JP2005347449A - Soft magnetic powder and its use - Google Patents
Soft magnetic powder and its use Download PDFInfo
- Publication number
- JP2005347449A JP2005347449A JP2004164133A JP2004164133A JP2005347449A JP 2005347449 A JP2005347449 A JP 2005347449A JP 2004164133 A JP2004164133 A JP 2004164133A JP 2004164133 A JP2004164133 A JP 2004164133A JP 2005347449 A JP2005347449 A JP 2005347449A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- powder
- magnetic powder
- organic material
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006247 magnetic powder Substances 0.000 title claims abstract description 66
- 239000000843 powder Substances 0.000 claims abstract description 62
- 239000000203 mixture Substances 0.000 claims abstract description 52
- 229920005989 resin Polymers 0.000 claims abstract description 30
- 239000011347 resin Substances 0.000 claims abstract description 30
- 239000011368 organic material Substances 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 24
- 229920001971 elastomer Polymers 0.000 claims abstract description 14
- 239000005060 rubber Substances 0.000 claims abstract description 14
- 238000009826 distribution Methods 0.000 claims abstract description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 37
- 229910000859 α-Fe Inorganic materials 0.000 claims description 24
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 239000000956 alloy Substances 0.000 claims description 20
- 230000035699 permeability Effects 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 229910000702 sendust Inorganic materials 0.000 claims description 8
- 239000011701 zinc Substances 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 5
- 229910052582 BN Inorganic materials 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 4
- 229910019819 Cr—Si Inorganic materials 0.000 claims description 4
- 229910017518 Cu Zn Inorganic materials 0.000 claims description 4
- 229910017752 Cu-Zn Inorganic materials 0.000 claims description 4
- 229910017943 Cu—Zn Inorganic materials 0.000 claims description 4
- 229910017061 Fe Co Inorganic materials 0.000 claims description 4
- 229910017060 Fe Cr Inorganic materials 0.000 claims description 4
- 229910002544 Fe-Cr Inorganic materials 0.000 claims description 4
- 229910017082 Fe-Si Inorganic materials 0.000 claims description 4
- 229910017133 Fe—Si Inorganic materials 0.000 claims description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 4
- 229910018605 Ni—Zn Inorganic materials 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 claims description 4
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 235000014692 zinc oxide Nutrition 0.000 claims description 4
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 3
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 claims description 3
- 229910000676 Si alloy Inorganic materials 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 15
- 238000000465 moulding Methods 0.000 abstract description 5
- 239000000499 gel Substances 0.000 description 19
- 238000010521 absorption reaction Methods 0.000 description 14
- 229920002379 silicone rubber Polymers 0.000 description 13
- 239000004945 silicone rubber Substances 0.000 description 10
- 238000007259 addition reaction Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- -1 Fe-Ni alloy Chemical compound 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 3
- 239000011231 conductive filler Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 2
- 229920000800 acrylic rubber Polymers 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 108010007100 Pulmonary Surfactant-Associated Protein A Proteins 0.000 description 1
- 102100027773 Pulmonary surfactant-associated protein A2 Human genes 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010060 peroxide vulcanization Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Soft Magnetic Materials (AREA)
Abstract
【課題】電磁波吸収性、又は電磁波吸収性と放熱性とに優れた樹脂及びゴムの少なくとも一方の組成物、この組成物に使用される軟磁性粉末、この組成物の硬化物からなる成型物、及びこの成型物で構成された電子機器に好適な放熱部材を提供する。
【解決手段】頻度粒度分布において、10μm以上50μm以下の領域に極大値Aと、0.5μm以上10μm未満の領域に極大値Bとを有することを特徴とする軟磁性粉末。上記軟磁性粉末と熱伝導性無機粉末とからなることを特徴とする無機粉末組成物。樹脂及びゴムの少なくとも一方に、上記軟磁性粉末を含有させてなることを特徴とする有機材料。樹脂及びゴムの少なくとも一方に、上記無機粉末組成物を含有させてなることを特徴とする有機材料組成物。上記有機材料又は有機材料組成物の硬化物からなることを特徴とする成型物。上記成型物で構成されてなることを特徴とする放熱部材。
【選択図】 なしA composition comprising at least one of a resin and a rubber excellent in electromagnetic wave absorptivity or electromagnetic wave absorptivity and heat dissipation, a soft magnetic powder used in the composition, and a molded product comprising a cured product of the composition, And the heat radiating member suitable for the electronic device comprised by this molding is provided.
A soft magnetic powder having a maximum value A in a region of 10 μm to 50 μm and a maximum value B in a region of 0.5 μm to less than 10 μm in a frequency particle size distribution. An inorganic powder composition comprising the soft magnetic powder and a thermally conductive inorganic powder. An organic material comprising the soft magnetic powder in at least one of resin and rubber. An organic material composition comprising the inorganic powder composition in at least one of a resin and a rubber. A molded product comprising a cured product of the organic material or organic material composition. A heat radiating member comprising the molded product.
[Selection figure] None
Description
本発明は、軟磁性粉末及びその用途に関する。 The present invention relates to a soft magnetic powder and its use.
近年、急速に発達してきたデジタルカメラ、パソコン、テレビ等の電子機器に用いられているCPU等の半導体素子は、ますます小型化、高集積化され、それにともなって電磁波障害と放熱対策も一段と厳しいものとなっている。これに対応するため、シリコーンゴムに軟磁性金属粉末と熱伝導性フィラーを含有させたシリコーンゴム組成物(特許文献1)や、シリコーンゲルに金属酸化物磁性粒子と熱伝導性充填剤とを含有させたシリコーンゲル組成物(特許文献2)等が提案されている。
本発明の目的は、電磁波吸収性、又は電磁波吸収性と放熱性とに優れた樹脂及びゴムの少なくとも一方の組成物、この組成物に使用される軟磁性粉末、この組成物の硬化物からなる成型物、及びこの成型物で構成された電子機器に好適な放熱部材を提供することである。 An object of the present invention consists of at least one composition of a resin and rubber excellent in electromagnetic wave absorption or electromagnetic wave absorption and heat dissipation, a soft magnetic powder used in the composition, and a cured product of the composition. It is providing the heat radiating member suitable for a molded article and the electronic device comprised with this molded article.
本発明は、頻度粒度分布において、10μm以上50μm以下の領域に極大値Aと、0.5μm以上10μm未満の領域に極大値Bとを有することを特徴とする軟磁性粉末である。この場合において、(1)極大値Bの頻度に対する極大値Aの頻度の比率{(極大値Aの頻度)/(極大値Bの頻度)}が1〜8であること、(2)10μm以上50μm以下の粒子が50〜80体積%、0.5μm以上10μm未満の粒子が20〜50体積%であること、(3)軟磁性粉末が、鉄、Fe−Ni合金、Fe−Co合金、Fe−Cr合金、Fe−Si合金、Fe−Al合金、Fe−Cr−Si合金、Fe−Cr−Al合金、Fe−Al−Si合金の鉄合金、Mg−Znフェライト、Mn−Znフェライト、Mn−Mgフェライト、Cu−Znフェライト、Mg−Mn−Srフェライト、Ni−Znフェライトから選ばれた少なくとも1種の粉末であること、の実施態様から選ばれた少なくとも1つであることが好ましい。 The present invention is a soft magnetic powder characterized by having a maximum value A in a region of 10 μm or more and 50 μm or less and a maximum value B in a region of 0.5 μm or more and less than 10 μm in a frequency particle size distribution. In this case, (1) the ratio of the frequency of the local maximum A to the frequency of the local maximum B {(the frequency of the local maximum A) / (the frequency of the local maximum B)} is 1 to 8, (2) 10 μm or more 50 to 80% by volume of particles of 50 μm or less, and 20 to 50% by volume of particles of 0.5 μm or more and less than 10 μm, (3) soft magnetic powder is iron, Fe—Ni alloy, Fe—Co alloy, Fe -Cr alloy, Fe-Si alloy, Fe-Al alloy, Fe-Cr-Si alloy, Fe-Cr-Al alloy, Fe-Al-Si alloy iron alloy, Mg-Zn ferrite, Mn-Zn ferrite, Mn- It is preferably at least one selected from the embodiments of being at least one powder selected from Mg ferrite, Cu—Zn ferrite, Mg—Mn—Sr ferrite, and Ni—Zn ferrite.
また、本発明は、上記軟磁性粉末と熱伝導性無機粉末とからなることを特徴とする無機粉末組成物である。この場合において、(4)熱伝導性無機粉末が、銅、アルミニウム、アルミナ、シリカ、亜鉛華、マグネシア、チタニア、窒化アルミニウム、窒化ケイ素、窒化ホウ素及び炭化ケイ素から選ばれた少なくとも1種の粉末であること、(5)軟磁性粉末が40〜97体積%、熱伝導性無機粉末が3〜60体積%の割合で無機粉末組成物が構成されていること、(6)軟磁性粉末が、平均粒子径が20μm以上のセンダスト粉末であり、熱伝導性無機粉末が、平均粒子径が0.1〜2μmのアルミナ粉末であること、の実施態様から選ばれた少なくとも1つであることが好ましい。 The present invention also provides an inorganic powder composition comprising the soft magnetic powder and a heat conductive inorganic powder. In this case, (4) the thermally conductive inorganic powder is at least one powder selected from copper, aluminum, alumina, silica, zinc white, magnesia, titania, aluminum nitride, silicon nitride, boron nitride and silicon carbide. (5) the inorganic powder composition is composed of 40 to 97% by volume of soft magnetic powder and 3 to 60% by volume of thermally conductive inorganic powder, and (6) the average of soft magnetic powder is It is preferable that the particle size is Sendust powder having a particle size of 20 μm or more, and the thermally conductive inorganic powder is at least one selected from the embodiments having an average particle size of 0.1 to 2 μm.
また、本発明は、樹脂及びゴムの少なくとも一方に、上記軟磁性粉末を含有させてなることを特徴とする有機材料である。この場合において、(7)軟磁性粉末の含有率が50〜80体積%であること、(8)樹脂及びゴムの少なくとも一方が、シリコーンであること、の実施態様から選ばれた少なくとも1つであることが好ましい。 In addition, the present invention is an organic material characterized in that at least one of a resin and a rubber contains the soft magnetic powder. In this case, at least one selected from the embodiments in which (7) the content of the soft magnetic powder is 50 to 80% by volume, and (8) at least one of the resin and the rubber is silicone. Preferably there is.
また、本発明は、樹脂及びゴムの少なくとも一方に、上記無機粉末組成物を含有させてなることを特徴とする有機材料組成物である。この場合において、(9)無機粉末組成物の含有率が50〜80体積%であること、(10)樹脂及びゴムの少なくとも一方が、シリコーンであること、の実施態様から選ばれた少なくとも1つであることが好ましい。 Moreover, this invention is an organic material composition characterized by including the said inorganic powder composition in at least one of resin and rubber | gum. In this case, at least one selected from the embodiments in which (9) the content of the inorganic powder composition is 50 to 80% by volume, and (10) at least one of the resin and the rubber is silicone. It is preferable that
また、本発明は、上記有機材料及び有機材料組成物から選ばれた1種の硬化物からなることを特徴とする成型物である。 Moreover, this invention consists of 1 type of hardened | cured material chosen from the said organic material and organic material composition, It is a molding characterized by the above-mentioned.
さらに、本発明は、上記成型物で構成されてなることを特徴とする放熱部材である。この場合において、熱伝導率が1W/m・K以上、透磁率が2以上、アスカーC硬度が80以下であることが好ましい。 Furthermore, this invention is comprised by the said molded object, It is a heat radiating member characterized by the above-mentioned. In this case, it is preferable that the thermal conductivity is 1 W / m · K or more, the magnetic permeability is 2 or more, and the Asker C hardness is 80 or less.
本発明によれば、電磁波吸収性、更には電磁吸収性と放熱性とに優れた成型物を得ることのできる樹脂及びゴムの少なくとも一方(以下、「樹脂等」ともいう。)の組成物、この組成物に用いられる軟磁性粉末、この組成物の硬化物からなる成型物、及びこの成型物で構成された放熱部材が提供される。 According to the present invention, a composition of at least one of a resin and a rubber (hereinafter also referred to as “resin etc.”) capable of obtaining a molded article excellent in electromagnetic wave absorption, and further electromagnetic absorption and heat dissipation, A soft magnetic powder used in the composition, a molded product made of a cured product of the composition, and a heat radiating member composed of the molded product are provided.
本発明の軟磁性粉末は、10μm以上50μm以下の領域と、1μm以上10μm未満の領域とに極大値を有するものである。10μm以上50μm以下の領域に極大値Aを有する軟磁性粉末(以下、「粗大軟磁性粉末」ともいう。)は、電磁波吸収材料の主材である。粗大軟磁性粉末の領域の上限が50μmをこえると、例えばシート状としたとき表面に凹凸が発生し良好なシートが得られなくなる恐れがあり、また下限が10μm未満であると、高充填したとき樹脂組成物の粘度が上昇しこれまた良好なシートが得られなく恐れがある。一方、1μm以上10μm未満の領域に極大値Bを有する軟磁性粉末(以下、「微細軟磁性粉末」ともいう。)は、粗大軟磁性粉末の隙間に容易に入り込むことができる粒子であり、これによって軟磁性粒子同士の接触点数が増えるので、粗大軟磁性性粉末のベアリングとして機能する。微細軟磁性粉末の領域の上限が10以上であると、粗大軟磁性粉末となり微細軟磁性粉末を用いる意義がなくなる。また、下限が1μm未満であると、樹脂組成物の粘度が高くなり良好なシートが得られなくなる恐れがある。 The soft magnetic powder of the present invention has a maximum value in a region of 10 μm to 50 μm and a region of 1 μm to less than 10 μm. Soft magnetic powder having a maximum value A in the region of 10 μm or more and 50 μm or less (hereinafter also referred to as “coarse soft magnetic powder”) is a main component of the electromagnetic wave absorbing material. When the upper limit of the area of the coarse soft magnetic powder exceeds 50 μm, for example, when it is formed into a sheet shape, there is a risk that unevenness will occur on the surface and a good sheet may not be obtained, and when the lower limit is less than 10 μm, when high filling There is a fear that the viscosity of the resin composition increases and a good sheet cannot be obtained. On the other hand, soft magnetic powder having a maximum value B in the region of 1 μm or more and less than 10 μm (hereinafter also referred to as “fine soft magnetic powder”) is a particle that can easily enter the gaps between coarse soft magnetic powders. This increases the number of contact points between the soft magnetic particles, thereby functioning as a bearing for the coarse soft magnetic powder. When the upper limit of the area of the fine soft magnetic powder is 10 or more, it becomes a coarse soft magnetic powder and the meaning of using the fine soft magnetic powder is lost. On the other hand, if the lower limit is less than 1 μm, the viscosity of the resin composition becomes high and a good sheet may not be obtained.
粗大軟磁性粉末の含有率は、電磁波吸収性能の点から本発明の軟磁性粉末中、50〜80体積%、特に60〜70体積%であることが好ましく、微細軟磁性粉末の含有率は20〜50体積%、特に30〜40体積%であることが好ましい。さらには、高充填し電磁波吸収性を更に向上させる点から、微細軟磁性粉末の極大値Bの頻度に対する粗大軟磁性粉末の極大値Aの頻度の比率{(極大値Aの頻度)/(極大値Bの頻度)}が1〜8、特に1.5〜5であることが好ましい。 The content of the coarse soft magnetic powder is preferably 50 to 80% by volume, particularly 60 to 70% by volume in the soft magnetic powder of the present invention in terms of electromagnetic wave absorption performance, and the content of the fine soft magnetic powder is 20%. It is preferable that it is -50 volume%, especially 30-40 volume%. Further, from the point of further increasing the electromagnetic wave absorbability by high filling, the ratio of the frequency of the maximum value A of the coarse soft magnetic powder to the frequency of the maximum value B of the fine soft magnetic powder {(frequency of the maximum value A) / (maximum The frequency of the value B)} is preferably 1 to 8, in particular 1.5 to 5.
本発明の軟磁性粉末は、粗大軟磁性粉末と微細軟磁性粉末とを混合することによって製造することができる。この場合において、樹脂等への混合性の点から、軟磁性粉末の全てが粗大軟磁性粉末と微細軟磁性粉末とで構成されていることが好ましいが、最大で5体積%までの他の粒子径を有する軟磁性粉末を含有していてもよい。また、電磁波吸収性の他に放熱性を付与するためには、積極的に熱伝導性無機粉末と併用することが好ましく、これについては後記する。 The soft magnetic powder of the present invention can be produced by mixing coarse soft magnetic powder and fine soft magnetic powder. In this case, it is preferable that all of the soft magnetic powder is composed of coarse soft magnetic powder and fine soft magnetic powder from the viewpoint of mixing with a resin or the like, but other particles up to 5% by volume. Soft magnetic powder having a diameter may be contained. Moreover, in order to impart heat dissipation in addition to electromagnetic wave absorbability, it is preferable to actively use it together with thermally conductive inorganic powder, which will be described later.
軟磁性粉末の材質を例示すれば、鉄、例えばFe−Ni合金、Fe−Co合金、Fe−Cr合金、Fe−Si合金、Fe−Al合金、Fe−Cr−Si合金、Fe−Cr−Al合金、Fe−Al−Si合金の鉄合金、例えばMg−Znフェライト、Mn−Znフェライト、Mn−Mgフェライト、Cu−Znフェライト、Mg−Mn−Srフェライト、Ni−Znフェライト等のフェライト系物質などの電磁波吸収特性を有する粉末から選ばれた少なくとも1種である。平均粒子径が20μm以上であることが好ましい。平均粒子径が20μmよりも著しく小さいと、樹脂等、特にシリコーンと混合したときに混合物の粘度が著しく高くなるので、高充填するのに悪影響を及ぼす恐れがある。これらの中でも、Fe−Al−Si合金、特に平均粒子径が25〜75μmであるセンダストは、樹脂等と組み合わされたときに大きな電磁波吸収性を示し、また錆びにくいので、信頼性、長期の保存安定性にも優れた樹脂等の組成物となる。軟磁性粉末の平均粒子径は、例えばL&N社製粒度分布計「マイクロトラックSP−A」を用いて測定することができる。 Examples of soft magnetic powder materials include iron, such as Fe-Ni alloy, Fe-Co alloy, Fe-Cr alloy, Fe-Si alloy, Fe-Al alloy, Fe-Cr-Si alloy, Fe-Cr-Al. Alloys, Fe-Al-Si alloy iron alloys such as Mg-Zn ferrite, Mn-Zn ferrite, Mn-Mg ferrite, Cu-Zn ferrite, Mg-Mn-Sr ferrite, and Ni-Zn ferrite And at least one selected from powders having electromagnetic wave absorption characteristics. It is preferable that an average particle diameter is 20 micrometers or more. When the average particle size is significantly smaller than 20 μm, the viscosity of the mixture becomes extremely high when mixed with a resin or the like, particularly silicone, and there is a possibility of adversely affecting high filling. Among these, Fe-Al-Si alloys, particularly Sendust having an average particle size of 25 to 75 μm, exhibits a large electromagnetic wave absorbability when combined with a resin and the like, and is not easily rusted. It becomes a composition such as a resin having excellent stability. The average particle size of the soft magnetic powder can be measured using, for example, a particle size distribution meter “Microtrac SP-A” manufactured by L & N.
本発明の無機粉末組成物は、上記軟磁性粉末と熱伝導性無機粉末との混合物からなるものである。なかでも、軟磁性粉末が40〜97体積%、特に85〜95体積%で、熱伝導性無機粉末が3〜60体積%、特に5〜15体積%で構成されていることが好ましい。本発明の無機粉末組成物を樹脂等に混合することによって、電磁波吸収性と放熱性(熱伝導性)とに優れた樹脂等の組成物が得られ、電子機器等の電磁波障害と放熱対策のとられた放熱部材が提供される。 The inorganic powder composition of the present invention comprises a mixture of the soft magnetic powder and the heat conductive inorganic powder. Among them, it is preferable that the soft magnetic powder is 40 to 97% by volume, particularly 85 to 95% by volume, and the heat conductive inorganic powder is 3 to 60% by volume, particularly 5 to 15% by volume. By mixing the inorganic powder composition of the present invention into a resin or the like, a composition such as a resin excellent in electromagnetic wave absorption and heat dissipation (thermal conductivity) can be obtained. A taken heat dissipation member is provided.
熱伝導性無機粉末を例示すると、例えば銅、アルミニウム、アルミナ、シリカ、亜鉛華、マグネシア、チタニア、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素などの熱伝導性を有する粉末から選ばれた少なくとも1種である。熱伝導性フィラーの平均粒子径は10μm以下、特に3μm以下であることが好ましく、中でも平均粒子径が0.1〜2μmであるアルミナ粉末は、耐酸化性、耐湿性などの化学的安定性と熱伝導性付与能力の総合点で最も優れている。熱伝導性無機粉末の平均粒子径が10μmよりも著しく大きいと、高充填することに悪影響を及ぼし、熱伝導性の付与効果が小さくなって放熱性が低下する恐れがある。また、樹脂等への混合性の点から、熱伝導性無機粉末は球状や多面体形状であることが好ましい。 Examples of the thermally conductive inorganic powder include at least one selected from powders having thermal conductivity such as copper, aluminum, alumina, silica, zinc white, magnesia, titania, aluminum nitride, silicon nitride, boron nitride, and silicon carbide. It is a seed. The average particle size of the thermally conductive filler is preferably 10 μm or less, particularly preferably 3 μm or less. Among these, the alumina powder having an average particle size of 0.1 to 2 μm has chemical stability such as oxidation resistance and moisture resistance. It is the most excellent in terms of overall thermal conductivity imparting ability. If the average particle size of the thermally conductive inorganic powder is remarkably larger than 10 μm, it may adversely affect the high filling, and the effect of imparting thermal conductivity may be reduced, resulting in reduced heat dissipation. Moreover, it is preferable that heat conductive inorganic powder is spherical or a polyhedron shape from the point of the mixing property to resin etc.
本発明の有機材料は、樹脂等に上記軟磁性粉末が混合されたものであり、また本発明の有機材料組成物は、樹脂等に上記無機粉末組成物が混合されたものである。さらに、難燃剤、反応遅延剤、架橋剤、シランカップリング剤などの常套の表面処理剤や、シリコーンオイルなどは適宜使用することができる。軟磁性粉末又は無機粉末組成物の含有率は、電磁波吸収性又は電磁波吸収性及び放熱性と、均質な成型物例えばシートを得る点とから、50〜80体積、特に60〜70体積%であることが好ましい。 The organic material of the present invention is a mixture of the above soft magnetic powder in a resin or the like, and the organic material composition of the present invention is a mixture of the above inorganic powder composition in a resin or the like. Furthermore, conventional surface treatment agents such as flame retardants, reaction retarders, crosslinking agents, silane coupling agents, silicone oils, and the like can be used as appropriate. The content of the soft magnetic powder or the inorganic powder composition is 50 to 80 volume, particularly 60 to 70 volume%, from the viewpoint of electromagnetic wave absorption or electromagnetic wave absorption and heat dissipation, and obtaining a homogeneous molded product such as a sheet. It is preferable.
樹脂等のゴムとしては、例えばシリコーンゴム、ウレタンゴム、アクリルゴム、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、エチレン酢酸ビニル共重合体等を用いることができる。また、樹脂等の樹脂としては、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂等を用いることができる。 Examples of the rubber such as resin include silicone rubber, urethane rubber, acrylic rubber, butyl rubber, ethylene propylene rubber, urethane rubber, and ethylene vinyl acetate copolymer. Examples of resins such as resins include epoxy resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyamides such as polyimide, polyamideimide, and polyetherimide, and polyesters such as polybutylene terephthalate and polyethylene terephthalate. , Polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber) -Styrene) resin etc. can be used.
これらの中でも、放熱部材用としては、シリコーンゲル、シリコーンゴム又はその両方であることが好ましい。両方である場合、シリコーンゲルとシリコーンゴムの合計100質量部あたりシリコーンゲルの下限は75質量部が好ましく、特に80質量部であることが好ましい。また、上限は95質量部が好ましく、特に90質量部であることが好ましい。シリコーンゲルの割合が75質量部よりも著しく小さいと、ゲル状成分が少なくなるために成型物の柔軟性が小さくなり、95質量部よりも著しく大きいと、ゴム状成分が少なくなるために強度が小さくなる。 Among these, for a heat radiating member, a silicone gel, a silicone rubber, or both are preferable. In the case of both, the lower limit of the silicone gel per 100 parts by mass of the silicone gel and the silicone rubber is preferably 75 parts by mass, and particularly preferably 80 parts by mass. The upper limit is preferably 95 parts by mass, and particularly preferably 90 parts by mass. When the proportion of the silicone gel is remarkably smaller than 75 parts by mass, the gel component is reduced, so that the flexibility of the molded product is reduced. When the proportion is significantly larger than 95 parts by mass, the rubbery component is reduced and the strength is reduced. Get smaller.
シリコーンゲルは、付加反応型シリコーンゲル及び縮合反応型シリコーンゲルの少なくとも一方であることが好ましく、またシリコーンゴムは、付加反応型シリコーンゴム及び過酸化物加硫タイプのシリコーンゴムの少なくとも一方であることが好ましい。これらのシリコーンゲル、シリコーンゴムのいずれにおいても、平均組成式が、R1nSiO(4-n)/2(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基であり、nは1.98〜2.02の正数である。)、で示されるオルガノポリシロキサンをベースポリマーとしたものが好ましい。これの詳細については特許文献1の段落0018〜0031に記載されており、本発明においても特許文献1に記載されたものを不都合なく使用することができる。 The silicone gel is preferably at least one of addition reaction type silicone gel and condensation reaction type silicone gel, and the silicone rubber is at least one of addition reaction type silicone rubber and peroxide vulcanization type silicone rubber. Is preferred. In any of these silicone gels and silicone rubbers, the average composition formula is R 1 nSiO (4-n) / 2 (wherein R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group. , N is a positive number from 1.98 to 2.02). Details thereof are described in paragraphs 0018 to 0031 of Patent Document 1, and those described in Patent Document 1 can be used without any disadvantage in the present invention.
さらに述べれば、シリコーンゲル、シリコーンゴムとしては、例えば付加反応により加硫する液状シリコーンゴムや液状シリコーンゲル、過酸化物を加硫剤とする熱加硫型ミラブルタイプのシリコーンゴムやシリコーンゲルなどを使用することができるが、本発明の組成物の用途が放熱部材であるときは、CPU等の発熱面とヒートシンク等の放熱面との密着性を高め、また異なった高さで配置されたCPU等を傷つけずに覆う柔軟性を持たせるために、付加反応型の液状シリコーンゴムと液状シリコーンゲルが特に好ましい。 Further, silicone gel and silicone rubber include, for example, liquid silicone rubber and liquid silicone gel vulcanized by addition reaction, heat vulcanizable millable type silicone rubber and silicone gel using peroxide as a vulcanizing agent, and the like. Although it can be used, when the composition of the present invention is a heat radiating member, the adhesion between the heat generating surface such as a CPU and the heat radiating surface such as a heat sink is improved, and the CPUs arranged at different heights are used. In order to give the flexibility of covering without damaging etc., addition reaction type liquid silicone rubber and liquid silicone gel are particularly preferable.
付加反応型液状シリコーンの具体例としては、例えば一分子中にビニル基とH−Si基の両方を有する一液性のシリコーン、又は末端あるいは側鎖にビニル基を有するオルガノポリシロキサンと末端あるいは側鎖に2個以上のH−Si基を有するオルガノポリシロキサンの二液性のシリコーンなどをあげることができる。このような付加反応型液状シリコーンの市販品としては、ゲル状のものとして、例えば東芝シリコーン社製、商品名「XE14−8530」など、ゴム状のものとしては、例えば東芝シリコーン社製、商品名「YE5822」などがある。 Specific examples of the addition reaction type liquid silicone include, for example, a one-part silicone having both a vinyl group and an H-Si group in one molecule, or an organopolysiloxane having a vinyl group at the terminal or side chain and the terminal or side. An organopolysiloxane two-part silicone having two or more H-Si groups in the chain can be used. As such a commercially available product of the addition reaction type liquid silicone, a gel-like product, for example, a product name “XE14-8530” manufactured by Toshiba Silicone Corporation, and a rubber-like product, for example, a product name manufactured by Toshiba Silicone Co., Ltd. “YE5822” and the like.
本発明の成型物は、上記有機材料又は有機材料組成物の硬化物からなるものである。本発明の成型物は、原料の混合・成形・硬化工程を経て製造される。混合には、ロールミル、ニーダー、バンバリーミキサー等の混合機が用いられる。成形方法は、ドクターブレード法が好ましいが、樹脂等の粘度によって押し出し法、プレス法、カレンダーロール法などを用いることができる。硬化は、一般的な熱風乾燥機、遠赤外乾燥機、マイクロ波乾燥機等を用いて行うことができ、硬化温度は例えば50〜200℃であることが好ましい。 The molded product of the present invention comprises a cured product of the organic material or organic material composition. The molded product of the present invention is manufactured through a raw material mixing / molding / curing process. For mixing, a mixer such as a roll mill, a kneader, or a Banbury mixer is used. The molding method is preferably a doctor blade method, but an extrusion method, a pressing method, a calender roll method, or the like can be used depending on the viscosity of a resin or the like. Curing can be performed using a general hot air dryer, far-infrared dryer, microwave dryer, or the like, and the curing temperature is preferably, for example, 50 to 200 ° C.
本発明の成型物は、電磁波吸収又は電磁波吸収と放熱とが要求される各種の用途に供される。その一例が、電子機器の放熱部材である。電子機器の放熱部材とは、例えばCPU等を放熱フィンや金属板等のヒートシンクに取り付ける際の介在物である。放熱部材の厚みは0.1〜6mm、特に0.2〜2mmのシート形状が一般的である。シートの平面形状は、CPU等の電子部品と密着できる形状ないしは埋没できる形状であればよく、例えば三角形、四角形、六角形などの多角形、円形、楕円形等である。さらには、表面に密着ないしは埋没しやすいように凹凸を付けることもできる。 The molded product of the present invention is used for various applications that require electromagnetic wave absorption or electromagnetic wave absorption and heat dissipation. One example is a heat radiating member of an electronic device. The heat radiating member of the electronic device is an inclusion when the CPU or the like is attached to a heat sink such as a heat radiating fin or a metal plate. The thickness of the heat dissipating member is generally 0.1 to 6 mm, particularly 0.2 to 2 mm. The planar shape of the sheet may be a shape that can be in close contact with an electronic component such as a CPU or a shape that can be buried, and is, for example, a polygon such as a triangle, a quadrangle, or a hexagon, a circle, and an ellipse. Furthermore, unevenness can be provided so as to easily adhere to or bury the surface.
本発明の放熱部材は、熱伝導率が1W/m・K以上、透磁率が2以上、アスカーC硬度が80以下であることが好ましく、これによってCPU等とヒートシンク等との密着性が高まるのでノイズ減衰効果が大きくなり、また放熱性にも優れたものとなるのでヒートシンクへの熱の伝達も容易となる。これらの特性は、上記範囲内で、特に軟磁性粉末と熱伝導性無機粉末の含有率と硬化度合を調整することによって実現できる。 The heat dissipating member of the present invention preferably has a thermal conductivity of 1 W / m · K or more, a magnetic permeability of 2 or more, and an Asker C hardness of 80 or less, which increases the adhesion between the CPU and the heat sink. The noise attenuating effect is increased and the heat dissipation is excellent, so that heat transfer to the heat sink is facilitated. These characteristics can be realized by adjusting the content and the curing degree of the soft magnetic powder and the heat conductive inorganic powder within the above range.
実施例1〜6 比較例1〜2
表1に示される粗大軟磁性粉末(センダスト粉末)、微細軟磁性粉末(センダスト粉末)及び熱伝導性無機粉末(アルミナ粉末)を種々混合して、軟磁性粉末と無機粉末組成物を調整した。これらと、シリコーンA液(ビニル基を有するオルガノポリシロキサン)及びシリコーンB液(H−Si基を有するオルガノポリシロキサン)からなる二液の付加反応型液状シリコーンゲル(GE東芝シリコーン社製商品名「XE8530」)とを表2に示す体積部割合で混合し、硬化可能な有機材料又は有機材料組成物を製造した。これを、室温において真空脱泡後、ドクターブレード法にてシート(厚み1mm)に成形した後、120℃の乾燥機に6時間静置して加硫・硬化させて成型物(放熱部材)を製造した。この成型物について、(イ)熱伝導率、(ロ)アスカーC硬度(柔軟性)及び(ハ)透磁率を測定した。それらの結果を表2に示す。
Examples 1-6 Comparative Examples 1-2
Coarse soft magnetic powder (Sendust powder), fine soft magnetic powder (Sendust powder) and thermally conductive inorganic powder (alumina powder) shown in Table 1 were mixed to prepare soft magnetic powder and inorganic powder composition. A two-component addition-reaction type liquid silicone gel (named by GE TOSHIBA Silicone Co., Ltd.) consisting of a silicone A solution (organopolysiloxane having a vinyl group) and a silicone B solution (organopolysiloxane having an H-Si group). XE8530 ") was mixed at a volume ratio shown in Table 2 to produce a curable organic material or organic material composition. This was vacuum defoamed at room temperature, then formed into a sheet (thickness 1 mm) by the doctor blade method, and then left to stand in a dryer at 120 ° C. for 6 hours to vulcanize and cure to form a molded product (heat radiating member). Manufactured. For this molded product, (i) thermal conductivity, (b) Asker C hardness (flexibility), and (c) magnetic permeability were measured. The results are shown in Table 2.
(イ)熱伝導率:成型物をTO−3型銅製ヒーターケースと銅板との間に挟み、成型物厚みの10%を圧縮した後、銅製ヒーターケースに電力5Wをかけて4分間保持し、銅製ヒーターケースと銅板との温度差を測定し、熱伝導率(W/m・k)={電力(W)×厚み(m)}/{温度差(k)×測定面積(m2)}、にて算出した。
(ロ)アスカーC硬度(柔軟性): アスカーC硬度計(高分子計器製商品名「ASKER CL−150」)を用いて測定した。
(ハ)透磁率:成型物をトロイダルコア状(内径3mm、外径7mm)に打ち抜いた厚さ0.5mmの試料を、測定精度を高めるために3枚重ねて同軸線路に装填し(同軸導波管用いたSパラメータ法:参考文献:橋本 修 著「電波吸収体のはなし」p68〜69 2001年6月29日 日刊工業新聞社)、Agilent Technologies社製ネットワークアナライザーを用いて100MHzから5GHzまでの周波数域における複素透磁率の虚数部(μ‘’)を自動測定し、その最大値を表2に示した。
(A) Thermal conductivity: The molded product was sandwiched between a TO-3 type copper heater case and a copper plate, and after compressing 10% of the molded product thickness, the copper heater case was subjected to electric power of 5 W and held for 4 minutes, The temperature difference between the copper heater case and the copper plate is measured, and thermal conductivity (W / m · k) = {power (W) × thickness (m)} / {temperature difference (k) × measurement area (m 2 )} , And calculated.
(B) Asker C hardness (flexibility): Measured using an Asker C hardness meter (trade name “ASKER CL-150” manufactured by Kobunshi Keiki Co., Ltd.).
(C) Magnetic permeability: Three specimens with a thickness of 0.5 mm obtained by punching the molded product into a toroidal core shape (inner diameter: 3 mm, outer diameter: 7 mm) are stacked on a coaxial line in order to improve measurement accuracy (coaxial guide). S-parameter method using wave tube: Reference: Osamu Hashimoto, “Have a radio wave absorber” p68-69, June 29, 2001, Nikkan Kogyo Shimbun, Inc.), frequency from 100 MHz to 5 GHz using a network analyzer manufactured by Agilent Technologies. The imaginary part (μ ″) of the complex permeability in the region was automatically measured, and the maximum value is shown in Table 2.
実施例7
二液の付加反応型液状シリコーンゲルのかわりに、二液の付加反応型液状シリコーンゲル(東芝シリコーン社製、商品名「XE14−8530」)60質量部とシリコーンオイル(信越化学社製、商品名「KF96−100CS」)40質量部との混合物を用い、軟磁性粉末と熱伝導性無機粉末の割合を変えたこと以外は、実施例6に準じて成型物を製造した。
Example 7
Instead of the two-component addition reaction type liquid silicone gel, 60 parts by mass of the two-component addition reaction type liquid silicone gel (trade name “XE14-8530”, manufactured by Toshiba Silicone Co., Ltd.) and silicone oil (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) [KF96-100CS]) A molded product was produced in accordance with Example 6 except that a mixture of 40 parts by mass was used and the ratio of the soft magnetic powder and the thermally conductive inorganic powder was changed.
表1、表2からわかるように、本発明の軟磁性粉末用いて製造された有機材料の成型物(実施例1〜5)は比較例に比べて透磁率が大きいものであった。また、本発明の無機粉末組成物を用いて製造された有機材料組成物の成型物(実施例6、7)は、比較例に比べて透磁率と熱伝導率がいずれも大きくなり、熱伝導率が2.0W/m・K以上、透磁率が3以上、アスカーC硬度が80以下の成型物(放熱部材)が製造された。とくに、シリコーンゲルとシリコーンオイルを併用することによって軟磁性粉末を高充填することができるので、透磁率、熱伝導率が更に向上した(実施例6と実施例7の対比)。 As can be seen from Tables 1 and 2, the organic material moldings (Examples 1 to 5) produced using the soft magnetic powder of the present invention had a larger magnetic permeability than the comparative examples. In addition, the molded product of organic material composition (Examples 6 and 7) manufactured using the inorganic powder composition of the present invention has a higher magnetic permeability and thermal conductivity than those of the comparative examples, and the thermal conductivity. A molded product (heat radiating member) having a rate of 2.0 W / m · K or more, a permeability of 3 or more, and an Asker C hardness of 80 or less was produced. In particular, since the soft magnetic powder can be highly filled by using silicone gel and silicone oil in combination, the magnetic permeability and thermal conductivity are further improved (contrast of Example 6 and Example 7).
なお、軟磁性粉末として、センダスト粉末のかわりに、鉄、Fe−Ni合金、Fe−Co合金、Fe−Cr合金、Fe−Si合金、Fe−Al合金、Fe−Cr−Si合金、Fe−Cr−Al合金、Mg−Znフェライト、Mn−Znフェライト、Mn−Mgフェライト、Cu−Znフェライト、Mg−Mn−Srフェライト又はNi−Znフェライトの各粉末を、本発明のような粗大軟磁性粉末と微細軟磁性粉末の粒度構成として用いたこと以外は、上記実施例と比較例に準じて放熱部材を製造した。その結果、電磁波吸収性は、センダスト粉末を用いたときよりも小さくなったが、それでも本発明のような粒度構成をとることによって電磁波吸収性は増大し、その大きさはセンダスト粉末の場合とほぼ同様な傾向であった。 As soft magnetic powder, instead of Sendust powder, iron, Fe-Ni alloy, Fe-Co alloy, Fe-Cr alloy, Fe-Si alloy, Fe-Al alloy, Fe-Cr-Si alloy, Fe-Cr Each powder of -Al alloy, Mg-Zn ferrite, Mn-Zn ferrite, Mn-Mg ferrite, Cu-Zn ferrite, Mg-Mn-Sr ferrite or Ni-Zn ferrite is replaced with coarse soft magnetic powder as in the present invention. A heat radiating member was manufactured according to the above-described Examples and Comparative Examples except that the fine soft magnetic powder was used as a particle size constitution. As a result, the electromagnetic wave absorptivity was smaller than that when Sendust powder was used, but the electromagnetic wave absorptivity was still increased by adopting the particle size configuration as in the present invention, and the magnitude was almost the same as that of Sendust powder. A similar trend was observed.
さらには、熱伝導性無機粉末として、アルミナ粉末のかわりに、銅、アルミニウム、シリカ、亜鉛華、マグネシア、チタニア、窒化アルミニウム、窒化ケイ素、窒化ホウ素又は炭化ケイ素の各粉末を用い、本発明の軟磁性粉末と適宜組み合わせ使用して放熱部材を製造したところ、熱伝導性無機粉末としてのアルミナ粉末は、耐酸化性、耐湿性などの化学的安定性と熱伝導性付与能力の総合点で最も優れていたが、それ以外の熱伝導性無機粉末を用いても熱伝導性が向上することを確認した。 Further, as the thermally conductive inorganic powder, each powder of copper, aluminum, silica, zinc white, magnesia, titania, aluminum nitride, silicon nitride, boron nitride or silicon carbide is used in place of the alumina powder, and the soft powder of the present invention is used. When heat dissipation members were manufactured using appropriate combinations with magnetic powder, alumina powder as the thermally conductive inorganic powder was the best in terms of overall stability of chemical stability such as oxidation resistance and moisture resistance, and ability to impart thermal conductivity. However, it was confirmed that the thermal conductivity was improved by using other thermally conductive inorganic powders.
本発明の軟磁性粉末は電磁波吸収を有する成型物の製造に用いられ、また本発明の無機粉末組成物は、電磁波吸収と熱伝導性(放熱性)を有する成型物の製造に用いられる。本発明の有機材料及び有機材料組成物は、電磁波吸収性、又は電磁波吸収性と放熱性をもつ成型物等の製造に使用される。本発明の成型物は、例えば電子機器の電磁波吸収と放熱を行う放熱部材として使用される。 The soft magnetic powder of the present invention is used for the production of a molded product having electromagnetic wave absorption, and the inorganic powder composition of the present invention is used for the production of a molded product having electromagnetic wave absorption and thermal conductivity (heat dissipation). The organic material and organic material composition of the present invention are used for the production of molded articles having electromagnetic wave absorptivity or electromagnetic wave absorptivity and heat dissipation. The molded product of the present invention is used, for example, as a heat radiating member that performs electromagnetic wave absorption and heat dissipation of electronic equipment.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004164133A JP2005347449A (en) | 2004-06-02 | 2004-06-02 | Soft magnetic powder and its use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004164133A JP2005347449A (en) | 2004-06-02 | 2004-06-02 | Soft magnetic powder and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005347449A true JP2005347449A (en) | 2005-12-15 |
Family
ID=35499551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004164133A Pending JP2005347449A (en) | 2004-06-02 | 2004-06-02 | Soft magnetic powder and its use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005347449A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009088472A (en) * | 2007-10-01 | 2009-04-23 | Doo Sung Industrial Co Ltd | Roll-type composite sheet with improved heat dissipation property, electromagnetic wave, and impact-absorbing property, and manufacturing method therefor |
WO2014068928A1 (en) * | 2012-10-31 | 2014-05-08 | パナソニック株式会社 | Composite magnetic body and method for manufacturing same |
WO2015008813A1 (en) * | 2013-07-17 | 2015-01-22 | 日立金属株式会社 | Dust core, coil component using same and process for producing dust core |
WO2016043031A1 (en) * | 2014-09-19 | 2016-03-24 | パウダーテック株式会社 | Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition |
US9972579B1 (en) | 2016-11-16 | 2018-05-15 | Tdk Corporation | Composite magnetic sealing material and electronic circuit package using the same |
US10403582B2 (en) | 2017-06-23 | 2019-09-03 | Tdk Corporation | Electronic circuit package using composite magnetic sealing material |
JP2019182950A (en) * | 2018-04-05 | 2019-10-24 | 住友ベークライト株式会社 | Molding material and molded body |
JP2021082664A (en) * | 2019-11-15 | 2021-05-27 | 昭和電工マテリアルズ株式会社 | Composition for electromagnetic wave shield, sheet for electromagnetic wave shield, electromagnetic wave shield film, and electronic component device |
WO2022138734A1 (en) * | 2020-12-25 | 2022-06-30 | 富士フイルム株式会社 | Composition, magnetic-particle-containing cured product, and electronic component |
EP4047042A1 (en) * | 2021-02-18 | 2022-08-24 | Teraloop OY | Method for producing a composite structure comprising magnetic filler material embedded in a resin matrix |
-
2004
- 2004-06-02 JP JP2004164133A patent/JP2005347449A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009088472A (en) * | 2007-10-01 | 2009-04-23 | Doo Sung Industrial Co Ltd | Roll-type composite sheet with improved heat dissipation property, electromagnetic wave, and impact-absorbing property, and manufacturing method therefor |
US9881722B2 (en) | 2012-10-31 | 2018-01-30 | Panasonic Intellectual Property Management Co., Ltd. | Composite magnetic body and method for manufacturing same |
WO2014068928A1 (en) * | 2012-10-31 | 2014-05-08 | パナソニック株式会社 | Composite magnetic body and method for manufacturing same |
US20150287507A1 (en) * | 2012-10-31 | 2015-10-08 | Panasonic Intellectual Property Management Co., Ltd. | Composite magnetic body and method for manufacturing same |
JPWO2014068928A1 (en) * | 2012-10-31 | 2016-09-08 | パナソニックIpマネジメント株式会社 | Composite magnetic body and method for producing the same |
WO2015008813A1 (en) * | 2013-07-17 | 2015-01-22 | 日立金属株式会社 | Dust core, coil component using same and process for producing dust core |
US10418160B2 (en) | 2013-07-17 | 2019-09-17 | Hitachi Metals, Ltd. | Metal powder core, coil component employing same, and fabrication method for metal powder core |
EP3024000A4 (en) * | 2013-07-17 | 2017-03-08 | Hitachi Metals, Ltd. | Dust core, coil component using same and process for producing dust core |
US10186358B2 (en) | 2013-07-17 | 2019-01-22 | Hitachi Metals, Ltd. | Metal powder core, coil component employing same, and fabrication method for metal powder core |
US10501333B2 (en) | 2014-09-19 | 2019-12-10 | Powdertech Co., Ltd. | Spherical ferrite powder, resin compound including spherical ferrite powder, and molded product made of resin compound |
JP2016060682A (en) * | 2014-09-19 | 2016-04-25 | パウダーテック株式会社 | Spherical ferrite powder, resin composition containing spherical ferrite powder and molded body using resin composition |
WO2016043031A1 (en) * | 2014-09-19 | 2016-03-24 | パウダーテック株式会社 | Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition |
KR20170058933A (en) * | 2014-09-19 | 2017-05-29 | 파우더테크 컴퍼니 리미티드 | Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition |
KR101907328B1 (en) | 2014-09-19 | 2018-10-11 | 파우더테크 컴퍼니 리미티드 | Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition |
CN108074878A (en) * | 2016-11-16 | 2018-05-25 | Tdk株式会社 | Composite magnetic sealing material and use its electronic circuit package body |
US9972579B1 (en) | 2016-11-16 | 2018-05-15 | Tdk Corporation | Composite magnetic sealing material and electronic circuit package using the same |
JP2018082142A (en) * | 2016-11-16 | 2018-05-24 | Tdk株式会社 | Composite magnetic sealing material, and electronic circuit package arranged by using the same as mold material |
CN108074878B (en) * | 2016-11-16 | 2021-07-27 | Tdk株式会社 | Composite magnetic sealing material and electronic circuit package using same |
US10403582B2 (en) | 2017-06-23 | 2019-09-03 | Tdk Corporation | Electronic circuit package using composite magnetic sealing material |
JP2019182950A (en) * | 2018-04-05 | 2019-10-24 | 住友ベークライト株式会社 | Molding material and molded body |
JP7206615B2 (en) | 2018-04-05 | 2023-01-18 | 住友ベークライト株式会社 | Molding materials and moldings |
JP2021082664A (en) * | 2019-11-15 | 2021-05-27 | 昭和電工マテリアルズ株式会社 | Composition for electromagnetic wave shield, sheet for electromagnetic wave shield, electromagnetic wave shield film, and electronic component device |
WO2022138734A1 (en) * | 2020-12-25 | 2022-06-30 | 富士フイルム株式会社 | Composition, magnetic-particle-containing cured product, and electronic component |
EP4047042A1 (en) * | 2021-02-18 | 2022-08-24 | Teraloop OY | Method for producing a composite structure comprising magnetic filler material embedded in a resin matrix |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI668261B (en) | Thermal interface material with mixed aspect ratio particle dispersions | |
JP3719382B2 (en) | Electromagnetic wave absorbing silicone rubber composition | |
JP5490242B2 (en) | Composition for composite sheet containing core-shell type filler particles, composite sheet containing the same, and method for producing composite sheet | |
TWI327322B (en) | ||
TWI282156B (en) | Heat conductive sheet with magnetic wave absorption | |
JP2002280207A (en) | Electromagnetic wave absorption heat conducting composition, thermal softness electromagnetic wave absorption heat-dissipating sheet and heat-dissipating method | |
JP2002374092A (en) | Heat dissipating radio wave absorber | |
KR101549986B1 (en) | Composition for complex sheet, complex sheet comprising the same, and preparation method of the complex sheet | |
JP2005347449A (en) | Soft magnetic powder and its use | |
TWI330400B (en) | ||
CN105754341A (en) | Heat-conducting composite material, heat-conducting piece prepared from heat-conducting composite material and preparation method of heat-conducting piece | |
CN104972709A (en) | High-heat-dissipation wave-absorbing composite film and manufacturing method thereof | |
CN107207950A (en) | Heat conduction electromagnetic interference (EMI) absorbent with carborundum | |
JP2000302970A (en) | Thermally conductive silicone rubber composition, its molding product and it applied product | |
KR20210084007A (en) | Core-shell hybrid structured heat dissipating particles, and composites comprising the same | |
JP2005320390A (en) | Curable composition, molded product and heat dissipation member | |
CN101800104A (en) | Electromagnetic wave suppresses and heat transmission synthetic and manufacture method thereof | |
JP4746803B2 (en) | Thermally conductive electromagnetic shielding sheet | |
JP5095136B2 (en) | Manufacturing method of resin composition for semiconductor encapsulation | |
TWI862955B (en) | Resin composition and electronic parts | |
JP2010186856A (en) | Heat conductive sheet | |
JP2014239236A (en) | Thermally conductive sheet | |
CN111133039A (en) | Composite material | |
JP2004315761A (en) | Heat radiator | |
JP2002076683A (en) | Electromagnetic wave absorbing radiating sheet |