[go: up one dir, main page]

JP2005336551A - Fe-containing titanium material having excellent corrosion resistance and method for producing the same - Google Patents

Fe-containing titanium material having excellent corrosion resistance and method for producing the same Download PDF

Info

Publication number
JP2005336551A
JP2005336551A JP2004157245A JP2004157245A JP2005336551A JP 2005336551 A JP2005336551 A JP 2005336551A JP 2004157245 A JP2004157245 A JP 2004157245A JP 2004157245 A JP2004157245 A JP 2004157245A JP 2005336551 A JP2005336551 A JP 2005336551A
Authority
JP
Japan
Prior art keywords
concentration
titanium material
transformation point
corrosion resistance
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004157245A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takahashi
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004157245A priority Critical patent/JP2005336551A/en
Publication of JP2005336551A publication Critical patent/JP2005336551A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

【課題】 Feを含有する、耐食性に優れたチタン材およびその製造方法を提供する。
【解決手段】 Feを0.1〜2.5質量%含有するチタンにおいて、針状あるいはラス状のミクロ組織を有し、電子線マイクロアナライザ(EPMA)で分析した濃度分布においてFe濃度が平均濃度に対して1.5倍以上に濃化した部分の面積を5%以上とすることによって、Fe含有チタン材の耐食性を高めることができる。β相単相となるβ変態点超の温度から冷却した後あるいは冷却中に600℃〜(β変態点−20℃)の温度域で加熱することによって、Fe含有チタン材の耐食性を高めることができる。
【選択図】 図3
PROBLEM TO BE SOLVED: To provide a titanium material excellent in corrosion resistance containing Fe and a method for producing the same.
Titanium containing 0.1 to 2.5 mass% of Fe has a needle-like or lath-like microstructure, and the Fe concentration is an average concentration in a concentration distribution analyzed by an electron beam microanalyzer (EPMA). In contrast, the corrosion resistance of the Fe-containing titanium material can be increased by setting the area of the portion concentrated 1.5 times or more to 5% or more. The corrosion resistance of the Fe-containing titanium material can be improved by heating in the temperature range from 600 ° C. to (β transformation point−20 ° C.) after cooling from the temperature above the β transformation point that becomes the β phase single phase or during cooling. it can.
[Selection] Figure 3

Description

本発明は、Fe(鉄)を含有する、耐食性に優れたチタン材およびその製造方法に関する。   The present invention relates to a titanium material containing Fe (iron) and excellent in corrosion resistance and a method for producing the same.

チタン中のFe濃度が高まると腐食量が増加することが知られている。その一例として非特許文献1の「純チタンの耐食性に及ぼす微量不純物の影響(著者 高村ら)」に、Fe濃度が0.01質量%未満から0.49質量%の純チタン系材料において、硝酸のような酸化性腐食環境ではFe濃度によらずほとんど腐食せず耐食性に影響しないが、塩酸や硫酸などの非酸化性腐食環境ではFe濃度の増加に伴い腐食量が増加することが報告されている。   It is known that the amount of corrosion increases as the Fe concentration in titanium increases. As an example of this, in “Influence of trace impurities on the corrosion resistance of pure titanium (author Takamura et al.)” Of Non-Patent Document 1, in pure titanium-based materials having Fe concentration of less than 0.01% by mass to 0.49% by mass, nitric acid It has been reported that in an oxidizing corrosive environment such as the above, corrosion does not affect the corrosion resistance regardless of the Fe concentration and does not affect the corrosion resistance, but in a non-oxidizing corrosive environment such as hydrochloric acid or sulfuric acid, the amount of corrosion increases as the Fe concentration increases. Yes.

一方、FeはO(酸素)同様にチタン中に必ず含まれており、工業用純チタンのJIS規格においてもFe濃度はJIS1種で0.20質量%以下、JIS2種で0.25質量%以下、JIS3種で0.30質量%以下、JIS4種では0.50質量%以下と相当量を含有する規格となっている。また、安価原料(オフグレードスポンジチタン、スクラップなど)を利用することによってもチタン中のFe濃度が増す他に、安価な合金化添加物として積極的にFeやFeを含むFerro−CrやFerro−Moなどをチタンへ添加する場合がある。   On the other hand, Fe is always contained in titanium like O (oxygen), and in the JIS standard of industrial pure titanium, the Fe concentration is 0.20 mass% or less for JIS type 1 and 0.25 mass% or less for JIS type 2. JIS type 3 is 0.30% by mass or less, and JIS type 4 is 0.50% by mass or less. In addition to increasing the Fe concentration in titanium by using inexpensive raw materials (off-grade sponge titanium, scrap, etc.), Ferro-Cr and Ferro- actively containing Fe and Fe as an inexpensive alloying additive Mo etc. may be added to titanium.

耐食性を高める方法として、特許文献1に記載の「工業用純チタンおよびその製造方法」の発明ではFe濃度が0.1〜0.19質量%の工業用純チタンにおいて、熱間圧延を加えて次いで約550〜750℃程度の温度で焼鈍し結晶粒径を30μm以下としている。一方、特許文献2に記載の「耐食性に優れたTi製部材」の発明では平均結晶粒径を20〜100μmとしている。ここで特許文献2に記載の発明の実施例では約700〜800℃の熱処理を実施している。   As a method for improving the corrosion resistance, in the invention of “Industrial Pure Titanium and its Production Method” described in Patent Document 1, hot rolling is applied to industrial pure titanium having an Fe concentration of 0.1 to 0.19 mass%. Next, annealing is performed at a temperature of about 550 to 750 ° C., and the crystal grain size is set to 30 μm or less. On the other hand, in the invention of “Ti member excellent in corrosion resistance” described in Patent Document 2, the average crystal grain size is 20 to 100 μm. Here, in the embodiment of the invention described in Patent Document 2, heat treatment at about 700 to 800 ° C. is performed.

特許文献1、特許文献2に記載の発明は、結晶粒径を規定することによって、いずれも腐食環境中で溶出しやすい結晶粒界の量や結晶粒界への微量元素の偏析を制御して結晶粒界の溶出を抑えるものであり、一般的な等軸組織である。両特許文献に記載の発明の熱処理温度域がβ変態点である882℃よりも低いことからも等軸組織であることがわかる。この等軸組織は等軸形状のα相結晶粒からなり、α相中の固溶限を超えたFeなどのβ安定化元素がα相結晶粒の粒界に濃化している。ちなみにTiとFeの二元系状態図(非特許文献2参照。)より、α相中には最大でも約0.05質量%のFeしか固溶されない。   The inventions described in Patent Document 1 and Patent Document 2 regulate the amount of crystal grain boundaries that easily elute in a corrosive environment and the segregation of trace elements to the crystal grain boundaries by regulating the crystal grain size. It suppresses the elution of crystal grain boundaries and is a general equiaxed structure. The heat treatment temperature range of the inventions described in both patent documents is lower than 882 ° C., which is the β transformation point, and it is understood that the structure is equiaxed. This equiaxed structure is composed of equiaxed α-phase crystal grains, and β-stabilizing elements such as Fe exceeding the solid solubility limit in the α-phase are concentrated at the grain boundaries of the α-phase crystal grains. Incidentally, from the binary phase diagram of Ti and Fe (see Non-Patent Document 2), only about 0.05 mass% of Fe is dissolved in the α phase at the maximum.

特許第3303534号公報Japanese Patent No. 3303534 特開平05−070913号公報Japanese Patent Laid-Open No. 05-070913 防食技術Vol.19,No.5/6,p14Anticorrosion technology Vol. 19, no. 5/6, p14 ASM発行、PHASE DIAGRAMS OF BINARY TITANIUM ALLOYSIssued by ASM, PHASE DIAGRAMS OF BINARY TITANIUM ALLOYS

以上の従来技術は、β安定化元素であるFeの濃度が高く0.05質量%超となると、一般的な焼鈍や熱処理温度であるβ変態点未満の温度では上述のようにα相の等軸結晶の粒界にFeやCrが濃化する。この粒界が腐食されやすく、特許文献1や特許文献2に記載の発明はともに等軸組織であるため3次元的に結晶粒界が連続しており、粒界が次々と溶出する。そのためにFeの濃度が低い場合に比べて腐食速度が大きくなってしまう。更に焼鈍時にFeが濃化した粒界がα相結晶粒の成長を抑制するため、結果として結晶粒は細かくなり腐食されやすい粒界の総体積(断面では総面積)が大きな金属組織となってしまう。   In the above prior art, when the concentration of Fe, which is a β-stabilizing element, is high and exceeds 0.05 mass%, the temperature of the α phase is less than the β transformation point, which is a general annealing or heat treatment temperature, as described above. Fe and Cr are concentrated at the grain boundaries of the axial crystals. The grain boundaries are easily corroded, and since the inventions described in Patent Document 1 and Patent Document 2 have an equiaxed structure, the crystal grain boundaries are three-dimensionally continuous and the grain boundaries are eluted one after another. For this reason, the corrosion rate is increased as compared with the case where the Fe concentration is low. In addition, the grain boundaries enriched with Fe during annealing suppress the growth of α-phase grains. As a result, the grains become finer and the total volume (total area in the cross section) of the grain boundaries that are susceptible to corrosion becomes a metal structure. End up.

そこで、本発明は、前記した従来技術の課題を鑑みて、Fe濃度が高いチタンにおいて、耐食性に優れたチタン材およびその製造方法を提供することを目的としている。   In view of the above-described problems of the prior art, an object of the present invention is to provide a titanium material excellent in corrosion resistance and a manufacturing method thereof in titanium having a high Fe concentration.

このような目的に応えるべく本発明者らは鋭意研究を重ねた結果、以下のような本発明のチタン材と耐食性を高める熱処理方法を成すに至った。   In order to meet such a purpose, the present inventors have intensively studied, and as a result, the following titanium material and the heat treatment method for improving the corrosion resistance have been achieved.

本発明のチタン材と耐食性を高める熱処理方法は以下の特徴を有するものである。
(1) Feを0.1〜2.5質量%含有し、残部Tiおよび不可避的不純物であり、針状あるいはラス状のミクロ組織を有し、電子線マイクロアナライザ(EPMA)で分析した濃度分布においてFe濃度が平均濃度に対して1.5倍以上に濃化した部分の面積が5%以上であることを特徴とする、耐食性に優れたFe含有チタン材。
(2) 前記Fe量の一部が、Cr、Ni、Co、V、Mo、Nb、Cuのβ安定化元素の1種または2種以上で置換され、Feおよび該β安定化元素を合計で0.1〜2.5質量%含有するとともに、前記ミクロ組織中のFe濃度が、Feおよび前記β安定化元素の合計濃度で表されることを特徴とする、上記(1)に記載の耐食性に優れたFe含有チタン材。
(3) さらに、質量%で、Al:0.01〜6.5%、O:0.15〜0.4%、C:0.01〜0.1%、N:0.01〜0.1%のα安定化元素を1種または2種以上含有することを特徴とする、上記(1)または(2)に記載の耐食性に優れたFe含有チタン材。
(4) 上記(1)ないし(3)のいずれか1項に記載の成分組成を有するチタン材を、β相単相となるβ変態点超の温度から冷却した後、600℃〜(β変態点−20℃)の温度域で加熱することを特徴とする、針状あるいはラス状のミクロ組織を有し、電子線マイクロアナライザ(EPMA)で分析した濃度分布においてFe濃度が平均濃度に対して1.5倍以上に濃化した部分の面積が5%以上である耐食性に優れたFe含有チタン材の製造方法。
(5) 上記(1)ないし(3)のいずれか1項に記載の成分組成を有するチタン材を、β相単相となるβ変態点超の温度に加熱した際の冷却途中で、600℃〜(β変態点−20℃)の温度域にて熱処理することを特徴とする、針状あるいはラス状のミクロ組織を有し、電子線マイクロアナライザ(EPMA)で分析した濃度分布においてFe濃度が平均濃度に対して1.5倍以上に濃化した部分の面積が5%以上である耐食性に優れたFe含有チタン材の製造方法。
The titanium material of the present invention and the heat treatment method for improving the corrosion resistance have the following characteristics.
(1) Concentration distribution containing 0.1 to 2.5% by mass of Fe, remaining Ti and inevitable impurities, having a needle-like or lath-like microstructure, and analyzed by an electron beam microanalyzer (EPMA) A Fe-containing titanium material having excellent corrosion resistance, wherein the area of the portion where the Fe concentration is concentrated 1.5 times or more of the average concentration is 5% or more.
(2) A part of the Fe amount is substituted with one or more of β-stabilizing elements of Cr, Ni, Co, V, Mo, Nb, and Cu, and Fe and the β-stabilizing elements are combined in total. The corrosion resistance according to (1) above, wherein the corrosion resistance is 0.1 to 2.5% by mass and the Fe concentration in the microstructure is represented by the total concentration of Fe and the β-stabilizing element. Excellent Fe-containing titanium material.
(3) Further, in terms of mass%, Al: 0.01 to 6.5%, O: 0.15 to 0.4%, C: 0.01 to 0.1%, N: 0.01 to 0.00. The Fe-containing titanium material having excellent corrosion resistance as described in (1) or (2) above, which contains 1% or more of 1% α-stabilizing element.
(4) After cooling the titanium material having the component composition according to any one of the above (1) to (3) from a temperature above the β transformation point at which the β phase becomes a single phase, 600 ° C to (β transformation) It has a needle-like or lath-like microstructure, characterized by heating in a temperature range of −20 ° C.), and the Fe concentration in the concentration distribution analyzed by an electron beam microanalyzer (EPMA) The manufacturing method of the Fe containing titanium material excellent in corrosion resistance whose area of the part concentrated 1.5 times or more is 5% or more.
(5) In the course of cooling when the titanium material having the component composition according to any one of the above (1) to (3) is heated to a temperature exceeding the β transformation point to be a β phase single phase, 600 ° C. It has a needle-like or lath-like microstructure characterized by heat treatment in a temperature range of ˜ (β transformation point−20 ° C.) and the Fe concentration in the concentration distribution analyzed by an electron beam microanalyzer (EPMA) A method for producing an Fe-containing titanium material excellent in corrosion resistance, wherein the area of the portion concentrated 1.5 times or more of the average concentration is 5% or more.

ここで、図1の(a),(b)にβ相単相となるβ変態点超の温度から冷却された針状あるいはラス状のミクロ組織(以降、組織aという。)を示す。一方、図2は代表的な等軸組織(以降、組織bという。)であり、図1の(a),(b)とは全く異なった組織である。またβ変態点超の温度とは、チタンがβ相単一となる温度域のことである。   Here, FIGS. 1A and 1B show a needle-like or lath-like microstructure (hereinafter referred to as a structure a) cooled from a temperature exceeding the β transformation point at which a β-phase single phase is obtained. On the other hand, FIG. 2 shows a typical equiaxed structure (hereinafter referred to as a structure b), which is a completely different structure from (a) and (b) in FIG. The temperature exceeding the β transformation point is a temperature range in which titanium has a single β phase.

電子線マイクロアナライザ(以降、EPMAという。)で分析した濃度分布とは、チタン材を樹脂に埋め込んで研磨し、その埋め込み研磨面の一部領域にて、Fe、およびCr、Ni、Co、V、Mo、Nb、Cuのβ安定化元素の合計の濃度を面分析したものである。この濃度分析から得られる分析した面内のFeおよび前記β安定化元素の合計の“平均濃度”と“ヒストグラムなどの濃度分布”から、Feおよび前記β安定化元素の合計の濃度が平均濃度の1.5倍以上である面積率を求める。   The concentration distribution analyzed by an electron beam microanalyzer (hereinafter referred to as EPMA) refers to polishing by embedding a titanium material in a resin, and in a partial region of the embedded polished surface, Fe, Cr, Ni, Co, V Surface analysis of the total concentration of β-stabilizing elements of Mo, Nb, and Cu. From the “average concentration” and “concentration distribution such as histogram” of the in-plane Fe and β stabilizing elements obtained from this concentration analysis, the total concentration of Fe and β stabilizing elements is the average concentration. The area ratio which is 1.5 times or more is obtained.

ここで熱処理後の冷却方法は、水冷、空冷、不活性ガスをフローした冷却、炉冷など特に限定するものではない。   Here, the cooling method after the heat treatment is not particularly limited, such as water cooling, air cooling, cooling with an inert gas flow, and furnace cooling.

Feおよび前記β安定化元素を合計で0.1〜2.5質量%含有するチタンにおいて、針状あるいはラス状のミクロ組織を有し、電子線マイクロアナライザ(EPMA)で分析した濃度分布においてFeおよび前記β安定化元素の合計の濃度が平均濃度に対して1.5倍以上に濃化した部分の面積を5%以上とすることによって、チタン材の耐食性を高めることができる。β相単相となるβ変態点超の温度から冷却した後あるいは冷却中に600℃〜(β変態点−20℃)の温度域で加熱することによって、チタン材の耐食性を高めることができる。   Titanium containing a total of 0.1 to 2.5 mass% of Fe and the β stabilizing element has a needle-like or lath-like microstructure and is analyzed by an electron beam microanalyzer (EPMA). And the corrosion resistance of a titanium material can be improved by making the area of the part which the total density | concentration of the said (beta) stabilization element concentrated 1.5 times or more with respect to average density | concentration into 5% or more. Corrosion resistance of the titanium material can be enhanced by heating at a temperature range of 600 ° C. to (β transformation point−20 ° C.) after cooling from a temperature exceeding the β transformation point at which the β phase becomes a single phase or during cooling.

図3に、化学分析したFeおよび前記β安定化元素(以下、前記β安定化元素も含めて単にFeともいう。)の合計濃度、EPMA分析によるFeの濃度分布(後述のFe濃化面積率)、加えてミクロ組織(組織a、組織b)と腐食速度(0.1mm/年以下、0.1mm年超)との関係を示す。ここで用いたチタン材は、Feを0.1〜0.25質量%含有し、Al,O,N,Cを不可避的に含むものの他にこれらを1種以上添加したものもある。ミクロ組織とFeの濃度分布は、チタン材を冷間加工した後、種々熱処理を施すことによって調整した。腐食速度は、前記の種々熱処理後のチタン材からサイズ3mm×25mm×25mm、表面#600研磨仕上げの試験片を作製し、400mlの沸騰した塩酸1質量%水溶液中に24時間浸漬した前後の質量変化から求めた。ここで腐食量を算出する際には密度4.51g/cm3を用いた。 FIG. 3 shows the total concentration of chemically analyzed Fe and the β-stabilizing element (hereinafter, also simply referred to as Fe, including the β-stabilizing element), Fe concentration distribution by EPMA analysis (Fe concentration area ratio described later) ) And the relationship between the microstructure (structure a, structure b) and the corrosion rate (0.1 mm / year or less, more than 0.1 mm year). The titanium material used here contains 0.1 to 0.25% by mass of Fe, and in addition to those inevitably containing Al, O, N, and C, there is also a material in which one or more of these are added. The microstructure and the concentration distribution of Fe were adjusted by performing various heat treatments after cold working the titanium material. Corrosion rate is the mass before and after immersing a specimen of size 3 mm × 25 mm × 25 mm and surface # 600 polished from the titanium material after the various heat treatments described above and immersing it in 400 ml of boiling 1% hydrochloric acid aqueous solution for 24 hours. Obtained from change. Here, when calculating the amount of corrosion, a density of 4.51 g / cm 3 was used.

ここで、EPMAは、日本電子製JXA8800Rを用いて表面を鏡面研磨した試料にて実施しており、Fe濃度を200μm×200μmの範囲内にて1μmメッシュで分析して、その濃度分布を得た。図3の縦軸である“Fe濃度が平均値の1.5倍以上に濃化した部分の面積率(%)”は、EPMA分析した200μm×200μm範囲内でFe濃度が平均値(200μm×200μm範囲のEPMA分析結果)に対して1.5倍以上に濃化した部分の面積が何%あるかを計算したものである。以降、”Fe濃度が平均値の1.5倍以上に濃化した部分の面積率”を「Fe濃化面積率」と呼ぶ。   Here, EPMA is carried out with a sample whose surface is mirror-polished using JXA8800R manufactured by JEOL, and the Fe concentration is analyzed with a 1 μm mesh within a range of 200 μm × 200 μm to obtain its concentration distribution. . The “area ratio (%) of the portion where the Fe concentration is concentrated to 1.5 times or more of the average value” on the vertical axis in FIG. 3 is the average value (200 μm × Fe concentration within the range of 200 μm × 200 μm analyzed by EPMA). This is a calculation of the percentage of the area of the portion concentrated 1.5 times or more with respect to the EPMA analysis result in the 200 μm range. Hereinafter, the “area ratio of the portion where the Fe concentration is concentrated to 1.5 times or more of the average value” is referred to as “Fe concentrated area ratio”.

図3より、腐食速度が0.1mm/年以下(○)となるチタン材はミクロ組織が組織aで且つ縦軸のFe濃化面積率が5%以上である。一方、ミクロ組織が組織aであっても縦軸のFe濃化面積率が5%未満である場合(×)やミクロ組織が組織bの場合(▲)には腐食速度が0.1mm/年を超える。   From FIG. 3, the titanium material having a corrosion rate of 0.1 mm / year or less (◯) has a microstructure “a” and an Fe concentration area ratio of 5% or more on the vertical axis. On the other hand, even when the microstructure is the structure a, the corrosion rate is 0.1 mm / year when the Fe concentration area ratio on the vertical axis is less than 5% (×) or when the microstructure is the structure b (▲). Over.

一般的な等軸組織である組織bでは粒界にFeが濃化しており、この粒界が腐食されやすく且つ粒界の体積が大きく3次元的に深さ方向に連続しているため、次々と粒界が溶出し腐食が進行する(結晶粒全周囲の粒界が溶出した結果、結晶粒が欠落したような形態になる場合もある)。その結果、腐食速度が大きい。β相単相となるβ変態点超の温度から冷却した針状あるいはラス状の組織である組織aでもFeの濃化が小さい状態(Fe濃化面積率が5%未満)ではFeが過飽和固溶した部分が大半であるため全体に腐食が進行する。   In the structure b which is a general equiaxed structure, Fe is concentrated at the grain boundary, and the grain boundary is easily corroded and the volume of the grain boundary is large and is three-dimensionally continuous in the depth direction. Grain boundaries elute and corrosion progresses (the grain boundaries around the entire crystal grains may elute, resulting in a form in which crystal grains are missing). As a result, the corrosion rate is high. Even in a structure a which is a needle-like or lath-like structure cooled from a temperature exceeding the β transformation point at which a β phase becomes a single phase, Fe is supersaturated in a state where Fe concentration is small (Fe concentration area ratio is less than 5%). Since most of the parts are melted, corrosion progresses throughout.

これに対して、組織aで且つFe濃化面積率が5%以上になるとFeが濃化した針状あるいはラス状部分が溶出するが、Fe濃化部が深さ方向に非連続であるため組織bのような粒界に沿った腐食進行が抑制される。その他のFeが濃化していない部分は腐食の進行が遅い。その結果、腐食速度が低くできる。   On the other hand, the needle-like or lath-like portion in which the Fe concentration is 5% or more in the structure a is eluted, but the Fe-concentrated portion is discontinuous in the depth direction. The progress of corrosion along the grain boundary such as the structure b is suppressed. The progress of corrosion is slow in other portions where Fe is not concentrated. As a result, the corrosion rate can be lowered.

以上より、腐食速度が0.1mm/年以下になることから、請求項1に記載の本発明ではFeを0.1〜2.5質量%含有するチタンにおいて、組織a(β相単相となるβ変態点超の温度から冷却された針状あるいはラス状のミクロ組織)を有し、Fe濃化面積率(EPMAで分析した濃度分布においてFe濃度が平均濃度に対して1.5倍以上に濃化した部分の面積)が5%以上であることとした。   From the above, since the corrosion rate is 0.1 mm / year or less, in the present invention according to claim 1, in titanium containing 0.1 to 2.5 mass% of Fe, the structure a (β phase single phase and A needle-like or lath-like microstructure cooled from a temperature above the β transformation point, and Fe concentration area ratio (Fe concentration is 1.5 times or more of the average concentration in the concentration distribution analyzed by EPMA) The area of the concentrated portion) is 5% or more.

ここで、Feを0.1質量%未満しか含有しない場合には元々Fe濃度が低いためミクロ組織やFe濃化面積率の変化が腐食速度へほとんど影響しないことから、0.1質量%を本発明のFe下限値とした。Feの上限値は、2.5質量%を超えると組織aでもFe濃化部分の面積が増すため腐食速度が0.1mm/年を超える場合があるため、2.5質量%とした。なお、Fe濃度に関するこれら点は後述の図5に示す。   Here, when Fe is contained in an amount of less than 0.1% by mass, since the Fe concentration is originally low, changes in the microstructure and the Fe concentrated area ratio hardly affect the corrosion rate. It was set as the Fe lower limit of the invention. The upper limit of Fe is set to 2.5% by mass because the corrosion rate may exceed 0.1 mm / year because the area of the Fe-enriched portion increases even in the structure a if the upper limit exceeds 2.5% by mass. These points regarding the Fe concentration are shown in FIG.

請求項2に記載の本発明は、Feがβ安定化元素の一つであることから、Feと同様に作用する他のβ安定化元素Cr、Ni、Co、V、Mo、Nb、Cuと、請求項1に記載の本発明のFeの一部とを置き換えるものである。   In the present invention according to claim 2, since Fe is one of β-stabilizing elements, other β-stabilizing elements Cr, Ni, Co, V, Mo, Nb, Cu acting similarly to Fe and A part of Fe of the present invention described in claim 1 is replaced.

β安定化元素であるFeに対して、α安定化元素であるO,N,CやAlを1種以上添加したチタンにおいても、その効果は変わらないことから、請求項3に記載の本発明ではFe(前記β安定化元素も含む。)を0.1〜2.5質量%含有し、且つα安定化元素であるAl,O,C,Nを1種以上含有するチタンにおいて、組織aを有し、Fe濃化面積率が5%以上であるチタン材とした。ここで、請求項3に記載の本発明では、Al、O、C、Nを、Al:0.01〜6.5質量%、O:0.15〜0.4質量%、C:0.01〜0.1質量%、N:0.01〜0.1質量%の範囲内とした。チタン中に不可避的に含まれるAl、O、C、Nの濃度は各々約0.001、約0.1、約0.005、約0.005質量%であることから、各元素濃度が不可避的に含まれる濃度を超えて有意差のある濃度を下限とした。一方、Al、O、C、Nの濃度が増すと加工性が低下することから、冷間変形能の指標として10%以上の冷間圧延が可能な(割れを生じない)濃度を上限値とした。好ましくは、Al:0.1〜4質量%、O:0.15〜0.3質量%、C:0.01〜0.1質量%、N:0.01〜0.05質量%の範囲内である。   The effect of the present invention according to claim 3 is the same even when titanium is added with one or more of O, N, C, and Al, which are α stabilizing elements, with respect to Fe, which is a β stabilizing element. Then, in titanium containing 0.1 to 2.5% by mass of Fe (including the β-stabilizing element) and one or more of Al, O, C, and N as α-stabilizing elements, the structure a And a titanium material having an Fe concentration area ratio of 5% or more. Here, in the present invention according to claim 3, Al, O, C, and N are contained in Al: 0.01 to 6.5 mass%, O: 0.15 to 0.4 mass%, and C: 0.00. The content was in the range of 01 to 0.1% by mass and N: 0.01 to 0.1% by mass. Since the concentrations of Al, O, C, and N inevitably contained in titanium are about 0.001, about 0.1, about 0.005, and about 0.005% by mass, the concentration of each element is unavoidable. The concentration having a significant difference beyond the concentration contained in the sample was taken as the lower limit. On the other hand, as the concentration of Al, O, C, and N increases, the workability decreases, so the upper limit is the concentration at which cold rolling of 10% or more is possible (not causing cracking) as an index of cold deformability. did. Preferably, Al: 0.1 to 4 mass%, O: 0.15 to 0.3 mass%, C: 0.01 to 0.1 mass%, N: 0.01 to 0.05 mass% Is within.

次に、図4と図5に熱処理方法の影響について示す。図4には、Fe濃度の異なる5種類のチタン材(記号C,E,G,I,J)において、β変態点超の1000℃から空冷した後に実施する熱処理温度を550〜920℃の範囲で変えたときの腐食速度とFe濃化面積率の変化を示す。なお、図4のチタン材は一旦β変態点超の1000℃で熱処理していることから全ての熱処理条件にて組織aを呈している。図5には、種々熱処理を実施した場合のチタン材が含有するFe濃度(化学分析したFe濃度)と腐食速度の関係を示す。   Next, FIGS. 4 and 5 show the influence of the heat treatment method. FIG. 4 shows a heat treatment temperature in the range of 550 to 920 ° C. after air cooling from 1000 ° C. above the β transformation point in five types of titanium materials (symbols C, E, G, I, and J) having different Fe concentrations. The change of the corrosion rate and Fe concentration area ratio when changing by is shown. In addition, since the titanium material of FIG. 4 is once heat-treated at 1000 ° C. above the β transformation point, it exhibits a structure a under all heat treatment conditions. FIG. 5 shows the relationship between the corrosion rate and the Fe concentration (chemically analyzed Fe concentration) contained in the titanium material when various heat treatments are performed.

いずれのチタン材も冷間加工後に種々熱処理を実施した。腐食試験、Fe濃化面積率の測定ともに上述と同じ方法である。またβ変態点は示差熱分析法(DTA)にて測定しており、加熱時に変態が終了する温度と冷却時に変態が開始する温度の平均値した。測定には直径4mm×長さ4mm(約0.23g)のチタン材試験片を用いてアルゴンガス雰囲気で500℃〜950℃を5℃/分で加熱・冷却し、標準試料にはアルミナを使用した。   Each titanium material was subjected to various heat treatments after cold working. Both the corrosion test and the measurement of the Fe enriched area ratio are the same as described above. The β transformation point was measured by differential thermal analysis (DTA), and was the average value of the temperature at which transformation was completed during heating and the temperature at which transformation was initiated during cooling. For measurement, a titanium test piece 4 mm in diameter x 4 mm in length (about 0.23 g) is heated and cooled at 5 ° C./min from 500 ° C. to 950 ° C. in an argon gas atmosphere, and alumina is used as a standard sample. did.

図4より、Fe濃化面積率(●、■、◆、▲、*)は、1000℃空冷後の熱処理温度が550℃では8時間加熱しても5%未満であり温度が低くFeの拡散が遅いためである。600〜850℃(記号Gのみ600〜800℃)ではFeの拡散速度が高まり5%以上に達する。β変態点超の920℃(記号Gのみ850℃と920℃)ではFeが全て固溶したβ相に変態するため冷却後のFe分布も均一化しFe濃化面積率は2%未満に低下する。腐食速度(○、□、◇、△、×)はFe濃度面積率に呼応して、1000℃空冷後の熱処理温度が550℃では2mm/年超と高く、600〜850℃(記号Gのみ600〜800℃)では0.1mm/年以下に減少し、β変態点超の920℃(記号Gのみ850℃と920℃)では2mm/年超に増加する。以上のように、耐食性を高める効果があった熱処理上限温度は、各チタン材のβ変態点(891、870、839、872、889℃)と比較することで、β変態点より20℃低い温度(β変態点−20℃)であるということができる。   From FIG. 4, the Fe-concentrated area ratios (●, ■, ◆, ▲, *) are less than 5% even when heated at 1000 ° C after air cooling at 550 ° C for 8 hours. This is because it is slow. At 600 to 850 ° C. (only symbol G is 600 to 800 ° C.), the diffusion rate of Fe increases and reaches 5% or more. At 920 ° C. above the β transformation point (only symbol G: 850 ° C. and 920 ° C.), all of Fe is transformed into a solid β phase, so the Fe distribution after cooling becomes uniform and the Fe concentrated area ratio decreases to less than 2%. . Corrosion rates (○, □, ◇, △, ×) are as high as over 2 mm / year when the heat treatment temperature after air cooling at 1000 ° C. is 550 ° C., corresponding to the Fe concentration area ratio, 600 to 850 ° C. (only symbol G is 600) It decreases to 0.1 mm / year or less at ˜800 ° C., and increases to more than 2 mm / year at 920 ° C. above the β transformation point (850 ° C. and 920 ° C. only for symbol G). As described above, the upper limit temperature of the heat treatment that has the effect of improving the corrosion resistance is a temperature 20 ° C. lower than the β transformation point by comparing with the β transformation point (891, 870, 839, 872, 889 ° C.) of each titanium material. (Β transformation point −20 ° C.).

また図5に示したように、一般的な冷間加工後の再結晶焼鈍に相当する750℃(◆)やβ単相域である1000℃から冷却したもの(■)と比較して、Fe濃度が0.1〜2.5質量%の範囲では1000℃から冷却した後に600,750,800℃で熱処理することによって(△、○、□)、腐食速度は0.1mm/年以下に低下する。上述したようにFe濃度が0.1質量%未満では元々腐食速度が低いことから熱処理の影響はほとんどなく、Feが2.5質量%までは腐食速度は0.1mm/年以下に低下するが、これを超えて3.0質量%では0.1mm/年を超える場合がある。   In addition, as shown in FIG. 5, Fe compared to 750 ° C. (♦) corresponding to general recrystallization annealing after cold working and 1000 ° C. which is a β single phase region (■). When the concentration is in the range of 0.1 to 2.5% by mass, the corrosion rate is reduced to 0.1 mm / year or less by heat treatment at 600, 750, and 800 ° C. after cooling from 1000 ° C. (Δ, ○, □). To do. As described above, since the corrosion rate is originally low when the Fe concentration is less than 0.1% by mass, there is almost no influence of the heat treatment, and when the Fe concentration is 2.5% by mass, the corrosion rate is reduced to 0.1 mm / year or less. If it exceeds this, 3.0% by mass may exceed 0.1 mm / year.

β変態点超の温度から冷却した後にβ変態点未満の温度(α+β二相温度域)で熱処理することによって、α+β二相に変態するため過飽和に固溶したFeが拡散してFeが富化した相(熱処理時はβ相)が形成される。温度が低すぎるとFeの拡散が遅くFeが富化した部分がなかなか形成されず、一方、温度が高くβ変態点直下(「β変態点−20℃」超)では耐食性の低いFeが富化した相(熱処理時はβ相)の量が多くなり腐食速度が0.1mm/年以下にならない場合がある。   After cooling from a temperature above the β transformation point, heat treatment is performed at a temperature below the β transformation point (α + β two-phase temperature range), so that it transforms into α + β two-phase, so that Fe in solid solution diffuses and enriches Fe. Phase (β phase during heat treatment) is formed. If the temperature is too low, the diffusion of Fe is slow and the portion enriched with Fe is not formed easily. On the other hand, Fe with low corrosion resistance is enriched immediately below the β transformation point (above “β transformation point−20 ° C.”). In some cases, the amount of the developed phase (β phase during heat treatment) increases and the corrosion rate does not become 0.1 mm / year or less.

以上より、耐食性が高い請求項1ないし3のいずれか1項に記載の本発明のチタン材は、β変態点超の温度から冷却した後に、600℃〜β変態点より20℃低い温度(β変態点−20℃)の範囲内で熱処理ことによって得られる。したがって、請求項4に記載の本発明ではチタン材をβ相単相となるβ変態点超の温度から冷却した後、600℃〜(β変態点−20℃)の温度域で熱処理することとした。   From the above, the titanium material of the present invention according to any one of claims 1 to 3 having high corrosion resistance is cooled from a temperature above the β transformation point, and then a temperature 20 ° C. lower than the 600 ° C. to β transformation point (β It is obtained by heat treatment within the range of transformation point -20 ° C. Therefore, in the present invention according to claim 4, the titanium material is cooled from a temperature exceeding the β transformation point at which the β phase becomes a single phase, and then heat treated in a temperature range of 600 ° C. to (β transformation point−20 ° C.). did.

また、600℃〜(β変態点−20℃)の熱処理をβ変態点超の温度から冷却する過程で実施しても、上述のFeが富化するα+β二相への変態は同じように起きて請求項1ないし3のいずれか1項に記載の本発明のチタン材が得られることから、請求項5に記載の本発明ではβ相単相となるβ変態点超の温度に加熱し、その冷却の途中で600℃〜(β変態点−20℃)の温度域で熱処理することとした。   Further, even when the heat treatment from 600 ° C. to (β transformation point−20 ° C.) is carried out in the process of cooling from the temperature above the β transformation point, the transformation to the α + β two-phase enriched in Fe occurs in the same manner. Thus, the titanium material of the present invention according to any one of claims 1 to 3 is obtained. During the cooling, heat treatment was performed in a temperature range of 600 ° C. to (β transformation point−20 ° C.).

以下、実施例により本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

表1に種々熱処理と腐食試験を実施したチタン材(A〜R)の化学成分とβ変態点を示す。記号A〜HはFe濃度が0.04〜2.98質量%の範囲で異なっているが、他元素はほぼ同等な濃度である。記号IはFe以外にβ安定化元素であるCrが添加されている。記号I〜RはFe濃度が0.15〜3.93質量%の範囲で異なっている他に、α安定化元素であるAl,O,N,Cが添加されている。記号Nにおいては更にβ安定化元素であるCrが添加されている。ここでβ変態点は示差熱分析法(DTA)にて測定した値である。   Table 1 shows chemical components and β transformation points of titanium materials (A to R) subjected to various heat treatments and corrosion tests. The symbols A to H are different in the Fe concentration range of 0.04 to 2.98% by mass, but the other elements have substantially the same concentration. In addition to Fe, symbol I contains Cr, which is a β-stabilizing element. Symbols I to R are different from each other in the Fe concentration range of 0.15 to 3.93% by mass, and Al, O, N, and C which are α stabilizing elements are added. In the symbol N, Cr which is a β-stabilizing element is further added. Here, the β transformation point is a value measured by differential thermal analysis (DTA).

表2と表3に記号A〜I、表4に記号J〜Rに施した種々熱処理条件とそのミクロ組織#1、Fe濃化面積率#2、腐食速度#3を示す。ここで熱処理前の工程はいずれも冷間圧延である。表中の#1,#2,#3は以下の註釈を意味する。   Tables 2 and 3 show the various heat treatment conditions applied to the symbols A to I and Table 4 the symbols J to R and their microstructures # 1, Fe enriched area ratio # 2, and corrosion rate # 3. Here, the steps before the heat treatment are all cold rolling. # 1, # 2, and # 3 in the table mean the following comments.

#1:試料断面を埋込研磨した後に硝フッ酸水溶液でエッチングしてミクロ組織を光学顕微鏡で観察した。そのミクロ組織が、β相単相となるβ変態温度超の温度から冷却された針状あるいはラス状のミクロ組織である場合には「組織a」、等軸組織である場合には「組織b」とする。   # 1: The cross section of the sample was embedded and polished, and then etched with an aqueous solution of nitric hydrofluoric acid, and the microstructure was observed with an optical microscope. When the microstructure is a needle-like or lath-like microstructure cooled from a temperature higher than the β transformation temperature to become a β-phase single phase, “tissue a” is obtained. "

#2:EPMA測定したFe濃度分布から、Fe濃度がその平均値の1.5倍以上に濃化した部分の面積率を求めた。   # 2: From the Fe concentration distribution measured by EPMA, the area ratio of the portion where the Fe concentration was concentrated 1.5 times or more of the average value was obtained.

#3:熱処理後に研磨して表面を#500に仕上げた試料(寸法2×25×25mm)を、沸騰した1質量%の塩酸中(500ml)に24時間浸漬し、浸漬前後の質量変化より腐食速度を求めた。   # 3: A sample (size 2 × 25 × 25 mm) polished after heat treatment and finished to surface # 500 (dimensions 2 × 25 × 25 mm) is immersed in boiling 1% by mass hydrochloric acid (500 ml) for 24 hours, and corrosive from mass change before and after immersion. The speed was determined.

Fe濃度が0.07質量%以下と低い記号Aと記号Bは、表2のNo.1〜5に示したように熱処理条件によらず腐食速度が0.1mm/年以下と低い。これに対してFe濃度が0.1〜2.98質量%と高い記号B〜Iは、表2のNo.6〜13(記号C)、No.14,15(記号D)、No.16〜23(記号E)、No.24から28(記号F)、表3のNo.29〜35(記号G)、No.36〜38(記号H)、No.39〜45(記号I)に示したように、ミクロ組織とFe濃化面積率が熱処理条件によって変化し、それに応じて腐食速度も変化する。   Symbols A and B, which have a low Fe concentration of 0.07% by mass or less, As shown in 1 to 5, the corrosion rate is as low as 0.1 mm / year or less regardless of the heat treatment conditions. On the other hand, symbols B to I having a high Fe concentration of 0.1 to 2.98% by mass are No. 1 in Table 2. 6-13 (symbol C), no. 14, 15 (symbol D), no. 16-23 (symbol E), no. 24 to 28 (symbol F), no. 29-35 (symbol G), no. 36-38 (symbol H), no. As shown in 39 to 45 (symbol I), the microstructure and the Fe enriched area ratio change depending on the heat treatment conditions, and the corrosion rate also changes accordingly.

β変態点超の温度で熱処理せずに一般的な再結晶焼鈍熱処理である750℃・1時間・空冷の熱処理を実施したもの(表2の比較例No.6,14,16,24、表3の比較例No.29,36,39)は、ミクロ組織が組織bを呈しており、いずれの場合にも腐食速度が2mm/年以上と大きい。   A heat treatment of 750 ° C., 1 hour, air cooling, which is a general recrystallization annealing heat treatment, without heat treatment at a temperature exceeding the β transformation point (Comparative Examples No. 6, 14, 16, 24, Table 2 in Table 2) In Comparative Example No. 29, 36, 39) of No. 3, the microstructure exhibits the structure b, and in any case, the corrosion rate is as large as 2 mm / year or more.

またβ変態点超である1000℃・20分・空冷の熱処理を施したままのもの(表2の比較例No.7,17、表3の比較例No.37)と、その後に更にβ変態点超である920℃(記号C,E,G,I)と850℃(記号Gのみ)で熱処理したもの(各々、表2の比較例No.13,23、表3の比較例No.35,45、および表3の比較例No.34)は、ミクロ組織が組織aとなっているが、Fe濃化面積率が1.7%以下と低く、これに対応して腐食速度は2.4mm/年以上と大きい。   Further, those subjected to heat treatment of 1000 ° C., 20 minutes, air cooling, which is above the β transformation point (Comparative Examples Nos. 7 and 17 in Table 2 and Comparative Example No. 37 in Table 3), and then further β transformation Heat treated at 920 ° C. (symbols C, E, G, I) and 850 ° C. (only symbol G) exceeding the point (Comparative Examples Nos. 13 and 23 in Table 2 and Comparative Example No. 35 in Table 3 respectively) 45, and Comparative Example No. 34) in Table 3 has a microstructure a, but the Fe-concentrated area ratio is as low as 1.7% or less, and the corresponding corrosion rate is 2. It is as large as 4 mm / year or more.

一方、β変態点超である1000℃で一段目の熱処理を実施した後に、二段目に550℃〜「β変態点−20℃」の温度域で熱処理したものを比較すると、二段目の加熱温度が低い550℃の場合(表2の比較例No.8,18、表3の比較例No.30,40)、ミクロ組織は組織aであるがFe濃化面積率が5%未満と低く、腐食速度は0.9〜4.2mm/年と0.1mm/年を超えている。   On the other hand, when the heat treatment at the first stage was performed at 1000 ° C. above the β transformation point and then the heat treatment was performed at a temperature range of 550 ° C. to “β transformation point−20 ° C.” at the second stage, When the heating temperature is 550 ° C. (Comparative Examples Nos. 8 and 18 in Table 2 and Comparative Examples Nos. 30 and 40 in Table 3), the microstructure is the structure a, but the Fe concentration area ratio is less than 5%. It is low and the corrosion rate is 0.9-4.2 mm / year and over 0.1 mm / year.

これに対して、二段目の加熱温度が600℃〜(β変態点−20℃)の場合(実施例である表2のNo.9〜12,15,19〜22,26〜28、表3のNo.31〜33,41〜44)、ミクロ組織は組織aで且つFe濃化面積率は5%以上となり、これに伴って腐食速度は0.1mm/年以下と低い値となっている。但し、Fe濃度は2.5質量%を超えている記号Hでは、β変態点超の熱処理後に750℃で加熱しても腐食速度は0.1mm/年以下には低下していない(表3の比較例No.38)。   On the other hand, when the heating temperature of the second stage is 600 ° C. to (β transformation point −20 ° C.) (Nos. 9 to 12, 15, 19 to 22, 26 to 28 in Table 2 as examples) 3 No. 31-33, 41-44), the microstructure is the structure a and the Fe concentration area ratio is 5% or more, and the corrosion rate is as low as 0.1 mm / year or less accordingly. Yes. However, with the symbol H in which the Fe concentration exceeds 2.5 mass%, the corrosion rate does not decrease to 0.1 mm / year or less even when heated at 750 ° C. after heat treatment exceeding the β transformation point (Table 3). Comparative Example No. 38).

Fe濃度が0.15〜3.93質量%の範囲で異なっている他に、α安定化元素であるAl,O,N,Cが添加されている記号I〜Rでも、表4に示したように、上述した表2と表3と同様の結果である。   In addition to the fact that the Fe concentration is different in the range of 0.15 to 3.93% by mass, symbols I to R to which Al, O, N, and C which are α stabilizing elements are added are also shown in Table 4. Thus, the results are the same as those in Tables 2 and 3 described above.

組織aで且つFe濃化面積率が5%以上である実施例(表4のNo.48〜51,54,56,58,60,62,64,67〜69)はいずれもβ変態点超の1000℃で一段目の熱処理を実施した後に600℃〜(β変態点−20℃)で二段目の加熱をしており、腐食速度は0.1mm/年未満に低下している。但し、Fe濃度は2.5質量%を超えている記号Rでは、β変態点超の熱処理後に750℃で加熱しても腐食速度は0.1mm/年以下には低下していない(表4の比較例No.71)。   In Examples (Nos. 48 to 51, 54, 56, 58, 60, 62, 64, and 67 to 69 in Table 4) in which the structure a and the Fe concentration area ratio are 5% or more, all exceed the β transformation point. After the first heat treatment at 1000 ° C., the second heat treatment is performed at 600 ° C. to (β transformation point−20 ° C.), and the corrosion rate is reduced to less than 0.1 mm / year. However, with the symbol R in which the Fe concentration exceeds 2.5 mass%, the corrosion rate does not decrease to 0.1 mm / year or less even when heated at 750 ° C. after the heat treatment exceeding the β transformation point (Table 4). Comparative Example No. 71).

これに対して、組織bである表4の比較例(表4で750℃加熱のみを実施したNo.46,53,55,57,59,61,63,65,70)と組織aではあるがFe濃化面積率が5%未満である比較例(二段目の加熱温度が550℃と低いか920℃とβ変態点を超えている表4のNo.47,52,66)はいずれも腐食速度が2.9mm/年以上と大きい。   On the other hand, it is the comparative example (No. 46, 53, 55, 57, 59, 61, 63, 65, 70 which performed only 750 degreeC heating in Table 4) and organization a which are organization b. No. 47, 52, 66 in Table 4 in which the Fe concentration area ratio is less than 5% (the heating temperature of the second stage is as low as 550 ° C. or 920 ° C. and exceeds the β transformation point) The corrosion rate is as high as 2.9 mm / year or more.

続いて、表5に記号C,E,F,I,Kのチタン材にてβ変態点超の温度から冷却中に所定温度で保持した場合、あるいは所定温度域を徐冷した場合の実施例を示す。   Next, Table 5 shows examples in which titanium materials having symbols C, E, F, I, and K are held at a predetermined temperature during cooling from a temperature exceeding the β transformation point, or when a predetermined temperature range is gradually cooled. Indicates.

冷却中に600℃〜(β変態点−20℃)の温度域である750℃あるいは800℃で保持した後に空冷した表5の実施例No.72〜75,77〜82はいずれもミクロ組織が組織aで且つFe濃化面積率が5%以上となっており、腐食速度は0.1mm/年未満と小さい。また冷却中に600℃〜(β変態点−20℃)の温度域である750℃〜800℃の間を1時間で徐冷した表5の実施例No.76,83も同様にミクロ組織が組織aで且つFe濃化面積率が5%以上となっており、腐食速度は0.1mm/年未満と小さい。表5では、冷却過程の保持および徐冷の効果について記号C,E,F,I,Kの実施例のみを示したが、他の化学成分においても同様の効果が得られる。   In Example 5 of Table 5, air-cooled after being held at 750 ° C. or 800 ° C. which is a temperature range of 600 ° C. to (β transformation point−20 ° C.) during cooling. In each of 72 to 75 and 77 to 82, the microstructure is the structure a and the Fe concentrated area ratio is 5% or more, and the corrosion rate is as small as less than 0.1 mm / year. Moreover, Example No. of Table 5 which annealed between 750 degreeC-800 degreeC which is a temperature range of 600 degreeC-((beta) transformation point -20 degreeC) in 1 hour during cooling. Similarly, Nos. 76 and 83 have the microstructure a and the Fe enriched area ratio of 5% or more, and the corrosion rate is as small as less than 0.1 mm / year. In Table 5, only the examples of symbols C, E, F, I, and K are shown for the effect of holding the cooling process and slow cooling, but the same effect can be obtained with other chemical components.

β変態点超の温度で加熱した後に実施する600℃〜(β変態点−20℃)域の熱処理の効果は、表5に示したようにβ変態点超の温度域からの冷却過程で実施しても、一旦室温まで冷却した後に二段目の熱処理として実施した場合と同等であることがわかる。   The effect of heat treatment in the region of 600 ° C. to (β transformation point−20 ° C.) performed after heating at a temperature exceeding the β transformation point is performed in the cooling process from the temperature range exceeding the β transformation point as shown in Table 5. Even so, it can be seen that this is equivalent to the case where the second heat treatment is performed after cooling to room temperature.

以上、冷間圧延した材料について実施例を説明したが、棒、線、厚板などでも同様の効果が得られており、本実施例はチタン材の形状を冷間圧延板に限定するものではない。   As mentioned above, although the Example was described about the material cold-rolled, the same effect is acquired also with a rod, a wire, a thick board, etc., and this example does not limit the shape of a titanium material to a cold-rolled sheet. Absent.

β相単相となるβ変態点超の温度から冷却された針状あるいはラス状のミクロ組織(組織a)を示す図である。It is a figure which shows the needle-like or lath-like microstructure (structure | organism a) cooled from the temperature exceeding the beta transformation point used as beta phase single phase. 代表的な等軸組織(組織b)を示す図である。It is a figure showing a typical equiaxed organization (tissue b). 化学分析したFe濃度、Fe濃化面積率、ミクロ組織(組織a、組織b)とその腐食速度(0.1mm/年以下、0.1mm年超)の関係を示す図である。It is a figure which shows the relationship of the chemically analyzed Fe density | concentration, Fe concentration area ratio, a microstructure (structure | tissue a, structure | tissue b), and the corrosion rate (0.1 mm / year or less, more than 0.1 mm year). Fe濃度の異なる4種類のチタン材において、β変態点超の1000℃から空冷した後に実施する熱処理温度を550〜920℃範囲で変えたときの腐食速度とFe濃化面積率の変化を示す図である。The figure which shows the change of the corrosion rate and Fe concentration area rate when the heat processing temperature implemented after air-cooling from 1000 degreeC over β transformation point is changed in the range of 550-920 degreeC in four types of titanium materials from which Fe concentration differs. It is. 種々熱処理を実施した場合のチタン材が含有するFe濃度(化学分析したFe濃度)と腐食速度の関係を示す図である。It is a figure which shows the relationship between the Fe density | concentration (chemically analyzed Fe density | concentration) which the titanium material at the time of implementing various heat processing, and a corrosion rate.

Claims (5)

Feを0.1〜2.5質量%含有し、残部Tiおよび不可避的不純物であり、針状あるいはラス状のミクロ組織を有し、電子線マイクロアナライザ(EPMA)で分析した濃度分布においてFe濃度が平均濃度に対して1.5倍以上に濃化した部分の面積が5%以上であることを特徴とする、耐食性に優れたFe含有チタン材。   Fe concentration is 0.1 to 2.5% by mass, the balance is Ti and unavoidable impurities, has a needle-like or lath-like microstructure, and is analyzed by an electron beam microanalyzer (EPMA). An Fe-containing titanium material having excellent corrosion resistance, characterized in that the area of the portion concentrated at least 1.5 times the average concentration is 5% or more. 前記Fe量の一部が、Cr、Ni、Co、V、Mo、Nb、Cuのβ安定化元素の1種または2種以上で置換され、Feおよび該β安定化元素を合計で0.1〜2.5質量%含有するとともに、前記ミクロ組織中のFe濃度が、Feおよび前記β安定化元素の合計濃度で表されることを特徴とする、請求項1に記載の耐食性に優れたFe含有チタン材。   A part of the Fe amount is substituted with one or more of β-stabilizing elements of Cr, Ni, Co, V, Mo, Nb, and Cu, and Fe and the β-stabilizing elements are 0.1 in total. Fe of excellent corrosion resistance according to claim 1, wherein the Fe concentration in the microstructure is expressed by the total concentration of Fe and the β-stabilizing element. Contains titanium material. さらに、質量%で、
Al:0.01〜6.5%、
O :0.15〜0.4%、
C :0.01〜0.1%、
N :0.01〜0.1%
のα安定化元素を1種または2種以上含有することを特徴とする、請求項1または2に記載の耐食性に優れたFe含有チタン材。
Furthermore, in mass%,
Al: 0.01 to 6.5%,
O: 0.15-0.4%
C: 0.01 to 0.1%,
N: 0.01 to 0.1%
The Fe-containing titanium material having excellent corrosion resistance according to claim 1, wherein the α-stabilizing element is contained in one or more kinds.
請求項1ないし3のいずれか1項に記載の成分組成を有するチタン材を、β相単相となるβ変態点超の温度から冷却した後、600℃〜(β変態点−20℃)の温度域で加熱することを特徴とする、針状あるいはラス状のミクロ組織を有し、電子線マイクロアナライザ(EPMA)で分析した濃度分布においてFe濃度が平均濃度に対して1.5倍以上に濃化した部分の面積が5%以上である耐食性に優れたFe含有チタン材の製造方法。   After cooling the titanium material having the component composition according to any one of claims 1 to 3 from a temperature exceeding the β transformation point at which the β phase single phase is obtained, the temperature is from 600 ° C to (β transformation point-20 ° C). It has a needle-like or lath-like microstructure characterized by heating in a temperature range, and the Fe concentration in the concentration distribution analyzed by an electron beam microanalyzer (EPMA) is 1.5 times or more of the average concentration. A method for producing an Fe-containing titanium material excellent in corrosion resistance, wherein the area of the concentrated portion is 5% or more. 請求項1ないし3のいずれか1項に記載の成分組成を有するチタン材を、β相単相となるβ変態点超の温度に加熱した際の冷却途中で、600℃〜(β変態点−20℃)の温度域にて熱処理することを特徴とする、針状あるいはラス状のミクロ組織を有し、電子線マイクロアナライザ(EPMA)で分析した濃度分布においてFe濃度が平均濃度に対して1.5倍以上に濃化した部分の面積が5%以上である耐食性に優れたFe含有チタン材の製造方法。   In the course of cooling when the titanium material having the component composition according to any one of claims 1 to 3 is heated to a temperature higher than a β transformation point that becomes a β phase single phase, And having a needle-like or lath-like microstructure characterized by heat treatment in a temperature range of 20 ° C.), the Fe concentration in the concentration distribution analyzed by an electron beam microanalyzer (EPMA) is 1 with respect to the average concentration. A method for producing an Fe-containing titanium material having excellent corrosion resistance, wherein the area of the portion concentrated 5 times or more is 5% or more.
JP2004157245A 2004-05-27 2004-05-27 Fe-containing titanium material having excellent corrosion resistance and method for producing the same Withdrawn JP2005336551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157245A JP2005336551A (en) 2004-05-27 2004-05-27 Fe-containing titanium material having excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157245A JP2005336551A (en) 2004-05-27 2004-05-27 Fe-containing titanium material having excellent corrosion resistance and method for producing the same

Publications (1)

Publication Number Publication Date
JP2005336551A true JP2005336551A (en) 2005-12-08

Family

ID=35490438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157245A Withdrawn JP2005336551A (en) 2004-05-27 2004-05-27 Fe-containing titanium material having excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP2005336551A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240026A (en) * 2007-03-26 2008-10-09 Kobe Steel Ltd Titanium alloy material excellent in strength and formability and manufacturing method thereof
WO2010093016A1 (en) * 2009-02-13 2010-08-19 住友金属工業株式会社 Titanium plate
US8613807B2 (en) 2009-02-06 2013-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive film, corrosion-resistant conduction film, corrosion-resistant conduction material and process for producing the same
JP2017057473A (en) * 2015-09-17 2017-03-23 新日鐵住金株式会社 α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
CN114574795A (en) * 2022-03-14 2022-06-03 江西景航航空锻铸有限公司 Thermal treatment method for TC2 titanium alloy small forgings with high impact toughness

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240026A (en) * 2007-03-26 2008-10-09 Kobe Steel Ltd Titanium alloy material excellent in strength and formability and manufacturing method thereof
US8613807B2 (en) 2009-02-06 2013-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive film, corrosion-resistant conduction film, corrosion-resistant conduction material and process for producing the same
WO2010093016A1 (en) * 2009-02-13 2010-08-19 住友金属工業株式会社 Titanium plate
JP2010209462A (en) * 2009-02-13 2010-09-24 Sumitomo Metal Ind Ltd Titanium plate
CN102317485A (en) * 2009-02-13 2012-01-11 住友金属工业株式会社 Titanium plate
EP2397569A4 (en) * 2009-02-13 2012-07-25 Sumitomo Metal Ind TITANIUM PLATE
JP2017057473A (en) * 2015-09-17 2017-03-23 新日鐵住金株式会社 α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
CN114574795A (en) * 2022-03-14 2022-06-03 江西景航航空锻铸有限公司 Thermal treatment method for TC2 titanium alloy small forgings with high impact toughness

Similar Documents

Publication Publication Date Title
US7083687B2 (en) Super-elastic titanium alloy for medical uses
KR102660878B1 (en) METHOD FOR PRODUCING TWO-PHASE Ni-Cr-Mo ALLOYS
KR101643838B1 (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
KR20130059399A (en) Titanium material
JP2019052349A (en) Nickel base alloy
CN113913642A (en) Copper alloy strip and preparation method thereof
JP2007314834A (en) Α + β-type titanium alloy member having a tensile strength of 1000 MPa class or more and method for producing the same
KR20180125484A (en) Copper alloy and manufacturing method thereof
JP2010100943A (en) METHOD FOR PRODUCING alpha+beta TYPE TITANIUM ALLOY MEMBER HAVING TENSILE STRENGTH OF 1,000 MPA CLASS OR ABOVE
JP2020193382A (en) Niti-based alloy material, manufacturing method of niti-based alloy material and line material made of niti-based alloy material or tube material
Asgarinia et al. Heat treatment of NiTi alloys
JP2005336551A (en) Fe-containing titanium material having excellent corrosion resistance and method for producing the same
Qiu et al. Dislocation network mediated grain boundary engineering in an additively manufactured titanium alloy
JP2012052213A (en) High corrosion-resistance titanium alloy large in 0.2%-proof stress in rolling direction, and its manufacturing method
JP3824944B2 (en) Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof
RU2752094C1 (en) Titanium alloy and method for production thereof
JP4264377B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JP4065146B2 (en) Titanium alloy having excellent corrosion resistance and method for producing the same
CN108913945B (en) A kind of high-strength titanium alloy and preparation method thereof
US9303304B2 (en) Process for the creation of uniform grain size in hot worked spinodal alloy
Popa et al. Some structural effects related to the abnormal grain growth in FeMnAlNi shape memory alloys
JPS6365042A (en) High-strength, high-ductility Ti alloy with excellent crevice corrosion resistance and its manufacturing method
JPH07102351A (en) Hot rolling method for titanium or titanium alloy
Hackenberg Heat Treating of Uranium and Uranium Alloys
KR100296952B1 (en) New zirconium alloys for fuel rod cladding and process for manufacturing thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807