[go: up one dir, main page]

JP2005315093A - Electromagnetic displacement type pump - Google Patents

Electromagnetic displacement type pump Download PDF

Info

Publication number
JP2005315093A
JP2005315093A JP2004131039A JP2004131039A JP2005315093A JP 2005315093 A JP2005315093 A JP 2005315093A JP 2004131039 A JP2004131039 A JP 2004131039A JP 2004131039 A JP2004131039 A JP 2004131039A JP 2005315093 A JP2005315093 A JP 2005315093A
Authority
JP
Japan
Prior art keywords
valve
valve body
electromagnetic
fluid
positive displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004131039A
Other languages
Japanese (ja)
Inventor
Fumihiro Yaguchi
文博 矢口
Hiroaki Usui
弘明 臼井
Masaharu Tajima
正晴 田島
Takemoto Sakai
建基 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Priority to JP2004131039A priority Critical patent/JP2005315093A/en
Publication of JP2005315093A publication Critical patent/JP2005315093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic displacement type pump alleviating water hammer action of fluid accompanied by opening/closing of a valve and suppressing noise. <P>SOLUTION: In the position where a valve element 40 contacting with and separating from a valve seat 41 by relative displacement is in the openest state, a flow passage cross section A of a portion where a gap between a valve part 42 and a seating part 44 is minimized, which is orthogonal to a flow, is formed so as to be equal to a cross section B of a flow passage of which diameter is smallest among flow passages formed between the valve element 40 and an inner wall face of an opening part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は電磁式容積型ポンプに関し、より詳細には気体、液体等の流体の輸送に使用されるポンプ室内で電磁駆動により可動子を往復動させて流体を送出及び吸込する動作を繰り返す電磁式容積型ポンプに関する。   TECHNICAL FIELD The present invention relates to an electromagnetic positive displacement pump, and more specifically, an electromagnetic type that repeats the operation of sending and sucking fluid by reciprocating a mover by electromagnetic drive in a pump chamber used for transporting fluid such as gas and liquid. The present invention relates to a positive displacement pump.

ポンプ室の容積変化により流体を送出若しくは吸込が行われる容積型ポンプにおいては、例えばシリンダ内に往復動可能に設けられた可動子を作動させると、ポンプ室内の流体を送出及び吸込が行われる。この流体の送出及び吸込が行われるポンプ室の流路(シリンダ開口部)には逆止弁が向きを逆にして設けられる。一般に逆止弁は、弁体をピンなどを支点軸にして開閉するもの(図示せず)や図7(a)においてゴム板などの弾性変形可能な弁体101をシリンダ開口部が形成された弁座102に開閉するように設けられるスイング弁、図7(b)においてシリンダ室103の内壁に形成された弁座104に球状の弁体105を流体圧に応じてシリンダ室103内を自由に移動可能に設けられるボール弁(特許文献1参照)、図7(c)において鋼球等の弁体106がコイルバネ107により付勢されて弁座108を閉止し流体圧により開弁する強制弁(特許文献2参照)、或いは通電により電磁力を弁体(可動子)に作用させて弁を開閉する電磁弁(図示せず)などが用いられる。
特開平7−145871号 特開平10−220605号
In a positive displacement pump that sends or sucks fluid by changing the volume of the pump chamber, for example, when a mover that is reciprocally movable in a cylinder is operated, fluid in the pump chamber is sent and sucked. A check valve is provided in a reverse direction in the flow path (cylinder opening) of the pump chamber where the fluid is fed and sucked. In general, the check valve has a cylinder opening formed by opening and closing a valve body with a pin as a fulcrum shaft (not shown) or an elastically deformable valve body 101 such as a rubber plate in FIG. 7A. A swing valve provided to open and close the valve seat 102. In FIG. 7B, a spherical valve body 105 is freely attached to the valve seat 104 formed on the inner wall of the cylinder chamber 103 in accordance with the fluid pressure. A ball valve provided so as to be movable (see Patent Document 1), and a forced valve (see FIG. 7C) in which a valve element 106 such as a steel ball is urged by a coil spring 107 to close the valve seat 108 and open by fluid pressure ( Patent Document 2) or an electromagnetic valve (not shown) that opens and closes a valve by applying an electromagnetic force to a valve body (mover) by energization is used.
Japanese Patent Laid-Open No. 7-145871 JP-A-10-220605

上述した容積型ポンプに設けられる逆止弁において、例えば吸込側の逆止弁が開弁して流体がポンプ室内へ順方向に流れ込んでいる場合、可動子(ピストン)の動作が反転すると、順方向に流れていた流体が一時的に逆方向に流れて弁が閉じる。弁が閉じると、逆方向に流れていた流体が弁に衝突して閉弁する弁の周囲に高い流体圧が発生して水撃作用が生ずる。この水撃作用による高い圧力変動により流路を構成する部品を破損させたり、騒音の原因となったりする。特に、ボール弁は、流体の流体圧のみによって閉弁するために、逆方向の流れが大きくなり、圧力変動に伴う水撃音が大きく耳障りな騒音となり易い。   In the check valve provided in the positive displacement pump described above, for example, when the check valve on the suction side is opened and the fluid is flowing in the forward direction into the pump chamber, the operation of the mover (piston) is reversed. The fluid flowing in the direction temporarily flows in the opposite direction, and the valve closes. When the valve is closed, a fluid that has flowed in the opposite direction collides with the valve and a high fluid pressure is generated around the valve that is closed to cause a water hammer effect. The high pressure fluctuation due to the water hammer action may damage the parts constituting the flow path or cause noise. In particular, since the ball valve is closed only by the fluid pressure of the fluid, the flow in the reverse direction is large, and the water hammer sound accompanying the pressure fluctuation is large, which tends to be annoying noise.

本発明はこれらの課題を解決すべくなされたものであり、その目的とするところは、弁の開閉に伴う流体の水撃作用を緩和して静音化を図った電磁式容積型ポンプを提供することにある。   The present invention has been made to solve these problems, and an object of the present invention is to provide an electromagnetic positive displacement pump in which the water hammer action of the fluid accompanying the opening and closing of the valve is mitigated to achieve noise reduction. There is.

本発明は上記目的を達成するため、次の構成を備える。
第1の構成は、ポンプ室内で電磁駆動により可動子を往復動させて流体を送出及び吸込する動作を繰り返す電磁式容積型ポンプにおいて、ポンプ室の流体送出側開口部と流体吸込側開口部とで流体圧の変化のみで開閉する逆止弁が逆向きに設けられ、弁体が弁座に対して相対的移動して接離動する当該弁体が最も開弁した位置で弁部と着座部との隙間が最小となる部位の流れに直交する流路断面積が、弁に形成される流路のうち最小径となる流路断面積と同等に形成されることを特徴とする。
また、弁体が接離動する弁座に連続して弁体の移動方向を流体の流れの向きに一致させるためのガイド部が弁体の移動範囲より長く形成されていることを特徴とする。
また、弁体が最も開弁した位置でガイド部との間に形成される流路断面積が、弁体と着座部との間に形成される流路断面積より大きくなるようにガイド部が形成されることを特徴とする。
第2の構成は、ポンプ室内で電磁駆動により可動子を往復動させて流体を送出及び吸込する動作を繰り返す電磁式容積型ポンプにおいて、ポンプ室の流体送出側開口部と流体吸込側開口部とで流体圧の変化のみで開閉する逆止弁が逆向きに設けられ、弁座に着座する弁体の弁部は可撓性を有し、当該弁部が接離動する着座部の形状はテーパー面若しくはR面形状に形成されていることを特徴とする。
また、弁体の平面視外形が円形の一部に凹部又は凸部が形成されているか若しくは楕円形であることを特徴とする。或いは、弁体が弁座に着座する着座部の平面視外形が円形の一部に凹部又は凸部が形成されているか若しくは楕円形であることを特徴とする。
また、第3の構成は、ポンプ室の送出側開口部と吸込側開口部とで流体圧の変化のみで開閉する逆止弁が逆向きに設けられ、当該ポンプ室内で電磁駆動により可動子を往復動させて流体を送出及び吸込する動作を繰り返す電磁式容積型ポンプにおいて、電磁駆動により往復動する可動子が反転する際に、当該可動子に作用する推力が平均推力の1/3以下になるように駆動電圧又は駆動電流が調整されることを特徴とする。
また、可動子が反転した直後の当該可動子に作用する推力が平均推力以下となるように駆動回路又は磁気回路が調整されていることを特徴とする。
In order to achieve the above object, the present invention comprises the following arrangement.
A first configuration is an electromagnetic positive displacement pump that repeats the operation of sending and sucking fluid by reciprocating a mover by electromagnetic drive in a pump chamber. In the electromagnetic positive displacement pump, the fluid delivery side opening and the fluid suction side opening of the pump chamber A check valve that opens and closes only by a change in fluid pressure is provided in the opposite direction, and the valve body moves relative to the valve seat and moves toward and away from the valve body. The channel cross-sectional area perpendicular to the flow of the portion where the gap with the part is minimum is formed to be equal to the channel cross-sectional area having the minimum diameter among the channels formed in the valve.
In addition, a guide portion for making the moving direction of the valve body coincide with the direction of fluid flow is formed longer than the moving range of the valve body continuously to the valve seat on which the valve body contacts and separates. .
Further, the guide portion is formed so that the flow passage cross-sectional area formed between the valve body and the guide portion at the position where the valve body is most opened is larger than the flow passage cross-sectional area formed between the valve body and the seating portion. It is formed.
The second configuration is an electromagnetic positive displacement pump that repeats the operation of sending and sucking fluid by reciprocating the mover by electromagnetic drive in the pump chamber, and includes a fluid delivery side opening and a fluid suction side opening in the pump chamber. A check valve that opens and closes only by a change in fluid pressure is provided in the opposite direction, the valve part of the valve body seated on the valve seat has flexibility, and the shape of the seat part on which the valve part contacts and separates is It is characterized by being formed in a tapered surface or an R-surface shape.
Further, the outer shape of the valve body in plan view is characterized in that a concave portion or a convex portion is formed in a part of a circle, or an elliptical shape. Or the planar view external shape of the seating part which a valve body seats to a valve seat has the recessed part or convex part formed in a part of circular shape, or is characterized by the ellipse.
In the third configuration, a check valve that opens and closes only by a change in fluid pressure is provided in the pump chamber on the delivery side opening and the suction side opening, and the mover is moved electromagnetically in the pump chamber. In the electromagnetic positive displacement pump that repeats the reciprocating operation to send and suck the fluid, when the movable element that reciprocates by electromagnetic drive is reversed, the thrust acting on the movable element becomes 1/3 or less of the average thrust. The drive voltage or drive current is adjusted so that
Further, the drive circuit or the magnetic circuit is adjusted so that the thrust acting on the mover immediately after the mover is inverted is equal to or less than the average thrust.

上述した電磁式容積型ポンプを用いれば、弁体が弁座に対して相対的移動して接離動する当該弁体が最も開弁した位置で弁部と着座部との隙間が最小となる部位の流れに直交する流路断面積が、弁に形成される流路のうち最小径となる流路断面積と同等に形成されるため、弁体と着座部との隙間を小さくして流体が逆流する時間を短くし閉弁する際の流体の速度を遅くすることにより、水撃作用による圧力上昇を軽減して水撃音を小さくし、静音化を図ることができる。また、弁体が最も開弁した位置において弁部と着座部との隙間が最小となる部位の流れに直交する流路断面積を小さくすればするほど、弁体を通過する際の流体の圧力損失が増加してポンプ効率が低下するが、当該流路断面積が弁に形成される流路断面積のうち最小径となる流路断面積と同等に形成されていれば、閉弁する際に弁体と着座部との隙間を順方向に流れる流体の流速が必要以上に大きくならず、圧力損失をあまり増加せずに水撃作用に伴う騒音を低減することができる。
また、弁座に着座する弁体の弁部は可撓性を有しているので、弁体が着座する際に撓むことにより流路の体積変化が緩やかになり、更には弁部が着座する着座部の形状はテーパー面若しくはR面形状に形成されていることによっても閉弁する際の流路の体積変化が緩やかになり、経時的に圧力上昇の傾きが緩やかに推移するため、水撃作用により発生する騒音の周波数を耳障りにならない程度まで低減することができる。
加えて、弁体の平面視外形が円形の一部に凹部又は凸部が形成されているか若しくは楕円形であると、或いは弁体が弁座に着座する着座部の平面視外形が円形の一部に凹部又は凸部が形成されているか若しくは楕円形であると、弁部の一部が着座部へ着座しても弁体が完全に閉弁するまでに当該着座した弁部が撓む必要があるため、流速がゆっくり変化して零になるため圧力上昇が緩和され、水撃音を低減することができる。
また、弁体が接離動する弁座に連続して弁体の移動方向を流体の流れの向きに一致させるためのガイド部が弁体の移動範囲より長く形成されている場合には、閉弁する際に弁体の軸方向の移動をガイド部でガイドすることで、弁体が逆流する流体の流れを受け易く弁が短時間で閉じ、これにより弁体が閉じるときの流速を小さくして、水撃による圧力上昇を軽減して騒音を小さくすることができる。また、弁体が最も開弁した位置でガイド部との間に形成される流路断面積が、弁体と着座部との間に形成される流路断面積より大きくなるようにすると、流路の圧力損失を軽減できる。
また、電磁駆動により往復動する可動子が反転する際に、可動子に作用する推力が平均推力の1/3以下になるように駆動電圧又は駆動電流を調整したり、電磁コイルに流れる交番電流の通電方向を切り換える際に、可動子に作用する推力が平均推力より小さくなるように駆動電圧又は駆動電流を調整することによっても、弁体が開弁して流体が順方向へ流れている状態から可動子の移動方向を反転させる際に、一時的に逆流する流体の流速を小さくして水撃作用による圧力上昇を軽減し、静音化を図ることができる。
以上のように、弁の流路断面積を調整する第1の構成、弁体が開閉する際の流路の体積変化を許容する第2の構成、可動子が反転する際の推力を調整する第3の構成の何れによっても、更にはこれらの組み合わせによる相乗効果によって、弁の開閉に伴う流体の水撃作用を緩和して静音化を図ることができる。
When the electromagnetic positive displacement pump described above is used, the gap between the valve portion and the seating portion is minimized at the position where the valve body is moved relative to the valve seat to move toward and away. Since the cross-sectional area of the flow path orthogonal to the flow of the part is formed to be equal to the cross-sectional area of the smallest diameter of the flow paths formed in the valve, the gap between the valve body and the seating portion is reduced to reduce the fluid By reducing the backflow time and slowing down the fluid speed when closing the valve, the pressure rise due to the water hammer action can be reduced, the water hammer sound can be reduced, and the noise can be reduced. In addition, the smaller the flow path cross-sectional area perpendicular to the flow of the part where the gap between the valve part and the seating part is the smallest at the position where the valve body is most opened, the more the pressure of the fluid when passing through the valve body Loss increases and pump efficiency decreases, but if the channel cross-sectional area is formed to be equal to the channel cross-sectional area that is the smallest diameter among the channel cross-sectional areas formed in the valve, In addition, the flow velocity of the fluid flowing in the forward direction through the gap between the valve body and the seating portion does not increase more than necessary, and the noise associated with the water hammer action can be reduced without increasing the pressure loss so much.
Further, since the valve portion of the valve body seated on the valve seat is flexible, the volume change of the flow path becomes gentle by bending when the valve body is seated, and further, the valve portion is seated. The shape of the seating portion to be formed is a tapered surface or an R-surface shape, so that the volume change of the flow path when the valve is closed becomes gradual, and the slope of the pressure rise gradually changes over time. It is possible to reduce the frequency of noise generated by the hitting action to such an extent that it does not become annoying.
In addition, the planar view of the valve body has a concave or convex portion formed in a part of a circle, or is oval, or the planar view of the seat portion where the valve body sits on the valve seat has a circular shape. If the concave or convex part is formed in the part or is oval, the seated valve part needs to bend before the valve body is completely closed even if a part of the valve part is seated on the seat part. Therefore, since the flow velocity changes slowly and becomes zero, the pressure rise is alleviated and the water hammer sound can be reduced.
In addition, when the guide part for making the moving direction of the valve body coincide with the direction of fluid flow is formed longer than the moving range of the valve body, the valve body is closed. By guiding the axial movement of the valve element with the guide when valved, the valve closes in a short time because it is easy to receive the flow of fluid that the valve element flows backward, thereby reducing the flow rate when the valve element closes. Thus, the pressure rise due to water hammer can be reduced and the noise can be reduced. In addition, if the flow passage cross-sectional area formed between the valve body and the guide portion at the position where the valve body is most opened is larger than the flow passage cross-sectional area formed between the valve body and the seating portion, Road pressure loss can be reduced.
In addition, when the mover that reciprocates by electromagnetic drive is reversed, the drive voltage or drive current is adjusted so that the thrust acting on the mover is 1/3 or less of the average thrust, or the alternating current that flows through the electromagnetic coil When switching the energization direction, the valve element opens and the fluid flows in the forward direction by adjusting the drive voltage or drive current so that the thrust acting on the mover becomes smaller than the average thrust. Therefore, when the moving direction of the mover is reversed, the flow rate of the fluid that temporarily flows backward can be reduced to reduce the pressure increase due to the water hammer effect, thereby reducing the noise.
As described above, the first configuration for adjusting the flow path cross-sectional area of the valve, the second configuration for allowing the volume change of the flow channel when the valve body opens and closes, and the thrust when the mover is reversed are adjusted. According to any of the third configurations, the water hammer effect of the fluid accompanying the opening and closing of the valve can be mitigated by the synergistic effect of these combinations, and the noise can be reduced.

以下、本発明に係る電磁式容積型ポンプの最良の実施形態について添付図面とともに詳細に説明する。本実施形態の電磁式容積型ポンプは円筒状に形成したシリンダ内にマグネット(永久磁石)を備えた可動子をシリンダの軸線方向に摺動可能に配置し、シリンダの外周に配置した電磁コイルの電磁力を可動子に作用させ、可動子を往復動させることによってポンプ作用をなすように構成したものである。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best embodiment of an electromagnetic positive displacement pump according to the present invention will be described in detail with reference to the accompanying drawings. In the electromagnetic positive displacement pump of this embodiment, a mover having a magnet (permanent magnet) is slidably disposed in the cylinder axial direction in a cylinder formed in a cylindrical shape, and an electromagnetic coil disposed on the outer periphery of the cylinder. The electromagnetic force is applied to the mover, and the mover is reciprocated to perform a pump action.

図1において、電磁式容積型ポンプの全体構成について説明する。先ず可動子10の構成について説明する。可動子10は密閉されたシリンダ内に収容されてシリンダの軸線方向に往復動可能に設けられている。可動子10は円板状に形成したマグネット12とマグネット12を厚さ方向に挟持する一対のインナーヨーク14a、14bとからなる。マグネット12は一方の面をN極、他方の面をS極として、厚さ方向(図1の上下方向)に磁化されている永久磁石である。インナーヨーク14a、14bは磁性材によって形成され、各々のインナーヨーク14a、14bの周縁部に短筒状に起立したフランジ部14cの外周面はマグネット12から発生した磁束の可動子10側の磁束作用面となる。   In FIG. 1, the overall configuration of the electromagnetic positive displacement pump will be described. First, the configuration of the mover 10 will be described. The mover 10 is housed in a sealed cylinder and is provided so as to be able to reciprocate in the axial direction of the cylinder. The mover 10 includes a magnet 12 formed in a disc shape and a pair of inner yokes 14a and 14b that sandwich the magnet 12 in the thickness direction. The magnet 12 is a permanent magnet that is magnetized in the thickness direction (vertical direction in FIG. 1) with one surface as the N pole and the other surface as the S pole. The inner yokes 14a and 14b are formed of a magnetic material, and the outer peripheral surface of the flange portion 14c that stands up in a short cylindrical shape at the peripheral edge of each of the inner yokes 14a and 14b is a magnetic flux action on the movable element 10 side of the magnetic flux generated from the magnet 12. It becomes a surface.

次に、図1において固定子16の構成について説明する。一対の非磁性材からなる上ケース18aと下ケース18bとの間に非磁性材料(例えば樹脂材、ステンレスなどの金属材)からなる筒状のシリンダ筒20が嵌め込まれて上下開口端が閉止されたシリンダが形成される。このシリンダ筒20内に上述した可動子10が往復動可能に収容されている。なお、シリンダは上ケース18aと下ケース18bとを組み合せて熱圧着して形成することもできる。   Next, the configuration of the stator 16 will be described with reference to FIG. A cylindrical cylinder cylinder 20 made of a nonmagnetic material (for example, a metal material such as a resin material or stainless steel) is fitted between the upper case 18a and the lower case 18b made of a pair of nonmagnetic materials, and the upper and lower opening ends are closed. A cylinder is formed. The movable element 10 described above is accommodated in the cylinder cylinder 20 so as to be able to reciprocate. The cylinder may be formed by combining the upper case 18a and the lower case 18b and thermocompression bonding.

このように、シリンダの両端面は上ケース18aと下ケース18bによって閉止され、可動子10の移動方向両側面と上下ケース18a、18bの内壁面との間に各々ポンプ室22a、22bが形成される。なお、可動子10はシリンダ筒20の内面に接触した状態で、気密あるいは液密にシールした状態で摺動する。この可動子10の摺動性を良好にするため、インナーヨーク14a、14bの外周面にフッ素樹脂コーティングやDLC(ダイヤモンド・ライク・カーボン)コーティング等の潤滑性と防錆力を兼ね備えたコーティングを施すことや、可動子10が周方向に回ることを防止する回り止めを設けても良い。   Thus, both end surfaces of the cylinder are closed by the upper case 18a and the lower case 18b, and pump chambers 22a and 22b are formed between both side surfaces in the moving direction of the mover 10 and the inner wall surfaces of the upper and lower cases 18a and 18b, respectively. The The movable element 10 slides in an airtight or liquid tightly sealed state in contact with the inner surface of the cylinder cylinder 20. In order to improve the slidability of the mover 10, the outer yokes 14a and 14b are coated with a coating having both lubricity and rust prevention such as fluorine resin coating and DLC (diamond-like carbon) coating. In addition, a rotation stopper that prevents the mover 10 from rotating in the circumferential direction may be provided.

尚、上下ケース18a、18bの端面(内壁面)には図示しないダンパーが取り付けられていても良い。可動子10のインナーヨーク14a、14bの端面であって、上下ケース18a、18bの内壁面に当接する部位に設けてもよい。   A damper (not shown) may be attached to the end surfaces (inner wall surfaces) of the upper and lower cases 18a and 18b. You may provide in the site | part which contact | abuts the inner yoke 14a, 14b of the needle | mover 10 and the inner wall surfaces of the upper and lower cases 18a, 18b.

シリンダの上端面に相当する上ケース18aの吸込用開口部及び送出用開口部には、吸込用逆止弁24a及び送出用逆止弁26aがポンプ室22aを開閉可能に設けられている。シリンダの下端面に相当する下ケース18bの吸込用開口部及び送出用開口部には、吸込用逆止弁24b及び送出用逆止弁26bがポンプ室22bを開閉可能に設けられている。吸込用逆止弁24a、24bと送出用逆止弁26a、26bとは開口部に逆向きに各々取り付けられている。   A suction check valve 24a and a delivery check valve 26a are provided at the suction opening and the delivery opening of the upper case 18a corresponding to the upper end surface of the cylinder so as to open and close the pump chamber 22a. A suction check valve 24b and a delivery check valve 26b are provided at the suction opening and the delivery opening of the lower case 18b corresponding to the lower end surface of the cylinder so as to open and close the pump chamber 22b. The suction check valves 24a and 24b and the delivery check valves 26a and 26b are attached to the openings in opposite directions.

上ケース18aには循環する流体のポンプへの吸込口32と、ポンプより流体を送り出す送出口34が形成されている。上ケース18aと下ケース18bには、吸込口32と吸込用逆止弁24a、24bとの間を連通する吸込用流路28a、28bが各々設けられている。また、上ケース18aと下ケース18bには、送出用逆止弁26a、26bと送出口34との間を連通する送出用流路30a、30bが各々設けられている。   The upper case 18a is formed with a suction port 32 for circulating fluid to the pump and a delivery port 34 for sending fluid from the pump. The upper case 18a and the lower case 18b are respectively provided with suction flow paths 28a and 28b communicating between the suction port 32 and the suction check valves 24a and 24b. The upper case 18a and the lower case 18b are respectively provided with delivery channels 30a and 30b communicating between the delivery check valves 26a and 26b and the delivery port 34.

図1において、シリンダ筒20の周囲には空芯の電磁コイル36a、36bが嵌め込まれている。電磁コイル36a、36bはシリンダの軸線方向に若干離間させ、シリンダ筒20の軸線方向の中心位置に対して均等位置となるように配置されている。なお、電磁コイル36aと電磁コイル36bとは巻き線方向が逆向きであり、同一電源による通電によって、互いに逆向きの電流が流れるように設定されている。電磁コイル36a、36bの巻き線方向を逆向きにしているのは、マグネット12の磁束と鎖交する電磁コイル36a、36bに流れる電流に作用する電磁力が重畳して反力として可動子10に作用し、この反力が推力になるためである。   In FIG. 1, air core electromagnetic coils 36 a and 36 b are fitted around a cylinder cylinder 20. The electromagnetic coils 36a and 36b are slightly spaced apart from each other in the axial direction of the cylinder, and are disposed so as to be at an equal position with respect to the central position of the cylinder cylinder 20 in the axial direction. Note that the winding directions of the electromagnetic coil 36a and the electromagnetic coil 36b are opposite to each other, and currents in opposite directions flow when energized by the same power source. The winding direction of the electromagnetic coils 36a and 36b is reversed because the electromagnetic force acting on the current flowing through the electromagnetic coils 36a and 36b interlinked with the magnetic flux of the magnet 12 is superimposed on the mover 10 as a reaction force. This is because this reaction force becomes a thrust.

アウターヨーク38は、電磁コイル36a、36bの外周囲を囲んで筒状に設けられている。アウターヨーク38には磁性材が用いられ、電磁コイル36a、36bに鎖交する磁束数を増やして電磁力を効果的に可動子10に作用させるために設けられる。また、可動子10を構成するインナーヨーク14a、14bの周辺部にフランジ部14cを軸線方向に起立して設けられているので、マグネット12から発生した磁束をインナーヨーク14a、14bからアウターヨーク38に至る磁気回路の磁気抵抗を下げるためである。これにより、可動子10から作用する総磁束量を増加させる(磁束が通過する磁路を確保する)と共に、マグネット12が発生した磁束が電磁コイル36a、36bに流れる電流と軸線方向に対して直角に鎖交させることで、可動子10に軸線方向の推力を効果的に発生させることができる。また、本構成による可動子10は発生推力に比して質量が軽くなるため、高速応答が可能となり、出力流量も増加できる。
電磁コイル36a、36bおよびアウターヨーク38は、上ケース18aと下ケース18bとを組み合わせる際に、上ケース18aと下ケース18bに設けた嵌合溝にシリンダ筒20を嵌合させることによって、該シリンダ筒20と同芯に組み付けることができる。
The outer yoke 38 is provided in a cylindrical shape so as to surround the outer periphery of the electromagnetic coils 36a and 36b. A magnetic material is used for the outer yoke 38 and is provided in order to increase the number of magnetic fluxes linked to the electromagnetic coils 36 a and 36 b so that the electromagnetic force is effectively applied to the mover 10. Further, since the flange portion 14c is provided upright in the axial direction around the inner yokes 14a and 14b constituting the mover 10, the magnetic flux generated from the magnet 12 is transferred from the inner yokes 14a and 14b to the outer yoke 38. This is to lower the magnetic resistance of the magnetic circuit. As a result, the total amount of magnetic flux acting from the mover 10 is increased (a magnetic path through which the magnetic flux passes is secured), and the magnetic flux generated by the magnet 12 is perpendicular to the current flowing in the electromagnetic coils 36a and 36b and the axial direction. By interlinking, the thrust in the axial direction can be effectively generated in the mover 10. Further, since the mover 10 according to this configuration has a lighter mass than the generated thrust, a high-speed response is possible and the output flow rate can be increased.
When the upper case 18a and the lower case 18b are combined, the electromagnetic coils 36a and 36b and the outer yoke 38 are fitted to the cylinder cylinder 20 in the fitting grooves provided in the upper case 18a and the lower case 18b. It can be assembled concentrically with the cylinder 20.

可動子10は、電磁コイル36a、36bに交番電流を通電することにより、電磁コイル36a、36bによって発生する電磁力の作用により往復駆動(上下動)される。電磁コイル36a、36bに作用する電磁力は、電磁コイル36a、36bへの通電方向によって可動子10を一方向と他方向へ押動するから、図示しない制御部により、電磁コイル36a、36bへの通電時間、通電方向を制御することによって可動子10を適宜ストロークで往復駆動させることができる。   The mover 10 is reciprocally driven (moved up and down) by the action of electromagnetic force generated by the electromagnetic coils 36a and 36b by applying an alternating current to the electromagnetic coils 36a and 36b. The electromagnetic force acting on the electromagnetic coils 36a and 36b pushes the mover 10 in one direction and the other depending on the energizing direction of the electromagnetic coils 36a and 36b, so that a control unit (not shown) applies the electromagnetic force to the electromagnetic coils 36a and 36b. By controlling the energization time and the energization direction, the mover 10 can be reciprocated with an appropriate stroke.

なお、シリンダ内における可動子10の移動位置を検出するセンサを設けておき、センサの検知信号に基づいて可動子10の往復動を制御することもできる。例えば、シリンダ筒20の外部に可動子10の移動位置を検知する磁気検知センサを設ける方法、図示しないダンパーに感圧センサを設けて、可動子10がダンパーに接触した時点を検知する方法等が可能である。本実施形態の電磁式ポンプでは可動子10の移動ストロークが比較的小さいがポンプ室22a、22bは比較的広い面積を確保することができるから、可動子10を高速で往復動させることによって一定の流量を確保することが可能である。   A sensor for detecting the moving position of the mover 10 in the cylinder may be provided, and the reciprocation of the mover 10 may be controlled based on a detection signal from the sensor. For example, a method of providing a magnetic detection sensor for detecting the moving position of the mover 10 outside the cylinder cylinder 20, a method of providing a pressure-sensitive sensor on a damper (not shown), and detecting a point in time when the mover 10 contacts the damper. Is possible. In the electromagnetic pump of the present embodiment, the moving stroke of the mover 10 is relatively small, but the pump chambers 22a and 22b can ensure a relatively large area. It is possible to secure a flow rate.

次に、弁の開閉に伴う水撃作用を緩和するためのポンプ室22a、22bに設けられる逆止弁の構成及び可動子の駆動動作について図2乃至図6を参照して説明する。以下では、4箇所に設けられた逆止弁のうち、ポンプ室22aの送出側に設けられる送出用逆止弁26aを例にして説明する。   Next, the structure of the check valve provided in the pump chambers 22a and 22b and the driving operation of the mover for alleviating the water hammer effect associated with the opening and closing of the valve will be described with reference to FIGS. Hereinafter, among the check valves provided at four locations, the delivery check valve 26a provided on the delivery side of the pump chamber 22a will be described as an example.

図2(a)(b)において、弁体40は弁座41に着座して流路を遮る弁部42と、弁体40が流体圧で流されるのを防止する抜けとめ部43とが設けられている。弁体40は弁座41に接離動する弁部42とそれ以外の部位とが複数の部品から構成されていても良い。また、弁体40の平面形状は流体の流路と平行な一の軸芯(本実施例では抜け止め部43に相当)を有する円形状に形成されている。弁部42と抜けとめ部43とは異種材料若しくは硬度が異なるゴム材料の組み合せが用いられる。具体的には弁座41に着座する弁部42は可撓性を有する変形し易い材料若しくは軟質ゴム材などが好適に用いられる。また、抜け止め部43には変形し難い材料若しくは硬質ゴム材などが用いられる。弁部42は、ゴム材の硬度を変えるほかにゴム材の厚さを薄く形成するようにしても良い。   2 (a) and 2 (b), the valve body 40 is provided with a valve portion 42 that sits on the valve seat 41 and blocks the flow path, and a stopper portion 43 that prevents the valve body 40 from flowing by fluid pressure. It has been. The valve body 40 may include a valve portion 42 that contacts and separates from the valve seat 41 and a portion other than the valve portion 42, which includes a plurality of parts. The planar shape of the valve body 40 is formed in a circular shape having one axial core (corresponding to the retaining portion 43 in this embodiment) parallel to the fluid flow path. The valve part 42 and the stopper part 43 are made of different materials or a combination of rubber materials having different hardnesses. Specifically, the valve portion 42 seated on the valve seat 41 is preferably made of a flexible material that is easily deformable or a soft rubber material. The retaining portion 43 is made of a material that is difficult to deform or a hard rubber material. In addition to changing the hardness of the rubber material, the valve portion 42 may be formed with a thin rubber material.

また、弁体40が弁座41に対して相対的移動して接離動する当該弁体40が最も開弁した位置で弁部42と着座部44との隙間が最小となる部位の流れに直交する流路断面積A(図2(a)参照)が、弁に形成される流路のうち最小径となる流路断面積B(図2(b)斜線部参照)と同等になるように形成される。弁体40と着座部44との隙間を小さくして流体が逆流する時間を短くして閉弁する際の弁体40の速度を遅くすることにより、水撃作用による圧力上昇を軽減して水撃音を小さくし、静音化を図ることができる。上記流路断面積A小さくすればするほど、弁体40を通過する際の流体の圧力損失が増加してポンプ効率が低下するが、当該流路断面積Aが弁に形成される流路のうち最小径となる流路断面積Bと同等に形成されていれば、開弁した状態で、弁体40と着座部44との隙間を順方向へ流れる流体の流速が必要以上に大きくならず、圧力損失をあまり増加せずに水撃作用に伴う騒音を低減することができる。この流路断面積AとBとを同等にすることは弁を通過する流体の圧力損失を低減させるうえで重要である。即ち、流路の圧力損失は流速変化量の二乗に比例する。弁の流速は、弁の前後の流路の流速より速くなるので、弁の圧力損失は、(弁の中の(弁を通過する)最大流速−弁の前後の流路の流速)のニ乗に比例する。弁の中の最大流速が大きくならなければ、弁の圧力損失はあまり大きくならない。例えば逆止弁26aが開いたとき弁部42と着座部44との流路断面積Aが、Aを除いた部分の流路断面積の中で最も小さい流路断面積B(流体の入口部分)より小さければ弁の中での最大流速は流路断面積Bにより決まるので、弁の圧力損失はあまり大きくならない。流路断面積Aが流路断面積Bより小さくなると、弁の圧力損失は流路断面積Aによりきまるので流路断面積Aが小さくなるのに伴い弁の圧力損失は急激に大きくなる。尚、弁体40の外径寸法や開口部寸法には公差があり、特に弁部42は可撓性を有して変形することから流路断面積A≒流路断面積Bであり、少なくとも±30%の公差範囲に収まるようにするのが望ましい。   In addition, the valve body 40 moves relative to the valve seat 41 and moves toward and away from the valve body 40. In the position where the valve body 40 is opened most, the gap between the valve portion 42 and the seating portion 44 is minimized. The cross-sectional area A (see FIG. 2 (a)) perpendicular to the flow path is equal to the cross-sectional area B (see the shaded portion in FIG. 2 (b)) having the smallest diameter among the flow paths formed in the valve. Formed. By reducing the gap between the valve body 40 and the seating portion 44 and shortening the time during which the fluid flows backward to slow the valve body 40 when closing the valve, the pressure increase due to the water hammer action is reduced and water is reduced. The impact sound can be reduced and the noise can be reduced. The smaller the flow path cross-sectional area A is, the more the pressure loss of the fluid when passing through the valve body 40 is increased and the pump efficiency is reduced. However, the flow path cross-sectional area A of the flow path formed in the valve is reduced. If it is formed to be equal to the flow path cross-sectional area B having the minimum diameter, the flow velocity of the fluid flowing in the forward direction through the gap between the valve body 40 and the seating portion 44 does not become larger than necessary when the valve is opened. The noise accompanying the water hammer effect can be reduced without increasing the pressure loss so much. It is important to equalize the channel cross-sectional areas A and B in order to reduce the pressure loss of the fluid passing through the valve. That is, the pressure loss in the flow path is proportional to the square of the flow rate change amount. Since the flow rate of the valve is faster than the flow rate of the flow path before and after the valve, the pressure loss of the valve is the power of (the maximum flow rate in the valve (passing through the valve)-the flow rate of the flow path before and after the valve). Is proportional to If the maximum flow velocity in the valve is not increased, the pressure loss of the valve will not be so great. For example, when the check valve 26a is opened, the flow passage cross-sectional area A between the valve portion 42 and the seating portion 44 is the smallest flow passage cross-sectional area B (the inlet portion of the fluid) of the flow passage cross-sectional areas excluding A. If it is smaller, the maximum flow velocity in the valve is determined by the flow path cross-sectional area B, so that the pressure loss of the valve is not so large. When the channel cross-sectional area A is smaller than the channel cross-sectional area B, the pressure loss of the valve is determined by the channel cross-sectional area A, so that the pressure loss of the valve increases rapidly as the channel cross-sectional area A decreases. Note that there is a tolerance in the outer diameter size and the opening size of the valve body 40, and in particular, since the valve portion 42 is flexible and deforms, the flow path cross-sectional area A is equal to the flow path cross-sectional area B, and at least It is desirable to be within a tolerance range of ± 30%.

また、弁座41に着座する弁体40の弁部42は可撓性を有しているので、図3のように弁体40が着座部44へ着座した後、弁体40付近の流体圧が一時的高くなるが図4のように弁部42が撓むことにより流路の体積変化が緩やかになり、更には弁部40が着座する着座部44の形状が図2(a)のようなテーパー面若しくはR面形状に形成されていることによっても、閉弁する際の流路の体積変化が緩やかになり、経時的に圧力上昇の傾きが緩やかに推移するため、水撃作用により発生する騒音の周波数を耳障りにならない程度まで低減することができる。例えば、閉弁する際に発生する水撃音の周波数が2kHz〜4kHz程度の人間の耳には耳障りな音に対して、あまり耳障りでない300Hz程度になることにより、静音化することができる。   Further, since the valve portion 42 of the valve body 40 seated on the valve seat 41 is flexible, the fluid pressure in the vicinity of the valve body 40 after the valve body 40 is seated on the seat portion 44 as shown in FIG. However, the valve portion 42 is bent as shown in FIG. 4, so that the volume change of the flow path becomes gentle. Further, the shape of the seating portion 44 on which the valve portion 40 is seated is as shown in FIG. The taper surface or the R-surface shape also forms a gentle change in volume of the flow path when the valve is closed, and the slope of the pressure rise gradually changes over time. The frequency of the noise to be generated can be reduced to such an extent that it does not become annoying. For example, the frequency of the water hammer sound generated when the valve is closed is about 300 Hz, which is not so harsh with respect to a human ear having a frequency of about 2 kHz to 4 kHz.

加えて、図5に示すように弁体40の平面視外形(弁部42の外形)が円形の一部に凹部又は凸部42aが形成されているか若しくは楕円形である(或いは弁体40が弁座に着座する着座部44の平面視外形が円形の一部に凹部又は凸部が形成されているか若しくは楕円形である)と、弁部42の凸部42aが着座部44へ着座しても(図3参照)、弁体40が完全に閉弁するまでに当該凸部42aが撓む必要があるため(図4参照)、流速がゆっくり変化して零になるため圧力上昇が緩和され、水撃音を低減することができる。   In addition, as shown in FIG. 5, the outer shape of the valve body 40 in plan view (the outer shape of the valve portion 42) is formed such that a concave or convex portion 42a is formed in a part of a circle, or is elliptical (or the valve body 40 is And the convex part 42a of the valve part 42 is seated on the seating part 44, and the convex part 42a of the valve part 42 is seated on the seating part 44. (See FIG. 3), the convex portion 42a needs to bend before the valve body 40 is completely closed (see FIG. 4). Water hammer sound can be reduced.

また、図2(a)において、弁体40が接離動する弁座41に連続して弁体40の移動方向を流体の流れの向きに一致させるためのガイド部45が弁体40の移動範囲より長く形成されている。閉弁する際に弁体40の軸方向の移動をガイド部45でガイドすることで、弁体40が逆流する流体の流れを受け易く弁が短時間で閉じ、これにより弁体40が閉じるときの流速を小さくして、水撃による圧力上昇を軽減して騒音を小さくすることができる。また、流路の圧力損失を軽減するため、弁体40が最も開弁した位置でガイド部45との間に形成される流路断面積Cは、弁体40と着座部44との間に形成される流路断面積Aより大きくなるように(C>A)ガイド部45は形成される。但し、流路断面積Cは、あまり大きくすると弁体40のガイド機能が損なわれるのでガイド機能が維持できる範囲とする必要がある。   Further, in FIG. 2A, a guide portion 45 for making the moving direction of the valve body 40 coincide with the direction of the fluid flow continuously to the valve seat 41 to which the valve body 40 contacts and separates moves the valve body 40. It is formed longer than the range. When the valve body 40 is closed in a short time by guiding the axial movement of the valve body 40 with the guide portion 45, the valve body 40 can easily receive the flow of fluid flowing backward, and the valve body 40 is closed in a short time. The flow rate of the water can be reduced, the pressure rise due to water hammer can be reduced, and the noise can be reduced. In order to reduce the pressure loss of the flow path, the flow path cross-sectional area C formed between the valve body 40 and the guide portion 45 at the position where the valve body 40 is most opened is between the valve body 40 and the seating portion 44. The guide portion 45 is formed so as to be larger than the formed channel cross-sectional area A (C> A). However, if the flow path cross-sectional area C is too large, the guide function of the valve body 40 is impaired, so it is necessary to make the range in which the guide function can be maintained.

また、図1において、電磁駆動により往復動する可動子10が反転する際に、可動子10に作用する推力が平均推力の1/3以下になるように駆動電圧又は駆動電流を調整するのが好ましい。更には、可動子10が反転した直後の当該可動子10に作用する推力が平均推力以下となるように駆動回路又は磁気回路が調整されているのが望ましい(図6参照)。ここで磁気回路とは可動子10や固定子16の構造をいい、例えば電磁コイル36a、36bに流れる電流値が同じでも、可動子10が移動範囲の上方若しくは下方に移動した際の推力を中央位置より減じるような構成にする(例えば磁束密度を減らすようにする)ことが考えられる。
これにより、弁体40が開弁して流体が順方向へ流れている状態から可動子10の移動方向を反転させる際に、一時的に逆流する流体の流速を小さくして水撃作用による圧力上昇を軽減し、静音化を図ることができる。
In FIG. 1, when the movable element 10 reciprocally moved by electromagnetic driving is reversed, the drive voltage or the drive current is adjusted so that the thrust acting on the movable element 10 is 1/3 or less of the average thrust. preferable. Furthermore, it is desirable that the drive circuit or the magnetic circuit is adjusted so that the thrust acting on the movable element 10 immediately after the movable element 10 is inverted is equal to or less than the average thrust (see FIG. 6). Here, the magnetic circuit refers to the structure of the mover 10 and the stator 16. For example, even when the current values flowing through the electromagnetic coils 36 a and 36 b are the same, the thrust when the mover 10 moves above or below the moving range is centered. It can be considered that the configuration is such that it is less than the position (for example, the magnetic flux density is reduced).
Thereby, when the moving direction of the needle | mover 10 is reversed from the state which the valve body 40 opens and the fluid is flowing in the forward direction, the flow velocity of the fluid which flows backward temporarily is made small, and the pressure by a water hammer effect | action The rise can be reduced and the noise can be reduced.

上述した電磁式容積型ポンプの動作について説明すると、電磁コイル36a、36bによって可動子10を往復動させることにより、ポンプ室22a、22bに交互に流体が吸込され、送出される作用によってなされる。すなわち、図1の状態で、可動子10が下方に移動すると、一方のポンプ室22aには吸込用逆止弁24aが流体圧により開弁して流体が導入され、同時に他方のポンプ室22bの送出用逆止弁26bが流体圧により開弁して流体が送出される。また、逆に可動子10が上方に移動すると、一方のポンプ室22aの送出用逆止弁26aが流体圧により開弁して流体が送出され、他方のポンプ室22bの吸込用逆止弁24bが開弁して流体が導入される。こうして、可動子10がどちらの側へ移動する際にも流体の吸込排出がなされ、流体の脈動を抑え、効率的に流体を輸送することが可能となる。   The operation of the above-described electromagnetic positive displacement pump will be described by the action of reciprocating the mover 10 with the electromagnetic coils 36a and 36b, whereby the fluid is alternately sucked into the pump chambers 22a and 22b and sent out. That is, when the mover 10 moves downward in the state of FIG. 1, the suction check valve 24a is opened by the fluid pressure in one pump chamber 22a, and the fluid is introduced at the same time. The delivery check valve 26b is opened by the fluid pressure, and the fluid is delivered. Conversely, when the mover 10 moves upward, the delivery check valve 26a in one pump chamber 22a is opened by the fluid pressure and fluid is delivered, and the suction check valve 24b in the other pump chamber 22b. Opens and fluid is introduced. In this way, when the mover 10 moves to either side, the fluid is sucked and discharged, and the pulsation of the fluid is suppressed and the fluid can be transported efficiently.

また、本実施形態の電磁式容積型ポンプは気体あるいは水や不凍液などの流体の輸送に使用することができ、流体の種類が限定されるものではない。また流体輸送用ポンプとして使用する際に、可動子10が一つでは輸送圧力が不足するような場合には、マグネット12とインナーヨーク14a、14bからなる同形の単位可動子を複数個連結した多段型の可動子10を使用するようにしても良い。単位可動子を多段に連結することによって、大きな推力を備えた可動子10とすることができ、所要の輸送圧力を備えた電磁式容積型ポンプとすることができる。   Further, the electromagnetic positive displacement pump of the present embodiment can be used for transporting gas or fluid such as water or antifreeze, and the type of fluid is not limited. Further, when the transport pressure is insufficient with a single mover 10 when used as a fluid transport pump, a multistage in which a plurality of identical unit movers composed of magnets 12 and inner yokes 14a and 14b are connected. A mold movable element 10 may be used. By connecting the unit movers in multiple stages, the mover 10 having a large thrust can be obtained, and an electromagnetic positive displacement pump having a required transport pressure can be obtained.

また、電磁コイル26a、26bの軸線方向端面には磁性材からなるヨークを介在させても良い。この場合には、電磁コイル26a、26bの軸方向両端面に隣接するヨークとアウターヨーク38により磁気回路が形成されるので漏れ磁束を減らして磁束を有効に活用でき、電磁コイル26a、26bへの通電により鎖交する磁束数を確実に増やしてポンプ出力効率の改善を図ることができる。   Further, a yoke made of a magnetic material may be interposed between the axial end surfaces of the electromagnetic coils 26a and 26b. In this case, since the magnetic circuit is formed by the yoke and the outer yoke 38 adjacent to both axial end surfaces of the electromagnetic coils 26a and 26b, the leakage magnetic flux can be reduced and the magnetic flux can be effectively used. It is possible to improve the pump output efficiency by reliably increasing the number of magnetic fluxes interlinked by energization.

本発明に係る電磁式容積型ポンプの全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the electromagnetic positive displacement pump which concerns on this invention. 逆止弁の構造を示す説明図である。It is explanatory drawing which shows the structure of a non-return valve. 逆止弁が着座した状態の説明図である。It is explanatory drawing of the state in which the non-return valve was seated. 逆止弁が撓んだ状態の説明図である。It is explanatory drawing of the state which the check valve bent. 弁部の平面視外形を示す説明図である。It is explanatory drawing which shows the planar view external shape of a valve part. 可動子の変位と推力との関係を示すグラフ図である。It is a graph which shows the relationship between the displacement of a needle | mover, and thrust. 従来の弁の構成を示す説明図である。It is explanatory drawing which shows the structure of the conventional valve.

符号の説明Explanation of symbols

10 可動子
12 マグネット
14a、14b インナーヨーク
14c フランジ部
16 固定子
18a 上ケース
18b 下ケース
20 シリンダ筒
22a、22b ポンプ室
24a、24b 吸込用逆止弁
26a、26b 送出用逆止弁
28a、28b 吸込用流路
30a、30b 送出用流路
32 吸込口
34 送出口
36a、36b 電磁コイル
38 アウターヨーク
40 弁体
41 弁座
42 弁部
42a 凸部
43 抜け止め部
44 着座部
45 ガイド部
DESCRIPTION OF SYMBOLS 10 Movable element 12 Magnet 14a, 14b Inner yoke 14c Flange part 16 Stator 18a Upper case 18b Lower case 20 Cylinder cylinder 22a, 22b Pump chamber 24a, 24b Suction check valve 26a, 26b Sending check valve 28a, 28b Suction Flow path 30a, 30b Delivery flow path 32 Suction port 34 Delivery port 36a, 36b Electromagnetic coil 38 Outer yoke 40 Valve body 41 Valve seat 42 Valve portion 42a Convex portion 43 Retaining portion 44 Seating portion 45 Guide portion

Claims (8)

ポンプ室内で電磁駆動により可動子を往復動させて流体を送出及び吸込する動作を繰り返す電磁式容積型ポンプにおいて、
ポンプ室の流体送出側開口部と流体吸込側開口部とで流体圧の変化のみで開閉する逆止弁が逆向きに設けられ、弁体が弁座に対して相対的移動して接離動する当該弁体が最も開弁した位置で弁部と着座部との隙間が最小となる部位の流れに直交する流路断面積が、弁に形成される流路のうち最小径となる流路断面積と同等に形成されることを特徴とする電磁式容積型ポンプ。
In the electromagnetic positive displacement pump that repeats the operation of reciprocating the mover by electromagnetic drive in the pump chamber to send and suck fluid,
A check valve that opens and closes only by a change in fluid pressure at the fluid delivery side opening and the fluid suction side opening of the pump chamber is provided in the opposite direction, and the valve body moves relative to the valve seat and moves toward and away. The flow path cross-sectional area perpendicular to the flow of the part where the gap between the valve part and the seating part is the smallest at the position where the valve body is opened is the smallest diameter of the flow paths formed in the valve. An electromagnetic positive displacement pump characterized by being formed to have the same cross-sectional area.
弁体が接離動する弁座に連続して弁体の移動方向を流体の流れの向きに一致させるためのガイド部が弁体の移動範囲より長く形成されていることを特徴とする請求項1記載の電磁式容積型ポンプ。   The guide part for making the moving direction of the valve body coincide with the direction of fluid flow is formed longer than the moving range of the valve body in succession to the valve seat on which the valve body contacts and separates. The electromagnetic positive displacement pump according to 1. 弁体が最も開弁した位置でガイド部との間に形成される流路断面積が、弁体と着座部との間に形成される流路断面積より大きくなるようにガイド部が形成されることを特徴とする請求項2記載の電磁式容積型ポンプ。   The guide portion is formed so that the flow passage cross-sectional area formed between the valve body and the guide portion at the position where the valve body is most opened is larger than the flow passage cross-sectional area formed between the valve body and the seating portion. The electromagnetic positive displacement pump according to claim 2. ポンプ室内で電磁駆動により可動子を往復動させて流体を送出及び吸込する動作を繰り返す電磁式容積型ポンプにおいて、
ポンプ室の流体送出側開口部と流体吸込側開口部とで流体圧の変化のみで開閉する逆止弁が逆向きに設けられ、弁座に着座する弁体の弁部は可撓性を有し、当該弁部が接離動する着座部の形状はテーパー面若しくはR面形状に形成されていることを特徴とする電磁式容積型ポンプ。
In the electromagnetic positive displacement pump that repeats the operation of reciprocating the mover by electromagnetic drive in the pump chamber to send and suck fluid,
A check valve that opens and closes only by a change in fluid pressure is provided in a reverse direction at the fluid delivery side opening and the fluid suction side opening of the pump chamber, and the valve part of the valve body seated on the valve seat has flexibility. And the shape of the seating part to which the said valve part contacts / separates is formed in the taper surface or R surface shape, The electromagnetic positive displacement pump characterized by the above-mentioned.
弁体の平面視外形が円形の一部に凹部又は凸部が形成されているか若しくは楕円形であることを特徴とする請求項4記載の電磁式容積型ポンプ。   5. The electromagnetic positive displacement pump according to claim 4, wherein the outer shape of the valve body in plan view has a concave part or a convex part formed in a part of a circle, or is elliptical. 弁体が弁座に着座する着座部の平面視外形が円形の一部に凹部又は凸部が形成されているか若しくは楕円形であることを特徴とする請求項4記載の電磁式容積型ポンプ。   5. The electromagnetic positive displacement pump according to claim 4, wherein the seat portion on which the valve body is seated on the valve seat has a circular shape in which a concave portion or a convex portion is formed in a part of a circle, or an elliptical shape. ポンプ室の送出側開口部と吸込側開口部とで流体圧の変化のみで開閉する逆止弁が逆向きに設けられ、当該ポンプ室内で電磁駆動により可動子を往復動させて流体を送出及び吸込する動作を繰り返す電磁式容積型ポンプにおいて、
電磁駆動により往復動する可動子が反転する際に、当該可動子に作用する推力が平均推力の1/3以下になるように駆動電圧又は駆動電流が調整されることを特徴とする電磁式容積型ポンプ。
A check valve that opens and closes only by a change in fluid pressure is provided in the pump chamber on the delivery side opening and the suction side opening, and the mover is reciprocated by electromagnetic drive in the pump chamber to deliver fluid. In the electromagnetic positive displacement pump that repeats the suction operation,
The electromagnetic volume, wherein the driving voltage or the driving current is adjusted so that the thrust acting on the moving element is reduced to 1/3 or less of the average thrust when the moving element reciprocating by electromagnetic driving is reversed. Type pump.
可動子が反転した直後の当該可動子に作用する推力が平均推力以下となるように駆動回路又は磁気回路が調整されていることを特徴とする請求項8記載の電磁式容積型ポンプ。   9. The electromagnetic positive displacement pump according to claim 8, wherein the drive circuit or the magnetic circuit is adjusted so that the thrust acting on the movable element immediately after the movable element is reversed is equal to or less than the average thrust.
JP2004131039A 2004-04-27 2004-04-27 Electromagnetic displacement type pump Pending JP2005315093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131039A JP2005315093A (en) 2004-04-27 2004-04-27 Electromagnetic displacement type pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131039A JP2005315093A (en) 2004-04-27 2004-04-27 Electromagnetic displacement type pump

Publications (1)

Publication Number Publication Date
JP2005315093A true JP2005315093A (en) 2005-11-10

Family

ID=35442797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131039A Pending JP2005315093A (en) 2004-04-27 2004-04-27 Electromagnetic displacement type pump

Country Status (1)

Country Link
JP (1) JP2005315093A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314978A (en) * 1989-06-12 1991-01-23 Nippondenso Co Ltd Flow controller for fuel pump
JPH03105776U (en) * 1990-02-16 1991-11-01
JPH04254076A (en) * 1990-09-26 1992-09-09 Intevep Sa Check valve
JPH10213072A (en) * 1997-01-30 1998-08-11 Tec Corp Air pump
JP2000045933A (en) * 1998-07-27 2000-02-15 Mitsubishi Motors Corp Electromagnetic reciprocating pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314978A (en) * 1989-06-12 1991-01-23 Nippondenso Co Ltd Flow controller for fuel pump
JPH03105776U (en) * 1990-02-16 1991-11-01
JPH04254076A (en) * 1990-09-26 1992-09-09 Intevep Sa Check valve
JPH10213072A (en) * 1997-01-30 1998-08-11 Tec Corp Air pump
JP2000045933A (en) * 1998-07-27 2000-02-15 Mitsubishi Motors Corp Electromagnetic reciprocating pump

Similar Documents

Publication Publication Date Title
EP0605903B1 (en) Movable magnet type pump
US6736614B1 (en) Rotary piston drive mechanism
JP5307803B2 (en) Electromagnetic drive device
JP6099401B2 (en) Positive displacement pump
JPH08116658A (en) Variable magnet linear actuator and pump
JP2009516117A (en) Membrane pump
JP2005315093A (en) Electromagnetic displacement type pump
JP2005083309A (en) Driving method for electromagnetic pump
JP2005307767A (en) Check valve of positive displacement type pump
JP2006158135A (en) Linear actuator and valve device using it
JP4570343B2 (en) Electromagnetic pump
JP4570342B2 (en) Electromagnetic pump stator
KR20070006623A (en) Solenoid pressure pump
JP4206248B2 (en) Electromagnetic pump
KR20200123020A (en) Reciprocating fluid pumps including magnets, and related assemblies, systems, and methods
JP2020165446A (en) Actuator and valve equipped with the same
US20220389920A1 (en) High Volume, Low Pressure Oilless Pump
WO2005090786A1 (en) Electromagnetic pump
JP5016787B2 (en) Electromagnetic drive actuator and electromagnetic pump
CN214624629U (en) Electromagnetic device
WO2017038146A1 (en) Electromagnetic pump
JP2006246550A (en) Drive unit of electromagnetic capacity type pump
JP5435670B2 (en) Magnetic coil pump
JP7007935B2 (en) Hydraulic pump
KR20150114651A (en) Solenoid pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102