[go: up one dir, main page]

JP2005332751A - Zinc alloy powder for alkaline battery, and alkaline manganese battery - Google Patents

Zinc alloy powder for alkaline battery, and alkaline manganese battery Download PDF

Info

Publication number
JP2005332751A
JP2005332751A JP2004151764A JP2004151764A JP2005332751A JP 2005332751 A JP2005332751 A JP 2005332751A JP 2004151764 A JP2004151764 A JP 2004151764A JP 2004151764 A JP2004151764 A JP 2004151764A JP 2005332751 A JP2005332751 A JP 2005332751A
Authority
JP
Japan
Prior art keywords
ppm
mass
zinc alloy
alloy powder
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004151764A
Other languages
Japanese (ja)
Inventor
Seiji Fuchino
誠治 渕野
Tsuneyoshi Kamata
恒好 鎌田
Tadayoshi Odawara
忠良 小田原
Koji Morita
浩二 守田
Takashi Yamada
尚 山田
Hidetoshi Inoue
秀利 井上
Naoki Kumada
直樹 熊田
Yoshiaki Yano
欣昭 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004151764A priority Critical patent/JP2005332751A/en
Publication of JP2005332751A publication Critical patent/JP2005332751A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide zinc alloy powder for an alkaline battery with a small gas generation amount. <P>SOLUTION: To the zinc alloy powder containing Bi and In at a proportion of 5 ppm or more and 1,000 ppm or less respectively, Al is added at a proportion of 0 ppm, or more than 0 ppm and 5 ppm or less, or 30 ppm or more and 500 ppm or less, and this is made as the zinc alloy powders composed of an alloy composition. Conventionally, the gas generation amount has been assumed to be suppressed if an additional amount of Al is increased, but it has been found that the gas generation increases significantly when the additional amount of Al is within a certain range (value). The zinc alloy powder of less gas generation amount can be realized by specifying the additional amount of Al to Bi and In as described above. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種電池の活物質として用いることができる亜鉛合金粉、詳しくはガス発生を抑制でき、電池の耐久性を向上させることができるアルカリ電池用の亜鉛合金粉及びこれを用いたアルカリマンガン電池に関する。 The present invention relates to a zinc alloy powder that can be used as an active material for various batteries, in particular, a zinc alloy powder for an alkaline battery that can suppress gas generation and improve the durability of the battery, and an alkaline manganese using the same. It relates to batteries.

アルカリマンガン電池は、二酸化マンガン粉末と黒鉛粉末とから正極を構成し、亜鉛粉末と電解液(KOH水溶液)とゲル化剤とから負極を構成するのが一般的である。
負極を構成する亜鉛粉末は、表面積が大きく電解液中での反応性に優れており、大電流放電に適している反面、電解液中で腐食されやすいため、この腐食によって促進される発生ガスが電池の内部圧力を上昇させてガスケットの安全弁を作動させ、電解液を漏出させる課題を本質的に抱えている。このため、この種のアルカリマンガン電池並びにこれの原料となる亜鉛合金粉末の開発においては、ガス発生を如何にして抑えるかが重要な課題となっている。
In general, an alkaline manganese battery comprises a positive electrode from manganese dioxide powder and graphite powder, and a negative electrode from zinc powder, an electrolytic solution (KOH aqueous solution) and a gelling agent.
The zinc powder that constitutes the negative electrode has a large surface area and excellent reactivity in the electrolyte, and is suitable for large current discharge, but it is easily corroded in the electrolyte. There is essentially a problem of increasing the internal pressure of the battery to operate the gasket safety valve and leaking the electrolyte. For this reason, in the development of this type of alkaline manganese battery and the zinc alloy powder as a raw material thereof, how to suppress gas generation is an important issue.

従来、ガスを抑える手段として、例えば特許文献1などには、10〜10,000ppmのインジウムと、10〜10,000ppmのビスマスとを添加してなる亜鉛合金粉末を使用する方法が開示されている。
また、特許文献2や特許文献3などには、微量金属を添加してなる亜鉛合金粉を熱処理することで、ガス発生を抑制する旨が提案されている。
Conventionally, as a means for suppressing gas, for example, Patent Document 1 discloses a method of using a zinc alloy powder obtained by adding 10 to 10,000 ppm indium and 10 to 10,000 ppm bismuth. .
Further, Patent Document 2 and Patent Document 3 propose that heat treatment is performed on zinc alloy powder to which a trace amount of metal is added to suppress gas generation.

第2926417号公報No. 2926417 特開平3−359973号公報JP-A-3-359993 特開平8−151407号公報JP-A-8-151407

本発明は、従来とは異なる新たな観点から、ガス発生量の少ないアルカリ電池用亜鉛合金粉及びこれを用いたアルカリマンガン電池を提供せんとするものである。 The present invention provides a zinc alloy powder for an alkaline battery with a small amount of gas generation and an alkaline manganese battery using the same from a new viewpoint different from the conventional one.

本発明は、ビスマス(Bi)及びインジウム(In)をそれぞれ0.0005質量%(5ppm)以上0.1質量%(1000ppm)以下の割合で含有する亜鉛合金粉に対し、Alを0質量%若しくは0質量%を超える0.0005質量%(5ppm)以下の割合で添加するか、若しくは、Alを0.003質量%(30ppm)以上0.05質量%(500ppm)以下の割合で添加してなる合金組成を特徴とするアルカリ電池用亜鉛合金粉を提案する。   In the present invention, 0% by mass of Al is contained in zinc alloy powder containing bismuth (Bi) and indium (In) in a proportion of 0.0005% by mass (5 ppm) to 0.1% by mass (1000 ppm). It is added at a ratio of 0.0005 mass% (5 ppm) or less exceeding 0 mass%, or Al is added at a ratio of 0.003 mass% (30 ppm) or more and 0.05 mass% (500 ppm) or less. A zinc alloy powder for an alkaline battery characterized by an alloy composition is proposed.

本発明はまた、さらに好ましいアルカリ電池用亜鉛合金粉として、Bi及びInをそれぞれ0.0005質量%(5ppm)以上0.1質量%(1000ppm)以下の割合で含有し、かつCa、Mg、Ge、Sn、Ba、Sr及びBeからなる群から選ばれる少なくとも1つ以上の元素を合計で0.0005質量%(5ppm)以上0.1質量%(1000ppm)以下の割合で含有する亜鉛合金粉に対し、Alを0質量%若しくは0質量%を超える0.0005質量%(5ppm)以下の割合で添加するか、若しくは、Alを0.003質量%(30ppm)以上0.05質量%(500ppm)以下の割合で添加してなる合金組成を特徴とするアルカリ電池用亜鉛合金粉を提案する。
なお、本発明において、「Alを0質量%を超える割合で添加する」とは、Alを0に近似する僅かな量以上の割合で添加することを意味する。
The present invention also provides Bi and In as 0.005 mass% (5 ppm) or more and 0.1 mass% (1000 ppm) or less as preferable zinc alloy powders for alkaline batteries, respectively, and Ca, Mg, Ge Zinc alloy powder containing at least one element selected from the group consisting of Sn, Ba, Sr and Be in a total proportion of 0.0005 mass% (5 ppm) to 0.1 mass% (1000 ppm) On the other hand, Al is added at a ratio of 0 mass% or more than 0 mass% and 0.0005 mass% (5 ppm) or less, or Al is 0.003 mass% (30 ppm) to 0.05 mass% (500 ppm). A zinc alloy powder for alkaline batteries characterized by an alloy composition added at the following ratio is proposed.
In the present invention, “adding Al in a proportion exceeding 0% by mass” means adding Al in a proportion of a slight amount approximating zero.

従来から、Bi、In及びAlを含有するアルカリ電池用亜鉛合金粉は知られており、その際、Biには亜鉛の水素過電圧を高めてガス発生を抑制する効果があり、Inには亜鉛合金粉末表面の水素過電圧を高めて電池として保存中の腐食によるガス発生を抑制する作用があり、また、Alには亜鉛合金粉末粒子の表面を平滑化し、これによって反応性に関係する表面積を減少させてガス発生を抑制する効果があることが知られている。また、従来はAlの添加量を多くすればガス発生量がそれだけ抑えられると考えられてきた。
ところが、本発明者がAlの含有量について鋭意研究したところ、Bi、In及びAlを含有する組成の亜鉛合金粉においては、驚いたことに、Alの添加量によってガス発生量はピーク値を示し、Alの添加量が或る範囲(値)の時にガス発生が顕著に増大することを見出した。本発明は、かかる知見に基づいてBi、In及びAlそれぞれの含有量を特定し、これによってガス発生量の少ないアルカリ電池用亜鉛合金粉及びアルカリマンガン電池を提供するものである。
Conventionally, zinc alloy powder for alkaline batteries containing Bi, In, and Al has been known. At that time, Bi has an effect of suppressing gas generation by increasing the hydrogen overvoltage of zinc, and In is a zinc alloy. It has the effect of suppressing gas generation due to corrosion during storage as a battery by increasing hydrogen overvoltage on the powder surface, and Al smoothes the surface of zinc alloy powder particles, thereby reducing the surface area related to reactivity. It is known that it has the effect of suppressing gas generation. Conventionally, it has been considered that the amount of gas generation can be suppressed by increasing the amount of Al added.
However, when the present inventors diligently studied about the Al content, surprisingly, in the zinc alloy powder having a composition containing Bi, In and Al, the gas generation amount showed a peak value depending on the addition amount of Al. It was found that gas generation markedly increases when the amount of Al added is within a certain range (value). The present invention specifies the contents of Bi, In, and Al based on such knowledge, and thereby provides a zinc alloy powder for alkaline batteries and an alkaline manganese battery with a small amount of gas generation.

なお、本発明において、Bi、In、Al、Ca、Mg、Ge、Sn、Ba、Sr及びBeの各元素の濃度(含有量)は、亜鉛合金粉中に元素として含まれていればよく、亜鉛合金粉中の各元素の形態としては金属単体、酸化物、硫化物などの如何を問うものではない。
また、本発明において「Bi及びIn、或いはさらにその他金属を所定量含有する亜鉛合金粉に対しAlを所定割合で添加する」とは、亜鉛合金粉中のBi及びIn、或いはその他金属に対するAlの添加量を規定するものであり、Bi及びIn、或いはさらにその他金属を含有する亜鉛合金粉に対してAlを添加するという添加順序(製造方法)を特定する意ではない。
さらにまた、本発明が特定する数値範囲の上限値及び下限値は、特定する数値範囲から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の範囲に含まる意を包含するものである。
In the present invention, the concentration (content) of each element of Bi, In, Al, Ca, Mg, Ge, Sn, Ba, Sr and Be may be included as an element in the zinc alloy powder. The form of each element in the zinc alloy powder is not limited to a simple metal, oxide, sulfide or the like.
In the present invention, “adding Al at a predetermined ratio to zinc alloy powder containing a predetermined amount of Bi and In or other metals” means that Bi and In in the zinc alloy powder or Al to other metals are added. The amount of addition is defined, and is not intended to specify the order of addition (production method) in which Al is added to zinc alloy powder containing Bi and In or other metals.
Furthermore, the upper and lower limits of the numerical range specified by the present invention are within the scope of the present invention as long as they have the same operational effects as those within the numerical range even if they are slightly outside the specified numerical range. Is included.

本発明の実施形態を以下に説明するが、本発明はこれらの実施形態に限定されるものではない。   Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

本発明のアルカリ電池用亜鉛合金粉は、Bi及びInをそれぞれ0.0005質量%(5ppm)以上0.1質量%(1000ppm)以下の割合で含有し、かつAlを0質量%若しくは0質量%を超える0.0005質量%(5ppm)以下の割合、若しくは、0.003質量%(30ppm)以上0.05質量%(500ppm)以下の割合で含有する亜鉛合金粉である。   The zinc alloy powder for alkaline batteries of the present invention contains Bi and In at a ratio of 0.0005 mass% (5 ppm) to 0.1 mass% (1000 ppm), respectively, and Al is 0 mass% or 0 mass%. It is a zinc alloy powder that is contained in a proportion of 0.0005 mass% (5 ppm) or less exceeding 0.003 mass percentage or 0.003% by mass (30 ppm) or more and 0.05 mass% (500 ppm) or less.

Bi、In及びAlを含有する亜鉛合金粉においては、Alの添加量を多くすればガス発生量が少なくなるというものではなく、Alの添加量を変化させることによってガス発生量にピーク値が現れ、Alの添加量が或る値(範囲)の時にガス発生が顕著に増大することが判明した。具体的には、Bi及びInのそれぞれの含有量が0.0005質量%(5ppm)以上0.1質量%(1000ppm)以下の亜鉛合金粉において、Alの添加量が0.0005質量%(5ppm)より大きく30ppm(0.0030質量%)未満である場合にガス発生量が顕著に増大することが判明した。
よって、Alの添加量が0.0005質量%(5ppm)以下であるか、若しくは30ppm(0.0030質量%)以上であればガス発生量を有効に抑えることができる。
In zinc alloy powders containing Bi, In and Al, increasing the amount of Al added does not reduce the amount of gas generated, but a peak value appears in the amount of gas generated by changing the amount of Al added. It was found that gas generation markedly increased when the amount of Al added was a certain value (range). Specifically, in the zinc alloy powder in which each content of Bi and In is 0.0005 mass% (5 ppm) or more and 0.1 mass% (1000 ppm) or less, the additive amount of Al is 0.0005 mass% (5 ppm). It has been found that the gas generation amount increases remarkably when it is larger than 30 ppm (0.0030 mass%).
Therefore, if the added amount of Al is 0.0005 mass% (5 ppm) or less, or 30 ppm (0.0030 mass%) or more, the amount of gas generated can be effectively suppressed.

但し、Alを僅かでも添加するとガス発生を抑えることができ、特にBiの含有量が少ない場合にはAlを僅かでも添加しないとガス発生を抑えることが困難であるので、Al添加量を0質量%を超える0.0005質量%(5ppm)以下の割合とするのがより好ましい。なお、試験結果をみると、この範囲においては、Alの添加量が少ないほどガス発生を有効に抑えられるものと予想できる。   However, if Al is added even a little, gas generation can be suppressed. Especially when the content of Bi is small, it is difficult to suppress gas generation unless Al is added even slightly, so the Al addition amount is 0 mass. It is more preferable to set it as the ratio of 0.0005 mass% (5 ppm) which exceeds%. From the test results, it can be expected that in this range, the smaller the amount of Al added, the more effectively the gas generation can be suppressed.

他方、Al添加量が0.05質量%(500ppm)を超えると、Alが溶媒に溶解する量が増えて再析出して短絡を起すようになるため、0.003質量%(30ppm)以上0.05質量%(500ppm)以下、特に0.0035質量%(35ppm)以上0.04質量%(400ppm)以下、中でも0.0035質量%(35ppm)以上0.03質量%(300ppm)以下の割合で添加するのが好ましい。なお、試験結果をみると、この範囲においては、Alの添加量の増減によってガス発生量はそれほど変化しないものと予想できる。   On the other hand, if the amount of Al added exceeds 0.05% by mass (500 ppm), the amount of Al dissolved in the solvent increases and reprecipitates to cause a short circuit, so 0.003% by mass (30 ppm) or more is 0. 0.05% by mass (500 ppm) or less, particularly 0.0035% by mass (35 ppm) or more and 0.04% by mass (400 ppm) or less, particularly 0.0035% by mass (35 ppm) or more and 0.03% by mass (300 ppm) or less. Is preferably added. From the test results, it can be expected that the amount of gas generated does not change so much in this range due to the increase or decrease in the amount of Al added.

上記のBi、In及びAlを含有する組成の亜鉛合金粉におけるAl添加量とガス発生との関係は、当該組成にさらにCa、Mg、Ge、Sn、Ba、Sr及びBeからなる群から選ばれる少なくとも1つ以上の元素を合計で0.0005質量%(5ppm)以上0.1質量%(1000ppm)以下の割合で含有する亜鉛合金粉においても、公知の技術常識を参酌すれば同様であると考えられる。   The relationship between the amount of Al added and the gas generation in the zinc alloy powder having the composition containing Bi, In, and Al is further selected from the group consisting of Ca, Mg, Ge, Sn, Ba, Sr, and Be in the composition. In the case of zinc alloy powder containing at least one element in a ratio of 0.0005 mass% (5 ppm) or more and 0.1 mass% (1000 ppm) or less in total, it is the same if taking into account known technical common sense Conceivable.

(亜鉛合金粉末の製造方法)
本発明に係る電池用亜鉛合金粉末の製造方法としては、最終的に各元素の濃度が所定範囲内にあればよく、その製造方法を特に限定するものではないが、以下好ましい製造方法の一例を紹介する。
(Method for producing zinc alloy powder)
As a method for producing a zinc alloy powder for a battery according to the present invention, the concentration of each element may be finally within a predetermined range, and the production method is not particularly limited. introduce.

電解法による析離亜鉛や真空蒸留法による亜鉛インゴットなどの亜鉛原料を加熱溶解し、これにIn元素、Bi元素、Al元素、必要に応じてCa、Mg、Ge、Sn、Ba、Sr及びBeからなる群から選ばれる少なくとも1つ以上の元素を所定量添加混合し、得られた亜鉛合金の熔湯を直接高圧空気法(例えば噴出圧5kg/m2)等でアトマイズして粉末化し、篩い分け(例えば20−250メッシュの粒度)して粒度を揃え、その後必要に応じて磁石により磁力選別すれば、本発明に係る電池用亜鉛合金粉末を得ることができる。但し、本発明の亜鉛合金粉末の製造方法をこの方法に限定するものではない。 Zinc raw materials such as zinc separated by electrolytic method and zinc ingot by vacuum distillation method are heated and dissolved, and then In element, Bi element, Al element, and if necessary, Ca, Mg, Ge, Sn, Ba, Sr and Be. A predetermined amount of at least one element selected from the group consisting of the following is added and mixed, and the resulting molten zinc alloy is atomized directly by a high-pressure air method (for example, an ejection pressure of 5 kg / m 2 ) and pulverized. The battery zinc alloy powder according to the present invention can be obtained by dividing (for example, a particle size of 20-250 mesh) and aligning the particle size, and then magnetically selecting with a magnet as necessary. However, the method for producing the zinc alloy powder of the present invention is not limited to this method.

亜鉛原料としては、例えば、蒸留法、電解法、又は蒸留法及び電解法の併用法等のような各種の製法から比較的容易に得られる一般的な高純度の亜鉛金属原料を用いることができる。 As the zinc raw material, for example, a general high-purity zinc metal raw material that can be obtained relatively easily from various production methods such as a distillation method, an electrolytic method, or a combined method of a distillation method and an electrolytic method can be used. .

In及びBiの添加量は、亜鉛原料の精錬処理によって、精錬処理を施す会社や品番にかかわらず、亜鉛鉱石中の濃度は1ppm以下となるため、亜鉛原料に元々含まれているIn元素及びBi元素の量を無視して所定濃度となるようにIn元素及びBi元素を添加すればよい。
In元素及びBi元素を添加するタイミングとしては、亜鉛原料を溶解する前後のいずれであってもよいが、亜鉛原料を溶解した後に添加するのが好ましい。
The addition amount of In and Bi is 1 ppm or less because the concentration in the zinc ore is 1 ppm or less regardless of the company or product number where the refining treatment is performed by refining the zinc raw material. What is necessary is just to add In element and Bi element so that it may become a predetermined density | concentration ignoring the quantity of an element.
The timing of adding the In element and Bi element may be before or after the zinc raw material is dissolved, but it is preferable to add the element after dissolving the zinc raw material.

その一方、Al、Ca、Mg、Ge、Sn、Ba、Sr、Beなど元素の添加量は、亜鉛合金粉末の製造工程で合金粉末として製造された元素や、アルカリ電池の製造工程で添加されて亜鉛合金粉末と一体となった元素、すなわち、添加することにより亜鉛と置換して析出した元素やメッキされた元素などの量を必ずしも無視できないため、これらの量を考慮して合計量が目的の含有量(濃度)となるように添加量を調整するのが好ましい。 On the other hand, the added amount of elements such as Al, Ca, Mg, Ge, Sn, Ba, Sr, and Be is added in the manufacturing process of the zinc alloy powder as an alloy powder or in the manufacturing process of the alkaline battery. Since the amount of elements integrated with the zinc alloy powder, that is, the elements deposited by replacing zinc with the addition of the zinc alloy powder and the plated elements is not necessarily negligible, the total amount is determined in consideration of these amounts. It is preferable to adjust the addition amount so as to be the content (concentration).

粉末化するアトマイズ法は、空気アトマイズ法のほか、例えば不活性ガスアトマイズ法や回転円板(ディスクアトマイズ)法等のような他のアトマイズ法を適用することも可能である。例えば空気アトマイズ法による場合であれば、熔湯温度を亜鉛の融点を超える温度から560℃までにして、圧縮空気によりアトマイズし粉体化するようにすればよい。 As the atomizing method for pulverization, in addition to the air atomizing method, other atomizing methods such as an inert gas atomizing method and a rotating disk (disk atomizing) method can be applied. For example, in the case of the air atomization method, the melt temperature may be increased from a temperature exceeding the melting point of zinc to 560 ° C. and atomized with compressed air to be powdered.

(各元素濃度の測定)
本発明の亜鉛合金粉末の元素濃度測定、すなわち亜鉛合金粉中のAl、Bi、In、Ca、Mg、Ge、Sn、Ba、Sr及びBeの濃度(含有量)は、ICP発光分光分析法或いはフレームレス原子吸光法により測定することができる。
(Measurement of each element concentration)
Element concentration measurement of the zinc alloy powder of the present invention, that is, the concentration (content) of Al, Bi, In, Ca, Mg, Ge, Sn, Ba, Sr and Be in the zinc alloy powder is determined by ICP emission spectroscopy or It can be measured by flameless atomic absorption.

(アルカリ電池の製造)
本発明に係る電池用亜鉛合金粉末の利用方法を特に限定するものではないが、現在のところアルカリマンガン電池の負極活物質として利用するのが最も好適である。
アルカリ電池の構成を特に限定するものではないが、例えば、本発明の亜鉛合金粉(3.0g)を負極活物質として用いて電解液(1.5g)と混合してゲル状化したものを負極材とすることによりアルカリマンガン電池を作製することができる。
ここで、電解液には、例えば水酸化カリウム水溶液(例えば濃度40%)に酸化亜鉛を飽和させたものに、ゲル化剤としてカルボキシルメチルセルロースとポリアクリル酸ソーダもしくはポリアクリル酸を添加(例えば1.0%程度)したものなどを用いることができる。
(Manufacture of alkaline batteries)
The method of using the zinc alloy powder for a battery according to the present invention is not particularly limited, but at present, it is most preferably used as a negative electrode active material for an alkaline manganese battery.
Although there is no particular limitation on the configuration of the alkaline battery, for example, the zinc alloy powder (3.0 g) of the present invention is used as a negative electrode active material and mixed with an electrolyte (1.5 g) to form a gel. An alkaline manganese battery can be produced by using a negative electrode material.
Here, for example, carboxymethyl cellulose and sodium polyacrylate or polyacrylic acid are added as gelling agents to a solution obtained by saturating zinc oxide in an aqueous potassium hydroxide solution (for example, concentration 40%) (for example, 1. About 0%) can be used.

以下、実施例と試験結果から本発明について検討する。   Hereinafter, the present invention will be examined from examples and test results.

(サンプル1)
亜鉛純度99.995%以上の溶融亜鉛に、所定量のBi、In及びAlを添加し、得られた溶湯(溶湯温度535℃)をアトマイズ法により噴出圧5kg/m2の高圧ガスで噴射した後、20−250メッシュの粒度に篩い分けして、Biを150ppm、Inを500ppm、Alを2ppm含む亜鉛合金粉(S1)を得た。
なお、亜鉛合金中のBi、In及びAlの元素濃度は、ICP発光分光分析法により測定した。
(Sample 1)
A predetermined amount of Bi, In and Al was added to molten zinc having a zinc purity of 99.995% or higher, and the resulting molten metal (molten metal temperature 535 ° C.) was injected by a high pressure gas having an ejection pressure of 5 kg / m 2 by the atomizing method. Thereafter, the powder was sieved to a particle size of 20-250 mesh to obtain a zinc alloy powder (S1) containing 150 ppm Bi, 500 ppm In, and 2 ppm Al.
The element concentrations of Bi, In, and Al in the zinc alloy were measured by ICP emission spectroscopy.

(サンプル2)
サンプル1の製法において、Alの添加量のみを変更してAlを0ppm含む亜鉛合金粉(S2)を得た。
(Sample 2)
In the production method of Sample 1, only the amount of Al added was changed to obtain a zinc alloy powder (S2) containing 0 ppm of Al.

(サンプル3)
サンプル1の製法において、Alの添加量のみを変更してAlを5ppm含む亜鉛合金粉(S3)を得た。
(Sample 3)
In the production method of Sample 1, only the addition amount of Al was changed to obtain a zinc alloy powder (S3) containing 5 ppm of Al.

(サンプル4)
サンプル1の製法において、Alの添加量のみを変更してAlを30ppm含む亜鉛合金粉(S4)を得た。
(Sample 4)
In the production method of Sample 1, only the amount of Al added was changed to obtain a zinc alloy powder (S4) containing 30 ppm of Al.

(サンプル5)
サンプル1の製法において、Alの添加量のみを変更してAlを50ppm含む亜鉛合金粉(S5)を得た。
(Sample 5)
In the production method of Sample 1, only the amount of Al added was changed to obtain a zinc alloy powder (S5) containing 50 ppm of Al.

(サンプル6)
サンプル1の製法において、Alの添加量のみを変更してAlを100ppm含む亜鉛合金粉(S6)を得た。
(Sample 6)
In the production method of Sample 1, only the addition amount of Al was changed to obtain a zinc alloy powder (S6) containing 100 ppm of Al.

(サンプル7)
サンプル1の製法において、Alの添加量のみを変更してAlを500ppm含む亜鉛合金粉(S7)を得た。
(Sample 7)
In the production method of Sample 1, only the amount of Al added was changed to obtain a zinc alloy powder (S7) containing 500 ppm of Al.

(サンプル8)
サンプル1の製法において、Alの添加量のみを変更してAlを10ppm含む亜鉛合金粉(S8)を得た。
(Sample 8)
In the production method of Sample 1, only the addition amount of Al was changed to obtain a zinc alloy powder (S8) containing 10 ppm of Al.

(サンプル9)
サンプル1の製法において、Alの添加量のみを変更してAlを20ppm含む亜鉛合金粉(S9)を得た。
(Sample 9)
In the production method of Sample 1, only the addition amount of Al was changed to obtain a zinc alloy powder (S9) containing 20 ppm of Al.

(サンプル10)
サンプル1の製法において、Alの添加量のみを変更してAlを25ppm含む亜鉛合金粉(S10)を得た。
(Sample 10)
In the production method of Sample 1, only the addition amount of Al was changed to obtain a zinc alloy powder (S10) containing 25 ppm of Al.

(サンプル11)
サンプル1の製法において、Bi、In及びAlの添加量を変更して、Biを150ppm、Inを500ppm、Alを300ppm含む亜鉛合金粉(S11)を得た。
(Sample 11)
In the manufacturing method of sample 1, the addition amount of Bi, In, and Al was changed to obtain a zinc alloy powder (S11) containing 150 ppm Bi, 500 ppm In, and 300 ppm Al.

(サンプル12)
サンプル1の製法において、Bi、In及びAlの添加量を変更して、Biを150ppm、Inを500ppm、Alを400ppm含む亜鉛合金粉(S12)を得た。
(Sample 12)
In the manufacturing method of Sample 1, the addition amounts of Bi, In, and Al were changed to obtain zinc alloy powder (S12) containing 150 ppm Bi, 500 ppm In, and 400 ppm Al.

(ガス発生試験)
濃度40質量%の水酸化カリウム水溶液に酸化亜鉛を飽和させたものに、ゲル化剤としてカルボキシメチルセルロースとポリアクリル酸ソーダを1.0%程度加えて電解液を作成した。なお、水酸化カリウムは特級試薬を用いた。
負極活物質としてサンプル1〜10の亜鉛合金粉末を用い、この亜鉛合金粉末10gを前記電解液5mLと混合してゲル状化したものをそのまま負極材として、JIS規格LR6形式のアルカリマンガン電池を作製した。
そして、放電前のアルカリマンガン電池を60℃で3日間保存した後ガス発生量の測定を行った。放電前電池内包ガス量として表1に示す。
(Gas generation test)
An electrolyte solution was prepared by adding about 1.0% of carboxymethyl cellulose and sodium polyacrylate as gelling agents to a 40% by weight potassium hydroxide aqueous solution saturated with zinc oxide. Note that a special grade reagent was used for potassium hydroxide.
Using the zinc alloy powder of Samples 1 to 10 as the negative electrode active material and mixing 10 g of this zinc alloy powder with 5 mL of the above electrolyte solution to form a gel, the negative electrode material is used as it is to produce an alkaline manganese battery of the JIS standard LR6 format. did.
And the alkali-manganese battery before discharge was preserve | saved at 60 degreeC for 3 days, and the amount of gas generation was measured. Table 1 shows the amount of gas contained in the battery before discharge.

Figure 2005332751
Figure 2005332751

(考察)
Al添加量が5ppm(0.0005質量%)を超え、30ppm(0.0030質量%)未満の場合、ガス発生量が1mLを超えるため、電池とした場合電解液の漏液につながる可能性がある。
よって、Al添加量は5ppm(0.0005質量%)以下或いは30ppm(0.0030質量%)以上とするのが好ましい。
(Discussion)
When the amount of Al added exceeds 5 ppm (0.0005 mass%) and is less than 30 ppm (0.0030 mass%), the amount of gas generated exceeds 1 mL. is there.
Therefore, the amount of Al added is preferably 5 ppm (0.0005 mass%) or less or 30 ppm (0.0030 mass%) or more.

Claims (3)

ビスマス(Bi)及びインジウム(In)をそれぞれ0.0005質量%以上0.1質量%以下の割合で含有する亜鉛合金粉に対し、アルミニウム(Al)を0質量%若しくは0質量%を超える0.0005質量%以下の割合で添加するか、若しくは、アルミニウム(Al)を0.003質量%以上0.05質量%以下の割合で添加してなる合金組成を特徴とするアルカリ電池用亜鉛合金粉。   The zinc alloy powder containing bismuth (Bi) and indium (In) in a proportion of 0.0005% by mass to 0.1% by mass, respectively, contains 0% by mass or more than 0% by mass of aluminum (Al). A zinc alloy powder for an alkaline battery, characterized in that it is added at a ratio of 0005 mass% or less, or an aluminum alloy (Al) is added at a ratio of 0.003 mass% to 0.05 mass%. ビスマス(Bi)及びインジウム(In)をそれぞれ0.0005質量%以上0.1質量%以下の割合で含有し、かつCa、Mg、Ge、Sn、Ba、Sr及びBeからなる群から選ばれる少なくとも1つ以上の元素を合計で0.0005質量%以上0.1質量%以下の割合で含有する亜鉛合金粉に対し、アルミニウム(Al)を0質量%若しくは0質量%を超える0.0005質量%以下の割合で添加するか、若しくは、アルミニウム(Al)を0.003質量%以上0.05質量%以下の割合で添加してなる合金組成を特徴とするアルカリ電池用亜鉛合金粉。   Bismuth (Bi) and indium (In) are contained at a ratio of 0.0005 mass% to 0.1 mass%, respectively, and at least selected from the group consisting of Ca, Mg, Ge, Sn, Ba, Sr and Be 0.0005% by mass of aluminum (Al) is 0% by mass or more than 0% by mass with respect to zinc alloy powder containing one or more elements in a proportion of 0.0005% by mass to 0.1% by mass in total A zinc alloy powder for an alkaline battery, characterized by being added at the following ratio or an alloy composition obtained by adding aluminum (Al) at a ratio of 0.003% to 0.05% by mass. 請求項1又は2に記載のアルカリ電池用亜鉛合金粉を負極活物質に用いてなるアルカリマンガン電池。   An alkaline manganese battery using the zinc alloy powder for an alkaline battery according to claim 1 or 2 as a negative electrode active material.
JP2004151764A 2004-05-21 2004-05-21 Zinc alloy powder for alkaline battery, and alkaline manganese battery Pending JP2005332751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151764A JP2005332751A (en) 2004-05-21 2004-05-21 Zinc alloy powder for alkaline battery, and alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151764A JP2005332751A (en) 2004-05-21 2004-05-21 Zinc alloy powder for alkaline battery, and alkaline manganese battery

Publications (1)

Publication Number Publication Date
JP2005332751A true JP2005332751A (en) 2005-12-02

Family

ID=35487231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151764A Pending JP2005332751A (en) 2004-05-21 2004-05-21 Zinc alloy powder for alkaline battery, and alkaline manganese battery

Country Status (1)

Country Link
JP (1) JP2005332751A (en)

Similar Documents

Publication Publication Date Title
CN108448113A (en) Preparation method of doped modified lithium iron phosphate positive-grade material
CN102011028B (en) Zinc powder used as electrode and preparation method thereof
WO2018163485A1 (en) Alkaline dry-cell battery
JPH0222984B2 (en)
JP2975527B2 (en) Zinc alloy powder for mercury-free alkaline batteries
JP2007227011A (en) Alkaline cell
JP2005332751A (en) Zinc alloy powder for alkaline battery, and alkaline manganese battery
EP0945908B1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JP2001250544A (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2004014306A (en) Electrolytic solution for alkaline battery and alkaline battery using this electrolytic solution
JPH0586430A (en) Zinc alloy powder for alkali battery and its production
JPH04289661A (en) Zinc alloy powder for alkaline battery and manufacture thereof
JP5079218B2 (en) Negative electrode active material and alkaline battery using the same
JP3708198B2 (en) Negative electrode for alkaline batteries
JP2003272615A (en) Zinc alloy powder and alkaline battery using the same
JP2002373651A (en) Alkaline battery
JP2788530B2 (en) Method for producing gelled negative electrode for alkaline dry battery and gelled negative electrode produced by the method
JP3490708B1 (en) Zinc alloy powder for alkaline batteries
JP3519947B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery
JPS63190104A (en) Production of amalgamated zinc alloy powder for alkali storage battery
JP2025002013A (en) Zinc alloy powder and method of producing the same
JP2005100945A (en) Zinc alloy powder for battery
JP2832230B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JPS6164073A (en) Zinc alloy for negative electrode of an alkaline battery
JP2003317710A (en) Negative electrode for alkaline manganese battery and alkaline manganese battery using the same