[go: up one dir, main page]

JP2005329330A - Structure of window for high temperature and high pressure vessel - Google Patents

Structure of window for high temperature and high pressure vessel Download PDF

Info

Publication number
JP2005329330A
JP2005329330A JP2004150331A JP2004150331A JP2005329330A JP 2005329330 A JP2005329330 A JP 2005329330A JP 2004150331 A JP2004150331 A JP 2004150331A JP 2004150331 A JP2004150331 A JP 2004150331A JP 2005329330 A JP2005329330 A JP 2005329330A
Authority
JP
Japan
Prior art keywords
window
container
pressure
temperature
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004150331A
Other languages
Japanese (ja)
Inventor
Masahiro Watari
正博 渡
Takeshi Ueda
武志 植田
Hideki Umeda
秀樹 梅田
Gen Matsuno
玄 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004150331A priority Critical patent/JP2005329330A/en
Publication of JP2005329330A publication Critical patent/JP2005329330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the structure of a window for a high pressure and high temperature vessel which is free from crack even in a relatively thick sapphire window. <P>SOLUTION: In the structure of the window for observing the inside apace of the high temperature and high pressure vessel, the window is formed of a transparent member which has specific thickness and where a taper is formed at a circumferential part. In fixing the window to the vessel, a large diameter part is arranged inside the vessel and a small diameter part is arranged outside the vessel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温・高圧用容器の窓の構造に関し、例えばプラスチック樹脂等の物質の成分を分析するために用いる高温・高圧用容器の窓の構造に関するものである。   The present invention relates to the structure of a window of a high-temperature / high-pressure container, and for example, relates to the structure of a window of a high-temperature / high-pressure container used for analyzing a component of a substance such as a plastic resin.

プラスチック樹脂等の物質の成分を分析する際、光ファイバで容器に接続された分光器及び検出器を用いてその物質の成分を分析する。   When analyzing a component of a substance such as plastic resin, the component of the substance is analyzed using a spectroscope and a detector connected to the container with an optical fiber.

このような分析に用いられる容器として、例えば、容器内に設けられた貫通孔に分析対象物を送入し、貫通孔内に反応ガスを流入させるとともに分析対象物を加熱及び加圧し、容器に取付けられたプローブから貫通孔内の物質に対して近赤外線を出射させ、近赤外線に含まれる所定の波長を吸収させるものがある(特許文献1参照)。   As a container used for such an analysis, for example, an analysis object is fed into a through hole provided in the container, a reaction gas is allowed to flow into the through hole, and the analysis object is heated and pressurized to be put into the container. There is one in which a near infrared ray is emitted from a mounted probe to a substance in a through hole and a predetermined wavelength contained in the near infrared ray is absorbed (see Patent Document 1).

また、高圧容器内に収めた高圧ガス雰囲気中の被処理物に、光エネルギーを導入集光するもので、高圧容器の構成部材に、高圧容器の外部からの光を高圧容器内に導入する光導入部材を気密状態で取付け、該光導入部材からの出射光線を、出射面の法線方向に出射させ、そののち高圧媒質との界面において屈折作用を伴わずに集光する内部光学系を備えるものがある(特許文献2参照)。   Light that introduces and condenses light energy into an object to be processed in a high-pressure gas atmosphere contained in a high-pressure vessel. Light that introduces light from the outside of the high-pressure vessel into components of the high-pressure vessel. An introduction member is attached in an airtight state, and an internal optical system is provided that emits light rays emitted from the light introduction member in the normal direction of the emission surface and then collects the light without any refraction at the interface with the high-pressure medium. There is a thing (refer patent document 2).

特開2002−310907号公報JP 2002-310907 A 特公平7−87894号公報Japanese Examined Patent Publication No. 7-87894

分析対象物の成分分析を行うに際しては分析対象物を連続的に測定するとともに、リアルタイムにその変化を視認することが望まれている。しかしながら、従来の分析システムにおいては、近赤外線の吸収された所定の波長を分光器で分析することにより分析対象物の成分分析を行うため、近赤外線が所定の波長を容器で吸収される過程において分析対象物の成分変化をリアルタイムに視認することができない。   In performing component analysis of an analysis object, it is desired to continuously measure the analysis object and visually recognize the change in real time. However, in the conventional analysis system, the analysis of the component of the analysis object is performed by analyzing the predetermined wavelength absorbed by the near-infrared light with a spectroscope, so that the near-infrared light is absorbed by the container at the predetermined wavelength. The component change of the analysis object cannot be visually recognized in real time.

図5(a,b)はこのような分析装置の従来例を示す構成図であり、図5(a)は分析装置の全体構成図、図(b)は容器のA−A断面構成図である。これらの図において、20は円柱状の容器であり、軸心に貫通孔21(図b参照)が形成されている。容器20の一方の端面には上蓋22が、他端には下蓋45が配置されており、それぞれねじ27により固定される。   FIGS. 5A and 5B are configuration diagrams showing a conventional example of such an analyzer, FIG. 5A is an overall configuration diagram of the analyzer, and FIG. 5B is an AA cross-sectional configuration diagram of the container. is there. In these drawings, reference numeral 20 denotes a cylindrical container, and a through hole 21 (see FIG. B) is formed in the axial center. An upper lid 22 is disposed on one end surface of the container 20, and a lower lid 45 is disposed on the other end, and are fixed by screws 27.

上蓋22の中心には温度センサ(図示省略)が挿入されている。41はT継手で貫通孔21内に外部からガスを導入することが可能となっている。
容器の両側からは一対のプローブ54,55が接続されている。窓蓋58はネジにより気密に固定されておりメンテナンス時に取外されてプローブ先端の汚れを洗浄可能となっている。
A temperature sensor (not shown) is inserted in the center of the upper lid 22. Reference numeral 41 denotes a T joint that can introduce gas into the through hole 21 from the outside.
A pair of probes 54 and 55 are connected from both sides of the container. The window lid 58 is airtightly fixed with screws, and is removed during maintenance so that dirt on the probe tip can be cleaned.

上述の構成において、例えばプラスチック樹脂の物性を測定する場合は、粉体や粒状等に形成した所定の量の樹脂を貫通孔21の中に入れて所定の温度に加熱してT継手を介して例えばNやCOガス等を流して樹脂から発生するガスと反応させる。
このような装置において前述したように容器内の反応状態を視認する場合は窓蓋58としてサファイアや石英などの透明部材を使用する。
In the above-described configuration, for example, when measuring physical properties of a plastic resin, a predetermined amount of resin formed in powder or granular form is put into the through-hole 21 and heated to a predetermined temperature via a T joint. For example, N 2 or CO 2 gas is allowed to flow to react with the gas generated from the resin.
In such an apparatus, when the reaction state in the container is visually confirmed as described above, a transparent member such as sapphire or quartz is used as the window lid 58.

このような構成の容器の窓蓋としては一般にコバールなど鉄・ニッケル系合金の恒弾性部材が用いられている。コバールは硬質ガラスとほぼ同等の熱膨張係数を有している。
図6(a,b,c)はコバール(封着金属)2に円状の孔2aを形成し、この孔よりも大きな直径に形成された窓としてのサファイア1をロー3によりロー付けして固定する場合を示すものである。図(a)はコバール(封着金属)2に形成された孔2aにサファイア1を取付けた状態を示す断面斜視図、図(b)はロー付けにより窓1に矢印A方向から一方の面のみに圧縮力が発生している状態を示しており、図(c)はロー付けした窓1に圧力Bが印加されたときに窓1の縁部に上向きの力が発生している状態を示している。
As the window lid of the container having such a configuration, an iron / nickel alloy constant elastic member such as Kovar is generally used. Kovar has a thermal expansion coefficient almost equal to that of hard glass.
6A, 6B and 6C, a circular hole 2a is formed in a kovar (sealing metal) 2, and sapphire 1 as a window formed in a diameter larger than the hole is brazed with a row 3. FIG. The case of fixing is shown. Fig. (A) is a cross-sectional perspective view showing a state in which sapphire 1 is attached to a hole 2a formed in Kovar (sealing metal) 2, and Fig. (B) is only one surface from the direction of arrow A to window 1 by brazing (C) shows a state in which an upward force is generated at the edge of the window 1 when the pressure B is applied to the brazed window 1. ing.

このような状態では圧力が加わる矢印AやCの部分ではサファイアの厚さが薄い場合は封着可能であるがサファイアは圧縮力に対しては強いが引張り力に弱く、厚さが厚い場合はひび割れが生じると言う問題があった。
従って本発明が解決しようとする課題は、比較的に厚いサファイア窓においても割れの生じない高温・高耐圧用窓の構造を提供することを目的とする。
In such a state, when the sapphire is thin at the portion of arrows A and C where pressure is applied, sealing is possible, but when sapphire is strong against compressive force but weak against tensile force, There was a problem that cracking occurred.
Therefore, the problem to be solved by the present invention is to provide a structure of a high temperature and high pressure resistant window which does not crack even in a relatively thick sapphire window.

このような課題を達成するために、本発明のうち請求項1記載の発明は、
高温・高圧容器の内部空間を観測するための窓の構造であって、該窓は所定の厚さを有し周縁部にテーパが形成された透明部材からなり、前記容器に前記窓を固定するに際しては前記窓の大径部を容器の内側、小径部を容器の外側に配置したことを特徴とする。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
A window structure for observing the internal space of a high-temperature / high-pressure vessel, the window comprising a transparent member having a predetermined thickness and having a taper at the periphery, and fixing the window to the vessel In this case, the large diameter portion of the window is arranged inside the container, and the small diameter portion is arranged outside the container.

請求項2においては請求項1記載の高温・高圧用容器の窓の構造において、
前記容器は金属、透明部材はサファイアであって前記窓のテーパ部がロー付けにより固定されていることを特徴とする。
請求項3においては請求項1又は2に記載の高温・高圧用容器の窓の構造において、
前記窓の周囲に小径側から大径側に向かって所定の深さの溝を設けたことを特徴とする。
In claim 2, in the structure of the window of the container for high temperature and high pressure according to claim 1,
The container is metal, the transparent member is sapphire, and the tapered portion of the window is fixed by brazing.
In claim 3, in the structure of the window of the container for high temperature / high pressure according to claim 1 or 2,
A groove having a predetermined depth is provided around the window from the small diameter side toward the large diameter side.

本発明によれば次のような効果がある。請求項1,2に記載の高温・高圧用容器によれば、
周縁部にテーパが形成された窓として機能する所定の厚さを有するサファイアからなり、容器に窓をロー付けにより固定するに際しては、窓の大径部を容器の内側、小径部を容器の外側に配置したので、窓の縁部に均等に応力が印加され割れの発生を防止することができる。
請求項3に記載の高温・高圧用容器によれば、
窓の周囲に小径側から大径側に向かって所定の深さの溝を設けたので、窓の縁部に印加される応力を吸収可能となり割れの発生を防止することができる。
The present invention has the following effects. According to the high-temperature / high-pressure container according to claim 1,
When the window is fixed to the container by brazing, the large diameter part of the window is inside the container and the small diameter part is outside the container. Therefore, the stress is evenly applied to the edge of the window and cracking can be prevented.
According to the high temperature / high pressure container according to claim 3,
Since a groove having a predetermined depth is provided around the window from the small diameter side to the large diameter side, the stress applied to the edge of the window can be absorbed and the occurrence of cracks can be prevented.

以下本発明を図面を用いて詳細に説明する。図1は本発明に係る高温・高圧用容器用窓の要部を示す構成図である。
図1(a,b)において、(a)は平面図、(b)は(a)図のA−A断面図である。これらの図において、1は窓となる透明部材からなるサファイア、2は封着金属からなるコバールである。
この例ではコバールの板圧cは例えば10.5mm程度、縦横(a,b)の寸法はA=60,B=50mm程度である。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a main part of a high-temperature / high-pressure container window according to the present invention.
1A and 1B, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. In these drawings, 1 is sapphire made of a transparent member to be a window, and 2 is kovar made of a sealing metal.
In this example, the plate pressure c of Kovar is about 10.5 mm, for example, and the vertical and horizontal (a, b) dimensions are about A = 60 and B = 50 mm.

この封着金属2の中央部には大径部e=30mm、小径部f=25mm程度のテ−パ孔が形成されている。6は小径孔側から大経孔側に向かって形成された直径g=40mm、幅1mm、深さd=6mm程度の溝である。   A taper hole having a large diameter portion e = 30 mm and a small diameter portion f = 25 mm is formed in the central portion of the sealing metal 2. Reference numeral 6 denotes a groove having a diameter g = 40 mm, a width 1 mm, and a depth d = 6 mm formed from the small diameter hole side toward the large meridian side.

透明部材からなるサファイア1は封着金属2に形成されたテーパ孔4に挿入されるもので、大径部eが30mm、小径部fが25mm程度、厚さ10mm程度に形成されている。5は封着金属を図5に示すような高圧・高温容器に取り付けるための取付け孔である。7は窓1の周囲に形成されたロー溜りで、このロー溜りに粉又はリボン状のロー材を配置して700〜900℃程度に加熱して高温にすることにより円周部にローをしみ込ませて接合する。
なお、封着金属が常温に戻る際にサファイアの縁部には圧縮応力が働くがこの力は縁部に均等に加わるため割れの発生を防止することができる。
The sapphire 1 made of a transparent member is inserted into a tapered hole 4 formed in the sealing metal 2 and has a large diameter portion e of 30 mm, a small diameter portion f of about 25 mm, and a thickness of about 10 mm. Reference numeral 5 denotes an attachment hole for attaching the sealing metal to a high pressure / high temperature container as shown in FIG. 7 is a low reservoir formed around the window 1. A powder or ribbon-like brazing material is placed in the low reservoir and heated to about 700 to 900 ° C. to raise the temperature to soak the low in the circumference. Let them join together.
Note that when the sealing metal returns to room temperature, compressive stress acts on the edge of sapphire, but this force is evenly applied to the edge so that cracking can be prevented.

このサファイアを接合した封着金属は例えば図5に示した容器20の窓蓋58の部分に取付け孔5を介して窓の大径部を容器の内側、小径部を容器の外側に位置させてねじにより固定する。
そして容器は数百度の高温に加熱され数十Mpa程度の内圧になるが、窓の大径部が容器の内側、小径部が容器の外側に位置しているため十分に強度が保たれる。また、封着金属が内圧を受けて歪が生じた場合は、その歪は溝6の部分で吸収されサファイア1に発生する応力を少なくすることができる。
The sealing metal to which this sapphire is bonded is formed, for example, by placing the large diameter portion of the window inside the container and the small diameter portion outside the container through the attachment hole 5 in the portion of the window lid 58 of the container 20 shown in FIG. Secure with screws.
The container is heated to a high temperature of several hundred degrees and has an internal pressure of about several tens of MPa, but the strength is sufficiently maintained because the large diameter portion of the window is located inside the container and the small diameter portion is located outside the container. When the sealing metal is distorted due to internal pressure, the strain is absorbed by the groove 6 and the stress generated in the sapphire 1 can be reduced.

図2(a,b)は他の応用例を示すもので、(a)は反応セル(高圧容器等)の断面図、(b)は封着金属(蓋)の断面図である。封着金属(コバール)2aの中央部にはサファイアからなる透明部材1が図1と同様に形成され、その縁部がロー付けされている。封着金属は反応セルの蓋としてねじにより固定されている。   2A and 2B show another application example. FIG. 2A is a cross-sectional view of a reaction cell (such as a high-pressure vessel), and FIG. 2B is a cross-sectional view of a sealing metal (lid). A transparent member 1 made of sapphire is formed in the center of the sealing metal (Kovar) 2a in the same manner as in FIG. 1, and its edge is brazed. The sealing metal is fixed with screws as a lid of the reaction cell.

図(b)はこのような反応セルの内部で反応が起こり高圧が加わった場合の圧力の分布を示すもので、矢印A(内部)方向から封着金属2に圧力が印加された場合、その圧力はサファイア1の縁部(B)方向に均等に加わり割れの発生を防止することができる。   FIG. (B) shows the pressure distribution when a reaction occurs inside such a reaction cell and a high pressure is applied. When pressure is applied to the sealing metal 2 from the direction of the arrow A (inside), The pressure can be applied evenly in the edge (B) direction of the sapphire 1 to prevent cracking.

図3、図4は更に他の応用例を示すもので、図3はプローブ(またはフローセルなど)10の部品として用いた場合を示し、このような場合は観測対象との間を隔てる壁11に設けたねじ孔にプローブ10の先端をねじ込むことにより比較的簡単に内部観察を行うことができる。   3 and 4 show still another application example, and FIG. 3 shows a case where it is used as a component of a probe (or a flow cell) 10. In such a case, the wall 11 that separates the observation object is used. Internal observation can be performed relatively easily by screwing the tip of the probe 10 into the provided screw hole.

図4は近赤外分光分析計のプローブに応用したもので、流路12の両端にサファイア1の窓を設け、この窓にそれぞれ光ファイバ13の先端を接続した場合を示している。このような構成によれば流路内を流れる流体の成分を分析可能である。   FIG. 4 shows an application to a probe of a near-infrared spectrometer, and shows a case where windows of sapphire 1 are provided at both ends of the flow path 12 and the tip of the optical fiber 13 is connected to each window. According to such a configuration, the component of the fluid flowing in the flow path can be analyzed.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。例えば、透明部材としてのサファイアは石英などであってもよく、また、図示した応用例に限らず各種の高温・高圧容器の窓に適用可能である。更に図1に示した各部の寸法に限るものではない。
したがって本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. For example, sapphire as the transparent member may be quartz or the like, and is not limited to the illustrated application example, and can be applied to windows of various high temperature / high pressure containers. Furthermore, it is not restricted to the dimension of each part shown in FIG.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明の高温・高圧容器用窓の一実施例を示す要部構成図である。It is a principal part block diagram which shows one Example of the window for high temperature / high pressure containers of this invention. 他の応用例を示す断面図である。It is sectional drawing which shows another application example. 他の応用例を示す断面図である。It is sectional drawing which shows another application example. 他の応用例を示す断面図である。It is sectional drawing which shows another application example. 従来の高温・高圧用窓の構造を示す説明図である。It is explanatory drawing which shows the structure of the conventional high temperature and high voltage | pressure window. 従来の高温・高圧用窓の構造を示す説明図である。It is explanatory drawing which shows the structure of the conventional high temperature and high voltage | pressure window.

符号の説明Explanation of symbols

1 窓(サファイア)
2 封着金属(コバール)
3 ロー
4 テーパ孔
5 取付け孔
6 溝
7 ロー溜り
10 プローブ
11 流路
12 光ファイバ
20 容器
21 貫通孔
22 上蓋
45 下蓋
54 第1プローブ
55 第2プローブ
58 窓蓋






















1 Window (Sapphire)
2 Sealing metal (Kovar)
3 Low 4 Tapered hole 5 Mounting hole 6 Groove 7 Low pool 10 Probe 11 Channel 12 Optical fiber 20 Container 21 Through hole 22 Upper lid 45 Lower lid 54 First probe 55 Second probe 58 Window lid






















Claims (3)

高温・高圧容器の内部空間を観測するための窓の構造であって、該窓は所定の厚さを有し周縁部にテーパが形成された透明部材からなり、前記容器に前記窓を固定するに際しては前記窓の大径部を容器の内側、小径部を容器の外側に配置したことを特徴とする高温・高圧用容器の窓の構造。   A window structure for observing the internal space of a high-temperature / high-pressure vessel, the window comprising a transparent member having a predetermined thickness and having a tapered periphery, and fixing the window to the vessel In this case, the structure of the window of the high-temperature / high-pressure container is characterized in that the large-diameter portion of the window is disposed inside the container and the small-diameter portion is disposed outside the container. 前記容器は金属、透明部材はサファイアであって前記窓のテーパ部がロー付けにより固定されていることを特徴とする請求項1記載の高温・高圧用容器の窓の構造。   2. The structure of a high-temperature / high-pressure container window according to claim 1, wherein the container is made of metal, the transparent member is sapphire, and the tapered portion of the window is fixed by brazing. 前記窓の周囲に小径側から大径側に向かって所定の深さの溝を設けたことを特徴とする請求項1又は請求項2に記載の高温・高圧用容器の窓の構造。
The high-temperature / high-pressure container window structure according to claim 1 or 2, wherein a groove having a predetermined depth is provided around the window from the small diameter side toward the large diameter side.
JP2004150331A 2004-05-20 2004-05-20 Structure of window for high temperature and high pressure vessel Pending JP2005329330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150331A JP2005329330A (en) 2004-05-20 2004-05-20 Structure of window for high temperature and high pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150331A JP2005329330A (en) 2004-05-20 2004-05-20 Structure of window for high temperature and high pressure vessel

Publications (1)

Publication Number Publication Date
JP2005329330A true JP2005329330A (en) 2005-12-02

Family

ID=35484323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150331A Pending JP2005329330A (en) 2004-05-20 2004-05-20 Structure of window for high temperature and high pressure vessel

Country Status (1)

Country Link
JP (1) JP2005329330A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298474A (en) * 2006-05-02 2007-11-15 Rohm Co Ltd Microchip
JP2012032381A (en) * 2010-06-28 2012-02-16 Horiba Ltd Optical measuring equipment
JP2012522253A (en) * 2009-04-17 2012-09-20 シュルンベルジェ ホールディングス リミテッド High pressure high temperature optical spectroscopic cell
WO2013019325A1 (en) * 2011-08-01 2013-02-07 Eaton Corporation Vacuum switch including an insulating body having a number of transparent portions made of a single crystal alumina
WO2017038140A1 (en) * 2015-08-28 2017-03-09 並木精密宝石株式会社 Observation-use window member, observation device, pressure vessel, pipe, and turbidimeter each provided with observation-use window member, and method for manufacturing observation-use window member
GB2570441A (en) * 2017-12-21 2019-07-31 Teledyne E2V Uk Ltd Vacuum chamber, parts therefor and method for manufacturing the same
CN111964626A (en) * 2020-09-19 2020-11-20 罗峰 High-temperature thickness measuring system for pressure container
CN112403392A (en) * 2020-12-17 2021-02-26 吉林大学 A high-temperature and high-pressure reactor for in-situ optical measurement of large-capacity liquid environments
CN112403393A (en) * 2020-12-17 2021-02-26 吉林大学 A high temperature and high pressure in-situ optical observation reactor shell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298474A (en) * 2006-05-02 2007-11-15 Rohm Co Ltd Microchip
US8564768B2 (en) 2009-04-17 2013-10-22 Schlumberger Technology Corporation High pressure and high temperature optical spectroscopy cell using spherical surfaced lenses in direct contact with a fluid pathway
JP2012522253A (en) * 2009-04-17 2012-09-20 シュルンベルジェ ホールディングス リミテッド High pressure high temperature optical spectroscopic cell
JP2012032381A (en) * 2010-06-28 2012-02-16 Horiba Ltd Optical measuring equipment
CN103718264A (en) * 2011-08-01 2014-04-09 伊顿公司 Vacuum switch including an insulating body having a number of transparent portions made of a single crystal alumina
US8440929B2 (en) 2011-08-01 2013-05-14 Eaton Corporation Vacuum switch including an insulating body having a number of transparent portions made of a single crystal alumina
WO2013019325A1 (en) * 2011-08-01 2013-02-07 Eaton Corporation Vacuum switch including an insulating body having a number of transparent portions made of a single crystal alumina
WO2017038140A1 (en) * 2015-08-28 2017-03-09 並木精密宝石株式会社 Observation-use window member, observation device, pressure vessel, pipe, and turbidimeter each provided with observation-use window member, and method for manufacturing observation-use window member
JPWO2017038140A1 (en) * 2015-08-28 2018-12-27 アダマンド並木精密宝石株式会社 Observation window member, observation device provided with observation window member, pressure vessel, piping, turbidimeter, and method for manufacturing observation window member
GB2570441A (en) * 2017-12-21 2019-07-31 Teledyne E2V Uk Ltd Vacuum chamber, parts therefor and method for manufacturing the same
GB2570441B (en) * 2017-12-21 2022-03-09 Teledyne Uk Ltd Vacuum chamber, parts therefor and method for manufacturing the same
CN111964626A (en) * 2020-09-19 2020-11-20 罗峰 High-temperature thickness measuring system for pressure container
CN112403392A (en) * 2020-12-17 2021-02-26 吉林大学 A high-temperature and high-pressure reactor for in-situ optical measurement of large-capacity liquid environments
CN112403393A (en) * 2020-12-17 2021-02-26 吉林大学 A high temperature and high pressure in-situ optical observation reactor shell
CN112403392B (en) * 2020-12-17 2021-10-08 吉林大学 A high-temperature and high-pressure reactor for in-situ optical measurement of large-capacity liquid environments

Similar Documents

Publication Publication Date Title
US6831745B2 (en) Optical immersion probe incorporating a spherical lens
KR101722013B1 (en) Raw material fluid density detector
JP5885699B2 (en) Fixing structure of brittle destructible light transmitting window plate and fixing method of brittle destructible light transmitting window plate using the same
JP2005329330A (en) Structure of window for high temperature and high pressure vessel
US6115528A (en) Raman fiber optic probe assembly for use in hostile environments
US9816914B2 (en) Flow cell
JP2014219294A5 (en)
JP5714977B2 (en) Optical measuring device
US20170167989A1 (en) Thermal control apparatus
US20110006770A1 (en) Method and device for measuring a sample in an NMR spectrometer using a coupling configuration with a press fit cell having a capillary envelope fastener
US6831739B2 (en) Compression-bonded probe window
KR101292190B1 (en) The Sealing and Leak Test Method of an Irradiation Test Fuel Equipped with High Temperature Thermocouple
US6127770A (en) Pressure wave sensor
US6603545B2 (en) Optical measurement probe with leak minimization features suited to process control applications
US20230228679A1 (en) Optical measurement cell, optical analyzer, window forming member, and method of manufacturing optical measurement cell
JP6460452B2 (en) GC column connection with flat connection to the meshing device
JPH07209158A (en) High pressure equipment
US20110292677A1 (en) Highly inert fluid-handling optical systems
CN107064060A (en) A kind of fiber array optic probe for the field measurement that burns
WO2023281816A1 (en) Optical measurement cell, optical analysis device, window forming member, and method for manufacturing optical measurement cell
US9618447B2 (en) Optical transmission cell with minimized spurious absorption
CN109632480B (en) Method and device for detecting ceramic antenna window
EP2032969B1 (en) Optical reflection probe
Kretkowski et al. High Throughput Apparatus for Testing of Silicon Nitride Membranes Used in Preparation of Samples for Atmospheric Scanning Electron Microscopy
Winiberg et al. Design and performance of indium seals for size-constrained tunable laser spectrometers