BR-88, BR-90, BR-93, BR-95, BR-100, BR-101, BR-102, BR-105 BR-106, BR-107, BR-108, BR-112, BR-113, BR-115, BR-116, BR-117, BR-118, etc. (Mitsubishi Rayon Co., Ltd.) acrylic and The methacrylic monomers such as various homopolymers and copolymers were prepared as raw materials are commercially available, can also be selected preferred mono from this appropriate.

特に好ましくはジアセチルセルロース、セルロースアセテートプロピオネートのようなセルロース系樹脂層である。   Particularly preferred are cellulose resin layers such as diacetylcellulose and cellulose acetate propionate.

バックコート層を塗設する順番はセルロースエステルフィルムの活性エネルギー線硬化樹脂層を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。或いは2回以上に分けてバックコート層を塗布することも出来る。   The order of coating the backcoat layer may be before or after coating the active energy ray-curable resin layer of the cellulose ester film, but when the backcoat layer also serves as an antiblocking layer, it is desirable to coat it first. . Alternatively, the backcoat layer can be applied in two or more steps.

(偏光板)
本発明に係るハードコートフィルム若しくは反射防止フィルムは偏光板保護フィルムとして極めて優れている。偏光板は一般的な方法で作製することが出来る。本発明においても同様に、本発明のハードコートフィルム若しくは反射防止フィルムをアルカリ鹸化処理した偏光板用保護フィルムを、沃素溶液中に浸漬延伸して作製した偏光膜の両面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせる。本発明のハードコートフィルム若しくは反射防止フィルムとした後に、セルロースエステルフィルムの片面を鹸化処理してもよい。
(Polarizer)
The hard coat film or antireflection film according to the present invention is extremely excellent as a polarizing plate protective film. The polarizing plate can be produced by a general method. Similarly, in the present invention, a completely saponified polyvinyl alcohol is formed on both sides of a polarizing film prepared by immersing and stretching the protective film for polarizing plate obtained by subjecting the hard coat film or antireflection film of the present invention to alkali saponification treatment in an iodine solution. Bond together using an aqueous solution. After making the hard coat film or antireflection film of the present invention, one side of the cellulose ester film may be saponified.

偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明に係わる多層構造のセルロースエステルフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせるが、本発明に係る反射防止フィルムは透湿性が低く耐久性に優れている。   The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. On the surface of the polarizing film, one side of the cellulose ester film having a multilayer structure according to the present invention is bonded to form a polarizing plate. The antireflection film according to the present invention has low moisture permeability and excellent durability, although it is preferably bonded with a water-based adhesive mainly composed of completely saponified polyvinyl alcohol.

本発明の偏光板を用いた画像表示装置は耐久性に優れ、長期間にわたってコントラストの高い表示が可能である。   The image display device using the polarizing plate of the present invention is excellent in durability and can display with high contrast over a long period of time.

(画像表示装置)
本発明のハードコートフィルム若しくは反射防止フィルム或いはそれを用いた偏光板を画像表示装置に組み込むことによって、種々の画像表示装置を作製することが出来る。画像表示装置としては、液晶画像表示装置(反射型、半透過型、透過型)、有機電解発光素子、プラズマディスプレー等がある。例えば、高温高湿条件下での強制劣化処理において、画像表示装置についても本発明の反射防止フィルムまたはそれを用いた偏光板は、視認性に優れかつ反射防止フィルム起因の問題は認められなかった。
(Image display device)
Various image display devices can be produced by incorporating the hard coat film or antireflection film of the present invention or a polarizing plate using the same into the image display device. Examples of the image display device include a liquid crystal image display device (reflective type, transflective type, transmissive type), an organic electroluminescence element, a plasma display, and the like. For example, in the forced deterioration treatment under high-temperature and high-humidity conditions, the antireflection film of the present invention or the polarizing plate using the same for the image display device is excellent in visibility and no problems caused by the antireflection film were observed. .

以下、実施例により本発明を更に具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically by way of examples. However, the embodiments of the present invention are not limited to these examples.

帯電性樹脂層(第1クリアハードコート層)塗布液、帯電防止樹脂層(第2クリアハードコート層)塗布液、低屈折率層塗布液を下記組成で作製した。   A chargeable resin layer (first clear hard coat layer) coating solution, an antistatic resin layer (second clear hard coat layer) coating solution, and a low refractive index layer coating solution were prepared with the following compositions.

〈帯電性樹脂層1〉
下記材料を攪拌、混合し帯電性樹脂層塗布液1とした。
<Charging resin layer 1>
The following materials were stirred and mixed to obtain a chargeable resin layer coating solution 1.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート)(日本化薬製) 323質量部
開始剤;イルガキュア184(チバスペシャリティケミカルズ製) 36質量部
レべリング剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 7質量部
プロピレングリコールモノメチルエーテル 317質量部
酢酸エチル 317質量部
〈帯電性樹脂層2〉
下記材料を攪拌、混合し帯電性樹脂層塗布液2とした。
Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaacrylate) (manufactured by Nippon Kayaku) 323 parts by mass Initiator; Irgacure 184 (manufactured by Ciba Specialty Chemicals) 36 parts by mass Leveling agent; FZ2207 (manufactured by Nihon Unicar) 10% propylene glycol Monomethyl ether solution 7 parts by mass Propylene glycol monomethyl ether 317 parts by mass Ethyl acetate 317 parts by mass <Charging resin layer 2>
The following materials were stirred and mixed to obtain a chargeable resin layer coating solution 2.

サンラッドH601R(三洋化成製) 360質量部
プロピレングリコールモノメチルエーテル 320質量部
酢酸エチル 320質量部
〈帯電防止樹脂層1〉
下記材料を攪拌、混合し帯電防止樹脂層塗布液1とした。
Sunrad H601R (manufactured by Sanyo Chemical) 360 parts by mass Propylene glycol monomethyl ether 320 parts by mass Ethyl acetate 320 parts by mass <Antistatic resin layer 1>
The following materials were stirred and mixed to obtain an antistatic resin layer coating solution 1.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート)(日本化薬製) 226質量部
開始剤;イルガキュア184(チバスペシャリティケミカルズ製) 25質量部
導電性微粒子;ELCOM V2504(ITOゾル、固形分20%、触媒化成製)
540質量部
レべリング剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 7質量部
プロピレングリコールモノメチルエーテル 101質量部
酢酸エチル 101質量部
〈帯電防止樹脂層2〉
下記材料を攪拌、混合し帯電防止樹脂層塗布液2とした。
Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaacrylate) (manufactured by Nippon Kayaku) 226 parts by mass Initiator; Irgacure 184 (manufactured by Ciba Specialty Chemicals) 25 parts by mass Conductive fine particles; ELCOM V2504 (ITO sol, solid content 20%, (Catalyst Chemical)
540 parts by mass Leveling agent: FZ2207 (Nihon Unicar) 10% propylene glycol monomethyl ether solution 7 parts by mass Propylene glycol monomethyl ether 101 parts by mass Ethyl acetate 101 parts by mass <Antistatic resin layer 2>
The following materials were stirred and mixed to obtain an antistatic resin layer coating solution 2.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート)(日本化薬製) 297質量部
開始剤;イルガキュア184(チバスペシャリティケミカルズ製) 33質量部
導電性微粒子;ELCOM V2504(ITOゾル、固形分20%、触媒化成製)
144質量部
レべリング剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 7質量部
プロピレングリコールモノメチルエーテル 259質量部
酢酸エチル 259質量部
〈帯電防止樹脂層3〉
下記材料を攪拌、混合し帯電防止樹脂層塗布液3とした。
Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaacrylate) (manufactured by Nippon Kayaku) 297 parts by mass Initiator; Irgacure 184 (manufactured by Ciba Specialty Chemicals) 33 parts by mass Conductive fine particles; ELCOM V2504 (ITO sol, solid content 20%, (Catalyst Chemical)
144 parts by mass Leveling agent: FZ2207 (Nihon Unicar) 10% propylene glycol monomethyl ether solution 7 parts by mass Propylene glycol monomethyl ether 259 parts by mass Ethyl acetate 259 parts by mass <Antistatic resin layer 3>
The following materials were stirred and mixed to obtain an antistatic resin layer coating solution 3.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート)(日本化薬製) 275質量部
開始剤;イルガキュア184(チバスペシャリティケミカルズ製) 30質量部
導電性微粒子;ELCOM V2504(ITOゾル、固形分20%、触媒化成製)
270質量部
レべリング剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 7質量部
プロピレングリコールモノメチルエーテル 209質量部
酢酸エチル 209質量部
〈帯電防止樹脂層4〉
下記材料を攪拌、混合し帯電防止樹脂層塗布液4とした。
Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaacrylate) (manufactured by Nippon Kayaku) 275 parts by mass Initiator; Irgacure 184 (manufactured by Ciba Specialty Chemicals) 30 parts by mass Conductive fine particles; ELCOM V2504 (ITO sol, solid content 20%, (Catalyst Chemical)
270 parts by mass Leveling agent: FZ2207 (Nihon Unicar) 10% propylene glycol monomethyl ether solution 7 parts by mass Propylene glycol monomethyl ether 209 parts by mass Ethyl acetate 209 parts by mass <Antistatic resin layer 4>
The following materials were stirred and mixed to obtain an antistatic resin layer coating solution 4.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート)(日本化薬製) 67質量部
開始剤;イルガキュア184(チバスペシャリティケミカルズ製) 7質量部
導電性微粒子;ELCOM V2504(ITOゾル、固形分20%、触媒化成製)
875質量部
レべリング剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 5質量部
プロピレングリコールモノメチルエーテル 23質量部
酢酸エチル 23質量部
〈帯電防止樹脂層5〉
下記材料を攪拌、混合し帯電防止樹脂層塗布液5とした。
Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaacrylate) (manufactured by Nippon Kayaku) 67 parts by mass Initiator; Irgacure 184 (manufactured by Ciba Specialty Chemicals) 7 parts by mass Conductive fine particles; ELCOM V2504 (ITO sol, solid content 20%, (Catalyst Chemical)
875 parts by mass Leveling agent; FZ2207 (Nihon Unicar) 10% propylene glycol monomethyl ether solution 5 parts by mass Propylene glycol monomethyl ether 23 parts by mass Ethyl acetate 23 parts by mass <Antistatic resin layer 5>
The following materials were stirred and mixed to obtain an antistatic resin layer coating solution 5.

導電性微粒子分散物(例示化合物IP−24の5%メタノール分散液、平均粒径0.2μm) 100質量部
セルロースジアセテート樹脂(商品名:アセテートフレークス L−AC、ダイセル化学工業(株)製) 2質量部
メタノール 200質量部
アセトン 400質量部
酢酸エチル 250質量部
イソプロピルアルコール 50質量部
〈帯電防止樹脂層6〉
下記材料を攪拌、混合し帯電防止樹脂層塗布液6とした。
Conductive fine particle dispersion (5% methanol dispersion of Exemplified Compound IP-24, average particle size 0.2 μm) 100 parts by mass Cellulose diacetate resin (trade name: Acetate Flakes L-AC, manufactured by Daicel Chemical Industries, Ltd.) 2 parts by mass Methanol 200 parts by mass Acetone 400 parts by mass Ethyl acetate 250 parts by mass Isopropyl alcohol 50 parts by mass <Antistatic resin layer 6>
The following materials were stirred and mixed to obtain an antistatic resin layer coating solution 6.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート)(日本化薬製) 226質量部
開始剤;イルガキュア184(チバスペシャリティケミカルズ製) 25質量部
導電性微粒子;SNAP(SbO2分散液、固形分15%、シーアイ化成製)
720質量部
レべリング剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 7質量部
プロピレングリコールモノメチルエーテル 11質量部
酢酸エチル 11質量部
〈帯電防止樹脂層7〉
下記材料を攪拌、混合し帯電防止樹脂層塗布液7とした。
Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaacrylate) (manufactured by Nippon Kayaku) 226 parts by mass Initiator; Irgacure 184 (manufactured by Ciba Specialty Chemicals) 25 parts by mass Conductive fine particles; SNAP (SbO 2 dispersion, solid content 15% , Made by CI Kasei)
720 parts by mass Leveling agent: FZ2207 (Nihon Unicar) 10% propylene glycol monomethyl ether solution 7 parts by mass Propylene glycol monomethyl ether 11 parts by mass Ethyl acetate 11 parts by mass <Antistatic resin layer 7>
The following materials were stirred and mixed to obtain an antistatic resin layer coating solution 7.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート)(日本化薬製) 148質量部
開始剤;イルガキュア184(チバスペシャリティケミカルズ製) 16質量部
導電性微粒子;ELCOM V2504(ITOゾル、固形分20%、触媒化成製)
450質量部
高屈折化剤;RTSPNB15WT%−G0(酸化チタン微粒子分散物、固形分15%、シーアイ化成工業社製) 300質量部
レべリング剤;FZ2207(日本ユニカー製)10%プロピレングリコールモノメチルエーテル溶液 6質量部
プロピレングリコールモノメチルエーテル 40質量部
酢酸エチル 40質量部
〈低屈折率層〉
(テトラエトキシシラン加水分解物の調製)
テトラエトキシシラン29gとエタノール55gを混合し、これに酢酸の1.6質量%水溶液16gを添加した後に、25℃にて20時間攪拌することでテトラエトキシシラン加水分解物を調製した。
Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaacrylate) (manufactured by Nippon Kayaku) 148 parts by mass Initiator; Irgacure 184 (manufactured by Ciba Specialty Chemicals) 16 parts by mass Conductive fine particles; ELCOM V2504 (ITO sol, solid content 20%, (Catalyst Chemical)
450 parts by mass High refractive agent: RTSPNB15WT% -G0 (Titanium oxide fine particle dispersion, solid content 15%, manufactured by CI Kasei Kogyo Co., Ltd.) 300 parts by mass Leveling agent: FZ2207 (Nihon Unicar) 10% propylene glycol monomethyl ether Solution 6 parts by mass Propylene glycol monomethyl ether 40 parts by mass Ethyl acetate 40 parts by mass <Low refractive index layer>
(Preparation of tetraethoxysilane hydrolyzate)
29 g of tetraethoxysilane and 55 g of ethanol were mixed, and after adding 16 g of a 1.6 mass% aqueous solution of acetic acid thereto, a tetraethoxysilane hydrolyzate was prepared by stirring at 25 ° C. for 20 hours.

(低屈折率層組成物aの調製:ゾルゲル処方)
まず容器に下記割合で混合溶媒を作製した。
(Preparation of low refractive index layer composition a: sol-gel formulation)
First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 382質量部
イソプロピルアルコール 384質量部
この混合溶媒に
テトラエトキシシラン加水分解物 226質量部
をゆっくり添加して混合した。混合攪拌後、
KBM503(シランカップリング剤・信越化学製) 6質量部
をゆっくり添加して混合した。混合攪拌後、
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207:日本ユニカー社製)の10%プロピレングリコールモノメチルエーテル溶液 2質量部
をゆっくり添加して混合し、低屈折率層組成物aとした。
Propylene glycol monomethyl ether 382 parts by mass Isopropyl alcohol 384 parts by mass To this mixed solvent, 226 parts by mass of tetraethoxysilane hydrolyzate was slowly added and mixed. After mixing and stirring
KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 6 parts by mass was slowly added and mixed. After mixing and stirring
2 parts by mass of a 10% propylene glycol monomethyl ether solution of a linear dimethyl silicone-EO block copolymer (FZ-2207: manufactured by Nihon Unicar) was slowly added and mixed to obtain a low refractive index layer composition a.

(低屈折率層組成物bの調製:中空微粒子処方)
まず容器に下記割合で混合溶媒を作製した。
(Preparation of low refractive index layer composition b: hollow fine particle formulation)
First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 377質量部
イソプロピルアルコール 379質量部
この混合溶媒に
テトラエトキシシラン加水分解物 226質量部
をゆっくり添加して混合した。混合攪拌後、
KBM503(シランカップリング剤・信越化学製) 3質量部
をゆっくり添加して混合した。混合攪拌後、
二酸化ケイ素微粒子分散物(固形分20質量%)(触媒化成工業社製 P−4)
12質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207:日本ユニカー社製)の10%プロピレングリコールモノメチルエーテル溶液 2質量部
をゆっくり添加して混合し、低屈折率層組成物bとした。
Propylene glycol monomethyl ether 377 parts by mass Isopropyl alcohol 379 parts by mass To this mixed solvent, 226 parts by mass of tetraethoxysilane hydrolyzate was slowly added and mixed. After mixing and stirring
KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 3 parts by mass was slowly added and mixed. After mixing and stirring
Silicon dioxide fine particle dispersion (solid content 20% by mass) (P-4 manufactured by Catalytic Chemical Industry Co., Ltd.)
12 parts by mass A 10% propylene glycol monomethyl ether solution of a linear dimethyl silicone-EO block copolymer (FZ-2207: manufactured by Nihon Unicar) was slowly added and mixed to obtain a low refractive index layer composition b.

〈比較例1〉
未塗布ベース巻き出し〜塗布1(第1コーター)〜乾燥1(乾燥ゾーン1)〜塗布2(第2コーター)〜乾燥2(乾燥ゾーン2)〜UV照射〜塗布済みベース巻き取りが連続で行えるテストプラントにて、膜厚80μmのセルローストリアセテートフィルム(コニカミノルタオプト(株)製コニカタックKC8UX2MW、屈折率1.49、アセチル基の置換度2.88)の片面に、下記条件で塗布を行いハードコートフィルムを作製した。
<Comparative example 1>
Uncoated base unwinding-coating 1 (first coater)-drying 1 (drying zone 1)-coating 2 (second coater)-drying 2 (drying zone 2)-UV irradiation-coated base winding can be performed continuously. In a test plant, coating was performed on one side of a 80 μm-thick cellulose triacetate film (Konica Minolta Opto Konicakatak KC8UX2MW, refractive index 1.49, acetyl group substitution degree 2.88) under the following conditions. A coated film was produced.

・ベース幅1.4m、塗布幅1.3m
(1パス目)
・塗布速度10m/min
・第1コーター:1スロット押し出しコーター
・塗布液:帯電性樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が3.0μmになるように調整した。
・ Base width 1.4m, coating width 1.3m
(First pass)
・ Coating speed 10m / min
-1st coater: 1 slot extrusion coater-Coating solution: Chargeable resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 3.0 μm.

・乾燥ゾーン1:1m、乾燥温度80℃
・第2コーター:塗布せず
・乾燥ゾーン2−1:1m、乾燥温度80℃
・乾燥ゾーン2−2:2m、乾燥温度80℃
・乾燥ゾーン2−3:2m、乾燥温度80℃
・乾燥ゾーン2−4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
(2パス目)
・塗布速度10m/min
・第1コーター:1スロット押し出しコーター
・塗布液:帯電防止樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が2.0μmになるように調整した。
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Second coater: not applied ・ Drying zone 2-1: 1 m, drying temperature 80 ° C.
-Drying zone 2-2: 2m, drying temperature 80 ° C
-Drying zone 2-3: 2m, drying temperature 80 ° C
-Drying zone 2-4: 2m, drying temperature 80 ° C
-UV irradiation after drying (Adjust the output of the UV lamp so that it becomes 120mJ / cm 2 )
(2nd pass)
・ Coating speed 10m / min
-1st coater: 1 slot extrusion coater-Coating solution: Antistatic resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 2.0 μm.

・乾燥ゾーン1:1m、乾燥温度80℃
・第2コーター:塗布せず
・乾燥ゾーン2−1:1m、乾燥温度80℃
・乾燥ゾーン2−2:2m、乾燥温度80℃
・乾燥ゾーン2−3:2m、乾燥温度80℃
・乾燥ゾーン2−4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
〈比較例2〉
比較例1において1パス目の第1コーター塗布液を塗布直後、塗布機に近接して設けたUV照射ランプによりUV照射(30mJ/cm2になるよう、UVランプの出力を調整)を行い塗膜を半硬化し、乾燥しなかった以外は同様にして2パス目の塗布、乾燥・UV照射を行った。
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Second coater: not applied ・ Drying zone 2-1: 1 m, drying temperature 80 ° C.
-Drying zone 2-2: 2m, drying temperature 80 ° C
-Drying zone 2-3: 2m, drying temperature 80 ° C
-Drying zone 2-4: 2m, drying temperature 80 ° C
-UV irradiation after drying (Adjust the output of the UV lamp so that it becomes 120mJ / cm 2 )
<Comparative example 2>
In Comparative Example 1, immediately after coating the first coater coating solution in the first pass, UV irradiation (adjusting the output of the UV lamp to adjust to 30 mJ / cm 2 ) was performed with a UV irradiation lamp provided close to the coating machine. A second pass of coating, drying and UV irradiation were performed in the same manner except that the film was semi-cured and not dried.

〈比較例3〉
比較例1と同じテストプラントおよびベースフィルムを用いて下記条件にてハードコートフィルムを作製した。
<Comparative Example 3>
Using the same test plant and base film as Comparative Example 1, a hard coat film was produced under the following conditions.

・ベース幅1.4m、塗布幅1.3m
(1パス目)
・塗布速度10m/min
・第1コーター:1スロット押し出しコーター
塗布液:帯電性樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が3.0μmになるように調整した。
・ Base width 1.4m, coating width 1.3m
(First pass)
・ Coating speed 10m / min
-1st coater: 1 slot extrusion coater Coating solution: Chargeable resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 3.0 μm.

・乾燥ゾーン1:1m、乾燥温度30℃
・第2コーター:1スロット押し出しコーター
塗布液:帯電防止樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が2.0μmになるように調整した。
・ Drying zone 1: 1m, drying temperature 30 ℃
・ Second coater: 1 slot extrusion coater Coating solution: Antistatic resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 2.0 μm.

・乾燥ゾーン2−1:1m、乾燥温度80℃
・乾燥ゾーン2−2:2m、乾燥温度80℃
・乾燥ゾーン2−3:2m、乾燥温度80℃
・乾燥ゾーン2−4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
〈比較例4〉
比較例3において乾燥ゾーン1の温度を80℃にした以外は比較例3と同様にしてハードコートフィルムを作製した。
・ Drying zone 2-1: 1m, drying temperature 80 ℃
-Drying zone 2-2: 2m, drying temperature 80 ° C
-Drying zone 2-3: 2m, drying temperature 80 ° C
-Drying zone 2-4: 2m, drying temperature 80 ° C
-UV irradiation after drying (Adjust the output of the UV lamp so that it becomes 120mJ / cm 2 )
<Comparative example 4>
A hard coat film was produced in the same manner as in Comparative Example 3 except that the temperature of the drying zone 1 was changed to 80 ° C. in Comparative Example 3.

〈比較例5〉
比較例3において第1コーターの塗布液を塗布直後、塗布機に近接して設けたUVランプによりUV照射(30mj/cm2になるよう、UVランプの出力を調整)を行い塗膜を半硬化した後、比較例3と同様にして第2コーターでの塗布、乾燥、UV照射し、ハードコートフィルムを作製した。
<Comparative Example 5>
In Comparative Example 3, immediately after coating the coating solution of the first coater, UV irradiation (adjusting the output of the UV lamp to adjust to 30 mj / cm 2 ) was performed with a UV lamp provided close to the coating machine, and the coating film was semi-cured. After that, in the same manner as in Comparative Example 3, coating with a second coater, drying, and UV irradiation were performed to produce a hard coat film.

〈実施例1〉
比較例1と同じテストプラント及びベースフィルムを用いて下記条件にてハードコートフィルムを作製した。
<Example 1>
Using the same test plant and base film as Comparative Example 1, a hard coat film was produced under the following conditions.

・ベース幅1.4m、塗布幅1.3m
(1パス目)
・塗布速度10m/min
・第1コーター:2スロット押し出しコーター
2スロットの押し出しコーターを用いwet on wetにて同時に重層塗布を行った。
・ Base width 1.4m, coating width 1.3m
(First pass)
・ Coating speed 10m / min
First coater: 2-slot extrusion coater A two-slot extrusion coater was used and wet coating was simultaneously performed by wet on wet.

尚膜厚については単層で塗布した場合の流量に従って設定した。   The film thickness was set according to the flow rate when applied as a single layer.

(第1スロット;基材側樹脂層)
・塗布液:帯電性樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が3.0μmになるように調整した。
(First slot; base resin layer)
-Coating solution: Chargeable resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 3.0 μm.

(第2スロット;表面側樹脂層)
・塗布液:帯電防止樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が2.0μmになるように調整した。
(Second slot; surface side resin layer)
-Coating solution: Antistatic resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 2.0 μm.

・乾燥ゾーン1:1m、乾燥温度80℃
・第2コーター:塗布せず
・乾燥ゾーン2−1:1m、乾燥温度80℃
・乾燥ゾーン2−2:2m、乾燥温度80℃
・乾燥ゾーン2−3:2m、乾燥温度80℃
・乾燥ゾーン2−4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
〈実施例2〉
実施例1において第2スロット;表面側樹脂層の乾燥硬化後の膜厚を0.4μmになるように調整した以外は実施例1と同様にしてハードコートフィルムを作製した。
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Second coater: not applied ・ Drying zone 2-1: 1 m, drying temperature 80 ° C.
-Drying zone 2-2: 2m, drying temperature 80 ° C
-Drying zone 2-3: 2m, drying temperature 80 ° C
-Drying zone 2-4: 2m, drying temperature 80 ° C
-UV irradiation after drying (Adjust the output of the UV lamp so that it becomes 120mJ / cm 2 )
<Example 2>
A hard coat film was produced in the same manner as in Example 1 except that the second slot in Example 1 and the thickness of the surface-side resin layer after drying and curing were adjusted to 0.4 μm.

〈実施例3〉
実施例1において第1スロット;基材側樹脂層の乾燥硬化後の膜厚を5.0μmになるよう調整し、第2スロット;表面側樹脂層の乾燥硬化後の膜厚を4.0μmになるように調整した以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 3>
In Example 1, the first slot; the thickness of the base-side resin layer after drying and curing was adjusted to 5.0 μm, and the second slot; the thickness of the surface-side resin layer after drying and curing was set to 4.0 μm. A hard coat film was produced in the same manner as in Example 1 except that the adjustment was performed.

〈実施例4〉
実施例1において第1スロット;基材側樹脂層の乾燥硬化後の膜厚を1.5μmになるよう調整し、第2スロット;表面側樹脂層の乾燥硬化後の膜厚を1.0μmになるように調整した以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 4>
In Example 1, the first slot; the thickness of the base-side resin layer after drying and curing is adjusted to 1.5 μm, and the second slot; the thickness of the surface-side resin layer after drying and curing is set to 1.0 μm. A hard coat film was produced in the same manner as in Example 1 except that the adjustment was performed.

〈実施例5〉
実施例1において第2スロット;表面側樹脂層塗布液を帯電防止樹脂層塗布液2にした以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 5>
A hard coat film was produced in the same manner as in Example 1 except that the second slot in Example 1 and the surface-side resin layer coating solution was changed to the antistatic resin layer coating solution 2.

〈実施例6〉
実施例1において第2スロット;表面側樹脂層塗布液を帯電防止樹脂層塗布液3にした以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 6>
A hard coat film was produced in the same manner as in Example 1 except that the second slot in Example 1; the surface-side resin layer coating solution was changed to the antistatic resin layer coating solution 3.

〈実施例7〉
実施例1において第2スロット;表面側樹脂層塗布液を帯電防止樹脂層塗布液4にした以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 7>
A hard coat film was prepared in the same manner as in Example 1 except that the second slot in Example 1 and the surface-side resin layer coating solution was changed to the antistatic resin layer coating solution 4.

〈実施例8〉
実施例1において第2スロット;表面側樹脂層塗布液を帯電防止樹脂層塗布液6にした以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 8>
A hard coat film was prepared in the same manner as in Example 1 except that the second slot in Example 1 and the surface-side resin layer coating solution was changed to the antistatic resin layer coating solution 6.

〈実施例9〉
実施例1において第2スロット;表面側樹脂層塗布液を帯電防止樹脂層塗布液7にした以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 9>
A hard coat film was prepared in the same manner as in Example 1 except that the second slot in Example 1 and the surface-side resin layer coating solution was changed to the antistatic resin layer coating solution 7.

〈実施例10〉
実施例1において第1スロット;基材側樹脂層塗布液を帯電性樹脂層塗布液2にして乾燥硬化後の膜厚を4.0μmになるよう調整し、第2スロット;表面側樹脂層塗布液を帯電防止樹脂層塗布液7にして乾燥硬化後の膜厚を1.0μmになるよう調整した以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 10>
In Example 1, the first slot; the substrate-side resin layer coating solution was changed to the chargeable resin layer coating solution 2 and the film thickness after drying and curing was adjusted to 4.0 μm, the second slot; the surface-side resin layer coating A hard coat film was produced in the same manner as in Example 1 except that the solution was changed to an antistatic resin layer coating solution 7 and the film thickness after drying and curing was adjusted to 1.0 μm.

〈実施例11〉
実施例1と同じテストプラント及びベースフィルムを用いて下記条件にてハードコートフィルムを作製した。
<Example 11>
Using the same test plant and base film as in Example 1, a hard coat film was produced under the following conditions.

・ベース幅1.4m、塗布幅1.3m
(1パス目)
・塗布速度10m/min
・第1コーター:2スロット押し出しコーター
2スロットの押し出しコーターを用いwet on wetにて同時に重層塗布を行った。
・ Base width 1.4m, coating width 1.3m
(First pass)
・ Coating speed 10m / min
First coater: 2-slot extrusion coater A two-slot extrusion coater was used and wet coating was simultaneously performed by wet on wet.

尚膜厚については単層で塗布した場合の流量に従って設定した。   The film thickness was set according to the flow rate when applied as a single layer.

(第1スロット;基材側樹脂層)
・塗布液:帯電防止性樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が1.0μmになるように調整した。
(First slot; base resin layer)
-Coating solution: Antistatic resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 1.0 μm.

(第2スロット;表面側樹脂層)
・塗布液:帯電性樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が3.0μmになるように調整した。
(Second slot; surface side resin layer)
-Coating solution: Chargeable resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 3.0 μm.

・乾燥ゾーン1:1m、乾燥温度80℃
・第2コーター:塗布せず
・乾燥ゾーン2−1:1m、乾燥温度80℃
・乾燥ゾーン2−2:2m、乾燥温度80℃
・乾燥ゾーン2−3:2m、乾燥温度80℃
・乾燥ゾーン2−4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
1パス目樹脂層試料の屈折率を下記測定法により測定した結果、1.52であった。
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Second coater: not applied ・ Drying zone 2-1: 1 m, drying temperature 80 ° C.
-Drying zone 2-2: 2m, drying temperature 80 ° C
-Drying zone 2-3: 2m, drying temperature 80 ° C
-Drying zone 2-4: 2m, drying temperature 80 ° C
-UV irradiation after drying (Adjust the output of the UV lamp so that it becomes 120mJ / cm 2 )
The refractive index of the first-pass resin layer sample was measured by the following measurement method and found to be 1.52.

〈実施例12〉
実施例1において、1パス目の第1コーター塗布液を塗布直後、塗布機に近接して設けたUV照射ランプによりUV照射(30mJ/cm2になるよう、UVランプの出力を調整)を行い塗膜を半硬化した後、実施例1と同様にして乾燥・UV照射し、ハードコートフィルムを得た。
<Example 12>
In Example 1, immediately after applying the first coater coating solution in the first pass, UV irradiation (adjusting the output of the UV lamp so as to be 30 mJ / cm 2 ) was performed by a UV irradiation lamp provided close to the coating machine. After semi-curing the coating film, drying and UV irradiation were carried out in the same manner as in Example 1 to obtain a hard coat film.

〈実施例13〉
実施例1と同じテストプラント及びベースフィルムを用いて下記条件にて反射防止フィルムを作製した。
<Example 13>
Using the same test plant and base film as in Example 1, an antireflection film was produced under the following conditions.

・ベース幅1.4m、塗布幅1.3m
(1パス目)
・塗布速度10m/min
・第1コーター:2スロット押し出しコーター
2スロットの押し出しコーターを用いwet on wetにて同時に重層塗布を行った。
・ Base width 1.4m, coating width 1.3m
(First pass)
・ Coating speed 10m / min
First coater: 2-slot extrusion coater A two-slot extrusion coater was used and wet coating was simultaneously performed by wet on wet.

尚膜厚については単層で塗布した場合の流量に従って設定した。   The film thickness was set according to the flow rate when applied as a single layer.

(第1スロット;基材側樹脂層)
・塗布液:帯電性樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が3.0μmになるように調整した。
(First slot; base resin layer)
-Coating solution: Chargeable resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 3.0 μm.

(第2スロット;表面側樹脂層)
・塗布液:帯電防止性樹脂層塗布液1
塗布液の流量は乾燥硬化後の膜厚が2.0μmになるように調整した。
(Second slot; surface side resin layer)
-Coating solution: Antistatic resin layer coating solution 1
The flow rate of the coating solution was adjusted so that the film thickness after drying and curing was 2.0 μm.

・乾燥ゾーン1:1m、乾燥温度80℃
・第2コーター:塗布せず
・乾燥ゾーン2−1:1m、乾燥温度80℃
・乾燥ゾーン2−2:2m、乾燥温度80℃
・乾燥ゾーン2−3:2m、乾燥温度80℃
・乾燥ゾーン2−4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
1パス目樹脂層試料の屈折率を下記測定法により測定した結果、1.52であった。
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Second coater: not applied ・ Drying zone 2-1: 1 m, drying temperature 80 ° C.
-Drying zone 2-2: 2m, drying temperature 80 ° C
-Drying zone 2-3: 2m, drying temperature 80 ° C
-Drying zone 2-4: 2m, drying temperature 80 ° C
-UV irradiation after drying (Adjust the output of the UV lamp so that it becomes 120mJ / cm 2 )
The refractive index of the first-pass resin layer sample was measured by the following measurement method and found to be 1.52.

(2パス目)
・塗布速度10m/min
・第1コーター:1スロット押し出しコーター
・塗布液:低屈折率層塗布液a
塗布液の流量は乾燥後の膜厚が90nmになるように調整した。
(2nd pass)
・ Coating speed 10m / min
-1st coater: 1 slot extrusion coater-Coating solution: Low refractive index layer coating solution a
The flow rate of the coating solution was adjusted so that the film thickness after drying was 90 nm.

・乾燥ゾーン1:1m、乾燥温度80℃
・第2コーター:塗布せず
・乾燥ゾーン2−1:1m、乾燥温度80℃
・乾燥ゾーン2−2:2m、乾燥温度90℃
・乾燥ゾーン2−3:2m、乾燥温度100℃
・乾燥ゾーン2−4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
2パス目低屈折率層の屈折率を下記測定法により測定した結果、1.45であった。
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Second coater: not applied ・ Drying zone 2-1: 1 m, drying temperature 80 ° C.
-Drying zone 2-2: 2m, drying temperature 90 ° C
-Drying zone 2-3: 2m, drying temperature 100 ° C
-Drying zone 2-4: 2m, drying temperature 80 ° C
-UV irradiation after drying (Adjust the output of the UV lamp so that it becomes 120mJ / cm 2 )
It was 1.45 as a result of measuring the refractive index of the 2nd pass low refractive index layer with the following measuring method.

〈実施例14〉
実施例14において1パス目第1コーターの第2スロット;表面側樹脂層塗布液を帯電防止樹脂層塗布液7にし、2パス目第1コーターの低屈折率層塗布液を低屈折率層塗布液bにした以外は実施例12と同様にして反射防止積層体を作製した。
<Example 14>
In Example 14, the second slot of the first coater in the first pass; the surface side resin layer coating solution is changed to the antistatic resin layer coating solution 7, and the low refractive index layer coating solution of the second pass first coater is applied to the low refractive index layer. An antireflection laminate was produced in the same manner as in Example 12 except that the liquid b was used.

1パス目樹脂試料の屈折率は1.60、2パス目の低屈折率層の屈折率は1.37であった。   The refractive index of the first-pass resin sample was 1.60, and the refractive index of the low-refractive index layer in the second pass was 1.37.

〈比較例6〉
比較例1で作製したハードコートフィルム上に、実施例14の2パス目塗布液(低屈折率層塗布液a)を実施例14と同様にして塗布、乾燥・UV硬化し反射防止フィルムを作製した。
<Comparative Example 6>
On the hard coat film prepared in Comparative Example 1, the second-pass coating liquid (low refractive index layer coating liquid a) of Example 14 was applied, dried and UV cured in the same manner as in Example 14 to produce an antireflection film. did.

〈比較例7〉
比較例1において1パス目の塗布液を帯電防止樹脂層塗布液5にして膜厚を0.2μmとし、2パス目の塗布液を帯電性樹脂層塗布液1にして膜厚を4.0μmにした以外は比較例1と同様にしてハードコートフィルムを作製した。
<Comparative Example 7>
In Comparative Example 1, the coating solution for the first pass is the antistatic resin layer coating solution 5 and the film thickness is 0.2 μm. The coating solution for the second pass is the charging resin layer coating solution 1 and the film thickness is 4.0 μm. A hard coat film was produced in the same manner as in Comparative Example 1 except that the above was changed.

〈比較例8〉
比較例1において1パス目の塗布液を帯電防止樹脂層塗布液5にし、乾燥ゾーン1および2の温度を30℃にし、2パス目の塗布液を帯電性樹脂層塗布液1にした以外は比較例1と同様にしてハードコートフィルムを作製した。
<Comparative Example 8>
In Comparative Example 1, except that the coating solution for the first pass was the antistatic resin layer coating solution 5, the temperature of the drying zones 1 and 2 was 30 ° C., and the coating solution for the second pass was the charging resin layer coating solution 1. A hard coat film was produced in the same manner as in Comparative Example 1.

〈比較例9〉
比較例3において第1コーターの塗布液を帯電防止樹脂層塗布液5にして膜厚を0.2μmとし、第2コーターの塗布液を帯電性樹脂層塗布液1にして膜厚を4.0μmにした以外は比較例3と同様にしてハードコートフィルムを作製した。
<Comparative Example 9>
In Comparative Example 3, the coating solution for the first coater was made antistatic resin layer coating solution 5 to make the film thickness 0.2 μm, and the coating solution for the second coater was made chargeable resin layer coating solution 1 to make the film thickness 4.0 μm. A hard coat film was produced in the same manner as in Comparative Example 3 except that it was changed.

〈実施例15〉
実施例1において第1スロット;基材側の樹脂層塗布液を帯電防止樹脂層塗布液5にして膜厚を0.2μmとし、第2スロット;表面側樹脂層塗布液を帯電性樹脂層塗布液1にして膜厚を4.0μmにした以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 15>
In Example 1, the first slot; the substrate-side resin layer coating solution is made antistatic resin layer coating solution 5 to a film thickness of 0.2 μm, and the second slot; the surface-side resin layer coating solution is applied to the charging resin layer. A hard coat film was produced in the same manner as in Example 1 except that the liquid 1 was changed to a film thickness of 4.0 μm.

〈比較例10〉
比較例1においてベース幅1.2m、塗布幅1.1mにした以外は比較例1と同様にしてハードコートフィルムを作製した。
<Comparative Example 10>
A hard coat film was produced in the same manner as in Comparative Example 1 except that the base width was 1.2 m and the coating width was 1.1 m in Comparative Example 1.

〈比較例11〉
比較例2においてベース幅1.2m、塗布幅1.1mにした以外は比較例2と同様にしてハードコートフィルムを作製した。
<Comparative Example 11>
A hard coat film was produced in the same manner as in Comparative Example 2 except that the base width was 1.2 m and the coating width was 1.1 m in Comparative Example 2.

〈比較例12〉
比較例3においてベース幅1.2m、塗布幅1.1mにした以外は比較例3と同様にしてハードコートフィルムを作製した。
<Comparative example 12>
A hard coat film was produced in the same manner as in Comparative Example 3 except that the base width was 1.2 m and the coating width was 1.1 m in Comparative Example 3.

〈比較例13〉
比較例4においてベース幅1.2m、塗布幅1.1mにした以外は比較例4と同様にしてハードコートフィルムを作製した。
<Comparative Example 13>
A hard coat film was produced in the same manner as in Comparative Example 4 except that the base width was 1.2 m and the coating width was 1.1 m in Comparative Example 4.

〈比較例14〉
比較例5においてベース幅1.2m、塗布幅1.1mにした以外は比較例5と同様にしてハードコートフィルムを作製した。
<Comparative example 14>
A hard coat film was produced in the same manner as in Comparative Example 5 except that the base width was 1.2 m and the coating width was 1.1 m in Comparative Example 5.

〈実施例16〉
実施例1においてベース幅1.2m、塗布幅1.1mにした以外は実施例1と同様にしてハードコートフィルムを作製した。
<Example 16>
A hard coat film was produced in the same manner as in Example 1 except that the base width was 1.2 m and the coating width was 1.1 m in Example 1.

〈実施例17〉
実施例12においてベース幅1.2m、塗布幅1.1mにした以外は実施例12と同様にしてハードコートフィルムを作製した。
<Example 17>
A hard coat film was produced in the same manner as in Example 12 except that the base width was 1.2 m and the coating width was 1.1 m in Example 12.

以上得られた試料について以下の評価を行った。   The following evaluation was performed about the obtained sample.

《評価方法》
(屈折率)
樹脂層の屈折率はセルローストリアセテートフィルム上に設けた樹脂層の分光反射率の測定結果から求めた。分光反射率はFE−3000(大塚電子製)を用いて、サンプルの測定側の裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して測定を行った。分光反射率をFE−3000のソフトウエアで解析及びフィッティングを行い屈折率を求めた。
"Evaluation methods"
(Refractive index)
The refractive index of the resin layer was determined from the measurement result of the spectral reflectance of the resin layer provided on the cellulose triacetate film. Spectral reflectance is FE-3000 (manufactured by Otsuka Electronics Co., Ltd.), and after roughening the back side of the measurement side of the sample, light absorption treatment is performed with a black spray to prevent reflection of light on the back side. Measurements were made. The spectral reflectance was analyzed and fitted with FE-3000 software to obtain the refractive index.

低屈折率層の屈折率は既に屈折率、膜厚を測定した樹脂層の上に設けた低屈折率層の分光反射率から、上記の樹脂層と同様の方法で求めた。   The refractive index of the low refractive index layer was determined in the same manner as the above resin layer from the spectral reflectance of the low refractive index layer provided on the resin layer whose refractive index and film thickness were already measured.

(表面比抵抗値)
上記試料の各々を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定した。測定に用いた電極は、2本の電極(試料と接触する部分が1cm×5cm)を間隔を1cmで平行に配置し、該電極に試料を接触させて測定し、測定値を5倍にした値を表面比抵抗値Ω/□とした。
(Surface specific resistance)
Each of the above samples was conditioned at 25 ° C. and 55% RH for 24 hours, and measured using a Teraohm Meter Model VE-30 manufactured by Kawaguchi Electric Co., Ltd. The electrodes used for the measurement were measured by placing two electrodes (parts in contact with the sample at 1 cm × 5 cm) in parallel with an interval of 1 cm, contacting the sample with the electrodes, and multiplying the measured value by five times. The value was defined as the surface specific resistance value Ω / □.

(耐傷性)
試料を平滑な台の上に置き、#0000のスチールウール上に1cm2当たり200gの荷重をかけて、試料の表面(樹脂層を設けた側)を10往復擦り、擦る方向と垂直方向に1cmの範囲で発生した傷の本数を目視で数えた。
(Scratch resistance)
Place the sample on a smooth table, apply a load of 200 g per cm 2 on # 0000 steel wool, rub the sample surface (side with the resin layer) 10 times, and rub 1 cm in the direction perpendicular to the rubbing direction. The number of scratches generated in the range of was visually counted.

(ヘイズ)
濁度計(NDH2000、日本電色製)を用い、上記試料のヘイズを測定した。測定はJIS K 7136(ヘイズ)に基づいた方法でD65光源で行った。
(Haze)
The haze of the sample was measured using a turbidimeter (NDH2000, Nippon Denshoku). The measurement was performed with a D65 light source by a method based on JIS K 7136 (haze).

(干渉ムラ)
上記試料について、樹脂層を設けた側の裏面を黒色のスプレーで光吸収処理を行って裏面での光の反射を防止したA4サイズの試料を作成した。
(Interference unevenness)
About the said sample, the A4 size sample which prevented the reflection of the light in the back surface by light-absorbing the back surface in the side which provided the resin layer with the black spray was created.

この試料について、斜めより三波長蛍光灯(FL20SS・EX−N/18(松下電器産業製)の付いた電気スタンド)で試料面を照射し、その時に見える干渉縞を目視で評価した。   The sample surface was irradiated obliquely with a three-wavelength fluorescent lamp (a table lamp with FL20SS • EX-N / 18 (manufactured by Matsushita Electric Industrial Co., Ltd.)), and the interference fringes visible at that time were visually evaluated.

○ :干渉ムラが見えない
○△:干渉ムラがわずかに見える
△ :干渉ムラが明らかに見える
△×:干渉ムラが明らかに見えやや目立つ
× :干渉ムラがとても目立つ
(平面性指数;微小な凹凸評価)
レーザー変位計:キーエンス(株)、型式:LT−8100、分解能:0.2μmを用いて、幅手方向にレーザー変位計で走査して、表面の細かい起伏を測定し、ハードコートフィルムの平面性を評価した。
○: Interference unevenness is not visible ○ △: Interference unevenness is slightly visible △: Interference unevenness is clearly visible △: Interference unevenness is clearly visible and slightly noticeable ×: Interference unevenness is very conspicuous (Flatness index: Small unevenness Evaluation)
Laser displacement meter: Keyence Corporation, Model: LT-8100, Resolution: 0.2 μm, Scan with a laser displacement meter in the width direction to measure fine undulations on the surface, flatness of hard coat film Evaluated.

測定方法は、フィルムを平坦で水平の台の上に載せ、テープで幅手の両端を台に固定し、測定カメラを該台と平行にセットしたシグマ光機社製の移動レールに、カメラレンズと試料フィルムの間隔が25mmとなるようにセットし、移動速度5cm/分で走査し測定した。測定で得られる値はフィルム表面の微少な凹凸の状態と大きさである。   The measuring method is that the film is placed on a flat and horizontal table, both ends of the width are fixed to the table with tape, and the measuring camera is set in parallel with the table on a moving rail made by Sigma Kogyo Co., Ltd. And the sample film were set so that the distance between them was 25 mm, and scanning was performed at a moving speed of 5 cm / min. The value obtained by the measurement is the state and size of minute irregularities on the film surface.

◎:フィルムの変形による凹凸が0.5μm未満
○:フィルムの変形による凹凸が0.5〜1.0μm未満
△:フィルムの変形による凹凸が1.0〜3.0μm未満
×:フィルムの変形による凹凸が3.0μm以上
(平面性;目視評価)
幅90cm、長さ100cmの大きさに各試料を切り出し、50W蛍光灯を5本並べて試料台に45°の角度から照らせるように高さ1.5mの高さに固定し、試料台の上に各フィルム試料を置き、フィルム表面に反射して見える凹凸を目で見て、次のように判定した。この方法によって「つれ」および「しわ」の判定が出来る。
A: Unevenness due to film deformation is less than 0.5 μm ○: Unevenness due to film deformation is less than 0.5 to 1.0 μm Δ: Unevenness due to film deformation is less than 1.0 to 3.0 μm ×: Due to film deformation Concavities and convexities are 3.0 μm or more (flatness; visual evaluation)
Cut each sample into a size of 90cm in width and 100cm in length, and arrange five 50W fluorescent lamps at a height of 1.5m so that the sample stage can be illuminated from a 45 ° angle. Each film sample was placed, and the unevenness that appeared to be reflected on the film surface was visually observed and judged as follows. By this method, it is possible to determine “tsun” and “wrinkle”.

◎:蛍光灯が5本とも真っすぐに見えた
○:蛍光灯が少し曲がって見えるところがある
△:蛍光灯が全体的に少し曲がって見える
×:蛍光灯が大きくうねって見える
(反射率)
分光光度計(U−3310型、日立製作所製)を用い、上記実施例13、14及び比較例6の試料から任意の10ケ所をサンプリングし、反射防止層を設けた側の裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(380nm〜780nm)の反射スペクトルの測定を行い、平均値及びばらつきを求めた。
◎: All five fluorescent lamps looked straight ○: Fluorescent lamps appear to be bent slightly △: Fluorescent lamps appear to be slightly bent overall ×: Fluorescent lamps appear to swell greatly (Reflectance)
Using a spectrophotometer (U-3310, manufactured by Hitachi, Ltd.), 10 arbitrary samples were sampled from the samples of Examples 13 and 14 and Comparative Example 6, and the back surface on the side provided with the antireflection layer was roughened. After the treatment, light absorption treatment is performed with a black spray to prevent reflection of light on the back surface, and the reflection spectrum in the visible light region (380 nm to 780 nm) is measured under the condition of regular reflection at 5 degrees. Values and variability were determined.

この反射スペクトルの測定結果からJIS−Z−8701、CIE1931に基づいて、C光源、2度視野におけるY値を反射率とした。   From the measurement result of this reflection spectrum, based on JIS-Z-8701 and CIE1931, the Y value in a C light source and a 2 degree visual field was made into the reflectance.

以上、得られた評価結果を下記表1に示す。   The obtained evaluation results are shown in Table 1 below.

Figure 2006010923
Figure 2006010923

上表から、本発明に係るハードコートフィルム実施例1〜17は良好な導電性を有し、耐傷性、干渉ムラ、ヘイズ、平面性が比較例に対し優れていることが分かる。   From the above table, it can be seen that the hard coat film examples 1 to 17 according to the present invention have good electrical conductivity, and scratch resistance, interference unevenness, haze, and flatness are superior to the comparative example.

また、本発明に係るハードコートフィルムに低屈折率層を塗設した実施例13、14は、反射率が低く、ばらつきも少なく良好な反射防止フィルムである。特にハードコート部材の屈折率が1.55以上でかつ中空微粒子を含有する実施例14はより低反射率であり好ましいことが分かる。これに対し、比較例6の反射防止フィルムは、反射率のばらつきが大きく、基材であるハードコートフィルムの平面性が悪い為、精密な反射防止層の塗布に問題があることが分かった。   Moreover, Examples 13 and 14 in which a low refractive index layer is applied to the hard coat film according to the present invention are good antireflection films with low reflectance and little variation. In particular, it can be seen that Example 14 containing a hard coat member having a refractive index of 1.55 or more and containing hollow fine particles has a lower reflectance and is preferable. On the other hand, it was found that the antireflection film of Comparative Example 6 had a large variation in reflectivity, and the flatness of the hard coat film as a base material was poor, so that there was a problem in applying a precise antireflection layer.

Claims (7)

透明プラスチック基材上に塗布幅1.2m以上で少なくとも2層以上のクリアハードコート層を設け、その少なくともいずれかの層に活性エネルギー線硬化樹脂を含むクリアハードコートフィルムの製造方法であって、少なくとも基材側の層の塗布液と表面側の層の塗布液とを2層以上同時重層塗布し、次いで乾燥・硬化させることを特徴とするクリアハードコートフィルムの製造方法。 A method for producing a clear hard coat film comprising a clear hard coat layer having a coating width of 1.2 m or more on a transparent plastic substrate and comprising an active energy ray curable resin in at least one of the layers, A method for producing a clear hard coat film, comprising simultaneously applying two or more layers of at least a substrate-side layer coating solution and a surface-side layer coating solution, followed by drying and curing. 前記同時重層塗布した直後に、塗膜が半硬化状態になるように活性エネルギー線照射を行い、次いで乾燥・硬化を行うことを特徴とする請求項1に記載のクリアハードコートフィルムの製造方法。 2. The method for producing a clear hard coat film according to claim 1, wherein immediately after the simultaneous multilayer coating is applied, active energy ray irradiation is performed so that the coating film is in a semi-cured state, followed by drying and curing. 前記活性エネルギー線硬化樹脂を含むクリアハードコート層の少なくとも1層が、導電性金属酸化物微粒子を含むことを特徴とする請求項1または2に記載のクリアハードコートフィルムの製造方法。 The method for producing a clear hard coat film according to claim 1 or 2, wherein at least one of the clear hard coat layers containing the active energy ray-curable resin contains conductive metal oxide fine particles. 前記導電性金属酸化物微粒子がSn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W、及びVからなる群から選択される少なくとも1つの元素を主成分とする導電性金属酸化物微粒子若しくは複合酸化物微粒子であることを特徴とする請求項3に記載のクリアハードコートフィルムの製造方法。 The conductive metal oxide fine particles are mainly composed of at least one element selected from the group consisting of Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W, and V. 4. The method for producing a clear hard coat film according to claim 3, wherein the method is a fine particle or a complex oxide fine particle. 前記活性エネルギー線硬化樹脂が多官能のアクリレート樹脂を主成分とすることを特徴とする請求項1〜4のいずれか1項に記載のクリアハードコートフィルムの製造方法。 The said active energy ray hardening resin has polyfunctional acrylate resin as a main component, The manufacturing method of the clear hard coat film of any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれか1項に記載のクリアハードコートフィルムの製造方法によって製造されたことを特徴とするクリアハードコートフィルム。 A clear hard coat film produced by the method for producing a clear hard coat film according to any one of claims 1 to 5. 請求項6に記載のクリアハードコートフィルム表面上に反射防止層を設けたことを特徴とする反射防止フィルム。 An antireflection film comprising an antireflection layer on the surface of the clear hard coat film according to claim 6.
JP2004186190A 2004-06-24 2004-06-24 Clear hard coat film, its manufacturing method, and antireflection film using the same Pending JP2006010923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186190A JP2006010923A (en) 2004-06-24 2004-06-24 Clear hard coat film, its manufacturing method, and antireflection film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186190A JP2006010923A (en) 2004-06-24 2004-06-24 Clear hard coat film, its manufacturing method, and antireflection film using the same

Publications (1)

Publication Number Publication Date
JP2006010923A true JP2006010923A (en) 2006-01-12

Family

ID=35778278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186190A Pending JP2006010923A (en) 2004-06-24 2004-06-24 Clear hard coat film, its manufacturing method, and antireflection film using the same

Country Status (1)

Country Link
JP (1) JP2006010923A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246714A (en) * 2006-03-16 2007-09-27 Nippon Paint Co Ltd Coating composition which forms finely uneven surfaces and application thereof
JP2008070414A (en) * 2006-09-12 2008-03-27 Toray Ind Inc Method for producing reflection film and image display device
JP2008250267A (en) * 2007-03-30 2008-10-16 Dainippon Printing Co Ltd Manufacturing method of optical film
JP2009265658A (en) * 2008-04-03 2009-11-12 Dainippon Printing Co Ltd Optical film and method for manufacturing method thereof
WO2010064386A1 (en) * 2008-12-04 2010-06-10 国立大学法人大阪大学 Pattern-forming method
JP2013177003A (en) * 2006-01-13 2013-09-09 Trespa Internatl Bv Method for applying one or more layers on paper substrate
JP2013244451A (en) * 2012-05-25 2013-12-09 Dainippon Printing Co Ltd Method for manufacturing coating film
JP2014054581A (en) * 2011-08-24 2014-03-27 Fujifilm Corp Method for manufacturing film with multilayer
US8895113B2 (en) 2011-08-03 2014-11-25 Fujifilm Corporation Method of manufacturing film with a coating layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177003A (en) * 2006-01-13 2013-09-09 Trespa Internatl Bv Method for applying one or more layers on paper substrate
JP2007246714A (en) * 2006-03-16 2007-09-27 Nippon Paint Co Ltd Coating composition which forms finely uneven surfaces and application thereof
JP2008070414A (en) * 2006-09-12 2008-03-27 Toray Ind Inc Method for producing reflection film and image display device
JP2008250267A (en) * 2007-03-30 2008-10-16 Dainippon Printing Co Ltd Manufacturing method of optical film
JP2009265658A (en) * 2008-04-03 2009-11-12 Dainippon Printing Co Ltd Optical film and method for manufacturing method thereof
WO2010064386A1 (en) * 2008-12-04 2010-06-10 国立大学法人大阪大学 Pattern-forming method
US8895113B2 (en) 2011-08-03 2014-11-25 Fujifilm Corporation Method of manufacturing film with a coating layer
JP2014054581A (en) * 2011-08-24 2014-03-27 Fujifilm Corp Method for manufacturing film with multilayer
JP2013244451A (en) * 2012-05-25 2013-12-09 Dainippon Printing Co Ltd Method for manufacturing coating film

Similar Documents

Publication Publication Date Title
JP4655663B2 (en) Method for producing roll-shaped film having coating layer, roll-shaped optical film, polarizing plate, liquid crystal display device
JP5170083B2 (en) Method for producing antiglare antireflection film, antiglare antireflection film, polarizing plate and display device
JP4400211B2 (en) Low reflection laminate and method for producing low reflection laminate
JP2005208290A (en) Soil-resistant optical thin film, stain-resistant antireflection film, polarizing plate using the same and display apparatus
JP2005148444A (en) Clear hard coating member, antireflection layered body using the same, and manufacturing method thereof
JP2006145587A (en) Antiglare antireflection film, polarizing plate and display device
JP4747769B2 (en) Method for producing uneven pattern film
JP4885441B2 (en) Antiglare antireflection film, polarizing plate and image display device
JP2005309120A (en) Antireflection film, polarizing plate, and image display device
JP4479260B2 (en) Manufacturing method of optical film
WO2012108209A1 (en) Method for producing optical film
JP2005266232A (en) Optical film, polarizing plate, and image display device
JP2005338549A (en) Antireflection film, polarizing plate, and image display device
JP2006010923A (en) Clear hard coat film, its manufacturing method, and antireflection film using the same
JP2004258469A (en) Anti-reflection film, manufacturing method therefor, polarizer, and display device
CN1673778B (en) Antireflection film, polarizing plate, and image display device
JP2006293201A (en) Antireflection film, manufacturing method thereof, polarizing plate and liquid crystal display device
JP2005077795A (en) Optical film and its manufacturing method
JPWO2007040023A1 (en) Method and apparatus for producing uneven pattern film
JP2009288412A (en) Method for producing optical film, optical film, polarizing plate and liquid crystal display apparatus
JP2009223129A (en) Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device
JP2006227162A (en) Antireflection film, method of manufacturing antireflection film, polarizing plate, and display device
JP2004029660A (en) Manufacturing method for optical film, optical film, and polarizing plate and display device provided with optical film
JP2004037618A (en) Antireflection film, manufacture method for antireflection film and polarizing plate and display device
JP2005148272A (en) Antireflective coating, antireflective film and its manufacturing method, polarizing plate and display apparatus