[go: up one dir, main page]

JP2005330864A - Control method for internal combustion engine - Google Patents

Control method for internal combustion engine Download PDF

Info

Publication number
JP2005330864A
JP2005330864A JP2004148913A JP2004148913A JP2005330864A JP 2005330864 A JP2005330864 A JP 2005330864A JP 2004148913 A JP2004148913 A JP 2004148913A JP 2004148913 A JP2004148913 A JP 2004148913A JP 2005330864 A JP2005330864 A JP 2005330864A
Authority
JP
Japan
Prior art keywords
exhaust
valve
internal combustion
combustion engine
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004148913A
Other languages
Japanese (ja)
Inventor
Takahiro Kushibe
孝寛 櫛部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004148913A priority Critical patent/JP2005330864A/en
Publication of JP2005330864A publication Critical patent/JP2005330864A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve improvement in exhaust emissions and early activation of an exhaust emission control catalyst when the exhaust emission control catalyst is in an inactive state. <P>SOLUTION: This is the control method for controlling an internal combustion engine 1 provided with a variable valve mechanisms 10 and 11 capable of varying opening valve characteristics of intake and exhaust valves 8 and 9, the exhaust emission control catalyst 21 provided in an exhaust system, and an exhaust throttle valve 2 provided in the exhaust system on the downstream side of the exhaust emission control catalyst 21. The variable valve mechanisms 10 and 11 and the exhaust throttle valve 22 are controlled so that the internal combustion engine 1 is operated with the usage of oxygen existing in the exhaust system located upstream of the exhaust throttle valve 22, and thereby a temperature of the exhaust emission control catalyst 21 can be rapidly raised while restricting exhaust emission into the atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、可変動弁機構を備えた内燃機関に関し、特に排気系に設けられた排気浄化触媒の早期活性に有効な内燃機関の制御方法に関する。   The present invention relates to an internal combustion engine having a variable valve mechanism, and more particularly to a control method for an internal combustion engine effective for early activation of an exhaust purification catalyst provided in an exhaust system.

車両などに搭載される内燃機関としては、可変動弁機構を備えたものが広く知られている。可変動弁機構を備えた内燃機関においては、可変動弁機構を利用して冷間時の触媒活性や始動性向上等を図ろうとする技術が種々提案されている(たとえば、特許文献1を参照)。
特開2000−130194号公報 特許第2775195号公報 特開2001−182570号公報
As an internal combustion engine mounted on a vehicle or the like, one having a variable valve mechanism is widely known. In an internal combustion engine equipped with a variable valve mechanism, various techniques have been proposed to improve the catalyst activity and startability during cold using the variable valve mechanism (see, for example, Patent Document 1). ).
JP 2000-130194 A Japanese Patent No. 2775195 JP 2001-182570 A

ところで、近年では排気エミッションに対する規制が強化されてきており、上記したような従来の技術では今後の規制強化に対応することが難しくなってきている。   By the way, in recent years, regulations on exhaust emissions have been strengthened, and it has become difficult to cope with future regulations with the conventional techniques as described above.

本発明は、上記したような実情に鑑みてなされたものであり、その目的は可変動弁機構を備えた内燃機関において触媒未活性時の早期活性化と排気エミッションの一層の向上を図ることにある。   The present invention has been made in view of the above circumstances, and its purpose is to achieve early activation when the catalyst is inactive and further improvement of exhaust emission in an internal combustion engine equipped with a variable valve mechanism. is there.

本発明は上記課題を解決するために以下のような手段を採用した。すなわち、本発明は、吸排気弁の開弁特性を変更可能な可変動弁機構と、排気系に設けられた排気浄化触媒と、排気浄化触媒下流の排気系に設けられた排気絞り弁とを備えた内燃機関を制御する方法であって、排気絞り弁より上流の排気系に存在する酸素を利用して内燃機関が運転されるように可変動弁機構及び排気絞り弁を動作させるための触媒活性制御を行うことにより、大気中への排気放出を規制しつつ排気温度を高めることを要旨とする。   The present invention employs the following means in order to solve the above problems. That is, the present invention includes a variable valve mechanism capable of changing the valve opening characteristics of the intake and exhaust valves, an exhaust purification catalyst provided in the exhaust system, and an exhaust throttle valve provided in the exhaust system downstream of the exhaust purification catalyst. A method for controlling an internal combustion engine provided with a variable valve mechanism and a catalyst for operating an exhaust throttle valve so that the internal combustion engine is operated using oxygen present in an exhaust system upstream of the exhaust throttle valve The gist is to increase the exhaust temperature while regulating the exhaust emission into the atmosphere by performing the activity control.

排気絞り弁より上流の排気系に存在する酸素を利用して内燃機関を運転させる方法としては、吸気弁を閉弁保持し且つ排気弁が吸気行程及び排気行程で開弁動作するように可変動弁機構を制御するとともに、排気絞り弁を閉弁させる方法を例示することができる。   As a method of operating the internal combustion engine using oxygen present in the exhaust system upstream from the exhaust throttle valve, the variable valve operation is performed so that the intake valve is held closed and the exhaust valve opens in the intake stroke and the exhaust stroke. A method for controlling the valve mechanism and closing the exhaust throttle valve can be exemplified.

吸気行程の気筒において吸気弁が閉弁保持され且つ排気弁が開弁させられると、排気絞り弁上流の排気系に存在するガスの一部が気筒内に流入する。気筒内へ流入したガスは燃料の燃焼に供され、その後の排気行程時に再び排気系へ排出される。前記気筒から排出された既燃ガスは大気中へ放出されることなく排気絞り弁上流の排気系に留まる。排気絞り弁上流の排気系に存在するガス及び排気浄化触媒は、該排気系に留まっている既燃ガスの熱を受けて昇温する。   When the intake valve is held closed and the exhaust valve is opened in the cylinder in the intake stroke, a part of the gas existing in the exhaust system upstream of the exhaust throttle valve flows into the cylinder. The gas flowing into the cylinder is used for fuel combustion, and is discharged again into the exhaust system during the subsequent exhaust stroke. The burned gas discharged from the cylinder remains in the exhaust system upstream of the exhaust throttle valve without being released into the atmosphere. The gas existing in the exhaust system upstream of the exhaust throttle valve and the exhaust purification catalyst are heated by receiving the heat of the burned gas remaining in the exhaust system.

前記気筒の後に他の気筒の吸排気弁が同様に動作すると、排気絞り弁上流の排気系で高温となったガスが前記他の気筒に吸入されて燃焼に供されることになる。このため、前記他の気筒の排気行程時に該気筒から排出される既燃ガスは先の気筒より高温な既燃ガスと
なる。前記他の気筒から排出された既燃ガスも排気絞り弁上流の排気系に留まるため、該排気系に存在するガス及び排気浄化触媒が更に昇温する。
If the intake / exhaust valves of the other cylinders operate in the same manner after the cylinder, the gas having a high temperature in the exhaust system upstream of the exhaust throttle valve is sucked into the other cylinders and used for combustion. For this reason, the burned gas discharged from the other cylinder during the exhaust stroke of the other cylinder becomes burned gas having a temperature higher than that of the previous cylinder. Since the burned gas discharged from the other cylinders also remains in the exhaust system upstream of the exhaust throttle valve, the temperature of the gas and the exhaust purification catalyst existing in the exhaust system further increases.

このような動作が複数の気筒で行われ、あるいは複数のサイクルで繰り返されると、排気絞り弁上流の排気系においてガス及び排気浄化触媒の温度が速やかに昇温する。更に、排気浄化触媒の昇温過程で内燃機関から排出される既燃ガスは大気中へ放出されないため、排気エミッションの悪化も防止される。   When such an operation is performed in a plurality of cylinders or repeated in a plurality of cycles, the temperature of the gas and the exhaust purification catalyst rapidly rises in the exhaust system upstream of the exhaust throttle valve. Further, since the burned gas discharged from the internal combustion engine during the temperature raising process of the exhaust purification catalyst is not released into the atmosphere, deterioration of exhaust emission is also prevented.

従って、排気浄化触媒が未活性状態にあるときに排気エミッションの悪化を抑制しつつ排気浄化触媒の早期活性を図ることが可能となる。   Accordingly, it is possible to achieve early activation of the exhaust purification catalyst while suppressing deterioration of exhaust emission when the exhaust purification catalyst is in an inactive state.

また、排気浄化触媒が未活性状態にあるときには内燃機関が暖機完了前の冷間状態にある可能性がある。内燃機関が冷間状態にあるときは吸気温度が低くなり易いため、燃料が気化(霧化)し難くい。これに対し、本発明に係る内燃機関では、排気絞り弁上流の排気系で高温となったガスを吸気の代わりに用いるため、燃料が気化(霧化)し易くなるという利点もある。   Further, when the exhaust purification catalyst is in an inactive state, the internal combustion engine may be in a cold state before the completion of warming up. When the internal combustion engine is in a cold state, the intake air temperature tends to be low, so that the fuel is difficult to vaporize (atomize). On the other hand, in the internal combustion engine according to the present invention, since the gas that has become high in the exhaust system upstream of the exhaust throttle valve is used instead of the intake air, there is an advantage that the fuel is easily vaporized (atomized).

尚、触媒活性制御は、排気浄化触媒の少なくとも一部が活性したときに終了されるようにしてもよい。   The catalyst activity control may be terminated when at least a part of the exhaust purification catalyst is activated.

排気浄化触媒の少なくとも一部が活性したか否かを判別する方法としては、排気浄化触媒の床温が所定温度以上となった場合に排気浄化触媒の少なくとも一部が活性したと判定する方法、排気浄化触媒下流の排気温度が排気浄化触媒上流の排気温度以上となった場合に排気浄化触媒の少なくとも一部が活性した判定する方法、あるいは触媒活性制御の実行時間が所定時間以上となった場合に排気浄化触媒の少なくとも一部が活性したと判定する方法などを例示することができる。   As a method for determining whether or not at least a part of the exhaust purification catalyst is activated, a method for determining that at least a part of the exhaust purification catalyst is activated when the floor temperature of the exhaust purification catalyst becomes equal to or higher than a predetermined temperature, When the exhaust temperature downstream of the exhaust purification catalyst becomes equal to or higher than the exhaust temperature upstream of the exhaust purification catalyst, a method for determining that at least a part of the exhaust purification catalyst is activated, or when the execution time of the catalyst activation control exceeds a predetermined time Examples thereof include a method for determining that at least a part of the exhaust purification catalyst is activated.

ところで、排気浄化触媒の少なくとも一部が活性する前に、排気絞り弁上流の排気系に残存する酸素量が内燃機関の運転に必要な酸素量を下回ると、内燃機関の運転を継続することができなくなる。これに対し、排気絞り弁上流の排気系に残存する酸素量が所定量を下回った場合は、排気絞り弁を一時的に開弁させ、若しくは排気絞り弁を僅かに開弁させた状態を維持することにより、排気絞り弁上流の排気系へ酸素を補給するようにしてもよい。   By the way, if the amount of oxygen remaining in the exhaust system upstream of the exhaust throttle valve is lower than the amount of oxygen necessary for the operation of the internal combustion engine before at least a part of the exhaust purification catalyst is activated, the operation of the internal combustion engine may be continued. become unable. On the other hand, if the amount of oxygen remaining in the exhaust system upstream of the exhaust throttle valve falls below a predetermined amount, the exhaust throttle valve is temporarily opened or the exhaust throttle valve is kept slightly open. By doing so, oxygen may be replenished to the exhaust system upstream of the exhaust throttle valve.

排気絞り弁上流の排気系に残存する酸素量を検出する方法としては、酸素センサや空燃比センサの検出値から推定する方法を例示することができる。   As a method of detecting the amount of oxygen remaining in the exhaust system upstream of the exhaust throttle valve, a method of estimating from the detection value of the oxygen sensor or air-fuel ratio sensor can be exemplified.

また、本発明に係る内燃機関が遠心過給器を具備している場合は、触媒活性制御の実行中に遠心過給器のウェストゲートバルブを全開にすることが好ましい。   Moreover, when the internal combustion engine which concerns on this invention is equipped with the centrifugal supercharger, it is preferable to fully open the wastegate valve of a centrifugal supercharger during execution of catalyst activity control.

これは、遠心過給器のタービンハウジングは熱容量が大きいため、排気の全てがタービンハウジングを通過すると、排気の熱がタービンハウジングに奪われてしまい、排気絞り弁上流の排気系においてガス温度が上昇し難くなるからである。   This is because the turbine housing of the centrifugal supercharger has a large heat capacity, and when all the exhaust gas passes through the turbine housing, the heat of the exhaust gas is lost to the turbine housing, and the gas temperature rises in the exhaust system upstream of the exhaust throttle valve. Because it becomes difficult.

本発明によれば、排気浄化触媒が未活性状態にあるときの排気エミッションを向上させつつ排気浄化触媒の早期活性化を図ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to aim at early activation of an exhaust purification catalyst, improving the exhaust emission when an exhaust purification catalyst is in an inactive state.

以下、本発明の具体的な実施例について図面に基づいて説明する。
図1は本発明を適用する内燃機関の概略構成を示す図である。図1において内燃機関1は4ストロークサイクルのレシプロエンジンである。
Specific embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied. In FIG. 1, the internal combustion engine 1 is a four-stroke cycle reciprocating engine.

内燃機関1のシリンダヘッド2には、燃焼室3内へ直接燃料を噴射する燃料噴射弁4と、燃焼室3内で火花を発生する点火栓5が設けられている。   The cylinder head 2 of the internal combustion engine 1 is provided with a fuel injection valve 4 that directly injects fuel into the combustion chamber 3 and an ignition plug 5 that generates a spark in the combustion chamber 3.

シリンダヘッド2には、燃焼室3に連通する吸気ポート6と排気ポート7が形成されている。吸気ポート6は吸気弁8によって開閉され、排気ポート7は排気弁9によって開閉されるようになっている。吸気弁8及び排気弁9は、吸気側可変動弁機構10及び排気側可変動弁機構11によって開閉駆動される。   The cylinder head 2 is formed with an intake port 6 and an exhaust port 7 that communicate with the combustion chamber 3. The intake port 6 is opened and closed by an intake valve 8, and the exhaust port 7 is opened and closed by an exhaust valve 9. The intake valve 8 and the exhaust valve 9 are driven to open and close by an intake side variable valve mechanism 10 and an exhaust side variable valve mechanism 11.

吸気側可変動弁機構10及び排気側可変動弁機構11は、吸気弁8及び排気弁9の開弁特性、特に開閉タイミングを任意に変更可能な動弁機構である。このような動弁機構としては、電動モータにより弁を開閉駆動する機構、電磁力により弁を開閉駆動する機構、あるいは油圧により弁を開閉駆動する機構などを例示することができる。   The intake side variable valve mechanism 10 and the exhaust side variable valve mechanism 11 are valve mechanisms that can arbitrarily change the valve opening characteristics of the intake valve 8 and the exhaust valve 9, particularly the opening / closing timing. Examples of such a valve operating mechanism include a mechanism for opening and closing the valve by an electric motor, a mechanism for opening and closing the valve by electromagnetic force, and a mechanism for opening and closing the valve by hydraulic pressure.

シリンダヘッド2には前記吸気ポート6に連通するインテークマニフォルド12が取り付けられている。インテークマニフォルド12はサージタンク13を介してインテークパイプ14と連通している。   An intake manifold 12 communicating with the intake port 6 is attached to the cylinder head 2. The intake manifold 12 communicates with the intake pipe 14 via the surge tank 13.

インテークパイプ14は遠心過給器(ターボチャージャ)15のコンプレッサハウジング151に接続されている。コンプレッサハウジング151には吸気ダクト16が接続されている。インテークパイプ14の途中にはインタークーラ17が設けられ、インタークーラ17より下流のインテークパイプ14にはスロットル弁18が設けられている。   The intake pipe 14 is connected to a compressor housing 151 of a centrifugal supercharger (turbocharger) 15. An intake duct 16 is connected to the compressor housing 151. An intercooler 17 is provided in the middle of the intake pipe 14, and a throttle valve 18 is provided in the intake pipe 14 downstream from the intercooler 17.

シリンダヘッドには前記排気ポート7に連通するエキゾーストマニフォルド19が取り付けられている。エキゾーストマニフォルド19は遠心過給器15のタービンハウジング152に接続されている。タービンハウジング152にはエキゾーストパイプ20が接続されている。   An exhaust manifold 19 communicating with the exhaust port 7 is attached to the cylinder head. The exhaust manifold 19 is connected to the turbine housing 152 of the centrifugal supercharger 15. The exhaust pipe 20 is connected to the turbine housing 152.

エキゾーストパイプ20の途中には排気浄化触媒21が配置されている。排気浄化触媒21より下流のエキゾーストパイプ20には排気絞り弁22が設けられている。   An exhaust purification catalyst 21 is disposed in the middle of the exhaust pipe 20. An exhaust throttle valve 22 is provided in the exhaust pipe 20 downstream of the exhaust purification catalyst 21.

エキゾーストパイプ20における排気浄化触媒21と排気絞り弁22との間には酸素濃度センサ23が取り付けられている。   An oxygen concentration sensor 23 is attached between the exhaust purification catalyst 21 and the exhaust throttle valve 22 in the exhaust pipe 20.

排気浄化触媒21より上流のエキゾーストパイプ20には上流側排気温度センサ24が設けられ、排気浄化触媒21より下流であって前記酸素濃度センサ23より上流のエキゾーストパイプ20には下流側排気温度センサ25が設けられている。   The exhaust pipe 20 upstream of the exhaust purification catalyst 21 is provided with an upstream exhaust temperature sensor 24, and the exhaust pipe 20 downstream of the exhaust purification catalyst 21 and upstream of the oxygen concentration sensor 23 is provided with a downstream exhaust temperature sensor 25. Is provided.

また、エキゾーストマニフォルド19とエキゾーストパイプ20はタービンハウジング152を迂回するバイパス通路26によって連通しており、そのバイパス通路26にはウェストゲートバルブ27が設けられている。   The exhaust manifold 19 and the exhaust pipe 20 communicate with each other by a bypass passage 26 that bypasses the turbine housing 152, and a wastegate valve 27 is provided in the bypass passage 26.

上記したように構成された内燃機関1には、電子制御ユニット(ECU)28が併設されている。ECU28は、CPU、ROM、RAM、バックアップRAM等から構成される算術論理演算回路である。   The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 28. The ECU 28 is an arithmetic and logic circuit composed of a CPU, ROM, RAM, backup RAM, and the like.

ECU28は、酸素濃度センサ23、上流側排気温度センサ24、及び下流側排気温度センサ25と電気的に接続され、これら各種センサの出力信号を入力することが可能とな
っている。
The ECU 28 is electrically connected to the oxygen concentration sensor 23, the upstream side exhaust temperature sensor 24, and the downstream side exhaust temperature sensor 25, and can input output signals of these various sensors.

ECU28は、燃料噴射弁4、点火栓5、吸気側可変動弁機構10、排気側可変動弁機構11、スロットル弁18、排気絞り弁22、及びウェストゲートバルブ27と電気的に接続され、これらを制御することが可能となっている。   The ECU 28 is electrically connected to the fuel injection valve 4, spark plug 5, intake side variable valve mechanism 10, exhaust side variable valve mechanism 11, throttle valve 18, exhaust throttle valve 22, and wastegate valve 27. Can be controlled.

本実施例では、ECU28は、冷間始動時から暖機運転完了までの期間のように排気浄化触媒21が未活性状態にあるときに、触媒活性制御を実行する。   In the present embodiment, the ECU 28 performs the catalyst activation control when the exhaust purification catalyst 21 is in an inactive state as in the period from the cold start to the completion of the warm-up operation.

触媒活性制御では、ECU28は、排気絞り弁22より上流の排気系(この場合は、すなわち、排気ポート7、エキゾーストマニフォルド19、タービンハウジング152、バイパス通路26、エキゾーストパイプ20における排気絞り弁22より上流の部位、及び排気浄化触媒21を含む)に存在する酸素を利用して内燃機関1を運転させるべく、吸気側可変動弁機構10、排気側可変動弁機構11、及び排気絞り弁22を制御する。   In the catalyst activity control, the ECU 28 is located upstream of the exhaust throttle valve 22 in the exhaust system upstream of the exhaust throttle valve 22 (in this case, that is, the exhaust port 7, the exhaust manifold 19, the turbine housing 152, the bypass passage 26, and the exhaust pipe 20). And the intake side variable valve mechanism 11, the exhaust side variable valve mechanism 11, and the exhaust throttle valve 22 are controlled so that the internal combustion engine 1 is operated using oxygen existing in the exhaust gas purification catalyst 21. To do.

以下、触媒活性制御について図2に基づいて具体的に説明する。図2は、触媒活性制御ルーチンを示すフローチャート図である。触媒活性制御ルーチンは、予めECU28のROMに記憶されているルーチンであり、ECU28によって所定時間毎に繰り返し実行されるルーチンである。   Hereinafter, the catalyst activity control will be specifically described with reference to FIG. FIG. 2 is a flowchart showing a catalyst activity control routine. The catalyst activation control routine is a routine that is stored in advance in the ROM of the ECU 28, and is a routine that is repeatedly executed by the ECU 28 at predetermined time intervals.

触媒活性制御ルーチンでは、ECU28は先ずS101において触媒活性フラグが“1”以外の値であるか否かを判別する。触媒活性フラグはECU28のRAMに予め設けられた記憶領域であり、排気浄化触媒21が活性状態にあるときは“1”が記憶され、排気浄化触媒21が未活性状態にあるときは“0”が記憶される。   In the catalyst activation control routine, the ECU 28 first determines in S101 whether the catalyst activation flag is a value other than “1”. The catalyst activation flag is a storage area provided in advance in the RAM of the ECU 28. “1” is stored when the exhaust purification catalyst 21 is in an active state, and “0” when the exhaust purification catalyst 21 is in an inactive state. Is memorized.

前記S101において触媒活性フラグが“1”であると判定された場合は、ECU28は本ルーチンの実行を終了する。   When it is determined in S101 that the catalyst activation flag is “1”, the ECU 28 ends the execution of this routine.

前記S101において触媒活性フラグが“1”ではない(すなわち、触媒活性フラグが“0”である)と判定された場合は、ECU28はS102へ進む。S102では、ECU28は酸素濃度センサ22の出力信号(以下、酸素濃度:Ocと称する)、上流側排気温度センサ24の出力信号(以下、上流側排気温度:Tuと称する)、及び下流側排気温度センサ25の出力信号(以下、下流側排気温度:Tdと称する)を入力する。   If it is determined in S101 that the catalyst activation flag is not “1” (that is, the catalyst activation flag is “0”), the ECU 28 proceeds to S102. In S102, the ECU 28 outputs an output signal from the oxygen concentration sensor 22 (hereinafter referred to as oxygen concentration: Oc), an output signal from the upstream exhaust temperature sensor 24 (hereinafter referred to as upstream exhaust temperature: Tu), and a downstream exhaust temperature. An output signal of the sensor 25 (hereinafter referred to as downstream exhaust temperature: Td) is input.

S103では、ECU28は前記S102で入力された上流側排気温度:Tuと下流側排気温度:Tdを比較して排気浄化触媒21が未活性状態にあるか否かを判別する。   In S103, the ECU 28 compares the upstream exhaust temperature: Tu inputted in S102 with the downstream exhaust temperature: Td to determine whether or not the exhaust purification catalyst 21 is in an inactive state.

排気浄化触媒21の少なくとも一部が活性した状態にあるときは、排気中の炭化水素、一酸化炭素、窒素酸化物等が排気浄化触媒21において酸化還元されて反応熱を発生する。この反応熱は排気浄化触媒21を流通する排気に伝達されるため、排気浄化触媒21から流出する排気の温度は排気浄化触媒21へ流入する排気の温度と同等かそれより高くなる。   When at least a part of the exhaust purification catalyst 21 is in an activated state, hydrocarbons, carbon monoxide, nitrogen oxides and the like in the exhaust are oxidized and reduced in the exhaust purification catalyst 21 to generate reaction heat. Since this reaction heat is transmitted to the exhaust gas flowing through the exhaust purification catalyst 21, the temperature of the exhaust gas flowing out from the exhaust purification catalyst 21 is equal to or higher than the temperature of the exhaust gas flowing into the exhaust purification catalyst 21.

これに対し、排気浄化触媒21が未活性状態にあるときは、排気中の炭化水素、一酸化炭素、窒素酸化物等が排気浄化触媒21において酸化還元されないため、反応熱が発生しない。その上、排気の熱が排気浄化触媒21へ伝達される。依って、排気浄化触媒21が未活性状態にあるときは、排気浄化触媒21から流出する排気の温度が排気浄化触媒21へ流入する排気の温度より低くなる。   On the other hand, when the exhaust purification catalyst 21 is in an inactive state, hydrocarbons, carbon monoxide, nitrogen oxides and the like in the exhaust are not oxidized / reduced in the exhaust purification catalyst 21, so that no reaction heat is generated. In addition, the heat of the exhaust is transmitted to the exhaust purification catalyst 21. Therefore, when the exhaust purification catalyst 21 is in an inactive state, the temperature of the exhaust gas flowing out from the exhaust purification catalyst 21 becomes lower than the temperature of the exhaust gas flowing into the exhaust purification catalyst 21.

上記の考察によれば、ECU28はS103において下流側排気温度:Tdが上流側排
気温度:Tu未満であるときは排気浄化触媒21が未活性状態にあると判定することができ、下流側排気温度:Tdが上流側排気温度:Tu以上であるときは排気浄化触媒21が活性状態にあると判定することができる。
According to the above consideration, the ECU 28 can determine that the exhaust purification catalyst 21 is in an inactive state when the downstream exhaust temperature: Td is lower than the upstream exhaust temperature: Tu in S103, and the downstream exhaust temperature. When the exhaust gas temperature Td is equal to or higher than the upstream exhaust temperature Tu, it can be determined that the exhaust purification catalyst 21 is in an active state.

前記S103において排気浄化触媒21が未活性状態にあると判定した場合は、ECU28はS104へ進む。S104では、ECU28は前記S102で入力された酸素濃度:Ocが所定濃度:C以上であるか否かを判別する。   If it is determined in S103 that the exhaust purification catalyst 21 is in an inactive state, the ECU 28 proceeds to S104. In S104, the ECU 28 determines whether or not the oxygen concentration: Oc input in S102 is equal to or higher than a predetermined concentration: C.

S104において酸素濃度:Ocが所定濃度:C以上であると判定された場合は、ECU28はS105へ進む。S105ではECU28は排気絞り弁22を全閉に制御する。   If it is determined in S104 that the oxygen concentration: Oc is equal to or higher than the predetermined concentration: C, the ECU 28 proceeds to S105. In S105, the ECU 28 controls the exhaust throttle valve 22 to be fully closed.

S106ではECU28はウェストゲートバルブ27を全開に制御する。   In S106, the ECU 28 controls the wastegate valve 27 to be fully opened.

S107ではECU28は図3に示すように吸気弁8を閉弁保持し且つ排気弁9を排気行程に加えて吸気行程でも開弁作動するように吸気側可変動弁機構10及び排気側可変動弁機構11を制御する。尚、図3中の点線は通常時のリフトカーブを示している。   In S107, the ECU 28 holds the intake valve 8 closed as shown in FIG. 3 and the intake side variable valve mechanism 10 and the exhaust side variable valve so that the exhaust valve 9 is opened in the intake stroke in addition to the exhaust stroke. The mechanism 11 is controlled. In addition, the dotted line in FIG. 3 has shown the lift curve at the time of normal.

上記したS105、S106、S107の処理が実行されると、吸気行程の気筒において吸気弁8が閉弁状態を保持し且つ排気弁9が開弁動作する。吸気行程の気筒において排気弁9のみが開弁動作すると、排気絞り弁22上流の排気系に存在するガスの一部が気筒内に流入し、燃料噴射弁4から噴射される燃料とともに燃焼に供される。   When the processes of S105, S106, and S107 described above are executed, the intake valve 8 is kept closed and the exhaust valve 9 is opened in the cylinder in the intake stroke. When only the exhaust valve 9 is opened in the cylinder in the intake stroke, part of the gas existing in the exhaust system upstream of the exhaust throttle valve 22 flows into the cylinder and is used for combustion together with the fuel injected from the fuel injection valve 4. Is done.

前記気筒の排気行程時には排気弁9が開弁動作するため、該気筒内の既燃ガスが再び排気系へ排出される。その際、排気絞り弁22が閉弁されているため、前記気筒から排出された既燃ガスは大気中へ放出されることなく排気絞り弁22上流の排気系に留まる。排気絞り弁22上流の排気系に存在するガス及び排気浄化触媒21は、前記既燃ガスの熱を受けて昇温する。   Since the exhaust valve 9 is opened during the exhaust stroke of the cylinder, the burned gas in the cylinder is again discharged to the exhaust system. At this time, since the exhaust throttle valve 22 is closed, the burned gas discharged from the cylinder remains in the exhaust system upstream of the exhaust throttle valve 22 without being released into the atmosphere. The gas present in the exhaust system upstream of the exhaust throttle valve 22 and the exhaust purification catalyst 21 are heated by receiving the heat of the burned gas.

前記気筒の後に他の気筒の吸気弁8及び排気弁9が同様に動作すると、排気絞り弁22上流の排気系で高温となったガスが前記他の気筒に吸入されて燃焼に供されることになる。このため、前記他の気筒の排気行程時に該気筒から排出される既燃ガスは先の気筒より高温な既燃ガスとなる。前記他の気筒から排出された既燃ガスも排気絞り弁22上流の排気系に留まるため、該排気系に存在するガス及び排気浄化触媒21が更に昇温する。   When the intake valve 8 and the exhaust valve 9 of the other cylinders operate in the same manner after the cylinder, the gas that has become hot in the exhaust system upstream of the exhaust throttle valve 22 is sucked into the other cylinders and used for combustion. become. For this reason, the burned gas discharged from the other cylinder during the exhaust stroke of the other cylinder becomes burned gas having a temperature higher than that of the previous cylinder. Since the burned gas discharged from the other cylinders also remains in the exhaust system upstream of the exhaust throttle valve 22, the gas existing in the exhaust system and the exhaust purification catalyst 21 are further heated.

このような動作が複数の気筒で行われると、排気絞り弁22上流の排気系においてガス及び排気浄化触媒21の温度が速やかに昇温する。更に、上記したように排気浄化触媒21が昇温する過程においては、内燃機関1から排出される既燃ガスが排気絞り弁22上流に留まるため、既燃ガスが排気浄化触媒21で浄化されずに大気中へ放出されることがない。   When such an operation is performed in a plurality of cylinders, the temperature of the gas and the exhaust purification catalyst 21 is quickly raised in the exhaust system upstream of the exhaust throttle valve 22. Further, in the process of raising the temperature of the exhaust purification catalyst 21 as described above, the burned gas discharged from the internal combustion engine 1 remains upstream of the exhaust throttle valve 22, so the burned gas is not purified by the exhaust purification catalyst 21. Will not be released into the atmosphere.

ところで、本実施の形態では排気絞り弁22上流の排気系には熱容量の大きなタービンハウジング152が配置されている。このため、内燃機関1から排出された既燃ガスがタービンハウジング152を流通すると、既燃ガスの熱がタービンハウジング152に奪われてしまい、排気浄化触媒21が昇温し難くなる。   Incidentally, in the present embodiment, a turbine housing 152 having a large heat capacity is disposed in the exhaust system upstream of the exhaust throttle valve 22. For this reason, when the burned gas discharged from the internal combustion engine 1 flows through the turbine housing 152, the heat of the burned gas is taken away by the turbine housing 152, and it becomes difficult for the exhaust purification catalyst 21 to rise in temperature.

これに対し、本実施の形態に係る触媒活性制御ではウェストゲートバルブ27が全開にされるため、タービンハウジング152を流通する既燃ガス量を最小限に抑えることができ、排気浄化触媒21の速やかな昇温を実現することができる。   On the other hand, in the catalyst activity control according to the present embodiment, the waste gate valve 27 is fully opened, so that the amount of burned gas flowing through the turbine housing 152 can be minimized, and the exhaust purification catalyst 21 can be quickly moved. Temperature rise can be realized.

また、排気浄化触媒21が活性する前に、排気絞り弁22上流の排気系に残存する酸素
量が1気筒当たりの燃焼に必要な酸素量を下回った場合、すなわち触媒活性制御ルーチンのS104において酸素濃度:Ocが所定濃度:Cより低いと判定された場合には、ECU28はS108において排気絞り弁22を一時的に開弁させて、排気絞り弁22上流の排気系へ酸素を補給する。
If the amount of oxygen remaining in the exhaust system upstream of the exhaust throttle valve 22 falls below the amount of oxygen required for combustion per cylinder before the exhaust purification catalyst 21 is activated, that is, in step S104 of the catalyst activation control routine. If it is determined that the concentration: Oc is lower than the predetermined concentration: C, the ECU 28 temporarily opens the exhaust throttle valve 22 in S108 to supply oxygen to the exhaust system upstream of the exhaust throttle valve 22.

この場合、排気絞り弁22上流に滞留していた高温ガスの一部が排気絞り弁22下流の空気と入れ代わるため、排気絞り弁22上流の排気系における酸素濃度:Ocが上昇する。また、排気絞り弁22上流に滞留していた高温ガスの大部分は、排気絞り弁22上流に留まるため、排気浄化触媒21の昇温促進効果を維持することができる。   In this case, part of the high-temperature gas staying upstream of the exhaust throttle valve 22 is replaced with the air downstream of the exhaust throttle valve 22, so that the oxygen concentration: Oc in the exhaust system upstream of the exhaust throttle valve 22 increases. In addition, most of the high-temperature gas remaining upstream of the exhaust throttle valve 22 remains upstream of the exhaust throttle valve 22, so that the effect of promoting the temperature increase of the exhaust purification catalyst 21 can be maintained.

以上述べたような触媒活性制御は、排気浄化触媒21が活性した時点で終了する。具体的には、ECU28は、触媒活性制御ルーチンを繰り返し実行する過程で排気浄化触媒21の活性を判定(S103において下流側排気温度:Tdが上流側排気温度:Tu以上であると判定)すると、S109、S110の処理を実行する。   The catalyst activity control as described above ends when the exhaust purification catalyst 21 is activated. Specifically, when the ECU 28 determines the activity of the exhaust purification catalyst 21 in the process of repeatedly executing the catalyst activity control routine (determined in S103 that the downstream exhaust temperature: Td is equal to or higher than the upstream exhaust temperature: Tu), The processes of S109 and S110 are executed.

S109では、ECU28は、吸気弁8が吸気行程で開弁動作するように吸気側可変動弁機構10を制御し、排気弁9が排気行程で開弁動作するように排気側可変動弁機構11を制御し、更に排気絞り弁22を開弁制御する。次いでECU28はS110において触媒活性フラグの値を“1”に変更し、本ルーチンの実行を終了する。   In S109, the ECU 28 controls the intake side variable valve mechanism 10 so that the intake valve 8 opens in the intake stroke, and the exhaust side variable valve mechanism 11 so that the exhaust valve 9 opens in the exhaust stroke. And the exhaust throttle valve 22 is controlled to open. Next, the ECU 28 changes the value of the catalyst activation flag to “1” in S110, and ends the execution of this routine.

従って、本実施の形態によれば、排気浄化触媒21が未活性状態にあるときには排気エミッションの悪化を抑制しつつ排気浄化触媒21の早期活性を図ることが可能となる。   Therefore, according to the present embodiment, when the exhaust purification catalyst 21 is in an inactive state, it is possible to achieve early activation of the exhaust purification catalyst 21 while suppressing deterioration of exhaust emission.

本発明を適用する内燃機関の概略構成を示す図The figure which shows schematic structure of the internal combustion engine to which this invention is applied. 触媒活性制御ルーチンを示すフローチャート図Flowchart showing a catalyst activity control routine 触媒活性制御における吸排気弁の開閉動作を示すタイミングチャート図Timing chart showing opening / closing operation of intake / exhaust valve in catalyst activity control

符号の説明Explanation of symbols

1・・・・内燃機関
7・・・・排気ポート
8・・・・吸気弁
9・・・・排気弁
10・・・吸気側可変動弁機構
11・・・排気側可変動弁機構
15・・・遠心過給器
19・・・エキゾーストマニフォルド
20・・・エキゾーストパイプ
21・・・排気浄化触媒
22・・・排気絞り弁
23・・・酸素濃度センサ
24・・・上流側排気温度センサ
25・・・下流側排気温度センサ
26・・・バイパス通路
27・・・ウェストゲートバルブ
28・・・ECU
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 7 ... Exhaust port 8 ... Intake valve 9 ... Exhaust valve 10 ... Intake side variable valve mechanism 11 ... Exhaust side variable valve mechanism 15 ..Centrifuge supercharger 19 ... exhaust manifold 20 ... exhaust pipe 21 ... exhaust purification catalyst 22 ... exhaust throttle valve 23 ... oxygen concentration sensor 24 ... upstream exhaust temperature sensor 25 ..Downstream exhaust temperature sensor 26 ... Bypass passage 27 ... Wastegate valve 28 ... ECU

Claims (5)

内燃機関の排気通路に設けられた排気浄化触媒が未活性状態であるか否かを判別し、
前記排気浄化触媒が未活性状態にあるときには、吸気弁が閉弁状態を維持し且つ排気弁が吸気行程及び排気行程で開弁作動するように可変動弁機構を制御するとともに前記排気浄化触媒より下流の排気通路に設けられた排気絞り弁を閉弁状態に制御する触媒活性制御を実行することを特徴とする内燃機関の制御方法。
Determining whether or not the exhaust purification catalyst provided in the exhaust passage of the internal combustion engine is in an inactive state;
When the exhaust purification catalyst is in an inactive state, the variable valve mechanism is controlled so that the intake valve remains closed and the exhaust valve opens in the intake stroke and the exhaust stroke. A control method for an internal combustion engine, comprising: performing catalyst activity control for controlling an exhaust throttle valve provided in a downstream exhaust passage to a closed state.
前記排気浄化触媒より下流の排気温度が前記排気浄化触媒より上流の排気温度以上となったときに、前記触媒活性制御の実行を終了することを特徴とする請求項1に記載の内燃機関の制御方法。 2. The control of the internal combustion engine according to claim 1, wherein when the exhaust temperature downstream of the exhaust purification catalyst becomes equal to or higher than the exhaust temperature upstream of the exhaust purification catalyst, the execution of the catalyst activity control is terminated. Method. 前記排気通路に設けられた酸素濃度センサの検出値に基づいて排気絞り弁上流の排気通路に残存する酸素量を求め、残存酸素量が所定量未満になったときは、前記排気絞り弁を一時的に開弁させることを特徴とする請求項1に記載の内燃機関の制御方法。 The amount of oxygen remaining in the exhaust passage upstream of the exhaust throttle valve is obtained based on the detection value of the oxygen concentration sensor provided in the exhaust passage. When the residual oxygen amount is less than a predetermined amount, the exhaust throttle valve is temporarily stopped. 2. The method of controlling an internal combustion engine according to claim 1, wherein the valve is opened automatically. 前記排気通路に設けられた酸素濃度センサの検出値に基づいて排気絞り弁上流の排気通路に残存する酸素量を求め、残存酸素量が所定量未満になったときは、前記排気絞り弁を所定開度開弁させることを特徴とする請求項1に記載の内燃機関の制御方法。 The amount of oxygen remaining in the exhaust passage upstream of the exhaust throttle valve is determined based on the detection value of the oxygen concentration sensor provided in the exhaust passage. When the residual oxygen amount is less than the predetermined amount, the exhaust throttle valve is 2. The method for controlling an internal combustion engine according to claim 1, wherein the valve opening is opened. 前記触媒活性制御を実行するときは、遠心過給器のウェストゲートバルブを全開にすることを特徴とする請求項1に記載の内燃機関の制御方法。 The method for controlling an internal combustion engine according to claim 1, wherein when the catalyst activity control is executed, the wastegate valve of the centrifugal supercharger is fully opened.
JP2004148913A 2004-05-19 2004-05-19 Control method for internal combustion engine Withdrawn JP2005330864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148913A JP2005330864A (en) 2004-05-19 2004-05-19 Control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148913A JP2005330864A (en) 2004-05-19 2004-05-19 Control method for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005330864A true JP2005330864A (en) 2005-12-02

Family

ID=35485714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148913A Withdrawn JP2005330864A (en) 2004-05-19 2004-05-19 Control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005330864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099372A (en) * 2009-11-05 2011-05-19 Toyota Motor Corp Control device for internal combustion engine
JP2013534289A (en) * 2010-08-13 2013-09-02 スカニア シーブイ アクチボラグ Equipment for injecting reductant into the exhaust line of an internal combustion engine
JP2016223399A (en) * 2015-06-03 2016-12-28 ヤンマー株式会社 engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099372A (en) * 2009-11-05 2011-05-19 Toyota Motor Corp Control device for internal combustion engine
JP2013534289A (en) * 2010-08-13 2013-09-02 スカニア シーブイ アクチボラグ Equipment for injecting reductant into the exhaust line of an internal combustion engine
JP2016223399A (en) * 2015-06-03 2016-12-28 ヤンマー株式会社 engine

Similar Documents

Publication Publication Date Title
US6868668B2 (en) Internal combustion engine
JP4306642B2 (en) Internal combustion engine control system
US6829888B2 (en) Method for controlling the starting of an internal combustion engine
CN101438042A (en) Control apparatus and method of internal combustion engine
US20060201137A1 (en) Engine control equipment
EP3205865B1 (en) Control device for vehicle
EP1746274B1 (en) Fuel control system and method
JP2008138638A (en) Exhaust gas recirculation device for internal combustion engine
JP2010285981A (en) Device and method for controlling continuous variable valve lift actuator of diesel engine
US20120301365A1 (en) Exhaust purification device for internal combustion engine
US20180266344A1 (en) Internal combustion engine
US20120060480A1 (en) Exhaust gas purifiying apparatus in internal combustion engine
EP2211037B1 (en) Exhaust gas purification system for internal combustion engine
JP5287797B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
JP2005330864A (en) Control method for internal combustion engine
JP2012122411A (en) Control apparatus for internal combustion engine
US20040060285A1 (en) Control unit for internal combustion engine
JP5146560B2 (en) Exhaust gas purification device for internal combustion engine
JP2012167562A (en) Diesel engine
JP2010270612A (en) Burner device for internal combustion engine
JP6406158B2 (en) Engine control device
JP3557987B2 (en) Fuel injection device for internal combustion engine
JP2011236798A (en) Exhaust emission control device, and regeneration method thereof
JP2009002172A (en) Exhaust gas purification control device for internal combustion engine
JP2008190391A (en) Start improvement system and start improvement method of diesel engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807