[go: up one dir, main page]

JP2005322430A - Ternary alloy, catalyst for fuel cell, and fuel cell - Google Patents

Ternary alloy, catalyst for fuel cell, and fuel cell Download PDF

Info

Publication number
JP2005322430A
JP2005322430A JP2004137209A JP2004137209A JP2005322430A JP 2005322430 A JP2005322430 A JP 2005322430A JP 2004137209 A JP2004137209 A JP 2004137209A JP 2004137209 A JP2004137209 A JP 2004137209A JP 2005322430 A JP2005322430 A JP 2005322430A
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
ptrus
alcohol
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004137209A
Other languages
Japanese (ja)
Inventor
Yukiko Yamamoto
友紀子 山本
Hideo Daimon
英夫 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004137209A priority Critical patent/JP2005322430A/en
Publication of JP2005322430A publication Critical patent/JP2005322430A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new PtRu catalyst having high CO poisoning resistance and containing a third element insoluble in acid. <P>SOLUTION: The catalyst for a fuel cell carries ternary alloy fine particles represented by general formula PtRuS (in the formula, the content of S is in the range of 5-50 mole percent to the total number of moles of PtRuS) on a carbon substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料電池用触媒に関する。更に詳細には、本発明は直接メタノール型燃料電池或いは高分子電解質型燃料電池に好適な微細粒径均一性に優れた白金系触媒と、それを用いた燃料電池及びその製造方法に関する。   The present invention relates to a fuel cell catalyst. More specifically, the present invention relates to a platinum-based catalyst excellent in fine particle size uniformity suitable for a direct methanol fuel cell or a polymer electrolyte fuel cell, a fuel cell using the same, and a method for producing the same.

従来、電気エネルギーの大部分は、火力発電、水力発電又は原子力発電などにより供給されてきた。しかし、火力発電は石油や石炭などの化石燃料を燃焼させるため大規模な環境汚染をもたらすばかりか、石油などの資源枯渇が問題視されるようになってきた。また、水力発電は大規模なダム建設を必要とし、それによる自然破壊が懸念されるばかりか、建設適地も限られている。原子力発電は事故の際の放射能汚染が致命的であるばかりか、寿命を迎えた原子炉の廃炉問題などもあり、世界的には建設が抑制される方向に動いている。   Conventionally, most of electric energy has been supplied by thermal power generation, hydroelectric power generation or nuclear power generation. However, thermal power generation not only causes large-scale environmental pollution because it burns fossil fuels such as oil and coal, but depletion of resources such as oil has become a problem. In addition, hydropower generation requires large-scale dam construction, and not only is there concern about the destruction of nature, but there are also limited areas for construction. Nuclear power generation is not only fatal in the radioactive contamination at the time of the accident, but also has a problem of decommissioning nuclear reactors that have reached the end of their life, and is moving in a direction that suppresses construction worldwide.

大規模な施設を必要とせず、環境汚染も起こさない発電方法として風力発電や太陽光発電が世界各国で利用されるようになり、我が国でも一部の地域で実際に風力発電や太陽光発電が実用化されている。しかし、風力発電は風が吹かなければ発電できず、また太陽光発電は日光照射がなければ発電できないなど、自然現象に左右され、安定的な電力供給ができないという欠点がある。また、風力発電では、風の強さにより、発電した電力の周波数が変動し、電気機器の故障原因となっていた。   Wind power generation and solar power generation have been used around the world as power generation methods that do not require large-scale facilities and do not cause environmental pollution. In Japan, wind power generation and solar power generation are actually used in some areas. It has been put into practical use. However, wind power generation has a drawback in that it cannot generate power without wind, and solar power generation cannot generate power without sunlight, and is affected by natural phenomena and cannot provide stable power supply. Further, in wind power generation, the frequency of the generated power fluctuates due to the strength of the wind, causing a failure of electrical equipment.

そこで、最近は、水素エネルギーから電気エネルギーを取り出すことができる発電装置例えば、水素燃料電池などの開発研究が活発になってきた。水素は水を分解することにより得られ、地球上に無尽蔵に存在するばかりか、物質量当たりに含まれる化学エネルギー量が大きく、しかも、エネルギー源として利用するときに有害物質や地球温暖化ガスを発生しないという利点を有する。   Therefore, recently, research and development on a power generation device that can extract electric energy from hydrogen energy, such as a hydrogen fuel cell, has become active. Hydrogen is obtained by decomposing water and not only exists infinitely on the earth, but also contains a large amount of chemical energy per amount of substance. Moreover, when it is used as an energy source, harmful substances and global warming gases are used. It has the advantage that it does not occur.

水素ガスの代わりに、メタノールを使用する燃料電池の研究も活発に行われている。液体燃料であるメタノールを直接使用するメタノール燃料電池は、燃料の取り扱い易さに加え、安価な燃料ということで家庭用や産業用の比較的小出力規模の電源として期待されている。メタノールー酸素燃料電池の理論出力電圧は、水素燃料のものとほぼ同じ1.2V(25℃)であり、原理的には同様の特性が期待できる。   Research on fuel cells using methanol instead of hydrogen gas is also actively conducted. A methanol fuel cell that directly uses methanol, which is a liquid fuel, is expected to be a relatively small output power source for household and industrial use because it is an inexpensive fuel in addition to easy handling of the fuel. The theoretical output voltage of the methanol-oxygen fuel cell is 1.2 V (25 ° C.) which is almost the same as that of hydrogen fuel, and in principle the same characteristics can be expected.

高分子固体電解質型燃料電池や直接メタノール型燃料電池ではアノードで水素やメタノールを酸化させると同時に、カソードでは酸素を還元して電気エネルギーを取り出している。これらの酸化還元反応は常温では進み難いため、燃料電池には触媒が使用されている。初期の燃料電池では白金(Pt)を炭素基材上に析出担持させ触媒として使用してきた。Ptは水素酸化やメタノール酸化に対して充分な触媒活性を有しており、これまで炭素基材上へのPt触媒の析出雰囲気、つまり、析出時の外部因子を制御することにより、Pt触媒粒子を出来るだけ小さくし、Pt触媒の反応表面積を高めて使用することが試みられてきた。例えば、特許文献1では、アルコールでPtイオンを還元してPtを炭素基材上に担持させる際、反応溶液中に保護コロイドとしてポリビニルアルコールを添加し、Pt触媒粒子表面に保護コロイドを弱く吸着させ、Pt触媒の微粒子化を図っている。この方法では、Pt触媒表面に保護コロイドが吸着している。このため、Pt微粒子生成後に、水素気流中で400℃で熱処理を行っているが、この処理方法では保護コロイドを完全にPt触媒表面から取り去ることは出来ず、Pt触媒の性能を完全に発揮させることができないという問題点があった。   In a solid polymer electrolyte fuel cell and a direct methanol fuel cell, hydrogen and methanol are oxidized at the anode, and at the same time oxygen is reduced at the cathode to extract electric energy. Since these oxidation-reduction reactions are difficult to proceed at room temperature, a catalyst is used in the fuel cell. In early fuel cells, platinum (Pt) has been deposited on a carbon substrate and used as a catalyst. Pt has sufficient catalytic activity for hydrogen oxidation and methanol oxidation, and so far, by controlling the precipitation atmosphere of the Pt catalyst on the carbon substrate, that is, by controlling the external factors at the time of precipitation, Pt catalyst particles Attempts have been made to make the Pt catalyst as small as possible and increase the reaction surface area of the Pt catalyst. For example, in Patent Document 1, when Pt ions are reduced with alcohol and Pt is supported on a carbon substrate, polyvinyl alcohol is added as a protective colloid to the reaction solution, and the protective colloid is weakly adsorbed on the surface of the Pt catalyst particles. , Pt catalyst is made fine. In this method, the protective colloid is adsorbed on the surface of the Pt catalyst. For this reason, although heat treatment is performed at 400 ° C. in a hydrogen stream after the Pt fine particles are produced, the protective colloid cannot be completely removed from the surface of the Pt catalyst, and the performance of the Pt catalyst is fully exhibited. There was a problem that it was not possible.

また、Pt触媒には、メタノール酸化過程で発生する一酸化炭素(CO)、或いは水素ガス中に含まれるCOがPt触媒上に化学吸着し、最終的には触媒活性が失活する問題があった。この現象はCOによる触媒被毒と呼ばれている。COによるPt触媒の被毒を抑えるため、Ptへの添加元素の探索が行われた。その結果、PtにRuを添加することにより、COによる触媒被毒が大きく軽減されることが発見された(例えば、特許文献2参照)。   In addition, the Pt catalyst has a problem that carbon monoxide (CO) generated in the methanol oxidation process or CO contained in hydrogen gas is chemically adsorbed on the Pt catalyst, and eventually the catalytic activity is deactivated. It was. This phenomenon is called catalyst poisoning by CO. In order to suppress the poisoning of the Pt catalyst by CO, an element added to Pt was searched. As a result, it has been discovered that catalyst poisoning by CO is greatly reduced by adding Ru to Pt (see, for example, Patent Document 2).

このRuはそれ自身に水素やメタノールの酸化活性は無いが、Pt上に被着したCOを素早くCO2に酸化して逃がす働きを持った助触媒である。直接メタノール型燃料電池を例に挙げると、下記式(1)に示されるように、Pt触媒粒子上で脱プロトン反応が起こり、Pt触媒粒子上にCOが化学吸着する。これがCOにより触媒被毒である。しかし、Ruを含んだPtRu触媒では、下記式(2)で示されるように、Ruが水と反応してPt−Ruを生成し、次いで、下記式(3)で示されるように、Pt触媒粒子表面に化学吸着したCOをCO2に酸化して除去する。
Pt+CHOH → Pt-CO +4H+4e式(1)
Ru+HO → Ru-OH+H+e 式(2)
Pt-CO+Ru-OH → Pt+Ru+H+e+CO↑ 式(3)
Although this Ru itself has no oxidation activity of hydrogen or methanol, it is a cocatalyst having a function of quickly oxidizing CO deposited on Pt to CO2 and letting it escape. Taking a direct methanol fuel cell as an example, as shown in the following formula (1), a deprotonation reaction occurs on the Pt catalyst particles, and CO is chemically adsorbed on the Pt catalyst particles. This is catalyst poisoning by CO. However, in the PtRu catalyst containing Ru, as shown in the following formula (2), Ru reacts with water to produce Pt-Ru, and then, as shown in the following formula (3), the Pt catalyst CO chemisorbed on the particle surface is oxidized to CO2 and removed.
Pt + CH 3 OH → Pt-CO + 4H + + 4e - formula (1)
Ru + H 2 O → Ru—OH + H + + e Formula (2)
Pt—CO + Ru—OH → Pt + Ru + H + + e + CO 2 ↑ Equation (3)

PtにRuを添加したPtRu触媒はPtのCO被毒を軽減させたが、CO濃度が高い雰囲気では未だ助触媒としての能力が不十分であるばかりか、Ruは貴金属元素であり、高価なことから、PtRu触媒に第三添加元素を加えるか、又はRuを除いたPt系触媒の開発が試行された。例えば、特許文献3には、PtRu合金にMoを添加したPtRuMo三元合金が記載されている。しかし、PtRu合金にMoを添加すると、耐CO被毒性は若干高まったが、スルフォン酸によりMoが溶解し、固体高分子電解質膜中のプロトンとイオン交換が起こり、その結果、プロトン導電率が低下する問題があった。また、特許文献4には、Ruの代わりに、Mn及びFeを添加したPtMnFe三元合金が記載されている。しかし、特許文献3の発明と同様に、耐CO被毒性は若干高まったが、Mn及びFeがスルフォン酸に溶解し、固体高分子電解質膜中のプロトンとイオン交換が起こり、その結果、プロトン導電率が低下する問題があった。また、一方では、Ptに種々の添加元素を入れると、触媒粒子中のPtの割合が減少し、触媒活性が低下するのではないかという懸念もあった。   PtRu catalyst with Ru added to Pt has reduced CO poisoning of Pt, but it is not only insufficient as a cocatalyst in an atmosphere with high CO concentration, but Ru is a noble metal element and is expensive. Therefore, an attempt was made to develop a Pt-based catalyst in which a third additive element was added to the PtRu catalyst or Ru was removed. For example, Patent Document 3 describes a PtRuMo ternary alloy in which Mo is added to a PtRu alloy. However, when Mo was added to the PtRu alloy, the CO poisoning resistance increased slightly, but Mo was dissolved by sulfonic acid, and ion exchange with protons in the solid polymer electrolyte membrane occurred, resulting in a decrease in proton conductivity. There was a problem to do. Patent Document 4 describes a PtMnFe ternary alloy in which Mn and Fe are added instead of Ru. However, like the invention of Patent Document 3, the CO poisoning resistance is slightly increased, but Mn and Fe are dissolved in sulfonic acid, and ion exchange occurs with protons in the solid polymer electrolyte membrane, resulting in proton conduction. There was a problem that the rate decreased. On the other hand, there is also a concern that when various additive elements are added to Pt, the ratio of Pt in the catalyst particles decreases, and the catalytic activity may decrease.

特開昭56−155645号公報JP-A-56-155645 特開昭57−5266号公報JP-A-57-5266 特開昭58−35872号公報JP 58-35872 A 特開平5−15780号公報Japanese Patent Laid-Open No. 5-15780

従って、本発明の目的は、耐CO被毒性に優れ、かつ、酸に溶解しない第三元素を含む新規なPtRu触媒を提供することである。   Accordingly, an object of the present invention is to provide a novel PtRu catalyst containing a third element that has excellent resistance to CO poisoning and does not dissolve in an acid.

前記課題を解決するための手段として、第1に、下記の一般式、
PtRuS
(前記式中、Sの含有率はPtRuの総モル数に対して、0.01モル%〜50モル%の範囲内である。)で示されることを特徴とする三元系合金を提供する。
As means for solving the above problems, first, the following general formula:
PtRuS
(Wherein the content of S is in the range of 0.01 mol% to 50 mol% with respect to the total number of moles of PtRu), a ternary alloy is provided. .

前記課題を解決するための手段として、第2に、炭素基材上に、下記の一般式、
PtRuS
で示される三元系合金微粒子を担持したことを特徴とする燃料電池用触媒を提供する。
Secondly, as a means for solving the above problems, on the carbon substrate, the following general formula:
PtRuS
The catalyst for fuel cells characterized by carrying | supporting the ternary system alloy fine particle shown by these is provided.

前記課題を解決するための手段として、第3に、前記PtRuS三元系合金微粒子のSの含有率がPtRuの総モル数に対して、0.01モル%〜50モル%の範囲内であることを特徴とする前記第2に記載の燃料電池用触媒を提供する。   Thirdly, as a means for solving the above problem, the S content of the PtRuS ternary alloy fine particles is in the range of 0.01 mol% to 50 mol% with respect to the total number of moles of PtRu. The fuel cell catalyst according to the second aspect is provided.

前記課題を解決するための手段として、第4に、前記PtRuS三元系合金微粒子の粒径が1nm〜5nmの範囲内であることを特徴とする前記第2に記載の燃料電池用触媒を提供する。   As a means for solving the above-mentioned problem, fourthly, the fuel cell catalyst according to the second aspect, wherein the PtRuS ternary alloy fine particles have a particle size in the range of 1 nm to 5 nm. To do.

前記課題を解決するための手段として、第5に、燃料電池用触媒の製造方法において、
(1)一種類以上のアルコールからなる有機溶剤中に炭素基材を分散させるステップと、
(2)前記炭素基材が分散されたアルコール系有機溶剤中に、Ptの塩又は錯体と、Ruの塩又は錯体と、S原子含有化合物を溶解させるステップと、
(3)炭素粉末が分散されたアルコール溶液のpH値を2〜5の範囲に調整するステップと、
(4)不活性雰囲気中で、アルコールによる加熱還流を行うステップとからなり、
前記炭素基材上に、下記の一般式、
PtRuS
で示される三元系合金微粒子を担持した燃料電池用触媒を生成することを特徴とする燃料電池用触媒の製造方法を提供する。
As means for solving the above problems, fifthly, in a method for producing a fuel cell catalyst,
(1) dispersing a carbon base material in an organic solvent composed of one or more alcohols;
(2) dissolving a Pt salt or complex, a Ru salt or complex, and an S atom-containing compound in an alcohol-based organic solvent in which the carbon substrate is dispersed;
(3) adjusting the pH value of the alcohol solution in which the carbon powder is dispersed to a range of 2 to 5,
(4) a step of heating and refluxing with alcohol in an inert atmosphere,
On the carbon substrate, the following general formula:
PtRuS
A fuel cell catalyst carrying the ternary alloy fine particles represented by the formula (1) is produced.

前記課題を解決するための手段として、第6に、前記ステップ(2)において、前記S原子含有化合物はPtの塩又は錯体とRuの塩又は錯体の合計モル数に対して、5モル%〜50モル%であることを特徴とする前記第5に記載の燃料電池用触媒の製造方法を提供する。   As means for solving the above problems, sixthly, in the step (2), the S atom-containing compound is 5 mol% to 5 mol% based on the total number of moles of the Pt salt or complex and the Ru salt or complex. 5. The method for producing a fuel cell catalyst as described in 5 above, wherein the content is 50 mol%.

前記課題を解決するための手段として、第7に、前記ステップ(3)において、硫酸を滴下することによりアルコール溶液のpH値を2〜5に調整することを特徴とする前記第55に記載の燃料電池用触媒の製造方法を提供する。   As a means for solving the above-mentioned problem, seventhly, in the step (3), the pH value of the alcohol solution is adjusted to 2 to 5 by dropping sulfuric acid in the step (3). A method for producing a fuel cell catalyst is provided.

前記課題を解決するための手段として、第8に、前記ステップ(2)において、前記S原子含有化合物は+6価未満の原子価のS原子を含有する化合物であることを特徴とする前記第5に記載の燃料電池用触媒の製造方法を提供する。   As a means for solving the above-mentioned problems, eighthly, in the step (2), the S atom-containing compound is a compound containing an S atom having a valence less than +6. The manufacturing method of the catalyst for fuel cells as described in 1 above is provided.

前記課題を解決するための手段として、第9に、前記S原子含有化合物は、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、過硫酸塩、ピロ硫酸塩及びピロ亜硫酸塩からなる群から選択される少なくとも一種類の化合物であることを特徴とする前記第8に記載の燃料電池用触媒の製造方法を提供する。   As a means for solving the above-mentioned problems, ninthly, the S atom-containing compound is selected from the group consisting of thiosulfate, sulfite, bisulfite, persulfate, pyrosulfate and pyrosulfite. The method for producing a fuel cell catalyst according to the eighth aspect, characterized in that it is at least one kind of compound.

前記課題を解決するための手段として、第10に、前記第2に記載の炭素担持PtRuS合金微粒子触媒をメタノール極に用いたことを特徴とするメタノール燃料電池を提供する。   As means for solving the above problems, tenthly, a methanol fuel cell is provided, wherein the carbon-supported PtRuS alloy fine particle catalyst described in the second is used for a methanol electrode.

本発明によれば、アルコール還元法により炭素基材上にPtRu触媒微粒子を析出させる際、PtRu触媒微粒子中にS原子を添加し、PtRuS三元系合金とすることにより、触媒粒子の粒径が従来のPtRu二元系合金に比べて小さくなり、その結果、反応面積が増大し、燃料電池における触媒活性を高めることができる。しかも、S原子は強酸性の高分子固体導電膜に由来する酸にも溶解しないため、三元系合金の特性が失われることもない。   According to the present invention, when the PtRu catalyst fine particles are deposited on the carbon substrate by the alcohol reduction method, S atoms are added to the PtRu catalyst fine particles to obtain a PtRuS ternary alloy, thereby reducing the particle size of the catalyst particles. Compared with the conventional PtRu binary alloy, the reaction area is increased, and as a result, the catalytic activity in the fuel cell can be increased. Moreover, since the S atom is not dissolved in the acid derived from the strongly acidic polymer solid conductive film, the characteristics of the ternary alloy are not lost.

本発明により、PtRu二元系合金に対してS原子を添加して三元系合金とすると、Ruの添加効果は維持しつつ、PtRu触媒粒子が炭素基材上に析出する際、そのS添加元素自身が粒子の内部から作用し、析出するPtRu触媒粒子を微細化し、触媒の表面積を増大させ、触媒活性が向上されることが発見された。更に、燃料電池のアノードとカソードとの間には一般的に、高分子固体導電膜としてナフィオン膜が使用されるが、ナフィオン膜のスルホン酸基の水素原子がHとなってプロトン導電性を発揮するにつれてナフィオン膜と電極触媒との界面は強酸性になる。従来のPtRu触媒に添加されていた第三金属元素(例えば、Mo、Mn、Fe,Co等)は耐酸性が無いため溶けてHと変換してしまうが、S元素は従来の第三金属元素の合金とは異なり、耐酸性があるため酸に溶けず、燃料電池用の触媒添加元素として極めて好適であることも発見された。 According to the present invention, when S atoms are added to a PtRu binary alloy to form a ternary alloy, the addition of S is performed when PtRu catalyst particles are precipitated on the carbon substrate while maintaining the effect of adding Ru. It has been discovered that the element itself acts from the inside of the particles to refine the deposited PtRu catalyst particles, increase the surface area of the catalyst, and improve the catalytic activity. In addition, a Nafion membrane is generally used as a polymer solid conductive film between the anode and the cathode of the fuel cell. However, the hydrogen atom of the sulfonic acid group of the Nafion membrane becomes H + and proton conductivity is increased. As it is exerted, the interface between the Nafion membrane and the electrode catalyst becomes strongly acidic. The third metal element (for example, Mo, Mn, Fe, Co, etc.) added to the conventional PtRu catalyst has no acid resistance and is dissolved and converted into H + , but the S element is the conventional third metal. It has also been discovered that, unlike an elemental alloy, it has acid resistance and therefore does not dissolve in acid, making it extremely suitable as a catalyst additive element for fuel cells.

本発明による燃料電池用の触媒として使用できる新規な合金は下記の一般式により示される。
PtRuS
前記式中、Sの含有率はPtRuの総モル数に対して、0.01モル%〜50モル%の範囲内であることが好ましい。Sの含有率が50モル%超ではPtRuの含有率が低くなり過ぎ、電気出力に悪影響を及ぼすので好ましくない。
A novel alloy that can be used as a catalyst for a fuel cell according to the present invention is represented by the following general formula:
PtRuS
In said formula, it is preferable that the content rate of S exists in the range of 0.01 mol%-50 mol% with respect to the total mol number of PtRu. If the S content exceeds 50 mol%, the PtRu content is too low, which adversely affects the electrical output.

また、前記三元系合金におけるPtとRuの比率は特に限定されないが、20at%≦Pt≦80at%、20at%≦Ru≦80at%の範囲内であることが好ましい。Ruが20at%未満の場合、十分にCO被毒特性を改善させることができないなどの不都合が生じるので好ましくない。また、Ptが80at%超の場合、Ptの消費量が多く、コスト高になるなどの不都合が生じるので好ましくない。一般的に、40at%≦Pt≦60at%の範囲内であり、60at%≦Ru≦40at%の範囲内であることが一層好ましい。   The ratio of Pt and Ru in the ternary alloy is not particularly limited, but is preferably in the range of 20 at% ≦ Pt ≦ 80 at% and 20 at% ≦ Ru ≦ 80 at%. If Ru is less than 20 at%, such a disadvantage that the CO poisoning characteristics cannot be sufficiently improved is not preferable. Further, when Pt exceeds 80 at%, the amount of consumption of Pt is large and disadvantages such as high cost occur, which is not preferable. Generally, it is in the range of 40 at% ≦ Pt ≦ 60 at%, and more preferably in the range of 60 at% ≦ Ru ≦ 40 at%.

本発明のPtRuS触媒微粒子の製造方法は基本的に、(1)一種類以上のアルコールからなる有機溶剤中に炭素基材を分散させるステップと、(2)前記炭素基材が分散されたアルコール系有機溶剤中に、Ptの塩又は錯体と、Ruの塩又は錯体と、S原子含有化合物を溶解させるステップと、(3)炭素粉末が分散されたアルコール溶液のpH値を2〜5の範囲に調整するステップと、(4)不活性雰囲気中で、アルコールによる加熱還流を行うステップとからなる。   The method for producing PtRuS catalyst fine particles of the present invention basically includes (1) a step of dispersing a carbon substrate in an organic solvent composed of one or more kinds of alcohol, and (2) an alcohol system in which the carbon substrate is dispersed. A step of dissolving a salt or complex of Pt, a salt or complex of Ru, and an S atom-containing compound in an organic solvent; and (3) the pH value of the alcohol solution in which the carbon powder is dispersed is in the range of 2 to 5. And (4) heating and refluxing with alcohol in an inert atmosphere.

図1は前記の製造方法により得られた本発明のPtRuS触媒微粒子1の模式的断面図である。炭素基材3に担持されたPtRu粒子5の外表面にS原子7が配位している。S原子7は大気中の酸素により酸化され、酸化物として存在することもある。このPtRu粒子5の外表面S原子7が配位することにより、PtRu粒子5の成長が止められ、PtRuS触媒微粒子1全体が微細化されるものと思われる。   FIG. 1 is a schematic cross-sectional view of a PtRuS catalyst fine particle 1 of the present invention obtained by the above production method. S atoms 7 are coordinated to the outer surface of the PtRu particles 5 supported on the carbon substrate 3. The S atom 7 is oxidized by oxygen in the atmosphere and may exist as an oxide. It is considered that the outer surface S atoms 7 of the PtRu particles 5 are coordinated, so that the growth of the PtRu particles 5 is stopped and the entire PtRuS catalyst fine particles 1 are miniaturized.

白金、ルテニウム及び硫黄原子が溶解されたアルコール溶液のpH値を2〜5に調整することにより、PtRuS微粒子表面の組成及び粒径が最適化し、前記の反応式(6)で示したCOの酸化反応が効率的に進行し、メタノール酸化活性が高まるものと思われる。pH2未満では粒径が増加してメタノール酸化に有効な表面積が減少すると共に、Ptの多い微粒子組成となり、触媒活性が低下する。一方、pH5超の場合、粒径の減少によりメタノール酸化に不活性な結晶面が表面に現れるため、触媒活性が低下する。特に、合金微粒子の粒径が1nmよりも小さくなりすぎると、結晶の安定な面、例えば(111)面を触媒表面に出そうとするので、活性が低下する。   By adjusting the pH value of the alcohol solution in which platinum, ruthenium and sulfur atoms are dissolved to 2 to 5, the composition and particle size of the surface of the PtRuS fine particles are optimized, and the oxidation of CO shown in the above reaction formula (6) It is considered that the reaction proceeds efficiently and the methanol oxidation activity increases. If the pH is less than 2, the particle size increases and the effective surface area for methanol oxidation decreases, and the fine particle composition with a large amount of Pt results, resulting in a decrease in catalytic activity. On the other hand, when the pH is more than 5, the crystal surface inactive to methanol oxidation appears on the surface due to the decrease in particle size, so that the catalytic activity decreases. In particular, if the particle diameter of the alloy fine particles is too small, the activity decreases because a stable surface of the crystal, for example, the (111) surface tends to appear on the catalyst surface.

本発明の製造方法により生成されたPtRuS触媒微粒子の粒径は、S原子の存在と酸性pH処理との相乗効果により従来のPtRu触媒微粒子の粒径よりも小さくなる。一般的に、本発明のPtRuS触媒微粒子の粒径は1nm〜5nmの範囲内である。本発明のPtRuS触媒微粒子の別の特徴は、粒径の分布範囲が従来のPtRu触媒微粒子の粒径分布範囲に比べて狭いことである。従来の方法で製造されたPtRu触媒微粒子の粒径分布の中心は5nm超になり、粒子の更なる微細化は困難であった。これに対し、本発明では、PtRu合金にS原子を加え、PtRuS三元合金とすることによりこの問題点を解決することに成功した。   The particle size of the PtRuS catalyst fine particles produced by the production method of the present invention is smaller than the particle size of the conventional PtRu catalyst fine particles due to the synergistic effect of the presence of S atoms and the acidic pH treatment. Generally, the particle diameter of the PtRuS catalyst fine particles of the present invention is in the range of 1 nm to 5 nm. Another feature of the PtRuS catalyst fine particles of the present invention is that the particle size distribution range is narrower than the particle size distribution range of conventional PtRu catalyst fine particles. The center of the particle size distribution of the PtRu catalyst fine particles produced by the conventional method exceeds 5 nm, and it is difficult to further refine the particles. In contrast, in the present invention, this problem was successfully solved by adding S atoms to the PtRu alloy to obtain a PtRuS ternary alloy.

本発明で使用されるPtの塩又は錯体は、例えば、酢酸白金、硝酸白金、白金エチレンジアミン錯体、白金トリフェニルホスフィン錯体、白金アンミン錯体、ビス(アセチルアセトナト)白金(II)及び六塩化白金酸などである。これらの白金化合物は単独で使用することもできるし又は2種類以上を併用することもできる。   Examples of the salt or complex of Pt used in the present invention include platinum acetate, platinum nitrate, platinum ethylenediamine complex, platinum triphenylphosphine complex, platinum ammine complex, bis (acetylacetonato) platinum (II) and hexachloroplatinic acid. Etc. These platinum compounds can be used alone or in combination of two or more.

本発明で使用されるRuの塩又は錯体は、例えば、塩化ルテニウム水和物、酢酸ルテニウム、硝酸ルテニウム、ルテニウムトリフェニルホスフィン錯体、ルテニウムアンミン錯体、ルテニウムエチレンジアミン錯体、ルテニウムアセチルアセトナート錯体(例えば、トリス(アセチルアセトナト)ルテニウム(III)等)などである。これらのパラジウム化合物は単独で使用することもできるし又は2種類以上を併用することもできる。   Examples of the Ru salt or complex used in the present invention include ruthenium chloride hydrate, ruthenium acetate, ruthenium nitrate, ruthenium triphenylphosphine complex, ruthenium ammine complex, ruthenium ethylenediamine complex, ruthenium acetylacetonate complex (for example, tris (Acetylacetonato) ruthenium (III) and the like). These palladium compounds can be used alone or in combination of two or more.

本発明で使用するSの塩は、+6価未満の原子価のS原子含有化合物であることが好ましい。+6価の原子価を有するS原子は、Neと同じ電子配置であるため、オクテット則により化学的に安定となるので本発明の目的には適さない。従って、+6価のS原子を有する硫酸(HSO)は本発明では使用できない。本発明で使用できるSの塩は、例えば、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、過硫酸塩、ピロ硫酸塩又はピロ亜硫酸塩などである。塩としては、アルカリ金属塩などが好ましい。例えば、チオ硫酸ナトリウムなどが好適である。 The salt of S used in the present invention is preferably an S atom-containing compound having a valence of less than +6. An S atom having a valence of +6 is not suitable for the purpose of the present invention because it has the same electronic configuration as Ne and is chemically stable by the octet rule. Therefore, sulfuric acid having +6 valent S atoms (H 2 SO 4 ) cannot be used in the present invention. Examples of the salt of S that can be used in the present invention include thiosulfate, sulfite, bisulfite, persulfate, pyrosulfate, and pyrosulfite. As the salt, an alkali metal salt or the like is preferable. For example, sodium thiosulfate is suitable.

アルコール溶液のpH値を2〜5に調整するために使用される酸としては沸点が200℃以上の酸であることが好ましい。その理由は、アルコールの加熱還流が190℃程度の温度で行われるからである。沸点が200℃未満の酸の場合、アルコールの加熱還流の際に消散しまう可能性があり、pH値を所定範囲内に維持することが困難になる。本発明で使用する酸としては沸点が290℃の硫酸が好ましい。   The acid used for adjusting the pH value of the alcohol solution to 2 to 5 is preferably an acid having a boiling point of 200 ° C. or higher. This is because the alcohol is heated and refluxed at a temperature of about 190 ° C. In the case of an acid having a boiling point of less than 200 ° C., it may be dissipated when the alcohol is heated to reflux, making it difficult to maintain the pH value within a predetermined range. The acid used in the present invention is preferably sulfuric acid having a boiling point of 290 ° C.

アルコール系溶媒に合金微粒子形成金属の供給源を溶解させ、アルコール系溶媒の沸点近傍の温度で還流すると、アルコール(R-OH)が加熱還流中に金属イオンを還元し、自らは酸化されてアルデヒド(R-CHO)に変化する。   When the alloy fine particle-forming metal source is dissolved in an alcohol solvent and refluxed at a temperature near the boiling point of the alcohol solvent, the alcohol (R—OH) reduces the metal ions during the heating and reflux, and is oxidized and aldehyde It changes to (R-CHO).

本発明の加熱還流処理で使用されるとしては、沸点の高いアルコールが高温での還流が出来るため還元速度が高まり好ましい。使用に適したアルコールとしては、エチルアルコール、エチレングリコール、グリセリン、プロピレングリコール、イソアミルアルコール、n-アミルアルコール、sec-ブチルアルコール、n-ブチルアルコール、イソブチルアルコール、アリルアルコール、n-プロピルアルコール、2-エトキシアルコール及び1,2-ヘキサデカンジオールが挙げられる。これらアルコールは1種類又は2種類以上を適宜選択して使用することができる。通常、アルコール単独では、その酸化還元電位の大きさから遷移金属の還元剤としては十分ではない。しかし、反応過程で触媒作用を有する貴金属のPtが存在するため、Ptと遷移金属イオンを共存させ、且つアルコールの沸点で加熱還流させることによりRuなどの遷移金属も同時に還元析出し、遷移金属と貴金属から成る金属合金微粒子(PtRu)が生成すると考えられる。また、エチルアルコールの様な沸点の低いアルコールでも加圧下(オートクレープ法)で還流すれば使用する事が出来る。還流の際、微粒子の酸化を防止するため、反応系内を窒素或いはアルゴン等の不活性ガスで置換しながら還流を行うことが好ましい。   As used in the heat-refluxing treatment of the present invention, alcohol having a high boiling point can be refluxed at a high temperature, so that the reduction rate is increased. Suitable alcohols for use include ethyl alcohol, ethylene glycol, glycerin, propylene glycol, isoamyl alcohol, n-amyl alcohol, sec-butyl alcohol, n-butyl alcohol, isobutyl alcohol, allyl alcohol, n-propyl alcohol, 2- Examples include ethoxy alcohol and 1,2-hexadecanediol. These alcohols can be used by appropriately selecting one kind or two or more kinds. Normally, alcohol alone is not sufficient as a transition metal reducing agent because of its redox potential. However, since there is a noble metal Pt that has a catalytic action in the reaction process, Pt and a transition metal ion coexist, and by heating and refluxing at the boiling point of the alcohol, a transition metal such as Ru is simultaneously reduced and precipitated. It is considered that metal alloy fine particles (PtRu) made of noble metal are generated. In addition, alcohol having a low boiling point such as ethyl alcohol can be used if it is refluxed under pressure (autoclave method). In refluxing, in order to prevent oxidation of the fine particles, it is preferable to perform reflux while replacing the inside of the reaction system with an inert gas such as nitrogen or argon.

アルコール加熱還流処理における加熱温度及び還流時間は使用するアルコールの種類に応じて変化する。しかし、一般的に、加熱温度は190℃程度であり、還流時間は30分間〜6時間の範囲内である。反応の終点は溶液の色が黒色に変化することにより確認できる。出発物質のRu及びPtイオンが全て還元されたことが確認されたら加熱還流処理を終了する。   The heating temperature and reflux time in the alcohol heating reflux treatment vary depending on the type of alcohol used. However, in general, the heating temperature is about 190 ° C., and the reflux time is in the range of 30 minutes to 6 hours. The end point of the reaction can be confirmed by changing the color of the solution to black. When it is confirmed that all of the Ru and Pt ions of the starting material have been reduced, the heat reflux treatment is terminated.

本発明において、Pt及びRuの塩又は錯体とSの塩は、少なくとも一種離以上のアルコールからなる有機溶剤に溶解される。このアルコールは、アルコールのみからなる場合の他、水又はアルコール混和性の他の有機溶剤を含有するものであることもできる。アルコールは第一級アルコール又は第二級アルコールが好ましい。例えば、エチルアルコール、エチレングリコール、グリセリン、プロピレングリコール、イソアミルアルコール、n-アミルアルコール、sec-ブチルアルコール、n-ブチルアルコール、イソブチルアルコール、アリルアルコール、n-プロピルアルコール、2-エトキシアルコール及び1,2-ヘキサデカンジオールなどが挙げられる。アルコール混和性の他の有機溶剤は例えば、エーテルジオキサン、テトラヒドロフラン、N-メチルピロリドン、アセトンなどが挙げられる。アルコールは二種類以上を併用することもできる。Pt及びRuの塩又は錯体及びSの塩溶解用のアルコールは加熱還流処理に使用されるアルコールと同種のアルコールを使用することが好ましいが、異なる種類のアルコールも使用できる。   In the present invention, the salt or complex of Pt and Ru and the salt of S are dissolved in an organic solvent composed of at least one alcohol. The alcohol may contain water or other organic solvent miscible with alcohol in addition to the case of consisting of alcohol alone. The alcohol is preferably a primary alcohol or a secondary alcohol. For example, ethyl alcohol, ethylene glycol, glycerin, propylene glycol, isoamyl alcohol, n-amyl alcohol, sec-butyl alcohol, n-butyl alcohol, isobutyl alcohol, allyl alcohol, n-propyl alcohol, 2-ethoxy alcohol, and 1,2 -Hexadecanediol etc. are mentioned. Other organic solvents miscible with alcohol include ether dioxane, tetrahydrofuran, N-methylpyrrolidone, acetone and the like. Two or more types of alcohol can be used in combination. As the alcohol for dissolving the salt or complex of Pt and Ru and the salt of S, it is preferable to use the same type of alcohol as that used in the heating and refluxing process, but a different type of alcohol can also be used.

本発明のアルコール還元法において使用される担持用炭素粉末は、60m/g〜3000m/g程度の比表面積を有するものが好ましく、具体的には導電性カーボンブラック、アセチレンブラック、グラファイト、カーボンナノチユーブなどが好適である。担持用炭素粉末の使用量は一般的に、合金形成金属に対して、2〜20倍の範囲内であることが好ましい。炭素粉末の使用量が2倍未満の場合、所期の効果が得られない。一方、炭素粉末の使用量が20倍超の場合、目的とする効果が飽和し、不経済となる。 For supporting the carbon powder used in the alcohol reduction method of the present invention is preferably one having a specific surface area of about 60m 2 / g~3000m 2 / g, specifically conductive carbon black, acetylene black, graphite, carbon Nanotubes and the like are suitable. In general, the amount of the carbon powder for supporting is preferably within a range of 2 to 20 times the alloy-forming metal. If the amount of carbon powder used is less than twice, the desired effect cannot be obtained. On the other hand, when the amount of carbon powder used is more than 20 times, the intended effect is saturated and uneconomical.

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルとチオ硫酸ナトリウム0.34ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、溶液をpH3に調整した。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuS合金微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.34 mmol of sodium thiosulfate were dissolved in 100 ml of ethylene glycol, respectively, 100 ml of ethylene glycol solution in which 0.5 g of (Vulcan XC-72R) was dispersed was added. An aqueous sulfuric acid solution was added dropwise to adjust the solution to pH 3. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuS alloy fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例1Comparative Example 1

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、溶液をpH3に調整した。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRu合金微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   1.69 mmol of bis (acetylacetonato) platinum (II) and 1.69 mmol of tris (acetylacetonato) ruthenium (III) were dissolved in 100 ml of ethylene glycol, respectively, and carbon base (Vulcan XC-72R) 0. 100 ml of ethylene glycol solution in which 5 g was dispersed was added. An aqueous sulfuric acid solution was added dropwise to adjust the solution to pH 3. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRu alloy fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例2Comparative Example 2

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルとトリス(アセチルアセトナト)鉄(III)0.34ミリモルとをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、溶液をpH3に調整した。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuFe合金微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   100 ml of ethylene each with 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.34 mmol of tris (acetylacetonato) iron (III) 100 ml of an ethylene glycol solution in which 0.5 g of a carbon substrate (Vulcan XC-72R) was dispersed was added in a glycol. An aqueous sulfuric acid solution was added dropwise to adjust the solution to pH 3. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuFe alloy fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例3Comparative Example 3

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルとトリス(アセチルアセトナト)コバルト(III)0.34ミリモルとをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、溶液をpH3に調整した。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuCo合金微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   100 ml of ethylene each with 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.34 mmol of tris (acetylacetonato) cobalt (III) 100 ml of an ethylene glycol solution in which 0.5 g of a carbon substrate (Vulcan XC-72R) was dispersed was added in a glycol. An aqueous sulfuric acid solution was added dropwise to adjust the solution to pH 3. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuCo alloy fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例4Comparative Example 4

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルとビス(アセチルアセトナト)ニッケル(II)0.34ミリモルとをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、溶液をpH3に調整した。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuNi合金微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   100 ml of ethylene each of 1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.34 mmol of bis (acetylacetonato) nickel (II) 100 ml of an ethylene glycol solution in which 0.5 g of a carbon substrate (Vulcan XC-72R) was dispersed was added in a glycol. An aqueous sulfuric acid solution was added dropwise to adjust the solution to pH 3. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuNi alloy fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

比較例5Comparative Example 5

ビス(アセチルアセトナト)白金(II)1.69ミリモルとトリス(アセチルアセトナト)ルテニウム(III)1.69ミリモルと塩化ビスマス(II)0.34ミリモルとをそれぞれ100mlのエチレングリコールに溶解させ、炭素基材(バルカンXC−72R)0.5gを分散させた100mlのエチレングリコール溶液を加えた。硫酸水溶液を滴下し、溶液をpH3に調整した。窒素雰囲気下、200℃でこの溶液を攪拌しながら還流し、PtRuBi合金微粒子を炭素基材上に担持させた。反応終了後、濾過、洗浄して乾燥させ触媒を得た。   1.69 mmol of bis (acetylacetonato) platinum (II), 1.69 mmol of tris (acetylacetonato) ruthenium (III) and 0.34 mmol of bismuth (II) chloride are dissolved in 100 ml of ethylene glycol, respectively. 100 ml of ethylene glycol solution in which 0.5 g of carbon substrate (Vulcan XC-72R) was dispersed was added. An aqueous sulfuric acid solution was added dropwise to adjust the solution to pH 3. This solution was refluxed with stirring at 200 ° C. in a nitrogen atmosphere, and PtRuBi alloy fine particles were supported on the carbon substrate. After completion of the reaction, the mixture was filtered, washed and dried to obtain a catalyst.

実施例1で得られた炭素担持PtRuS合金微粒子触媒と比較例1で得られた炭素担持PtRu合金微粒子触媒の表面を透過型電子顕微鏡で観察した。結果を図2に示す。(a)は炭素担持PtRu合金微粒子触媒の電顕写真であり、(b)は炭素担持PtRuS合金微粒子触媒の電顕写真である。電顕写真における黒色〜灰黒色部分は合金粒子であり、薄灰色又は灰白色部分は炭素担体である。(a)の電顕写真から明らかなように、PtRu合金微粒子は粒径が2nm程度のものも存在するが、同時に粒径が10nm超のものや凝集塊も存在する。これに対し、(b)の電顕写真によれば、本発明のPtRuS合金微粒子の場合、粒径は殆どが5nm未満であり、しかも粒子が均一に分散し、凝集塊は殆ど存在していない。   The surfaces of the carbon-supported PtRuS alloy fine particle catalyst obtained in Example 1 and the carbon-supported PtRu alloy fine particle catalyst obtained in Comparative Example 1 were observed with a transmission electron microscope. The results are shown in FIG. (A) is an electron micrograph of a carbon-supported PtRu alloy fine particle catalyst, and (b) is an electron micrograph of a carbon-supported PtRuS alloy fine particle catalyst. The black to grayish black portions in the electron micrographs are alloy particles, and the light gray or grayish white portions are carbon carriers. As is clear from the electron micrograph of (a), some PtRu alloy fine particles have a particle size of about 2 nm, but at the same time there are particles with a particle size exceeding 10 nm and aggregates. On the other hand, according to the electron micrograph of (b), in the case of the PtRuS alloy fine particles of the present invention, the particle size is almost less than 5 nm, the particles are uniformly dispersed, and there are almost no aggregates. .

(a)及び(b)の電顕写真を元に、PtRu合金微粒子の粒径分布とPtRuS合金微粒子の粒径分布を測定した。結果を図3に示す。本発明のPtRuS合金微粒子の場合、粒径分布の中心値が2〜3nm付近に存在しバラツキが小さい。これに対して、比較例1のPtRu合金微粒子の場合、粒径分布の中心値は6〜8nm付近に存在し、バラツキが大きい。   Based on the electron micrographs of (a) and (b), the particle size distribution of PtRu alloy fine particles and the particle size distribution of PtRuS alloy fine particles were measured. The results are shown in FIG. In the case of the PtRuS alloy fine particles of the present invention, the central value of the particle size distribution exists in the vicinity of 2 to 3 nm, and the variation is small. On the other hand, in the case of the PtRu alloy fine particles of Comparative Example 1, the central value of the particle size distribution exists in the vicinity of 6 to 8 nm, and the variation is large.

実施例1で得られた炭素担持PtRuS合金微粒子触媒及び比較例1〜5でそれぞれ得られた炭素担持PtRu合金微粒子触媒について、メタノール酸化特性を測定した。測定方法を以下に示す。各炭素担持合金微粒子とイオン交換水とナフィオン溶液(アルドリッチ社製)を混合し、撹拌した後、その粘度を調整して、触媒層用インクとした。これをカーボンペーパー上に塗布し、乾燥後ホットプレスし、メタノール極を作製した。また、上記と同じ方法にて、白金担持カーボンを含む空気極を作製した。空気極室には酸化剤ガスとして空気、メタノール極室には、燃料としてメタノールと電解液である硫酸水溶液を流通させながら、メタノール酸化電流測定を行った。測定結果を図4に示す。   The methanol oxidation characteristics of the carbon-supported PtRuS alloy fine particle catalyst obtained in Example 1 and the carbon-supported PtRu alloy fine particle catalyst obtained in Comparative Examples 1 to 5 were measured. The measuring method is shown below. Each carbon-supported alloy fine particle, ion-exchanged water, and Nafion solution (manufactured by Aldrich) were mixed and stirred, and the viscosity was adjusted to obtain an ink for a catalyst layer. This was coated on carbon paper, dried and hot pressed to produce a methanol electrode. Moreover, the air electrode containing platinum carrying | support carbon was produced by the same method as the above. Methanol oxidation current measurement was performed while circulating air as an oxidant gas in the air electrode chamber and methanol and an aqueous sulfuric acid solution as an electrolyte in the methanol electrode chamber. The measurement results are shown in FIG.

図4に示された結果から、本発明の炭素担持PtRuS合金微粒子触媒は、同様な条件で合成した炭素担持PtRu合金微粒子触媒(比較例1)に比べ、メタノール酸化電流が低い電位から流れ、活性の大幅な向上が確認できる。これは触媒の微粒化が活性の向上に寄与したものと考えられる。また、PtRuにS以外の第三元素を添加した系において、その添加元素がFe、Co、Niからなる遷移金属の場合(比較例2〜4)、高分子固体導電膜のナフィオン膜由来の酸によって遷移金属が溶出し、メタノール酸化電流は殆ど流れなかった。また、添加元素がBiからなる遷移金属の場合(比較例5)、Biがメタノール酸化サイトを覆ってしまい、メタノール酸化活性が失われた。   From the results shown in FIG. 4, the carbon-supported PtRuS alloy fine particle catalyst of the present invention flows from a lower potential than the carbon-supported PtRu alloy fine particle catalyst (Comparative Example 1) synthesized under the same conditions. A significant improvement can be confirmed. This is considered that the atomization of the catalyst contributed to the improvement of the activity. Further, in a system in which a third element other than S is added to PtRu, when the added element is a transition metal composed of Fe, Co, and Ni (Comparative Examples 2 to 4), the acid derived from the Nafion film of the polymer solid conductive film Caused the transition metal to elute, and almost no methanol oxidation current flowed. Further, when the additive element was a transition metal made of Bi (Comparative Example 5), Bi covered the methanol oxidation site, and the methanol oxidation activity was lost.

本発明の炭素担持PtRuS合金微粒子からなる燃料電池用触媒は、直接メタノール型燃料電池(DMFC)として特に有用であるが、固体高分子型燃料電池(PEFC)の触媒としても使用できる。   The fuel cell catalyst comprising the carbon-supported PtRuS alloy fine particles of the present invention is particularly useful as a direct methanol fuel cell (DMFC), but can also be used as a catalyst for a polymer electrolyte fuel cell (PEFC).

本発明のPtRuS触媒微粒子の模式的断面図である。It is a typical sectional view of PtRuS catalyst fine particles of the present invention. (a)は比較例1で得られたPtRu触媒微粒子表面の電子顕微鏡写真であり、(b)は実施例1で得られたPtRuS触媒微粒子表面の電子顕微鏡写真である。(A) is an electron micrograph of the surface of the PtRu catalyst fine particles obtained in Comparative Example 1, and (b) is an electron micrograph of the surface of the PtRuS catalyst fine particles obtained in Example 1. 図2における電子顕微鏡写真による各触媒微微粒子の粒径分布を示す特性図である。It is a characteristic view which shows the particle size distribution of each catalyst fine particle by the electron micrograph in FIG. 実施例1及び比較例1〜5でそれぞれ得られた各合金微粒子触媒のメタノール酸化活性を比較した特性図である。It is the characteristic view which compared the methanol oxidation activity of each alloy fine particle catalyst obtained in Example 1 and Comparative Examples 1-5, respectively.

符号の説明Explanation of symbols

1 本発明のPtRuS触媒微粒子
3 炭素基材
5 PtRu粒子
7 S原子
1 PtRuS catalyst fine particles of the present invention 3 Carbon substrate 5 PtRu particles 7 S atoms

Claims (10)

下記の一般式、
PtRuS
(前記式中、Sの含有率はPtRuの総モル数に対して、0.01モル%〜50モル%の範囲内である。)で示されることを特徴とする三元系合金。
The following general formula:
PtRuS
(In the above formula, the S content is in the range of 0.01 mol% to 50 mol% with respect to the total number of moles of PtRu).
炭素基材上に、下記の一般式、
PtRuS
で示される三元系合金微粒子を担持したことを特徴とする燃料電池用触媒。
On the carbon substrate, the following general formula:
PtRuS
A fuel cell catalyst characterized by supporting ternary alloy fine particles represented by
前記PtRuS三元系合金微粒子のSの含有率がPtRuの総モル数に対して、0.01モル%〜50モル%の範囲内であることを特徴とする請求項2に記載の燃料電池用触媒。 3. The fuel cell according to claim 2, wherein the S content of the PtRuS ternary alloy fine particles is within a range of 0.01 mol% to 50 mol% with respect to the total number of moles of PtRu. catalyst. 前記PtRuS三元系合金微粒子の粒径が1nm〜5nmの範囲内であることを特徴とする請求項2に記載の燃料電池用触媒。 3. The fuel cell catalyst according to claim 2, wherein a particle diameter of the PtRuS ternary alloy fine particles is in a range of 1 nm to 5 nm. 燃料電池用触媒の製造方法において、
(1)一種類以上のアルコールからなる有機溶剤中に炭素基材を分散させるステップと、
(2)前記炭素基材が分散されたアルコール系有機溶剤中に、Ptの塩又は錯体と、Ruの塩又は錯体と、S原子含有化合物を溶解させるステップと、
(3)炭素粉末が分散されたアルコール溶液のpH値を2〜5の範囲に調整するステップと、
(4)不活性雰囲気中で、アルコールによる加熱還流を行うステップとからなり、
前記炭素基材上に、下記の一般式、
PtRuS
で示される三元系合金微粒子を担持した燃料電池用触媒を生成することを特徴とする燃料電池用触媒の製造方法。
In the method for producing a fuel cell catalyst,
(1) dispersing a carbon base material in an organic solvent composed of one or more alcohols;
(2) dissolving a Pt salt or complex, a Ru salt or complex, and an S atom-containing compound in an alcohol-based organic solvent in which the carbon substrate is dispersed;
(3) adjusting the pH value of the alcohol solution in which the carbon powder is dispersed to a range of 2 to 5,
(4) a step of heating and refluxing with alcohol in an inert atmosphere,
On the carbon substrate, the following general formula:
PtRuS
A fuel cell catalyst carrying the ternary alloy fine particles represented by the formula (1) is produced.
前記ステップ(2)において、前記S原子含有化合物はPtの塩又は錯体とRuの塩又は錯体の合計モル数に対して、5モル%〜50モル%であることを特徴とする請求項5に記載の燃料電池用触媒の製造方法。 6. The step (2), wherein the S atom-containing compound is 5 mol% to 50 mol% with respect to the total number of moles of the salt or complex of Pt and the salt or complex of Ru. The manufacturing method of the catalyst for fuel cells of description. 前記ステップ(3)において、硫酸を滴下することによりアルコール溶液のpH値を2〜5に調整することを特徴とする請求項5に記載の燃料電池用触媒の製造方法。 6. The method for producing a fuel cell catalyst according to claim 5, wherein in step (3), the pH value of the alcohol solution is adjusted to 2 to 5 by dropping sulfuric acid. 前記ステップ(2)において、前記S原子含有化合物は+6価未満の原子価のS原子を含有する化合物であることを特徴とする請求項5に記載の燃料電池用触媒の製造方法。 6. The method for producing a fuel cell catalyst according to claim 5, wherein in the step (2), the S atom-containing compound is a compound containing an S atom having a valence less than +6. 前記S原子含有化合物は、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、過硫酸塩、ピロ硫酸塩及びピロ亜硫酸塩からなる群から選択される少なくとも一種類の化合物であることを特徴とする請求項8に記載の燃料電池用触媒の製造方法。 The S-atom-containing compound is at least one compound selected from the group consisting of thiosulfate, sulfite, bisulfite, persulfate, pyrosulfate, and pyrosulfite. A method for producing a fuel cell catalyst according to claim 8. 請求項2に記載の炭素担持PtRuS合金微粒子触媒をメタノール極に用いたことを特徴とするメタノール燃料電池。 A methanol fuel cell, wherein the carbon-supported PtRuS alloy fine particle catalyst according to claim 2 is used for a methanol electrode.
JP2004137209A 2004-05-06 2004-05-06 Ternary alloy, catalyst for fuel cell, and fuel cell Withdrawn JP2005322430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137209A JP2005322430A (en) 2004-05-06 2004-05-06 Ternary alloy, catalyst for fuel cell, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137209A JP2005322430A (en) 2004-05-06 2004-05-06 Ternary alloy, catalyst for fuel cell, and fuel cell

Publications (1)

Publication Number Publication Date
JP2005322430A true JP2005322430A (en) 2005-11-17

Family

ID=35469549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137209A Withdrawn JP2005322430A (en) 2004-05-06 2004-05-06 Ternary alloy, catalyst for fuel cell, and fuel cell

Country Status (1)

Country Link
JP (1) JP2005322430A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066908A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Catalyst for cathode electrode of fuel cell and production method thereof, membrane electrode assembly for fuel cell
KR100717746B1 (en) 2005-10-04 2007-05-11 삼성에스디아이 주식회사 Cathode catalyst for direct oxidation fuel cell, manufacturing method thereof, membrane-electrode assembly for direct oxidation fuel cell comprising same and direct oxidation fuel cell system
JP2007194217A (en) * 2006-01-18 2007-08-02 Samsung Sdi Co Ltd FUEL CELL CATALYST CATALYST AND ITS MANUFACTURING METHOD, FUEL CELL MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE CATHODE CATALYST, AND FUEL CELL SYSTEM
JP2007305591A (en) * 2006-05-12 2007-11-22 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
KR100786869B1 (en) * 2006-06-29 2007-12-20 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, fuel cell membrane-electrode assembly and fuel cell system comprising same
KR100814840B1 (en) 2006-11-17 2008-03-20 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, method for producing same, membrane-electrode assembly for fuel cell comprising same, and fuel cell system comprising same
WO2009008544A1 (en) * 2007-07-12 2009-01-15 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, and solid polymer fuel cell using the electrode catalyst
JP2014221470A (en) * 2014-03-14 2014-11-27 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Catalyst thin layer and method for fabricating the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8685594B2 (en) 2005-08-31 2014-04-01 Samsung Sdi Co., Ltd. Catalyst for cathode of fuel cell, and membrane-electrode assembly for fuel cell
JP2007066908A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Catalyst for cathode electrode of fuel cell and production method thereof, membrane electrode assembly for fuel cell
KR100717746B1 (en) 2005-10-04 2007-05-11 삼성에스디아이 주식회사 Cathode catalyst for direct oxidation fuel cell, manufacturing method thereof, membrane-electrode assembly for direct oxidation fuel cell comprising same and direct oxidation fuel cell system
US7923171B2 (en) 2006-01-18 2011-04-12 Samsung Sdi Co., Ltd. Cathode catalyst for fuel cell, and membrane-electrode assembly for fuel cell and fuel cell system including same
JP2007194217A (en) * 2006-01-18 2007-08-02 Samsung Sdi Co Ltd FUEL CELL CATALYST CATALYST AND ITS MANUFACTURING METHOD, FUEL CELL MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE CATHODE CATALYST, AND FUEL CELL SYSTEM
JP4745988B2 (en) * 2006-01-18 2011-08-10 三星エスディアイ株式会社 FUEL CELL CATALYST CATALYST AND ITS MANUFACTURING METHOD, FUEL CELL MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE CATHODE CATALYST, AND FUEL CELL SYSTEM
JP2007305591A (en) * 2006-05-12 2007-11-22 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
US8039173B2 (en) 2006-05-12 2011-10-18 Samsung Sdi Co., Ltd. Catalyst for a fuel cell, a method for preparing the same, a membrane-electrode assembly for a fuel cell including the same, and a fuel cell system including the same
US8323847B2 (en) 2006-06-29 2012-12-04 Samsung Sdi Co., Ltd. Catalyst for a fuel cell, method of preparing the same, and membrane-electrode assembly and fuel cell system including the same
KR100786869B1 (en) * 2006-06-29 2007-12-20 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, fuel cell membrane-electrode assembly and fuel cell system comprising same
KR100814840B1 (en) 2006-11-17 2008-03-20 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, method for producing same, membrane-electrode assembly for fuel cell comprising same, and fuel cell system comprising same
JP4530003B2 (en) * 2007-07-12 2010-08-25 トヨタ自動車株式会社 Fuel cell electrode catalyst and solid polymer fuel cell using the same
JP2009021092A (en) * 2007-07-12 2009-01-29 Toyota Motor Corp Fuel cell electrode catalyst and solid polymer fuel cell using the same
WO2009008544A1 (en) * 2007-07-12 2009-01-15 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, and solid polymer fuel cell using the electrode catalyst
US8383287B2 (en) 2007-07-12 2013-02-26 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst and polymer electrolyte fuel cell using the same
JP2014221470A (en) * 2014-03-14 2014-11-27 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Catalyst thin layer and method for fabricating the same

Similar Documents

Publication Publication Date Title
Cai et al. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium
CN105032460B (en) Low-platinum catalyst based on nitride nano particle and preparation method thereof
RU2394311C2 (en) Fuel element and method of its application
JP4971898B2 (en) Supported catalyst for fuel cell and method for producing the same, electrode for fuel cell including the supported catalyst, membrane electrode assembly including the electrode, and fuel cell including the membrane electrode assembly
US7192670B2 (en) Fuel cell and membrane electrode assembly
KR100670267B1 (en) Platinum / ruthenium alloy catalysts for fuel cells
Capelo et al. Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support
Hameed Enhanced ethanol electro-oxidation reaction on carbon supported Pd-metal oxide electrocatalysts
Urbańczyk et al. NiPt sinter as a promising electrode for methanol electrocatalytic oxidation
CN100511789C (en) Anode catalyst of high active PtNi base proton exchange film fuel cell
JP2011090916A (en) Anode catalyst for fuel cell, method of manufacturing the same, and membrane electrode assembly
Alia et al. Platinum nickel nanowires as methanol oxidation electrocatalysts
Chai et al. Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media
JP2005322430A (en) Ternary alloy, catalyst for fuel cell, and fuel cell
JP2009238442A (en) Method of manufacturing ptru catalyst, catalyst manufactured by the manufacturing method, and fuel cell and membrane electrode assembly using the catalyst
KR101111486B1 (en) manufacturing method of Electrocatalyst material for direct methanol fuel cell
KR20060052555A (en) Fuel cells, membrane electrode assemblies, and methods for producing catalysts and catalysts used in them
JP2006134835A (en) Fuel cell and membrane electrode assembly
JP2005161186A (en) Method for producing platinum/ruthenium alloy catalyst
JP2005324156A (en) METHOD FOR MANUFACTURING PtRu ALLOY CATALYST FOR FUEL CELL, PtRu ALLOY CATALYST FOR FUEL CELL AND METHANOL FUEL CELL USING THE CATALYST
JP2006114469A (en) Fuel-cell and membrane electrode assembly
JP2006252797A (en) Manufacturing method of oxygen electrode catalyst for fuel cell, and of direct methanol fuel cell and catalyst
JP2006269096A (en) Fuel cell and membrane electrode assembly
JP4992185B2 (en) Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell
JP4498843B2 (en) Catalyst for fuel cell and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807