JP2006008902A - Photocatalytic coating composition - Google Patents
Photocatalytic coating composition Download PDFInfo
- Publication number
- JP2006008902A JP2006008902A JP2004190184A JP2004190184A JP2006008902A JP 2006008902 A JP2006008902 A JP 2006008902A JP 2004190184 A JP2004190184 A JP 2004190184A JP 2004190184 A JP2004190184 A JP 2004190184A JP 2006008902 A JP2006008902 A JP 2006008902A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- coating
- titanium oxide
- apatite
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008199 coating composition Substances 0.000 title claims abstract description 20
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 75
- 239000010419 fine particle Substances 0.000 claims abstract description 68
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910052586 apatite Inorganic materials 0.000 claims abstract description 42
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims abstract description 42
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 37
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims abstract description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 11
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 53
- 239000002245 particle Substances 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000011941 photocatalyst Substances 0.000 claims description 17
- 239000003054 catalyst Substances 0.000 claims description 9
- 125000000962 organic group Chemical group 0.000 claims description 7
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 3
- -1 siloxane compound Chemical class 0.000 abstract description 7
- 230000007062 hydrolysis Effects 0.000 abstract description 4
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 4
- 239000004408 titanium dioxide Substances 0.000 abstract description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract 1
- 229910000077 silane Inorganic materials 0.000 abstract 1
- 239000002689 soil Substances 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 description 61
- 238000000576 coating method Methods 0.000 description 61
- 125000005372 silanol group Chemical group 0.000 description 26
- 239000003973 paint Substances 0.000 description 25
- 239000000203 mixture Substances 0.000 description 21
- 238000012360 testing method Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 239000000463 material Substances 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 12
- 239000007787 solid Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000011164 primary particle Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 101100017018 Caenorhabditis elegans him-14 gene Proteins 0.000 description 6
- 230000032683 aging Effects 0.000 description 6
- 230000003373 anti-fouling effect Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000003301 hydrolyzing effect Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- YOBOXHGSEJBUPB-MTOQALJVSA-N (z)-4-hydroxypent-3-en-2-one;zirconium Chemical compound [Zr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O YOBOXHGSEJBUPB-MTOQALJVSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000004125 X-ray microanalysis Methods 0.000 description 1
- SLPZVESNNVWHSF-UHFFFAOYSA-L [Al+3].C(C)(=O)[O-].C(C)(=O)[O-].C(CCC)[Sn+2]CCCC Chemical compound [Al+3].C(C)(=O)[O-].C(C)(=O)[O-].C(CCC)[Sn+2]CCCC SLPZVESNNVWHSF-UHFFFAOYSA-L 0.000 description 1
- OXMKQIVTFWEMRJ-UHFFFAOYSA-N [B+3].CCCC[O-].CCCC[O-].CCCC[O-] Chemical compound [B+3].CCCC[O-].CCCC[O-].CCCC[O-] OXMKQIVTFWEMRJ-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000013556 antirust agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N chembl421 Chemical compound C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000002913 oxalic acids Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Paints Or Removers (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
本発明は、光触媒塗料組成物に関し、とりわけ光触媒としてアパタイト被覆酸化チタン微粒子を含有する光触媒塗料組成物に関する。 The present invention relates to a photocatalytic coating composition, and more particularly to a photocatalytic coating composition containing apatite-coated titanium oxide fine particles as a photocatalyst.
酸化チタン光触媒は、電灯や太陽光線に含まれる紫外線によって、有機物や細菌を分解することができるため、防汚、シックハウス対策、院内感染防止、脱臭、抗菌防カビ、大気浄化、水処理、セルフクリーンなどの目的で環境分野に利用されている。酸化チタンは、繊維やプラスチックに練り込むと、繊維やプラスチックが光触媒作用により分解されてしまうため、シリカなどの孔の開いた膜で被覆したり、表面にアパタイトを被覆した形態で用いられている。とくに酸化チタンの表面にアパタイトで被覆したアパタイト被覆酸化チタンは、アパタイトの吸着性能により、有機物や細菌の分解効率を高めることができる。 Titanium oxide photocatalyst can decompose organic substances and bacteria by ultraviolet rays contained in electric light and sunlight, so it is antifouling, sick house measures, hospital infection prevention, deodorization, antibacterial and antifungal, air purification, water treatment, self-cleaning It is used in the environmental field for such purposes. When titanium oxide is kneaded into fibers or plastics, the fibers and plastics are decomposed by photocatalytic action, so they are used in a form that is coated with a porous film such as silica or coated with apatite on the surface. . In particular, apatite-coated titanium oxide, in which the surface of titanium oxide is coated with apatite, can improve the decomposition efficiency of organic matter and bacteria due to the adsorption performance of apatite.
アパタイト被覆酸化チタンの用途の1つとして、防汚塗料があり、すでに汎用されている。たとえば、アルコキシシランやケイ酸塩によるゾル−ゲル法を利用してバインダー機能を付与し、塗料として利用することが一般に行なわれている。しかしながら、このような方法では、塗膜の結合力は優れているが、膜厚を上げすぎると割れてしまい、表面の粗い下地への施工には向かないという問題があった。そのため、塗料の固形分が0.1〜2%と非常に希薄な状態で塗布しなければならなかった。また、シリカ微粒子をバインダーとして用いた場合、微粒子表面に存在するシラノール基が少ないため、塗膜の結合力が小さく、施工後、風雨によってアパタイト被覆酸化チタンが簡単に剥がれ落ちてしまうという問題があった。 One of the uses of apatite-coated titanium oxide is antifouling paint, which has already been widely used. For example, a sol-gel method using alkoxysilane or silicate is generally used to impart a binder function and use as a paint. However, with such a method, the bonding strength of the coating film is excellent, but if the film thickness is increased too much, it breaks and there is a problem that it is not suitable for construction on a rough surface. Therefore, it has been necessary to apply the coating composition in a very dilute state with a solid content of 0.1 to 2%. In addition, when silica fine particles are used as a binder, since there are few silanol groups present on the surface of the fine particles, there is a problem that the bonding strength of the coating film is small, and after construction, the apatite-coated titanium oxide can be easily peeled off by wind and rain. It was.
また、塗料のバインダーとして、シリコーンアクリル樹脂(たとえば、特許文献1参照)や、水酸基または加水分解性基と結合したケイ素原子を含み、シロキサン結合を形成することにより架橋し得る官能基を少なくとも1個有する有機重合体(たとえば、特許文献2参照)を用いることが提案されている。しかしながら、これらの有機基を有するバインダーは、疎水性が大きいため、塗膜に埃などが付着しやすくなり、かえって防汚効果を損なうという問題があった。 Further, as a binder of the coating material, at least one functional group that contains a silicone acrylic resin (for example, see Patent Document 1) and a silicon atom bonded to a hydroxyl group or a hydrolyzable group and can be crosslinked by forming a siloxane bond. It has been proposed to use an organic polymer (see, for example, Patent Document 2). However, since these binders having an organic group are highly hydrophobic, there is a problem that dust or the like tends to adhere to the coating film, and the antifouling effect is impaired.
本発明の目的は、防汚効果に優れた光触媒塗料組成物を提供することにある。 The objective of this invention is providing the photocatalyst coating composition excellent in the antifouling effect.
本発明は、アパタイト被覆酸化チタン微粒子、式(1):
SiOa(OH)b(OR1)c(OR2)d (1)
(式中、0.8≦a≦1.6、0.3≦b≦1.3、0.2≦c+d≦1.9、b=4−(2a+c+d)、R1はメチル基またはエチル基、R2はR1と異なる有機基)で表されるシロキサン化合物または式(2):
Si(OR1)4 (2)
(式中、R1はメチル基またはエチル基)で表されるテトラアルコキシシランの加水分解縮合物からなる、重量平均分子量が1000±200である反応性シリカ微粒子、および水系溶媒からなる光触媒塗料組成物に関する。
The present invention provides apatite-coated titanium oxide fine particles, formula (1):
SiO a (OH) b (OR 1 ) c (OR 2 ) d (1)
(In the formula, 0.8 ≦ a ≦ 1.6, 0.3 ≦ b ≦ 1.3, 0.2 ≦ c + d ≦ 1.9, b = 4- (2a + c + d), R 1 is a methyl group or an ethyl group , R 2 is an organic group different from R 1 ) or a formula (2):
Si (OR 1 ) 4 (2)
(Wherein R 1 is a methyl or ethyl group), a photocatalytic coating composition comprising a reactive silica fine particle having a weight average molecular weight of 1000 ± 200, comprising a hydrolyzed condensate of tetraalkoxysilane, and an aqueous solvent Related to things.
前記反応性シリカ微粒子は、式(3): The reactive silica fine particles have the formula (3):
(式中、nは2〜8の整数)で表わされるメチルシリケートに水と触媒を添加して得られたものであることが好ましい。 (Wherein, n is an integer of 2 to 8) and is preferably obtained by adding water and a catalyst to methyl silicate.
前記反応性シリカ微粒子の平均粒子径が9±3nmであることが好ましい。 The average particle diameter of the reactive silica fine particles is preferably 9 ± 3 nm.
本発明によれば、アパタイト被覆酸化チタン微粒子のバインダーとして、実質的に完全な無機化合物からなるシラノール基を有する反応性シリカ微粒子を用いることによって、塗膜の親水性が大きくなり、優れた防汚効果を得ることができる。また、アルコキシシランやケイ酸塩を用いる場合と比べて、改修時などの凹凸の大きい施工面に対しても、厚く塗布されたときにクラックが入るという恐れがなく、比較的濃い濃度で塗布することができる。さらに、微粒子表面に多くのシラノール基を有するので結合力が大きく、施工後に雨風などによってアパタイト被覆酸化チタン微粒子が簡単に剥がれ落ちることがない。 According to the present invention, the use of reactive silica fine particles having a silanol group consisting of a substantially complete inorganic compound as a binder for apatite-coated titanium oxide fine particles increases the hydrophilicity of the coating film and provides excellent antifouling properties. An effect can be obtained. In addition, compared to the case of using alkoxysilane or silicate, it is applied at a relatively high concentration without the risk of cracking when applied thickly even on construction surfaces with large irregularities such as during repairs. be able to. Further, since the surface of the fine particles has many silanol groups, the bonding force is large, and the apatite-coated titanium oxide fine particles are not easily peeled off by rain or the like after the construction.
本発明の光触媒塗料組成物は、アパタイト被覆酸化チタン微粒子、式(1):
SiOa(OH)b(OR1)c(OR2)d (1)
(式中、0.8≦a≦1.6、0.3≦b≦1.3、0.2≦c+d≦1.9、b=4−(2a+c+d)、R1はメチル基またはエチル基、R2はR1と異なる有機基)で表されるシロキサン化合物または式(2):
Si(OR1)4 (2)
(式中、R1はメチル基またはエチル基)で表されるテトラアルコキシシランの加水分解縮合物からなる、重量平均分子量が1000±200である反応性シリカ微粒子、および水系溶媒からなる。
The photocatalytic coating composition of the present invention comprises apatite-coated titanium oxide fine particles, formula (1):
SiO a (OH) b (OR 1 ) c (OR 2 ) d (1)
(In the formula, 0.8 ≦ a ≦ 1.6, 0.3 ≦ b ≦ 1.3, 0.2 ≦ c + d ≦ 1.9, b = 4- (2a + c + d), R 1 is a methyl group or an ethyl group , R 2 is an organic group different from R 1 ) or a formula (2):
Si (OR 1 ) 4 (2)
(Wherein R 1 is a hydrolyzed condensate of tetraalkoxysilane represented by the formula ( 1 ), consisting of reactive silica fine particles having a weight average molecular weight of 1000 ± 200 and an aqueous solvent.
アパタイト被覆酸化チタン微粒子は、カルシウムイオンやリン酸イオンなどを溶かした水溶液に酸化チタンを浸し、加熱・撹拌などを行なうことにより、酸化チタンの表面にアパタイトを析出させて得られ、酸化チタン微粒子の表面をアパタイトが金平糖の角状に被覆した形態を有する(特開平10−244166号公報参照)。 Apatite-coated titanium oxide fine particles are obtained by precipitating apatite on the surface of titanium oxide by immersing titanium oxide in an aqueous solution in which calcium ions, phosphate ions, etc. are dissolved, and heating and stirring. The surface has a form in which apatite is coated with a confetti shape (see Japanese Patent Application Laid-Open No. 10-244166).
酸化チタン(二酸化チタン)としては、結晶構造により、ルチル型、ブルッカイト型、アナターゼ型酸化チタンがあるが、光触媒活性が高く、任意の粒子径を有するものを入手できる点で、アナターゼ型酸化チタンが好ましい。 Titanium oxide (titanium dioxide) includes rutile, brookite, and anatase type titanium oxides depending on the crystal structure. However, anatase type titanium oxide is available because it has a high photocatalytic activity and can have any particle size. preferable.
アパタイトの被覆量は、前記酸化チタン100重量部に対して、好ましくは5重量部以上、より好ましくは10重量部以上である。アパタイトの被覆量が5重量部未満では、アパタイトの吸着能力が劣り、空間または触媒近傍に浮遊している有害物質や汚染物質を取り込んで、酸化チタン粒子表面に移動させることができなくなるだけでなく、光が照射されていないときに、吸着した有害物質を再脱離してしまうため、結果的に光触媒能の発現が充分でなくなる傾向にある。また、アパタイトの被覆量は、酸化チタン100重量部に対して、好ましくは20重量部以下、より好ましくは15重量部以下である。アパタイトの被覆量が20重量部をこえると酸化チタン粒子の表面をアパタイトの結晶が完全に覆ってしまうため、分解を目的とする物質を酸化チタン表面にまで移動できなくなり、結果的に光触媒能の発現が充分でない傾向にある。 The coating amount of apatite is preferably 5 parts by weight or more, more preferably 10 parts by weight or more with respect to 100 parts by weight of titanium oxide. If the apatite coating amount is less than 5 parts by weight, not only the apatite adsorption ability is inferior, but it becomes impossible to take in harmful substances and contaminants floating in the space or in the vicinity of the catalyst and move them to the titanium oxide particle surface. When no light is irradiated, the adsorbed harmful substance is re-desorbed, and as a result, the photocatalytic activity tends to be insufficiently developed. Moreover, the coating amount of apatite is preferably 20 parts by weight or less, more preferably 15 parts by weight or less with respect to 100 parts by weight of titanium oxide. If the coating amount of apatite exceeds 20 parts by weight, the surface of the titanium oxide particles will be completely covered with the apatite crystals, so that the substance intended for decomposition cannot move to the titanium oxide surface, resulting in photocatalytic activity. There is a tendency for expression to be insufficient.
アパタイト被覆酸化チタン微粒子の平均1次粒子径は、好ましくは10nm以上、より好ましくは30nm以上である。アパタイト被覆酸化チタン微粒子の平均1次粒子径が10nm未満では、塗料製造の第一段階としてホモジナイザーによる1次粒子までの分散処理を行なった後に、再凝集しやすくなり、結果として塗料調整後に粒子径が大きくなるため、比表面積が小さくなり、触媒活性が低下することとなる。また、アパタイト被覆酸化チタン微粒子の平均1次粒子径は、好ましくは250nm以下、より好ましくは100nm以下である。アパタイト被覆酸化チタン微粒子の平均1次粒子径が250nmをこえると、最終的に得られる塗料を塗装した際に、白く着色してしまい、塗装ムラになりやすく、ガラスなどの透明性を要求される被塗物には不向きとなる傾向にある。また、粒子径の増大にともない、塗料中におけるアパタイト被覆酸化チタン微粒子の沈降速度が速くなるため、塗料の貯蔵安定性が劣ってしまう傾向にある。 The average primary particle diameter of the apatite-coated titanium oxide fine particles is preferably 10 nm or more, more preferably 30 nm or more. If the average primary particle diameter of the apatite-coated titanium oxide fine particles is less than 10 nm, it becomes easy to re-agglomerate after the dispersion treatment up to the primary particles by the homogenizer as the first stage of paint production, and as a result, the particle diameter after adjustment of the paint Therefore, the specific surface area is reduced and the catalytic activity is lowered. The average primary particle size of the apatite-coated titanium oxide fine particles is preferably 250 nm or less, more preferably 100 nm or less. If the average primary particle diameter of the apatite-coated titanium oxide fine particles exceeds 250 nm, the final coating is colored white, which tends to cause uneven coating and requires transparency such as glass. It tends to be unsuitable for objects to be coated. In addition, as the particle diameter increases, the sedimentation rate of the apatite-coated titanium oxide fine particles in the paint increases, and thus the storage stability of the paint tends to be inferior.
アパタイト被覆酸化チタン微粒子の塗料固形分中の含有量は、好ましくは5重量%以上、より好ましくは25重量%以上である。アパタイト被覆酸化チタン微粒子の含有量が5重量%未満では、乾燥塗膜表面のアパタイト被覆酸化チタン微粒子の占有面積が充分でなく、目的とする光触媒効果を得るために何回も積層する必要が生じる傾向にある。また、アパタイト被覆酸化チタン微粒子の塗料固形分中の含有量は、好ましくは75重量%以下、より好ましくは50重量%以下である。アパタイト被覆酸化チタン微粒子の含有量が75重量%をこえると、バインダーの含有量が少なすぎるため、アパタイト被覆酸化チタン微粒子同士の結合力や基材への付着力に欠けたものとなる傾向にある。また本来、光触媒反応は、紫外線が直接入射する塗膜表面における反応であり、表面に存在するアパタイト被覆酸化チタンが有効に作用するものであるが、塗膜内部の酸化チタンは、この反応に有効に作用しないため、塗料固形分中にアパタイト被覆酸化チタン微粒子を50重量%をこえて含有しても、光触媒としての効果を向上させにくく、結果とてコスト高になる傾向にある。 The content of the apatite-coated titanium oxide fine particles in the solid content of the paint is preferably 5% by weight or more, more preferably 25% by weight or more. If the content of the apatite-coated titanium oxide fine particles is less than 5% by weight, the area occupied by the apatite-coated titanium oxide fine particles on the surface of the dried coating film is not sufficient, and it is necessary to laminate many times to obtain the desired photocatalytic effect. There is a tendency. Further, the content of the apatite-coated titanium oxide fine particles in the solid content of the paint is preferably 75% by weight or less, more preferably 50% by weight or less. When the content of the apatite-coated titanium oxide fine particles exceeds 75% by weight, the binder content is too small, and thus the apatite-coated titanium oxide fine particles tend to lack a bonding force or an adhesion force to the base material. . Originally, the photocatalytic reaction is a reaction on the surface of the coating film where ultraviolet rays are directly incident, and the apatite-coated titanium oxide existing on the surface acts effectively, but the titanium oxide inside the coating film is effective for this reaction. Therefore, even if the solid content of the apatite-coated titanium oxide exceeds 50% by weight, the effect as a photocatalyst is hardly improved and the cost tends to increase as a result.
シラノール基を有する反応性シリカ微粒子の製造方法としては特に限定されないが、アルコキシシランまたはそのオリゴマーに水を添加し、熟成して得られるアルコキシシランの加水分解縮合物からなることが好ましい。アルコキシシランとしては、テトラアルコキシシランが好ましく、なかでもテトラメトキシシランが加水分解縮合性に優れ、高特性の塗膜が得られる点で、好ましい。 Although it does not specifically limit as a manufacturing method of the reactive silica fine particle which has a silanol group, It is preferable to consist of the hydrolysis condensate of the alkoxysilane obtained by adding water to alkoxysilane or its oligomer, and aging. As the alkoxysilane, tetraalkoxysilane is preferable, and tetramethoxysilane is particularly preferable because it is excellent in hydrolytic condensation and can provide a high-quality coating film.
シラノール基を有する反応性シリカ微粒子の製造方法として、前記式(1):
SiOa(OH)b(OR1)c(OR2)d (1)
(式中、0.8≦a≦1.6、0.3≦b≦1.3、0.2≦c+d≦1.9、b=4−(2a+c+d)、R1はメチル基またはエチル基、R2はR1と異なる有機基)で表されるシロキサン化合物を用いる場合は、前記シロキサン化合物に水を添加し、熟成する方法があげられるが、特に限定されるものではない。
As a method for producing reactive silica fine particles having a silanol group, the above formula (1):
SiO a (OH) b (OR 1 ) c (OR 2 ) d (1)
(In the formula, 0.8 ≦ a ≦ 1.6, 0.3 ≦ b ≦ 1.3, 0.2 ≦ c + d ≦ 1.9, b = 4- (2a + c + d), R 1 is a methyl group or an ethyl group , R 2 is an organic group different from R 1 ), there is a method of adding water to the siloxane compound and aging, but there is no particular limitation.
前記、式(1)のシロキサン化合物は、たとえば、Si(OR1)4(R1はメチル基またはエチル基)で示されるアルコキシシランを加水分解縮合して、式(3): The siloxane compound of the formula (1) is obtained by, for example, hydrolyzing and condensing an alkoxysilane represented by Si (OR 1 ) 4 (R 1 is a methyl group or an ethyl group) to obtain the formula (3):
(式中、nは2〜8の整数)で表されるオリゴマーとし、続いて水存在下において、R2OHで示されるアルコールを加え、エステル交換と同時にオリゴマーにOH基を生じさせることによって得ることができる。 (Wherein n is an integer of 2 to 8), and subsequently in the presence of water, an alcohol represented by R 2 OH is added to obtain an OH group in the oligomer simultaneously with transesterification. be able to.
ここで、前記式(1)において、aが0.8未満の場合は、硬化して得られる硬化物が不透明となる傾向にある。また、aが1.6より大きい場合は、塗料溶液の粘度が高く不安定で、ゲル化しやすい傾向にある。bが0.3未満の場合は、塗膜化した際の塗膜の耐沸騰水性に劣り、1.3より大きい場合は、硬化により得られる硬化物が不透明となる傾向にある。c+dが0.2未満では、塗膜化した際、対沸騰水性に劣り、1.9より大きい場合では、硬化して得られる硬化物が不透明となりやすい傾向にある。 Here, in the said Formula (1), when a is less than 0.8, it exists in the tendency for the hardened | cured material obtained by hardening to become opaque. On the other hand, when a is larger than 1.6, the viscosity of the coating solution is high and unstable and tends to gel. When b is less than 0.3, the boiling water resistance of the coating film is inferior when formed into a coating film, and when it is greater than 1.3, the cured product obtained by curing tends to be opaque. When c + d is less than 0.2, when formed into a coating film, it is inferior in boiling water, and when it is greater than 1.9, the cured product obtained by curing tends to be opaque.
前記式(1)中、R1はメチル基またはエチル基であり、メチル基の場合では、硬化物の硬度、耐薬品性などの物性が優れたものとなる。R2は、R1と異なる有機基であり、好ましくはR1とエステル交換しうる有機基であればよく、たとえば、エチル基、イソプロピル基、ブチル基、1−メトキシ−2−エチル基、1−エトキシ−2−プロピル基、1−メトキシ−2−プロピル基、2−メトキシエチル基、2−エトキシエチル基、C2H5OC2H4OC2H4−、CH3C2H4OC2H4−、C2H5OC2H4−、CH3OC2H4−などがあげられる。 In the formula (1), R 1 is a methyl group or an ethyl group. In the case of a methyl group, the cured product has excellent physical properties such as hardness and chemical resistance. R 2 is an organic group different from R 1 , preferably an organic group that can be transesterified with R 1 , for example, an ethyl group, an isopropyl group, a butyl group, a 1-methoxy-2-ethyl group, 1 - ethoxy-2-propyl group, 1-methoxy-2-propyl, 2-methoxyethyl group, 2-ethoxyethyl group, C 2 H 5 OC 2 H 4 OC 2 H 4 -, CH 3 C 2 H 4 OC 2 H 4 —, C 2 H 5 OC 2 H 4 —, CH 3 OC 2 H 4 — and the like.
シラノール基を有する反応性シリカ微粒子の製造方法としては、特に式(4): As a method for producing reactive silica fine particles having a silanol group, in particular, the formula (4):
(式中、nは2〜8の整数)で表わされるメチルシリケートに水と触媒を添加する方法が、加水分解縮合の工程で脱アルコールがしやすいだけでなく、水媒体中でのシラノール基の安定性の点から好ましい。 (Wherein n is an integer of 2 to 8), the method of adding water and a catalyst to the methyl silicate not only facilitates dealcoholization in the hydrolytic condensation step, but also the silanol group in the aqueous medium. It is preferable from the viewpoint of stability.
熟成は、反応終了後、5〜50℃で、1〜24時間、攪拌することにより行う。 Aging is performed by stirring at 5 to 50 ° C. for 1 to 24 hours after completion of the reaction.
熟成は、アルコールなどの有機溶媒の存在下に行なうことができる。有機溶媒の存在下で熟成を行うことで、シラノール基を有する反応性シリカ微粒子の貯蔵安定性を高めることができる。 Aging can be carried out in the presence of an organic solvent such as alcohol. By aging in the presence of an organic solvent, the storage stability of reactive silica fine particles having a silanol group can be enhanced.
また、熟成は、必要に応じて触媒の存在下で行なうことができる。 The aging can be performed in the presence of a catalyst as necessary.
触媒としては、たとえば、N−メチルジエタノールアミンやトリエチルアミンなどの有機アミン、塩酸、硝酸、硫酸、リン酸などの無機酸、酢酸、ギ酸、p−トルエンスルホン酸、安息香酸、フタル酸、マレイン酸、プロピオン酸、シュウ酸などの有機酸、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、アンモニア水などのアルカリ触媒、有機金属、金属アルコキシド、ジブチルスズラウリレート、ジブチルスズオクチエート、ジブチルスズジアセテートなどの有機スズ化合物、アルミニウムトリス(アセチルアセトネート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(イソプロポキシ)ビス(アセチルアセトネート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)、ジルコニウムビス(イソプロプキシ)ビス(アセチルアセトネート)などの金属キレート化合物、ホウ素ブトキシド、ホウ酸などのホウ素化合物があげられる。なかでも、塗布してからの被膜化が速く、強靭な塗膜が得られる点から有機アミンが好ましく、アルコキシシリル基の加水分解の触媒としても作用し、乾燥時にシラノール基の縮合触媒にもなりうる点から金属キレート化合物が好ましい。 Examples of the catalyst include organic amines such as N-methyldiethanolamine and triethylamine, inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, acetic acid, formic acid, p-toluenesulfonic acid, benzoic acid, phthalic acid, maleic acid and propion. Organic acids such as acids and oxalic acids, alkaline catalysts such as potassium hydroxide, sodium hydroxide, calcium hydroxide, and ammonia water, organic tin compounds such as organic metals, metal alkoxides, dibutyltin laurate, dibutyltin octate, and dibutyltin diacetate Aluminum tris (acetylacetonate), titanium tetrakis (acetylacetonate), titanium bis (isopropoxy) bis (acetylacetonate), zirconium tetrakis (acetylacetonate), zirconium bis (butoxy) Bis (acetylacetonate), metal chelate compounds such as zirconium bis (Isopuropukishi) bis (acetylacetonate), boron butoxide, boron compounds such as boric acid. Of these, organic amines are preferred because they can be formed quickly after application and a tough coating can be obtained. They also act as catalysts for hydrolysis of alkoxysilyl groups, and also serve as condensation catalysts for silanol groups during drying. A metal chelate compound is preferable from the viewpoint of availability.
以上のようにして得られるシラノール基を有する反応性シリカ微粒子は、平均粒子径が、好ましくは1nm以上、より好ましくは6nm以上である。平均粒子径が1nm未満では、単位体積中に含まれる反応性シリカ微粒子の数が多くなるため、塗装後の乾燥過程において、塗膜が緻密になりすぎ、クラックが発生しやすくなるばかりでなく、酸化チタン粒子との相互作用が大きくなるため、塗料貯蔵中にゲル化を起こすおそれがある。また、該反応性シリカ微粒子の平均粒子径は、たとえば20nm以下であり、好ましくは15nm以下、より好ましくは12nm以下である。平均粒子径が20nmをこえると、反応性シリカ微粒子の1粒子の有するシラノール基が少なくなり、基材との付着力や酸化チタン粒子に対するバインダー機能付与といった反応性に欠けたものとなるため、塗料を構成する樹脂としては不適当である。 The reactive silica fine particles having a silanol group obtained as described above preferably have an average particle size of 1 nm or more, more preferably 6 nm or more. When the average particle size is less than 1 nm, the number of reactive silica fine particles contained in the unit volume increases, so that in the drying process after coating, the coating film becomes too dense and cracks are likely to occur, Since the interaction with the titanium oxide particles becomes large, gelation may occur during storage of the paint. The average particle size of the reactive silica fine particles is, for example, 20 nm or less, preferably 15 nm or less, more preferably 12 nm or less. If the average particle diameter exceeds 20 nm, the silanol groups of one reactive silica fine particle are reduced, resulting in lack of reactivity such as adhesion to the substrate and imparting a binder function to the titanium oxide particles. It is unsuitable as a resin that constitutes.
また、シラノール基を有する反応性シリカ微粒子は、ゲル透過クロマトグラフィー(GPC)で測定した重量平均分子量が、標準ポリスチレン換算で、たとえば1000±200である。重量平均分子量が1200をこえると、生成した反応性微粒子の粒子径が大きくなり、塗料溶液が白濁したり、反応性や貯蔵安定性が低下する傾向がある。また、重量平均分子量が800未満の場合は、加水分解縮合反応が充分でなく、低分子量のオリゴマーが含まれるために、バインダーとしての親水性を低下させてしまう傾向がある。 Moreover, the reactive silica fine particle which has a silanol group has the weight average molecular weight measured by gel permeation chromatography (GPC), for example, 1000 +/- 200 in standard polystyrene conversion. When the weight average molecular weight exceeds 1200, the particle diameter of the generated reactive fine particles increases, and the coating solution tends to become cloudy, and the reactivity and storage stability tend to decrease. On the other hand, when the weight average molecular weight is less than 800, hydrolysis and condensation reaction is not sufficient, and low molecular weight oligomers are included, so that the hydrophilicity as a binder tends to be lowered.
以上のように、シラノール基を有する反応性シリカ微粒子は、その分子量に対して相対的に極めて小さな平均粒子径を有しており、超緻密な構造を有する特異な形態のシリカである。 As described above, the reactive silica fine particle having a silanol group has a very small average particle diameter relative to its molecular weight, and is a unique form of silica having an ultra-dense structure.
したがって、該反応性シリカ微粒子は、その微粒子表面にシラノール基を多数有することになる。 Therefore, the reactive silica fine particles have many silanol groups on the surface of the fine particles.
シラノール基を有する反応性シリカ微粒子の市販品としては、たとえば、三菱化学(株)製のMSH−4があげられる。 Examples of commercially available reactive silica fine particles having a silanol group include MSH-4 manufactured by Mitsubishi Chemical Corporation.
本発明において、シラノール基を有する反応性シリカ微粒子は、塗料のバインダーとして機能する。シラノール基を有する反応性シリカ微粒子を用いると、現在一般に使用されているアルコキシシランやケイ酸塩を用いたときと比べて、改修時などの凹凸の大きい施工面に対しても、厚く塗布されたときにクラックが生じる恐れがなく、比較的濃い濃度で塗布することができる。また、シラノール基を有する反応性シリカ微粒子は、表面に多くのシラノール基を有するため、施工後、風雨などによってアパタイト被覆酸化チタン微粒子が簡単に取れてしまうことがない。 In the present invention, the reactive silica fine particles having a silanol group function as a binder for the coating material. When reactive silica fine particles with silanol groups are used, they are thickly applied even to construction surfaces with large irregularities, such as when renovating, compared to when using alkoxysilanes and silicates that are commonly used at present. Sometimes there is no risk of cracking and it can be applied at a relatively high concentration. In addition, since the reactive silica fine particles having silanol groups have many silanol groups on the surface, the apatite-coated titanium oxide fine particles are not easily removed due to wind and rain after construction.
また、シラノール基を有する反応性シリカ微粒子は、無色透明な塗膜を形成することができるとともに、塗膜中で微粒子として存在するので、アパタイト被覆酸化チタン微粒子を埋没させることがなく、その触媒性能を妨げることがない。 Further, the reactive silica fine particles having a silanol group can form a colorless and transparent coating film and are present as fine particles in the coating film, so that the catalytic performance thereof is not buried in the apatite-coated titanium oxide fine particles. Will not be disturbed.
さらに、シラノール基を有する反応性シリカ微粒子は、シリコーンアクリル樹脂などのバインダーと異なり、実質的に完全な無機化合物からなり、さらに表面に多数のシラノール基を有するので、得られる塗膜の親水性が高く、防汚効果を向上させることができる。 Furthermore, the reactive silica fine particles having a silanol group are made of a substantially complete inorganic compound unlike a binder such as a silicone acrylic resin, and further have a large number of silanol groups on the surface. High antifouling effect can be achieved.
シラノール基を有する反応性シリカ微粒子の含有量は、好ましくは0.5重量%以上、より好ましくは3重量%以上である。該反応性シリカ微粒子の含有量が0.5重量%未満では、該塗料を構成するためのバインダーとしての結合力に劣るものとなり、塗膜に必要な物性、たとえば耐水性や耐スクラッチ性に欠けたものとなる傾向にある。また、塗料貯蔵中において、粒子の沈降が早期に起こるため、貯蔵安定性に欠けたものとなる傾向にある。 The content of reactive silica fine particles having a silanol group is preferably 0.5% by weight or more, more preferably 3% by weight or more. When the content of the reactive silica fine particles is less than 0.5% by weight, the binding strength as a binder for constituting the coating material is inferior, and physical properties required for the coating film, such as water resistance and scratch resistance, are lacking. Tend to be. In addition, during the storage of the paint, the sedimentation of particles occurs at an early stage, so that the storage stability tends to be lacking.
該反応性シリカ微粒子の含有量は、好ましくは20重量%以下、より好ましくは10重量%以下である。該反応性シリカ微粒子の含有量が20重量%をこえると、塗膜表面のシリカ微粒子の占有面積が大きくなりすぎ、結果としてアパタイト被覆酸化チタンの塗膜表面における存在量が充分でなくなるため、光触媒効果に欠けたものとなる傾向にある。また、塗料中における安定性にかけるため、1次粒子の凝集がおこり、結果として反応性微粒子の平均粒子径が大きくなり、バインダーとしての結合力に劣るものとなる傾向にある。 The content of the reactive silica fine particles is preferably 20% by weight or less, more preferably 10% by weight or less. When the content of the reactive silica fine particles exceeds 20% by weight, the area occupied by the silica fine particles on the coating film surface becomes too large, and as a result, the abundance of the apatite-coated titanium oxide on the coating film surface becomes insufficient. It tends to be lacking in effectiveness. Moreover, in order to apply to the stability in the paint, the primary particles are aggregated. As a result, the average particle diameter of the reactive fine particles is increased, and the binding force as a binder tends to be inferior.
前記水系溶媒は、水を主成分として含有する溶媒をいい、30重量%以上の水を含有するものをいう。そのほか、塗装作業性、外観向上などの目的で、アルコール、エーテル、グリコールエーテルなどの水と相溶する有機溶媒を含むことができ、特に限定されるものではない。 The aqueous solvent refers to a solvent containing water as a main component and contains 30% by weight or more of water. In addition, for the purpose of improving coating workability and appearance, an organic solvent that is compatible with water such as alcohol, ether, glycol ether and the like can be included, and is not particularly limited.
本発明の光触媒塗料は、さらに必要に応じて分散安定剤、界面活性剤、消泡剤、可塑剤、酸化防止剤、紫外線吸収剤、光安定剤、香料、硬化剤、pH調整剤、防サビ剤、防カビ剤、造膜剤などの添加剤を塗膜の形成初期の親水性が下がらない程度の量を含むことができる。 The photocatalyst coating material of the present invention further comprises a dispersion stabilizer, a surfactant, an antifoaming agent, a plasticizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a fragrance, a curing agent, a pH adjuster, and an anti-rust agent as necessary. An additive such as an agent, a fungicide, or a film-forming agent can be contained in such an amount that the hydrophilicity at the initial stage of the coating film formation is not lowered.
本発明の光触媒塗料組成物は、前記アパテック被覆酸化チタン微粒子およびシラノール基を有する反応性シリカ微粒子を、サンドミル、ホモジナイザー、ボールミル、ロールミル、ペイントシェーカー、超音波分散機、羽根式攪拌機、マグネチックスターラー、高速分散機、乳化機などを用いて水系溶媒中に分散させることによって製造することができる。なかでも、とくに10000rpm以上の高速回転数では、比較的短時間の処理により目的の粒子径まで分散することが可能であり、分散メディアを使用する分散機の欠点であったコンタミネーションが全く無い点から、ホモジナイザーによる分散処理が、塗料の製造上だけでなく、物性上においても好ましい。 The photocatalyst coating composition of the present invention comprises the apatec-coated titanium oxide fine particles and the reactive silica fine particles having silanol groups, a sand mill, a homogenizer, a ball mill, a roll mill, a paint shaker, an ultrasonic disperser, a blade-type stirrer, a magnetic stirrer, It can be produced by dispersing in an aqueous solvent using a high-speed disperser, an emulsifier or the like. In particular, at a high rotational speed of 10,000 rpm or higher, it is possible to disperse to the target particle size by a relatively short time of processing, and there is no contamination that was a disadvantage of a disperser using a dispersion medium. Therefore, the dispersion treatment with a homogenizer is preferable not only in the production of the paint but also in the physical properties.
本発明の光触媒塗料組成物の固形分濃度は、好ましくは3重量%以上、より好ましくは6重量%以上である。固形分濃度が3重量%未満では、塗料製造時に、酸化チタンにシェアがかからず、1次粒子まで分散するのに必要以上に時間がかかる傾向があり、好ましくない。また、光触媒塗料組成物の固形分濃度は、好ましくは20重量%以下、より好ましくは10重量%以下である。固形分濃度が20重量%をこえると、塗料貯蔵中に酸化チタン粒子の再凝集がおこりやすくなり、結果として塗膜中の酸化チタンの粒子径が大きいものとなるため、光触媒機能の低下をまねくおそれがある。また、3〜20重量%の固形分濃度の塗料の塗装においては、光触媒塗料を数回にわたり塗装して、光触媒の表面存在比を大きくするが、光触媒塗料組成物の固形分濃度が20重量%をこえる場合には、1回の塗布で目的とする塗膜厚さに到達するため、結果として光触媒の表面存在比が低下してしまい、触媒機能がうまく発現しない傾向にある。 The solid content concentration of the photocatalyst coating composition of the present invention is preferably 3% by weight or more, more preferably 6% by weight or more. If the solid content concentration is less than 3% by weight, the titanium oxide does not take a share at the time of coating production, and it tends to take more time than necessary to disperse to the primary particles, which is not preferable. The solid content concentration of the photocatalyst coating composition is preferably 20% by weight or less, more preferably 10% by weight or less. If the solid content concentration exceeds 20% by weight, the titanium oxide particles are likely to re-aggregate during storage of the paint, resulting in a large particle size of the titanium oxide in the coating film, resulting in a decrease in the photocatalytic function. There is a fear. Moreover, in the coating of the solid content concentration of 3 to 20% by weight, the photocatalyst coating is applied several times to increase the surface presence ratio of the photocatalyst. However, the solid content concentration of the photocatalyst coating composition is 20% by weight. In the case of exceeding the above, the target coating thickness is reached by one application, and as a result, the surface abundance ratio of the photocatalyst is lowered, and the catalytic function tends not to be exhibited well.
本発明の光触媒塗料組成物は、基材表面に塗布されたのち、乾燥または硬化されて塗膜を形成することができる。塗布方法としては、刷毛塗り、スポンジ塗り、スプレーコーティング、ロールコーティング、フローコーティング、スピンコーティング、ディップコーティングなどがある。乾燥または硬化は、室温放置、強制乾燥、加熱、紫外線照射などによって実施することができる。 The photocatalyst coating composition of the present invention can be applied to the surface of a substrate and then dried or cured to form a coating film. Application methods include brush coating, sponge coating, spray coating, roll coating, flow coating, spin coating, dip coating, and the like. Drying or curing can be performed by standing at room temperature, forced drying, heating, ultraviolet irradiation, or the like.
本発明の光触媒塗料組成物は、建物建造物内面(内壁、天井、床)の壁紙、カーテン、コンクリート、窓ガラスなどに適用される。 The photocatalyst coating composition of the present invention is applied to wallpaper, curtains, concrete, window glass and the like on the inner surface (inner wall, ceiling, floor) of a building structure.
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited only to these.
実施例1
丸武産業(株)製のアパテックスラリー(平均粒子径660nmのアパタイト被覆酸化チタン微粒子の7〜8%水性懸濁液)1000gを、150メッシュのろ紙でろ過した。ろ液に、分散安定剤として、サンノプコ(株)製のノプコSN−5040を2.5g添加し、10000rpmで2分間ホモジナイザーで分散処理した。再度150メッシュのろ紙でろ過し、処理液を得た。得られた処理液中の酸化チタン微粒子の平均粒子径は231nmであった。
Example 1
1000 g of Apatec slurry (7-8% aqueous suspension of apatite-coated titanium oxide fine particles having an average particle size of 660 nm) manufactured by Marutake Sangyo Co., Ltd. was filtered through a 150-mesh filter paper. To the filtrate, 2.5 g of Nopco SN-5040 manufactured by San Nopco Co., Ltd. was added as a dispersion stabilizer, and dispersed with a homogenizer at 10000 rpm for 2 minutes. The solution was filtered again with 150 mesh filter paper to obtain a treatment liquid. The average particle diameter of the titanium oxide fine particles in the obtained treatment liquid was 231 nm.
処理液500gに、三菱化学(株)製のMSH−4(シラノール基を有する反応性シリカ微粒子、平均粒子径7.9nm)210gおよび水340gを加え、100rpmで3分間低速攪拌した。そののち、150メッシュのろ紙でろ過し、ろ液を塗料とした。得られた塗料は、チタン3.2重量%、水系溶媒16重量%、固形分6.8重量%であった。なお、平均粒子径は動的光散乱式粒径分布測定装置((株)堀場製作所製、LB−550)を用いて測定した。三菱化学(株)製のMSH−4の特性は以下のとおりである。 To 500 g of the treatment liquid, 210 g of MSH-4 (reactive silica fine particles having a silanol group, average particle diameter of 7.9 nm) manufactured by Mitsubishi Chemical Corporation and 340 g of water were added, and the mixture was stirred at 100 rpm for 3 minutes at a low speed. After that, it was filtered through a 150 mesh filter paper, and the filtrate was used as a paint. The obtained coating material was 3.2 wt% titanium, 16 wt% aqueous solvent, and 6.8 wt% solid content. In addition, the average particle diameter was measured using the dynamic light scattering type particle size distribution measuring apparatus (Horiba Ltd. make, LB-550). The characteristics of MSH-4 manufactured by Mitsubishi Chemical Corporation are as follows.
外観:無色透明液体
構造:
Appearance: Colorless transparent liquid Structure:
(式中、nは2〜8の整数)で表わされるメチルシリケートの有機アミンを触媒とした加水分解縮合物
有効成分(シリカ換算含有量):16%
主溶媒:水/メタノール(水35重量%)
粘度:2.0±1.0mPa・s
密度:0.90±0.05g/cm3
平均粒子径:7.9nm
重量平均分子量:1000
(Wherein n is an integer of 2 to 8) Hydrolyzed condensate obtained by catalyzing an organic amine of methyl silicate Active component (silica conversion content): 16%
Main solvent: water / methanol (35% by weight of water)
Viscosity: 2.0 ± 1.0 mPa · s
Density: 0.90 ± 0.05 g / cm 3
Average particle size: 7.9 nm
Weight average molecular weight: 1000
1milのアプリケーターを用いて、表面を#200の耐水ペーパーで研磨したアクリル板に、ウェット時の膜厚が25μmとなるように塗料を塗布した。そののち、室温で1週間乾燥させて試験体とした。 Using a 1 mil applicator, a paint was applied to an acrylic plate whose surface was polished with # 200 water-resistant paper so that the film thickness when wet was 25 μm. Thereafter, it was dried at room temperature for 1 week to obtain a test specimen.
比較例1
三菱化学(株)製MSH−4にかえて、三菱レイヨン(株)製MX−2919(アクリル樹脂の45%懸濁液、平均粒子径129nm)67gと水433gを用いたほかは、実施例1と同様にして塗料を調整し、試験体を作成した。
Comparative Example 1
Example 1 except that 67 g of Mitsubishi Rayon Co., Ltd. MX-2919 (45% suspension of acrylic resin, average particle size 129 nm) and 433 g of water were used instead of MSH-4 manufactured by Mitsubishi Chemical Co., Ltd. The coating material was adjusted in the same manner as described above to prepare a test specimen.
比較例2
三菱化学(株)製MSH−4にかえて、JSR(株)製水系グラスカXW−305(シリコンハイブリッドアクリル樹脂の40%水性懸濁液、平均粒子径87nm)75gと、1.5gのブチルセロソルブと水423gの混合物を用いたほかは、実施例1と同様にして塗料を調整し、試験体を作成した。
Comparative Example 2
In place of MSH-4 manufactured by Mitsubishi Chemical Co., Ltd., 75 g of water-based Glasca XW-305 (40% aqueous suspension of silicon hybrid acrylic resin, average particle size 87 nm) manufactured by JSR Co., Ltd. and 1.5 g of butyl cellosolve A coating was prepared in the same manner as in Example 1 except that a mixture of 423 g of water was used, and a test specimen was prepared.
実施例2
実施例1の処理液に、三菱化学(株)製MSH−4、50gおよび三菱レイヨン(株)製MX−2919(平均粒子径129nm)を60gと水390gを加えたほかは実施例1と同様の方法で試験体を作成した。
Example 2
Same as Example 1 except that 60 g of Mitsubishi Chemical Corporation MSH-4, 50 g and MX-2919 (Mitsubishi Rayon Co., Ltd.) MX-2919 (average particle size 129 nm) and water 390 g were added to the treatment liquid of Example 1. A test specimen was prepared by the method described above.
(表面分析)
試験体表面をカーボン蒸着し、走査型電子顕微鏡(日本電子(株)製)を用いて、表面組成像、垂直方向の二次電子像を撮影した。結果を図1〜8に示す。カーボン蒸着は、サンユー電子(株)製のSC−701Cにより、カーボンが約15nmの厚さになるよう行なった。また、走査型電子顕微鏡写真の撮影条件は、組成像(反射電子像)では、加速電圧15kV、倍率は1000倍とした。二次電子像では加速電圧5kV、倍率は5000倍とした。
(Surface analysis)
Carbon was vapor-deposited on the surface of the test body, and a surface composition image and a secondary electron image in the vertical direction were taken using a scanning electron microscope (manufactured by JEOL Ltd.). The results are shown in FIGS. The carbon deposition was performed by using SC-701C manufactured by Sanyu Electronics Co., Ltd. so that the carbon had a thickness of about 15 nm. The scanning electron micrograph was taken under the conditions of an acceleration voltage of 15 kV and a magnification of 1000 times in the composition image (reflected electron image). In the secondary electron image, the acceleration voltage was 5 kV and the magnification was 5000 times.
図1は実施例1で得られた塗料試験体の組成像1、図2は実施例1で得られた塗料試験体の二次電子像2、図3は比較例1で得られた塗料試験体の組成像1、図4は比較例1で得られた塗料試験体の二次電子像2、図5は比較例2で得られた塗料試験体の組成像1、図6は比較例2で得られた塗料試験体の二次電子像2、図7は比較例3で得られた塗料試験体の組成像1、図8は比較例3で得られた塗料試験体の二次電子像2を示す。その結果、図1の組成像1と図2の二次電子像2に示すように、実施例1では、表層に酸化チタンの微粒子と考えられる組成が均一に分散して存在すること、表層への粒子の露出が良好であり、塗装表面が緻密であることがわかった。図3、5の組成像1に示すように、比較例1および2では、粒子径の大きいチタン成分および粒子径の小さいチタン成分が共存していると考えられる。また、図6の二次電子像2より、比較例2では、塗膜表面における酸化チタンの露出が少なくなっていることがわかる。実施例2では、図7の組成像1から、酸化チタンの微粒子が均一に分散し、表層への露出状態も良好であり、図2と図8の二次電子像2から、酸化チタン微粒子が塗膜表層に存在することがわかる。 FIG. 1 is a composition image 1 of the paint specimen obtained in Example 1, FIG. 2 is a secondary electron image 2 of the paint specimen obtained in Example 1, and FIG. 3 is a paint test obtained in Comparative Example 1. 4 is a secondary electron image 2 of the paint specimen obtained in Comparative Example 1, FIG. 5 is a composition image 1 of the paint specimen obtained in Comparative Example 2, and FIG. FIG. 7 is a composition image 1 of the paint test specimen obtained in Comparative Example 3, and FIG. 8 is a secondary electron image of the paint test specimen obtained in Comparative Example 3. 2 is shown. As a result, as shown in the composition image 1 of FIG. 1 and the secondary electron image 2 of FIG. 2, in Example 1, the composition considered to be fine particles of titanium oxide was uniformly dispersed in the surface layer, and the surface layer It was found that the particles were exposed well and the coating surface was dense. As shown in composition image 1 in FIGS. 3 and 5, in Comparative Examples 1 and 2, it is considered that a titanium component having a large particle diameter and a titanium component having a small particle diameter coexist. Moreover, it can be seen from the secondary electron image 2 in FIG. 6 that in Comparative Example 2, the exposure of titanium oxide on the coating film surface is reduced. In Example 2, fine particles of titanium oxide are uniformly dispersed from composition image 1 in FIG. 7, and the exposed state to the surface layer is also good. From secondary electron images 2 in FIGS. It turns out that it exists in a coating-film surface layer.
(組成分析)
試験体表面をカーボン蒸着し、X線マイクロアナリシス(日本電子(株)製JXA−8900M)を用いて、表層原子定量を行なった。得られた結果を表1に示す。
(Composition analysis)
Carbon was vapor-deposited on the surface of the test body, and surface atom quantification was performed using X-ray microanalysis (JXA-8900M manufactured by JEOL Ltd.). The obtained results are shown in Table 1.
表1より、実施例1では、比較例1および2に比べて、塗膜表面の酸素原子、ケイ素原子の組成比が多いことから、塗膜表面にシラノール基が存在し親水性を高めていることが分かる。また、リン原子、カルシウム原子の組成比についても、比較例に比べて大きい値となっており、これらはリン酸カルシウム由来の原子であることから、アパタイトの被覆またはフリーのリン酸塩が塗膜表層に存在していることを示唆するものである。チタン原子の組成比は、実施例1では15.30%となっており、アパタイト被覆酸化チタン微粒子が塗膜表層に多数存在することを示す結果である。実施例2においても、リン酸カルシウム由来の原子、チタン原子の組成比が比較例より大きい値となっており、塗膜表層のアパタイト被覆酸化チタン微粒子の存在が多いことがわかる。 From Table 1, in Example 1, compared with Comparative Example 1 and 2, since there are many composition ratios of the oxygen atom of a coating-film surface, and a silicon atom, a silanol group exists in the coating-film surface and hydrophilicity is improved. I understand that. Also, the composition ratio of phosphorus atoms and calcium atoms is larger than that of the comparative example, and since these are atoms derived from calcium phosphate, apatite coating or free phosphate is applied to the coating surface layer. It suggests that it exists. The composition ratio of titanium atoms is 15.30% in Example 1, which is a result showing that apatite-coated titanium oxide fine particles are present in a large number on the coating surface layer. Also in Example 2, the composition ratio of atoms derived from calcium phosphate and titanium atoms is larger than that of the comparative example, and it can be seen that there are many apatite-coated titanium oxide fine particles on the surface of the coating film.
(塗膜形成初期の親水性)
試験用ガラス板1mm(コーティングスター工業(株)製)に、実施例1、比較例1〜3のコーティング組成物を、岩田スプレーガンW−100−101Gを用いて、圧力5kg/cm2の条件で乾燥塗膜厚さが10μmになるよう塗装したものを試験体とした。
(Hydrophilicity at the initial stage of coating formation)
Using a Iwata spray gun W-100-101G, the coating composition of Example 1 and Comparative Examples 1 to 3 on a glass plate for testing 1 mm (manufactured by Coating Star Industry Co., Ltd.) under conditions of a pressure of 5 kg / cm 2 . The test specimen was coated with a dry coating thickness of 10 μm.
接触角測定器(協和界面化学(株)製、CA−X150)を用いて、試験体表面のイオン交換水との接触角を測定した。 Using a contact angle measuring device (CA-X150, manufactured by Kyowa Interface Chemical Co., Ltd.), the contact angle with the ion exchange water on the surface of the specimen was measured.
結果は、実施例1では0°、実施例2では16°、比較例1および2ではそれぞれ、43°、60°であった。この結果より、実施例1および2における初期親水性が優れていることがわかる。 The results were 0 ° in Example 1, 16 ° in Example 2, and 43 ° and 60 ° in Comparative Examples 1 and 2, respectively. This result shows that the initial hydrophilicity in Examples 1 and 2 is excellent.
1 組成像
2 二次電子像
1 Composition image 2 Secondary electron image
Claims (3)
SiOa(OH)b(OR1)c(OR2)d (1)
(式中、0.8≦a≦1.6、0.3≦b≦1.3、0.2≦c+d≦1.9、b=4−(2a+c+d)、R1はメチル基またはエチル基、R2はR1と異なる有機基)で表されるシロキサン化合物または式(2):
Si(OR1)4 (2)
(式中、R1はメチル基またはエチル基)で表されるテトラアルコキシシランの加水分解縮合物からなり、重量平均分子量が1000±200である反応性シリカ微粒子、および水系溶媒からなる光触媒塗料組成物。 Apatite-coated titanium oxide fine particles, formula (1):
SiO a (OH) b (OR 1 ) c (OR 2 ) d (1)
(In the formula, 0.8 ≦ a ≦ 1.6, 0.3 ≦ b ≦ 1.3, 0.2 ≦ c + d ≦ 1.9, b = 4- (2a + c + d), R 1 is a methyl group or an ethyl group , R 2 is an organic group different from R 1 ) or a formula (2):
Si (OR 1 ) 4 (2)
A photocatalytic coating composition comprising a reactive silica fine particle having a weight average molecular weight of 1000 ± 200 and a water-based solvent comprising a hydrolyzed condensate of tetraalkoxysilane represented by the formula (wherein R 1 is a methyl group or an ethyl group) object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004190184A JP2006008902A (en) | 2004-06-28 | 2004-06-28 | Photocatalytic coating composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004190184A JP2006008902A (en) | 2004-06-28 | 2004-06-28 | Photocatalytic coating composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006008902A true JP2006008902A (en) | 2006-01-12 |
Family
ID=35776498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004190184A Pending JP2006008902A (en) | 2004-06-28 | 2004-06-28 | Photocatalytic coating composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006008902A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007131474A1 (en) * | 2006-05-17 | 2007-11-22 | Nano-X Gmbh | Coating material |
JP2008189785A (en) * | 2007-02-05 | 2008-08-21 | Sekisui Jushi Co Ltd | Manufacturing method for photocatalytic coating composition, and photocatalytic coating composition |
JP2009024048A (en) * | 2007-07-17 | 2009-02-05 | Buhei Uchida | Interior material |
EP2067759A2 (en) | 2007-12-04 | 2009-06-10 | Nichiha Corporation | Coating material, building material and method for coating building material |
JP2009161708A (en) * | 2008-01-10 | 2009-07-23 | Sasano Densen Kk | Coating composition |
JP2011525565A (en) * | 2008-06-24 | 2011-09-22 | エナジー コリア インク. | COATING COMPOSITION CONTAINING PHOTOCATALYST COATED WITH Apatite, AND RADIATION HEAT RADIATION DEVICE INCLUDING THE SAME |
JP2012095969A (en) * | 2010-11-05 | 2012-05-24 | Hitachi Chemical Co Ltd | Compound base material and manufacturing method of the same |
WO2013126958A1 (en) * | 2012-02-28 | 2013-09-06 | Bluescope Steel Limited | Protective barrier composition for photocatalytic coatings |
JP5403584B2 (en) * | 2006-12-15 | 2014-01-29 | 独立行政法人産業技術総合研究所 | Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same |
US8993471B2 (en) | 2006-12-22 | 2015-03-31 | 3M Innovative Properties Company | Photocatalytic coating |
WO2016067823A1 (en) * | 2014-10-28 | 2016-05-06 | Toto株式会社 | Photocatalyst composite particles and method for producing same |
JP2016083659A (en) * | 2014-10-28 | 2016-05-19 | Toto株式会社 | Photocatalyst composite particles and method for producing the same |
WO2020255848A1 (en) * | 2019-06-21 | 2020-12-24 | 久保井塗装株式会社 | Antibacterial coated object, antibacterial paint, method for producing antibacterial paint, and method for producing antibacterial coated object |
-
2004
- 2004-06-28 JP JP2004190184A patent/JP2006008902A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007131474A1 (en) * | 2006-05-17 | 2007-11-22 | Nano-X Gmbh | Coating material |
JP5403584B2 (en) * | 2006-12-15 | 2014-01-29 | 独立行政法人産業技術総合研究所 | Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same |
US8993471B2 (en) | 2006-12-22 | 2015-03-31 | 3M Innovative Properties Company | Photocatalytic coating |
JP2008189785A (en) * | 2007-02-05 | 2008-08-21 | Sekisui Jushi Co Ltd | Manufacturing method for photocatalytic coating composition, and photocatalytic coating composition |
JP2009024048A (en) * | 2007-07-17 | 2009-02-05 | Buhei Uchida | Interior material |
US8568870B2 (en) | 2007-12-04 | 2013-10-29 | Nichiha Corporation | Coating film for building material |
EP2067759A2 (en) | 2007-12-04 | 2009-06-10 | Nichiha Corporation | Coating material, building material and method for coating building material |
KR100983463B1 (en) * | 2007-12-04 | 2010-09-27 | 니치하 가부시키가이샤 | Coating method of building materials |
EP2067759A3 (en) * | 2007-12-04 | 2012-12-26 | Nichiha Corporation | Coating material, building material and method for coating building material |
AU2008249536B2 (en) * | 2007-12-04 | 2013-05-23 | Nichiha Corporation | Coating material; building material and method for coating building material |
JP2009161708A (en) * | 2008-01-10 | 2009-07-23 | Sasano Densen Kk | Coating composition |
JP2011525565A (en) * | 2008-06-24 | 2011-09-22 | エナジー コリア インク. | COATING COMPOSITION CONTAINING PHOTOCATALYST COATED WITH Apatite, AND RADIATION HEAT RADIATION DEVICE INCLUDING THE SAME |
JP2012095969A (en) * | 2010-11-05 | 2012-05-24 | Hitachi Chemical Co Ltd | Compound base material and manufacturing method of the same |
US9879155B2 (en) | 2012-02-28 | 2018-01-30 | Bluescope Steel Limited | Protective barrier composition for photocatalytic coatings |
AU2013201963A8 (en) * | 2012-02-28 | 2014-09-04 | Bluescope Steel Limited | A protective coating composition, coated substrate and method for protecting a substrate (II) |
CN104245857A (en) * | 2012-02-28 | 2014-12-24 | 蓝野钢铁有限公司 | Protective barrier composition for photocatalytic coatings |
AU2013201963B2 (en) * | 2012-02-28 | 2014-08-21 | Bluescope Steel Limited | A protective coating composition, coated substrate and method for protecting a substrate (II) |
CN104245857B (en) * | 2012-02-28 | 2017-08-25 | 蓝野钢铁有限公司 | Protective barrier composition for photocatalysis coating |
US9803105B2 (en) | 2012-02-28 | 2017-10-31 | Bluescope Steel Limited | Protective coating compositions for photocatalytic layers on substrates |
WO2013126958A1 (en) * | 2012-02-28 | 2013-09-06 | Bluescope Steel Limited | Protective barrier composition for photocatalytic coatings |
WO2016067823A1 (en) * | 2014-10-28 | 2016-05-06 | Toto株式会社 | Photocatalyst composite particles and method for producing same |
JP2016083659A (en) * | 2014-10-28 | 2016-05-19 | Toto株式会社 | Photocatalyst composite particles and method for producing the same |
US10173199B2 (en) * | 2014-10-28 | 2019-01-08 | Toto Ltd. | Photocatalyst composite particles and method for producing same |
WO2020255848A1 (en) * | 2019-06-21 | 2020-12-24 | 久保井塗装株式会社 | Antibacterial coated object, antibacterial paint, method for producing antibacterial paint, and method for producing antibacterial coated object |
JP2021001278A (en) * | 2019-06-21 | 2021-01-07 | 久保井塗装株式会社 | Antibacterial coated matter, antibacterial coating, manufacturing method of antibacterial coating and manufacturing method of antibacterial coated matter |
US12054641B2 (en) | 2019-06-21 | 2024-08-06 | Kuboi Coating Works Co., Ltd. | Antibacterial-coated product, antibacterial coating material, method for manufacturing antibacterial coating material, and method for manufacturing antibacterial-coated product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5427093B2 (en) | Uniformly dispersible photocatalyst coating liquid, method for producing the same, and photocatalytically active composite material obtained using the same | |
CN1232592C (en) | Anti-fog coating material, anti-fog coating film and anti-fog optical component | |
TWI726127B (en) | Photocatalyst laminate | |
JP4017389B2 (en) | Method for producing photocatalyst body | |
JP2006008902A (en) | Photocatalytic coating composition | |
JP2010163615A (en) | Self-cleaning member, cohydrolysis condensate included therein, and method for producing the condensate | |
JP2012250134A (en) | Photocatalyst-coated object, and photocatalyst coating liquid therefor | |
JPWO2012141150A1 (en) | Functional articles, articles for transport equipment, articles for construction, and compositions for coating | |
CN1656035A (en) | Hydrophilic, anti-fog and anti-fouling film and method for producing the same | |
CN112210281A (en) | Superhydrophilic coating composition | |
JP2004337740A (en) | Photocatalyst body | |
JP2005138059A (en) | Quick hardening photocatalyst body | |
JP2004143452A (en) | Self-cleaning aqueous coating composition and self- cleaning member | |
JP2001329189A (en) | Photocatalyst composition | |
JP5399870B2 (en) | Coating composition and coated product thereof | |
JP2009119462A (en) | Photocatalytic coated body and photocatalytic coating liquid for the same | |
JP2002161238A (en) | Coating material composition and coated product therewith | |
JP4169558B2 (en) | Photocatalyst carrying structure | |
JP2005113023A (en) | Photocatalyst-containing silicon composition | |
JP4820152B2 (en) | Composite coating structure and painted exterior materials | |
KR20230035338A (en) | Composition for coating overhead conductors | |
JP7463164B2 (en) | Coating Fluid | |
JP4148835B2 (en) | Functional wood | |
KR102406283B1 (en) | Manufacturing method for hybrid photocatalystic varnish having hydrophilicity and hydrophobicity | |
JP3980290B2 (en) | Titanium oxide thin film forming coating solution and method for producing the same |