[go: up one dir, main page]

JP2005308871A - Interference color filter - Google Patents

Interference color filter Download PDF

Info

Publication number
JP2005308871A
JP2005308871A JP2004122841A JP2004122841A JP2005308871A JP 2005308871 A JP2005308871 A JP 2005308871A JP 2004122841 A JP2004122841 A JP 2004122841A JP 2004122841 A JP2004122841 A JP 2004122841A JP 2005308871 A JP2005308871 A JP 2005308871A
Authority
JP
Japan
Prior art keywords
film
color filter
interference
absorber
reflective metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004122841A
Other languages
Japanese (ja)
Inventor
Kazunori Miwa
一典 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATERIO DESIGN KK
Original Assignee
ATERIO DESIGN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATERIO DESIGN KK filed Critical ATERIO DESIGN KK
Priority to JP2004122841A priority Critical patent/JP2005308871A/en
Publication of JP2005308871A publication Critical patent/JP2005308871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a light reflection type display device which has high color purity and a reflection type color filter with which microfabrication is possible and which has high light resistance as a new reflection type interference color filter which is useful to make pixel intervals fine and improve light resistance. <P>SOLUTION: On a reflective metal film 1, an optical interference film is arranged which comprises at least a pair of a transparent material thin film 2b and an absorber translucent film 2a. Consequently, the light resistance is high and microfabrication by etching becomes possible, so the reflection type color filter is usable as a micro color filter for micro liquid crystal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は液晶表示装置等の表示装置用のカラーフィルターに関するものであり、特に画素ピッチの微細化や耐光性の向上に資する新規の反射型干渉カラーフィルターに関するものである。   The present invention relates to a color filter for a display device such as a liquid crystal display device, and more particularly to a novel reflective interference color filter that contributes to a finer pixel pitch and improved light resistance.

特開平8−122766JP-A-8-122766 特開平10−115704JP 10-115704 A 特開平8−313898JP-A-8-313898 特開平9−222512JP-A-9-222512 特開2002−23149JP2002-23149A 特開2002−341126JP 2002-341126 A

近年、携帯端末の普及によって外光下における表示装置のコントラストの低下が問題となっている。例えば携帯電話等の表示装置に直射日光が入射すると光が散乱して表示が見えなくなる現象がある。また消費電力低減の要請も強く、照明を必要としない表示装置への期待が高まっている。   In recent years, with the widespread use of portable terminals, a decrease in contrast of display devices under ambient light has become a problem. For example, when direct sunlight enters a display device such as a mobile phone, there is a phenomenon in which the light is scattered and the display becomes invisible. In addition, there is a strong demand for reducing power consumption, and expectations for display devices that do not require lighting are increasing.

反射型液晶パネルはバックライトによる照明を必要としないことから、液晶本来の低消費電力の利点を最大限に活用できるデバイスである。しかし構造上表示輝度が非常に低くなるという問題がある。暗さの原因は大きく分けて、反射率の問題と開口率の問題に分けられる。反射率では偏光板を用いない相転移型ゲストホスト液晶が有利だが、応答速度の面では、ツイストネマティック(TN)液晶、垂直配光ネマティック液晶、強誘電性液晶などが有利であり、コスト面などから反射型TN液晶等の改良が強く望まれている。   Since the reflective liquid crystal panel does not require illumination with a backlight, it is a device that can make full use of the advantages of low power consumption inherent to liquid crystal. However, there is a problem that the display luminance is very low due to the structure. The causes of darkness can be broadly divided into the problem of reflectance and the problem of aperture ratio. In terms of reflectance, phase transition type guest-host liquid crystal that does not use a polarizing plate is advantageous, but in terms of response speed, twisted nematic (TN) liquid crystal, vertical light distribution nematic liquid crystal, ferroelectric liquid crystal, etc. are advantageous, and cost, etc. Therefore, improvement of the reflective TN liquid crystal and the like is strongly desired.

カラーフィルターの製造方法としては、染色法、顔料分散法、着色感材法、印刷法が知られているが、一般的には顔料分散法が広く用いられている。顔料分散法では、例えば基板上に赤色顔料を含む感光性樹脂を塗布し、プリベーク・露光・現像した後、乾燥工程を経て赤色着色層を形成する。次に同様の工程を2回繰り返すことで緑色着色層および青色着色層を形成し、3色の着色層を有するカラーフィルターを製作する。   As a method for producing a color filter, a dyeing method, a pigment dispersion method, a colored light-sensitive material method, and a printing method are known. Generally, the pigment dispersion method is widely used. In the pigment dispersion method, for example, a photosensitive resin containing a red pigment is applied on a substrate, prebaked, exposed and developed, and then a red colored layer is formed through a drying process. Next, the same process is repeated twice to form a green colored layer and a blue colored layer, and a color filter having three colored layers is manufactured.

通常の反射型液晶のカラーフィルターは観察者側基板に設けられるので、入射光は反射金属膜によって反射することによってカラーフィルターを2回通過することになる。したがってカラーフィルターの吸光度と色純度を下げて明るさを優先しているものの、外光はフィルターによって透過する波長成分が冷陰極管の光と比べて少ないこともあり、従来の反射型液晶は非常に暗いのが現状である。   Since an ordinary reflective liquid crystal color filter is provided on the viewer side substrate, incident light is reflected by the reflective metal film and passes through the color filter twice. Therefore, although priority is given to brightness by reducing the absorbance and color purity of the color filter, the wavelength of light transmitted by the filter is less than that of the cold-cathode tube light. It is dark at present.

アクティブマトリックス方式では、TFT基板側の反射金属膜上にカラーフィルターを形成して開口率を改善する方法も提案されているが、1μm以上のカラーフィルター上に透明電極を形成してコンタクトホールを設けて導通させる必要があり、一般的にはあまり用いられていない。   In the active matrix method, a method for improving the aperture ratio by forming a color filter on the reflective metal film on the TFT substrate side has been proposed, but a transparent electrode is formed on the color filter of 1 μm or more to provide a contact hole. In general, it is not often used.

また半導体技術の進展により、半導体回路上に液晶層を形成するLCOS(Liquid Crystal on Silicon)デバイス等のマイクロ液晶やデジタルマイクロミラーデバイス(DMD)を用いたディスプレイ装置が注目されている。これらの表示装置では画素ピッチが非常に狭く、カラーフィルターを形成することが極めて困難になる。通常の顔料分散法によるカラーフィルターでは膜厚が1μm以上必要であり、LCOS等によるマイクロ液晶では画素ピッチが10μm程度と極めて微小であるためにアスペクト比が高くなる。このため加工が難しくて開口率が犠牲になる上に、反射率の確保や偏光の維持等が困難となる。また非常に高強度の光を反射させる必要があるため、染色法や顔料分散法によるカラーフィルターでは耐光性が劣るため、焼き着きが起こるという問題もある。また画素の微細化によって視差が問題となる。   In addition, due to the progress of semiconductor technology, a display device using a micro liquid crystal such as an LCOS (Liquid Crystal on Silicon) device that forms a liquid crystal layer on a semiconductor circuit or a digital micro mirror device (DMD) is drawing attention. In these display devices, the pixel pitch is very narrow, and it is extremely difficult to form a color filter. A color filter based on a normal pigment dispersion method requires a film thickness of 1 μm or more, and a micro liquid crystal using LCOS or the like has a very small pixel pitch of about 10 μm, so the aspect ratio becomes high. For this reason, it is difficult to process, the aperture ratio is sacrificed, and it is difficult to ensure reflectivity and maintain polarization. In addition, since it is necessary to reflect very high intensity light, color filters using a dyeing method or a pigment dispersion method have poor light resistance, and there is also a problem that seizure occurs. In addition, parallax becomes a problem due to pixel miniaturization.

このような問題の解決のために、特許文献1や特許文献2に示されているようなダイクロイックフィルターを用いた反射型カラーフィルターが提案されている。ダイクロイックフィルターは、高屈折率誘電体と低屈折率誘電体を多層積層して形成し、光の干渉によって特定の波長範囲の光を透過し、その補色となる光を反射する。通常干渉型カラーフィルターと称するものは、このダイクロイックフィルターであり、特徴としては吸収がないことがあげられる。   In order to solve such a problem, a reflection type color filter using a dichroic filter as shown in Patent Document 1 or Patent Document 2 has been proposed. The dichroic filter is formed by laminating a high refractive index dielectric and a low refractive index dielectric, and transmits light in a specific wavelength range by light interference, and reflects light that is a complementary color. What is commonly referred to as an interference type color filter is this dichroic filter, which is characterized by no absorption.

このような透明多層膜による薄膜フィルターは二種類の薄膜の屈折率と膜厚が規定されるので、所定の屈折率の材料をなかなか見つけることができない場合がある。通常高屈折率材料としてTaやTiOが、低屈折率材料としてSiOやMgFが用いられる。ダイクロイックフィルターではこれらの誘電体を積層して数μmの膜厚に形成する必要がある。これらの誘電体は耐薬品性が高く、ウェットエッチングを行うことができないために、微細加工を行う場合には、ダイクロイックフィルターを成膜する前に、感光レジストでパターン形成をしておき、その上に成膜して、レジストと一緒に余分な部分の膜を取り去るリフトオフ法によってパターン形成をする必要がある。そのために歩留りが悪くコスト高になるという問題がある。 In such a thin film filter made of a transparent multilayer film, the refractive index and film thickness of two types of thin films are defined, so it may be difficult to find a material having a predetermined refractive index. Usually, Ta 2 O 5 or TiO 2 is used as the high refractive index material, and SiO 2 or MgF 2 is used as the low refractive index material. In a dichroic filter, these dielectrics need to be laminated to form a film thickness of several μm. Since these dielectrics have high chemical resistance and wet etching cannot be performed, when fine processing is performed, a pattern is formed with a photosensitive resist before forming a dichroic filter. Then, it is necessary to form a pattern by a lift-off method in which an excessive portion of the film is removed together with the resist. Therefore, there is a problem that the yield is poor and the cost is high.

また特許文献3および特許文献4に示されている反射型ホログラムを用いたものも提案されているが、反射型ホログラムは製造装置が大型化しコスト面で不利である。また特許文献5および特許文献6ではコレスティック液晶を固化させて形成するタイプも提案されているが、コレスティック液晶を固化させたカラーフィルターは固化液晶層に0.1μm程度の段差をつける必要があり、プロセスの安定性やコスト面で問題がある。   In addition, a proposal using a reflection hologram shown in Patent Document 3 and Patent Document 4 has been proposed. However, the reflection hologram is disadvantageous in terms of cost because the manufacturing apparatus is large. Patent Documents 5 and 6 also propose a type in which a cholestic liquid crystal is solidified, but a color filter in which a cholestic liquid crystal is solidified needs to have a step of about 0.1 μm in the solidified liquid crystal layer. There are problems in terms of process stability and cost.

このように従来方式ではマイクロカラーフィルターを実用的に実現することができないために3板式や時間分割方式がとられている。3板式の装置では赤・緑・青の各原色ごとに一枚の液晶表示装置を使用し、それらの画像を合成してひとつの画像とするため、装置が大型で高価になるという問題があった。また単板式の装置では、カラーホイール等を介して時間分割駆動を行うめに、カラーブレーキング現象を伴い、小型化にも限界があるという問題があった。   As described above, since the micro color filter cannot be practically realized in the conventional method, a three-plate method or a time division method is adopted. In the three-plate type device, one liquid crystal display device is used for each primary color of red, green, and blue, and these images are combined into one image, so that the device is large and expensive. It was. In addition, the single-plate type apparatus has a problem that there is a limit to miniaturization accompanied by a color braking phenomenon in order to perform time-division driving through a color wheel or the like.

本発明は、明るく色純度の高い反射型表示装置を実現する技術に関する。さらに、微細加工が可能であり、耐光性の高い構造とすることでマイクロカラーフィルターを実現する技術に関する。   The present invention relates to a technique for realizing a reflective display device that is bright and has high color purity. Further, the present invention relates to a technique for realizing a micro color filter by forming a structure that can be finely processed and has high light resistance.

本発明では、Al等の金属からなる反射金属膜と、前記反射金属膜上に形成された少なくとも一対の透明体薄膜と吸収体半透過膜による光干渉膜によってカラーフィルターの赤・緑・青の各サブピクセルを構成する。赤・緑・青の発色は透明体薄膜と吸収体半透過膜の膜厚の組み合わせを変更することによって実現する。また前記吸収体半透過膜に代わり、吸収体微粒子を分散した透明体膜を用いることによってより安価で扱いやすいプロセスを実現することができる。   In the present invention, the red, green, and blue of the color filter are formed by a reflective metal film made of a metal such as Al, and a light interference film formed of at least a pair of transparent thin films and an absorber semi-transmissive film formed on the reflective metal film. Configure each subpixel. Red, green, and blue colors can be achieved by changing the combination of film thickness of the transparent thin film and the absorber semi-transmissive film. Moreover, a cheaper and easier-to-handle process can be realized by using a transparent film in which absorber fine particles are dispersed instead of the absorber semipermeable film.

本発明のよる干渉カラーフィルターでは、色純度が高く、明るい反射型表示装置を可能とする。また、耐光性が高く、エッチングによる微細加工が可能なので、マイクロ液晶向けのマイクロカラーフィルターとして活用できる。   The interference color filter according to the present invention enables a bright reflective display device with high color purity. Moreover, since it has high light resistance and can be finely processed by etching, it can be used as a micro color filter for micro liquid crystal.

以下、図をもとに具体的に説明する。図1は本発明の構成を示す図である。1は反射金属膜、2は光干渉膜で、3はオーバーコート膜である。光干渉膜2は吸収体半透過膜2aと透明体薄膜2bで構成されており、反射金属膜1とオーバーコート膜3の間に少なくとも一対の光干渉膜を配置する。オーバーコート膜3は配置しないことも可能である。   Hereinafter, specific description will be given based on the drawings. FIG. 1 is a diagram showing the configuration of the present invention. 1 is a reflective metal film, 2 is an optical interference film, and 3 is an overcoat film. The optical interference film 2 is composed of an absorber semi-transmissive film 2 a and a transparent thin film 2 b, and at least a pair of optical interference films are disposed between the reflective metal film 1 and the overcoat film 3. The overcoat film 3 may be omitted.

吸収体半透過膜は例えばMoの質量膜厚で数十nm程度の真空蒸着膜である。この程度の膜厚の金属蒸着膜は、蒸着の初期に形成される核を中心に成長した島状構造から、島同士が連結しあう網状構造へ変化しつつある段階であり、入射光の一部が透過することから半透過膜となる。半透過膜の微細構造は波長に対して十分に小さく、半透過膜全体で均質と見ることができる。成膜法は真空蒸着法に限らずスパッタリング法や気相成長法など多くの成膜法を適用できる。   The absorber semipermeable membrane is, for example, a vacuum deposited film having a mass thickness of Mo of about several tens of nm. The metal vapor deposition film of this thickness is a stage where an island-like structure grown around the nucleus formed at the initial stage of vapor deposition is changing to a network structure where islands are connected to each other. Since the portion permeates, it becomes a semi-permeable membrane. The microstructure of the semi-transmissive film is sufficiently small with respect to the wavelength, and can be viewed as homogeneous throughout the semi-transmissive film. The film forming method is not limited to the vacuum evaporation method, and many film forming methods such as a sputtering method and a vapor phase growth method can be applied.

いま、オーバーコート膜の屈折率をn、第1層の吸収体半透過膜の複素屈折率をn =n−ik、膜厚をd、第2層の透明体薄膜の屈折率をn、膜厚をd、反射金属膜の複素屈折率をn =n−ikとする。入射光はオーバーコート膜を通って、第1層である吸収体半透過膜に入射し、入射した光のうち一部は反射し、一部は吸収され、一部は透過する。第1層である吸収体半透過膜を透過した光は第2層である透明体薄膜を通り、反射金属膜に入射し、一部が吸収され一部が反射する。反射金属膜で反射した光は、再び第2層である透明体薄膜を通って、第1層である吸収体半透過膜に到達し、再度一部が反射、一部が吸収、一部が透過する。 Now, the refractive index of the overcoat film is n 0 , the complex refractive index of the absorber semi-transmissive film of the first layer is n 1 * = n 1 −ik 1 , the film thickness is d 1 , and the transparent thin film of the second layer is The refractive index is n 2 , the film thickness is d 2 , and the complex refractive index of the reflective metal film is n b * = n b −ik b . Incident light passes through the overcoat film and enters the absorber semi-transmissive film as the first layer, and part of the incident light is reflected, part is absorbed, and part is transmitted. The light that has passed through the absorber semi-transmissive film that is the first layer passes through the transparent thin film that is the second layer, enters the reflective metal film, and is partially absorbed and partially reflected. The light reflected by the reflective metal film again passes through the transparent thin film that is the second layer and reaches the absorber semi-transmissive film that is the first layer, and is again partially reflected, partially absorbed, and partially To Penetrate.

このようなオーバーコート膜/吸収体半透過膜/透明体薄膜/反射金属膜による多層薄膜で繰り返し反射による光干渉をシミュレーションするためには、それぞれの光学定数n、n、k、d、n、d、n、kを正確に知る必要がある。それぞれの光学定数は入射する波長によって分散があり、第1層である吸収体半透過膜は、膜厚や成膜法、下地の状態によって屈折率nおよび吸収係数kが大きく変動する。 In order to simulate optical interference due to repetitive reflection in a multilayer thin film composed of such an overcoat film / absorber semi-transmissive film / transparent thin film / reflective metal film, the optical constants n 0 , n 1 , k 1 , d 1, n 2, d 2, n b, it is necessary to know exactly k b. Each optical constant varies depending on the incident wavelength, and the refractive index n 1 and the absorption coefficient k 1 of the absorber semi-transmissive film as the first layer greatly vary depending on the film thickness, the film forming method, and the state of the base.

一般に非常に薄い金属蒸着膜は、蒸着の初期に生成した核から成長するために、成長段階により島状構造や網状構造をとり、半透過膜となる。このような半透過膜ではバルク金属では見られない、表面プラズマ振動等に起因する可視域の異常吸収が存在することが知られている。その結果、膜厚によって光学定数が大幅に変化するものと考えられる。したがって、蒸着条件や下地の状態、膜厚、波長等、それぞれの条件による光学定数を測定し、分散状況を把握しながら、光学計算をする必要がある。   In general, a very thin metal vapor-deposited film grows from nuclei generated at the initial stage of vapor deposition, and thus takes an island-like structure or a net-like structure depending on the growth stage to become a semi-permeable film. In such a semi-permeable membrane, it is known that abnormal absorption in the visible region due to surface plasma vibration or the like, which is not found in bulk metal, exists. As a result, it is considered that the optical constant varies greatly depending on the film thickness. Therefore, it is necessary to perform optical calculations while measuring the optical constants according to the respective conditions such as the vapor deposition conditions, the state of the substrate, the film thickness, and the wavelength, and grasping the dispersion state.

このようにして求めた光学定数を元に、オーバーコート膜/吸収体半透過膜/透明体薄膜/反射金属膜の反射率シミュレーションを行うと、実際に作製したサンプルとよく合致する。光学定数の組み合わせによって、特定の波長範囲の光に対して低反射率を実現できる。Mo半透過膜/Al透明体薄膜/Al反射金属膜の構成では、第1層の吸収体半透過膜の膜厚dおよび第2層の透明体薄膜の膜厚dを変えることで、赤色、青色、黄色等の強い呈色を示すことが見出された。 When the reflectance simulation of the overcoat film / absorber semi-transparent film / transparent thin film / reflective metal film is performed based on the optical constants thus obtained, it matches well with the actually produced sample. By combining the optical constants, a low reflectance can be realized for light in a specific wavelength range. In the structure of Mo semi-permeable film / Al 2 O 3 transparent thin film / Al reflective metal film, the film thickness d 1 of the first-layer absorber semi-transmissive film and the film thickness d 2 of the second-layer transparent thin film are changed. Thus, it was found that strong coloration such as red, blue, and yellow was exhibited.

実験により多くの材料を検討した結果、Moの吸収体半透過膜のほかに、Au、Ag、Al、Au、Co、Cr、Cu、Fe、Ge、Nb、Ni、Pb、Pd、Pt、Sb、Se、Si、Sn、Ta、Ti、W、Zn、Zr等多くの金属や半金属で、強い呈色を示すことが見出された。このような半透過膜は膜厚の増加によって島状膜から網状の薄膜へと成長するにつれて光の吸収機構が変化して光学定数も変化する。しかし、すべての光学定数が独立ではなく、関連して変化するために吸収体半透過膜の膜厚変化に対して吸収帯の移動は鈍感であり、多くの吸収体半透過膜で透過率がおおむね10〜90%の範囲で呈色が認められた。   As a result of examining many materials by experiment, in addition to the Mo absorber semi-permeable film, Au, Ag, Al, Au, Co, Cr, Cu, Fe, Ge, Nb, Ni, Pb, Pd, Pt, Sb , Se, Si, Sn, Ta, Ti, W, Zn, Zr, and many other metals and metalloids have been found to exhibit strong coloration. As such a semi-transmissive film grows from an island-like film to a net-like thin film as the film thickness increases, the light absorption mechanism changes and the optical constant also changes. However, since all optical constants are not independent and change in relation to each other, the movement of the absorption band is insensitive to the change in the thickness of the absorber semipermeable membrane, and the transmittance of many absorber semipermeable membranes is low. Coloration was recognized in the range of about 10 to 90%.

第2層の透明体薄膜は、YやIn、Al、Siなどの金属や半金属の酸化物や窒化物あるいはフッ化物のほか透明樹脂など、透明であればほとんどの材料が利用できる。また、InやSiなど金属や半金属の酸化物や窒化物では成膜条件によって化学量論比からのずれによって若干の吸収を伴う場合があるが、このような吸収のある膜でも、色純度に多少影響するものの問題なく使用することができる。また、反射金属膜材料では、AlのほかAu、Ag、Au、Cr、Co、Cu、Fe、Mo、Nb、Ni、Pb、Pd、Pt、Sn、Ta、Ti、W、Znなど多くの金属に対して有効である。 The transparent thin film of the second layer is transparent such as Y 2 O 3 , In 2 O 3 , Al 2 O 3 , Si 3 N 4 and other metals, metalloid oxides, nitrides, fluorides, and transparent resins. If so, most materials can be used. In addition, oxides or nitrides of metals or metalloids such as In 2 O 3 and Si 3 N 4 may have some absorption due to deviation from the stoichiometric ratio depending on the film formation conditions. Even a certain film can be used without any problem although it slightly affects the color purity. In addition, Al, Au, Ag, Au, Cr, Co, Cu, Fe, Mo, Nb, Ni, Pb, Pd, Pt, Sn, Ta, Ti, W, Zn, and many other metals are used as the reflective metal film material. It is effective against.

このようなオーバーコート膜/吸収体半透過膜/透明体薄膜/反射金属膜による多層薄膜では、第1層の吸収体半透過膜の膜厚は、反射率に影響するものの吸収帯の中心波長には鈍感であることから主に反射光の強度を調整し、第2層の透明体薄膜の膜厚は、吸収帯の中心波長が大きく移動することから干渉の位相条件は主にこの第2層の透明体薄膜の膜厚によって決定する。吸収体表面からの反射光と光干渉膜からの反射光をバランスさせ、干渉する波長を調整することによって、吸収帯が生ずるものと考えられる。   In a multilayer thin film made of such an overcoat film / absorber semi-transparent film / transparent thin film / reflective metal film, the thickness of the first layer of the absorber semi-transmissive film affects the reflectance, but the center wavelength of the absorption band. Since the intensity of the reflected light is mainly adjusted, the thickness of the transparent thin film of the second layer is largely shifted by the center wavelength of the absorption band. It is determined by the thickness of the transparent thin film of the layer. It is considered that an absorption band is generated by balancing the reflected light from the absorber surface and the reflected light from the optical interference film and adjusting the wavelength of interference.

実験では、吸収体半透過膜の質量膜厚が200nm以下、特に50から100nmで良好な発色が見られ、第2層の透明体薄膜の膜厚を調整して吸収帯の中心波長を変化させることにより、様々な色を発色することができる。第1層の吸収体半透過膜の膜厚を数十nmから増加させていくと、徐々に反射率が低下して色純度の高い発色を示すようになるが、吸収体半透過膜の膜厚が所定の膜厚、例えば200nm以上になると連続膜となって光が透過しなくなるために発色しなくなる。また第2層である透明体薄膜の膜厚を増加していくと徐々に光の吸収帯の中心波長が長波長側に移動する。着色膜として有効な範囲は第1層が島状または網状構造を維持できる1nm以上200nm以下、第2層がおおむね1nm以上1μm以下である。   In the experiment, good color development is seen when the mass thickness of the absorber semi-permeable membrane is 200 nm or less, particularly 50 to 100 nm, and the central wavelength of the absorption band is changed by adjusting the thickness of the transparent thin film of the second layer. As a result, various colors can be developed. When the film thickness of the absorber semi-permeable film of the first layer is increased from several tens of nanometers, the reflectance gradually decreases and color development with high color purity is exhibited. When the thickness is a predetermined film thickness, for example, 200 nm or more, a continuous film is formed and light is not transmitted, so that color is not generated. Further, as the thickness of the transparent thin film as the second layer is increased, the center wavelength of the light absorption band gradually moves to the long wavelength side. The effective range for the colored film is 1 nm to 200 nm in which the first layer can maintain an island-like or network structure, and the second layer is generally 1 nm to 1 μm in general.

このようにして作製した試料は、吸収帯の範囲によって特定の色を発色する。例えば長波長側が吸収され、短波長の光が反射されると青色に見える。逆に短波長側が吸収され、長波長の光が反射されると赤色に見える。反射光が呈する色は、反射金属膜材料と吸収体半透過膜材料の組み合わせ、および吸収体半透過膜と透明体薄膜の膜厚の組み合わせによってさまざまに変化する。   The sample thus produced develops a specific color depending on the range of the absorption band. For example, when the long wavelength side is absorbed and short wavelength light is reflected, it looks blue. Conversely, when the short wavelength side is absorbed and long wavelength light is reflected, it appears red. The color exhibited by the reflected light varies depending on the combination of the reflective metal film material and the absorber semi-transmissive film material and the combination of the thickness of the absorber semi-transmissive film and the transparent thin film.

また、吸収体半透過膜と透明体薄膜の組み合わせを複数配置することによって、複数の吸収帯を形成することができる。それぞれの吸収帯が特定の波長域の光を吸収し、吸収された波長域以外の光が反射されて色純度の高い反射型のカラーフィルター画素を形成することができる。   Also, a plurality of absorption bands can be formed by arranging a plurality of combinations of the absorber semipermeable membrane and the transparent thin film. Each absorption band absorbs light in a specific wavelength range, and light outside the absorbed wavelength range is reflected, so that a reflective color filter pixel with high color purity can be formed.

吸収体半透過膜と透明体薄膜による光干渉膜の特徴は、全体の膜厚が薄く、選択できる材料の範囲が広いことである。透明体薄膜としてはITO(Indium Tin Oxide)などの導電性を持った材料も用いることができるので、反射金属膜を含むカラーフィルター全体を導電性材料で形成できる。そのため例えばカラーフィルター・オン・アレイとしてTFT基板上にカラーフィルターを形成した場合に、表面に透明導電膜を形成してコンタクトホールを設ける必要がなく、簡単な構成でカラーフィルター電極を形成できる。   The characteristics of the optical interference film composed of the absorber semi-transmissive film and the transparent thin film are that the entire film thickness is thin and the range of materials that can be selected is wide. Since a transparent material such as ITO (Indium Tin Oxide) can be used as the transparent thin film, the entire color filter including the reflective metal film can be formed of a conductive material. Therefore, for example, when a color filter is formed on a TFT substrate as a color filter on array, it is not necessary to form a transparent conductive film on the surface and provide a contact hole, and a color filter electrode can be formed with a simple configuration.

また、本発明による干渉カラーフィルターは、膜厚が薄くエッチング加工が可能な材料を選択することが可能である。例えば、透明体薄膜としてYや前述のITO等を用いることによって、例えばリン酸系のAlエッチング液を用いてMo/Y/Alからなる干渉カラーフィルターをエッチング加工することができる。 In addition, the interference color filter according to the present invention can select a material that has a small film thickness and can be etched. For example, by using Y 2 O 3 or the above-mentioned ITO as the transparent thin film, for example, an interference color filter made of Mo / Y 2 O 3 / Al can be etched using a phosphoric Al etching solution. it can.

また、本発明による第二の発明では、第1層の島状または網状の吸収体半透過膜に代わり、吸収体微粒子を分散した透明体膜を用いる。吸収体微粒子は300nm以下の粒径を持つ微粒子で、可視光の波長に対して十分に小さく、吸収体微粒子を分散した透明体膜全体で均質と見ることができる。ナノサイズの金属超微粒子は、金属島状膜や網状膜と同様に表面プラズモン等に起因する可視光域での強い吸収があり、吸収体微粒子を分散した透明体膜と、さらに反射金属膜側に配置した透明体薄膜による2層によって光干渉膜を構成することによって、第一の発明と同様の吸収帯を実現できる。   In the second invention according to the present invention, a transparent film in which absorber fine particles are dispersed is used instead of the island-like or net-like absorber semipermeable membrane of the first layer. Absorber fine particles are fine particles having a particle diameter of 300 nm or less, are sufficiently small with respect to the wavelength of visible light, and can be seen as homogeneous throughout the transparent film in which the absorber fine particles are dispersed. Nano-sized ultrafine metal particles have strong absorption in the visible light region due to surface plasmons, etc., as well as metal island-like films and network films, transparent film in which absorber fine particles are dispersed, and reflective metal film side An absorption band similar to that of the first invention can be realized by configuring the optical interference film with two layers of transparent thin films disposed on the surface.

また、この構造によれば、第一の発明の吸収体半透過膜が連続膜となる膜厚の厚い領域で利用が可能となるうえに、第1層や第2層の膜厚に多少のばらつきがあっても吸収帯の形状があまり変化しないので、製造プロセスの安定性を高めることができる。このような吸収体微粒子が分散した透明体膜は吸収体と透明体の共蒸着や、別途作製した吸収体超微粒子を透明樹脂等に分散させ、反射金属膜上にスピンコートする等の方法で形成することができる   Further, according to this structure, the absorber semipermeable membrane of the first invention can be used in a thick region where the continuous membrane is used, and the thickness of the first layer and the second layer is slightly increased. Even if there is variation, the shape of the absorption band does not change so much, so that the stability of the manufacturing process can be improved. The transparent film in which the absorber fine particles are dispersed is obtained by co-evaporation of the absorber and the transparent body, or by dispersing the separately prepared absorber ultrafine particles in a transparent resin or the like and spin-coating on the reflective metal film. Can be formed

本発明による反射型干渉カラーフィルターは、カラーフィルターを持つ様々な液晶パネル等に適用することができる。偏光板を通過した直線偏光は本発明による干渉カラーフィルターで反射して円偏光になるので、1枚偏光板のTN型液晶等に適用する場合には、位相調整板を配置して反射光を直線偏光に戻して再度偏光板を通過させる。この場合、赤・緑・青の各サブピクセルごとに液晶の複屈折による着色や光干渉膜による位相のずれ等が生ずることがあるので、それぞれのサブピクセルごとにオーバーコート膜の膜厚を最適化することによって、この問題を解決することができる。   The reflective interference color filter according to the present invention can be applied to various liquid crystal panels having color filters. The linearly polarized light that has passed through the polarizing plate is reflected by the interference color filter according to the present invention and becomes circularly polarized light. Therefore, when applied to a TN type liquid crystal of a single polarizing plate, a phase adjusting plate is disposed to reflect the reflected light. Return to linearly polarized light and pass through the polarizing plate again. In this case, coloration due to birefringence of the liquid crystal or phase shift due to the optical interference film may occur in each of the red, green, and blue sub-pixels, so the overcoat film thickness is optimal for each sub-pixel. This problem can be solved.

また、本発明による反射型干渉カラーフィルターは反射金属膜と光干渉膜とからなり、通常の反射型液晶の反射電極とカラーフィルターを兼ねた構造となっている。反射金属膜および光干渉膜を蒸着膜等の平坦な膜で構成することによって、顔料分散型のカラーフィルターで問題となる顔料による光の散乱がなく、迷光のないクリアな反射映像光が得られる。   The reflective interference color filter according to the present invention includes a reflective metal film and a light interference film, and has a structure that serves as both a reflective electrode and a color filter of a normal reflective liquid crystal. By constructing the reflective metal film and the optical interference film as a flat film such as a vapor-deposited film, there is no scattering of light by the pigment, which is a problem with pigment-dispersed color filters, and clear reflected video light without stray light can be obtained. .

また、反射金属膜および光干渉膜に凹凸を形成することによって配光性を持たせ、広い視野角を持たせることができる。特に反射界面を回転楕円体の一部で構成される凹部または凸部の集合で形成することによって均一に配光することができ、さらに表示装置から外部に出射するときに臨界角に達することのない凹部または凸部の傾斜角を設定することによって、効率のよい明るい反射型カラーフィルターを構成することができる。   Further, by forming irregularities on the reflective metal film and the optical interference film, it is possible to provide light distribution and a wide viewing angle. In particular, it is possible to distribute light uniformly by forming the reflective interface with a set of concave or convex parts formed of a part of a spheroid, and to reach a critical angle when the light is emitted from the display device to the outside. An efficient bright reflective color filter can be configured by setting an inclination angle of no concave portion or convex portion.

また、光干渉膜を構成する透明体薄膜の光学定数n、dは干渉条件を決める要素となっており、光学距離nを可変とすることによって、1画素で多くの色を発色することができる。したがってサブピクセルに分割しなくても、3原色を時間分割で発色することで、フルカラー表示が実現する。このような構成は、透明体薄膜を例えばニオブ酸リチウムのような強誘電体材料で構成した光学距離可変透明膜とし、吸収体半透過膜の上にさらに導電性透明体膜を配置することによって実現することができる。 The optical constants n 2 and d 2 of the transparent thin film constituting the optical interference film are factors that determine the interference condition. By making the optical distance n 2 d 2 variable, many colors can be obtained in one pixel. Can develop color. Therefore, full color display is realized by coloring the three primary colors in a time division manner without dividing into sub-pixels. In such a configuration, the transparent thin film is made of a variable optical distance transparent film made of a ferroelectric material such as lithium niobate, and a conductive transparent film is further disposed on the absorber semi-transmissive film. Can be realized.

すなわち導電性透明膜と、反射金属膜の間に電圧を印加することによって、強誘電体等で構成された光学距離可変透明膜の屈折率すなわち光学距離が変化し、光干渉膜の干渉条件が変化することによって異なる色が発色する。このような発色の変化は、このほかに、熱や圧力、電場や磁場、光などの電磁波によって膜厚または屈折率に変化を生じる物質によって構成することができる。   That is, by applying a voltage between the conductive transparent film and the reflective metal film, the refractive index of the optical distance variable transparent film made of a ferroelectric or the like, that is, the optical distance is changed, and the interference condition of the optical interference film is changed. By changing, different colors are developed. In addition to this, the color change can be constituted by a substance that changes in film thickness or refractive index by electromagnetic waves such as heat, pressure, electric field, magnetic field, and light.

また、光学距離可変透明膜を熱等の外部刺激で不可逆的に光学距離が変化する物質で構成し、レーザーアニール等の手法で光学距離可変透明膜を部分的に加工することによって、フォトリソグラフィによらない簡便な手法で干渉カラーフィルターを作製できる。   In addition, the optical distance variable transparent film is made of a material whose optical distance is irreversibly changed by an external stimulus such as heat, and the optical distance variable transparent film is partially processed by a technique such as laser annealing, thereby enabling photolithography. An interference color filter can be produced by a simple method that does not depend.

以下に本発明の実施の形態を具体的に説明する。   Embodiments of the present invention will be specifically described below.

図2は本発明の干渉カラーフィルターを用いた反射型カラー液晶表示装置の断面構造図である。4はセグメント側のガラス基板、5は樹脂で形成された凹部を形成した下地層、6は反射金属膜、7は光干渉膜で、Moの吸収体半透過膜7aとITOの導電性透明体薄膜7bからなる。8はオーバーコート膜を兼ねた配光膜、9はシール部材、10は液晶層、11は配光膜、12は透明電極、13はコモン側ガラス基板、14は位相差板、15は偏光板である。反射金属膜3と光干渉膜4でカラーフィルター電極100を構成する。またセグメント側のガラス基板4は駆動回路を含むTFT基板やシリコンバックプレーンでもよく、凹部を形成した下地層5は省略することもできる。液晶層7は例えば45°ツイステッドネマチック液晶であり、オーバーコート膜8によって平坦化した後、液晶層を注入する。   FIG. 2 is a sectional structural view of a reflective color liquid crystal display device using the interference color filter of the present invention. 4 is a glass substrate on the segment side, 5 is a base layer formed with a recess made of resin, 6 is a reflective metal film, 7 is an optical interference film, Mo absorber semi-transmissive film 7a and ITO conductive transparent body It consists of a thin film 7b. 8 is a light distribution film also serving as an overcoat film, 9 is a sealing member, 10 is a liquid crystal layer, 11 is a light distribution film, 12 is a transparent electrode, 13 is a common side glass substrate, 14 is a retardation plate, and 15 is a polarizing plate. It is. The color filter electrode 100 is constituted by the reflective metal film 3 and the light interference film 4. Further, the glass substrate 4 on the segment side may be a TFT substrate or a silicon backplane including a driving circuit, and the base layer 5 in which the recesses are formed can be omitted. The liquid crystal layer 7 is, for example, 45 ° twisted nematic liquid crystal, and after being flattened by the overcoat film 8, the liquid crystal layer is injected.

カラーフィルター電極100は、異なる波長域の光を反射するように微細に分割された3つの領域からなり、それぞれ青・緑・赤の波長を反射する。このような反射特性の差は、反射金属膜6上に形成した光干渉膜7の膜厚構成によって実現することができる。   The color filter electrode 100 includes three regions that are finely divided so as to reflect light in different wavelength ranges, and reflects blue, green, and red wavelengths, respectively. Such a difference in reflection characteristics can be realized by the film thickness configuration of the optical interference film 7 formed on the reflective metal film 6.

このような構造は、次のような製法によって形成することができる。アクリル系樹脂を主成分とする熱硬化型樹脂をガラス基板1上にスピンコートし、3μm程度の厚さの下地層を形成する。この試料をプリベークした後、回転楕円体を多数並置した界面を持つマイクロ金型によるスタンプ法によって、下地層に多数の凹部を形成する。さらにポストベークした後、この試料を電子ビーム蒸着装置に装着し、Alを200nm程度蒸着する。さらに、ITOをO雰囲気中で60nm程度蒸着し、続いてMo膜を40nm程度蒸着する。 Such a structure can be formed by the following manufacturing method. A thermosetting resin containing acrylic resin as a main component is spin-coated on the glass substrate 1 to form a base layer having a thickness of about 3 μm. After pre-baking this sample, a large number of recesses are formed in the underlayer by a stamping method using a micro mold having an interface in which a large number of spheroids are juxtaposed. After further post-baking, this sample is mounted on an electron beam vapor deposition apparatus, and Al is deposited by about 200 nm. Further, ITO is deposited in a thickness of about 60 nm in an O 2 atmosphere, and then a Mo film is deposited in a thickness of about 40 nm.

このようにして作製した試料上にフォトレジストをスピンコートし、適当なパターンで露光・現像した後、リン酸系のAlエッチング液でエッチングを行うと、カラーフィルターパターンを形成することができ、青色のカラーフィルター電極とすることができた。ITO膜の膜厚を変えながら、延べ3回の成膜とエッチングを繰り返すことによって、3色のカラーフィルター電極を形成できた。こうして作製したセグメント側基板にポリイミド樹脂からなる配光膜8を形成して、ラビング処理を行った。   A spin filter is applied to the sample thus prepared, and after exposure and development with an appropriate pattern, etching with a phosphoric acid-based Al etching solution can form a color filter pattern. Color filter electrode. By changing the thickness of the ITO film and repeating the film formation and etching a total of three times, three color filter electrodes could be formed. A light distribution film 8 made of polyimide resin was formed on the segment side substrate thus produced, and a rubbing treatment was performed.

コモン側基板は、ガラス基板13上にITOからなる透明電極を形成し、ラビング処理したポリイミド樹脂からなる配光膜11を形成する。そして、セグメント側基板とコモン側基板を液晶層10とシール部材9を介して張り合わせ、ガラス基板13の外側にポリカーボネートからなる位相差板14と、偏光板15を順次張り合わせた。   As the common substrate, a transparent electrode made of ITO is formed on a glass substrate 13, and a light distribution film 11 made of a rubbed polyimide resin is formed. Then, the segment side substrate and the common side substrate were bonded to each other via the liquid crystal layer 10 and the seal member 9, and the retardation plate 14 made of polycarbonate and the polarizing plate 15 were sequentially bonded to the outside of the glass substrate 13.

このようにして作製した反射型液晶表示装置は、色純度、反射率ともに高く、視差も皆無であった。また本発明の干渉カラーフィルターは、耐光性が高くて微細加工が可能であり、数μm幅のカラーフィルターパターンを形成することができる。   The reflection type liquid crystal display device thus produced had high color purity and reflectance, and had no parallax. The interference color filter of the present invention has high light resistance and can be finely processed, and can form a color filter pattern with a width of several μm.

図3は光干渉膜を構成する透明体薄膜の光学距離を可変にした例である。16aはMoの吸収体半透過膜、16bはニオブ酸リチウム等の強誘電体で形成された光学距離可変透明体薄膜であり、この2層で光学距離可変の光干渉膜16を構成している。また反射金属膜6と光学距離可変の光干渉膜16で可変発色のカラーフィルター電極200を構成している。17は導電性透明体膜で、ITO蒸着膜等で形成している。反射金属膜6と導電性透明体膜17の間に電圧を印加すると、その間の強誘電体膜の屈折率が変化し、光学距離が変化することによって光干渉膜16の干渉条件が変化し、印加電圧によって赤、緑、青およびその中間色を発色することができる。   FIG. 3 shows an example in which the optical distance of the transparent thin film constituting the optical interference film is variable. 16a is a Mo absorber semi-transmissive film, and 16b is an optical distance variable transparent thin film formed of a ferroelectric material such as lithium niobate. The optical interference film 16 having a variable optical distance is constituted by these two layers. . The reflective metal film 6 and the optical interference film 16 with a variable optical distance constitute a variable color filter electrode 200. Reference numeral 17 denotes a conductive transparent film formed of an ITO vapor deposition film or the like. When a voltage is applied between the reflective metal film 6 and the conductive transparent film 17, the refractive index of the ferroelectric film between them changes, and the interference condition of the optical interference film 16 changes due to the change in optical distance. Depending on the applied voltage, red, green, blue and their intermediate colors can be developed.

本発明の干渉カラーフィルターの断面構造図である。It is a cross-section figure of the interference color filter of the present invention. 本発明の干渉カラーフィルターを適用した反射型液晶パネルの断面構造図である。1 is a cross-sectional structure diagram of a reflective liquid crystal panel to which an interference color filter of the present invention is applied. 本発明の可変色型干渉カラーフィルターを適用した反射型液晶パネルの断面構造図である。1 is a cross-sectional structure diagram of a reflective liquid crystal panel to which a variable color interference color filter of the present invention is applied.

符号の説明Explanation of symbols

1 反射金属膜
2 光干渉膜
2a 吸収体半透過膜
2b 透明体薄膜
3 オーバーコート膜
4 セグメント側のガラス基板
5 下地層
6 反射金属膜
7 光干渉膜
7a 吸収体半透過膜
7b 導電性透明体薄膜
8 オーバーコート膜を兼ねた配光膜
9 シール部材
10 液晶層
11 配光膜
12 透明電極
13 コモン側ガラス基板
14 位相差板
15 偏光板
16 光学距離可変光干渉膜
16a 吸収体半透過膜
16b 光学距離可変透明体薄膜
17 導電性透明体膜
100 カラーフィルター電極
200 可変発色カラーフィルター電極
DESCRIPTION OF SYMBOLS 1 Reflective metal film 2 Optical interference film 2a Absorber semi-transmissive film 2b Transparent thin film 3 Overcoat film 4 Segment side glass substrate 5 Underlayer 6 Reflective metal film 7 Optical interference film 7a Absorber semi-transmissive film 7b Conductive transparent body Thin film 8 Light distribution film 9 also serving as overcoat film Seal member 10 Liquid crystal layer 11 Light distribution film 12 Transparent electrode 13 Common side glass substrate 14 Phase difference plate 15 Polarizing plate 16 Optical distance variable optical interference film 16a Absorber semi-transmission film 16b Optical distance variable transparent thin film 17 Conductive transparent film 100 Color filter electrode 200 Variable color filter electrode

Claims (11)

反射金属膜と、前記反射金属膜上に形成された少なくとも一対の透明体薄膜と吸収体半透過膜による光干渉膜によって構成することを特徴とする干渉カラーフィルター。   An interference color filter comprising: a reflective metal film; and an optical interference film comprising at least a pair of transparent thin films and an absorber semi-transmissive film formed on the reflective metal film. 反射金属膜と、前記反射金属膜上に形成された透明体薄膜と吸収体微粒子を分散した透明体膜による光干渉膜とによって構成することを特徴とする干渉カラーフィルター。   An interference color filter comprising: a reflective metal film; a transparent thin film formed on the reflective metal film; and a light interference film made of a transparent film in which absorber fine particles are dispersed. 前記吸収体半透過膜または前記吸収体微粒子が、遷移金属元素、典型金属元素、半金属元素から選択される1種類以上の金属または半金属元素で構成されることを特徴とする請求項1および2記載の干渉カラーフィルター。   The said absorber semipermeable membrane or said absorber fine particle is comprised with 1 or more types of metals or metalloid elements selected from a transition metal element, a typical metal element, and a metalloid element, and 2. The interference color filter according to 2. 前記光干渉膜を構成する前記透明体薄膜を導電性透明体で構成することを特徴とする請求項1および2記載の干渉カラーフィルター。   3. The interference color filter according to claim 1, wherein the transparent thin film constituting the optical interference film is formed of a conductive transparent body. 前記光干渉膜を構成する前記透明体薄膜を光学距離可変材料によって形成することを特徴とする請求項1および2記載の干渉カラーフィルター。   The interference color filter according to claim 1 or 2, wherein the transparent thin film constituting the optical interference film is formed of an optical distance variable material. 前記光干渉膜を構成する前記吸収体半透過膜の膜厚が1nmから200nmの範囲にあることを特徴とする請求項1記載の干渉カラーフィルター。   2. The interference color filter according to claim 1, wherein the thickness of the absorber semi-transmissive film constituting the optical interference film is in the range of 1 nm to 200 nm. 前記光干渉膜を構成する前記吸収体微粒子の粒径が300nm以下であることを特徴とする請求項2記載の干渉カラーフィルター。   The interference color filter according to claim 2, wherein a particle diameter of the absorber fine particles constituting the optical interference film is 300 nm or less. 前記光干渉膜を構成する前記透明体薄膜の膜厚が1nmから1μmの範囲にあることを特徴とする請求項1および2記載の干渉カラーフィルター。   3. The interference color filter according to claim 1, wherein the transparent thin film constituting the optical interference film has a thickness in a range of 1 nm to 1 [mu] m. 前記光干渉膜を備えた前記反射金属膜を並列に分割配置してサブピクセルを構成し、前記サブピクセル上にそれぞれ膜厚の異なるオーバーコート膜を配置することを特徴とする請求項1および2記載の干渉カラーフィルター。   3. The reflective metal film having the optical interference film is divided and arranged in parallel to form a subpixel, and overcoat films having different thicknesses are arranged on the subpixel, respectively. The interference color filter described. 前記反射金属膜の光入射界面を回転楕円体の一部で構成される曲面の集合で構成することを特徴とする請求項1および2記載の干渉カラーフィルター。   3. The interference color filter according to claim 1, wherein the light incident interface of the reflective metal film is configured by a set of curved surfaces formed by a part of a spheroid. 前記光干渉膜を構成する前記吸収体半透過膜に隣接して導電性透明体膜を配置することを特徴とする請求項1および2記載の干渉カラーフィルター。
3. The interference color filter according to claim 1, wherein a conductive transparent film is disposed adjacent to the absorber semi-transmissive film constituting the optical interference film.
JP2004122841A 2004-04-19 2004-04-19 Interference color filter Pending JP2005308871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122841A JP2005308871A (en) 2004-04-19 2004-04-19 Interference color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122841A JP2005308871A (en) 2004-04-19 2004-04-19 Interference color filter

Publications (1)

Publication Number Publication Date
JP2005308871A true JP2005308871A (en) 2005-11-04

Family

ID=35437762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122841A Pending JP2005308871A (en) 2004-04-19 2004-04-19 Interference color filter

Country Status (1)

Country Link
JP (1) JP2005308871A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079307A2 (en) * 2007-12-17 2009-06-25 Qualcomm Mems Technologies, Inc. Photovoltaics with interferometric ribbon masks
JP2009169419A (en) * 2008-01-14 2009-07-30 Sysview Technology Inc Color-based microdevice of liquid crystal on silicon (lcos) microdisplay
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7839557B2 (en) 2004-09-27 2010-11-23 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7889415B2 (en) 2004-09-27 2011-02-15 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7898521B2 (en) 2004-09-27 2011-03-01 Qualcomm Mems Technologies, Inc. Device and method for wavelength filtering
US7911428B2 (en) 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7920319B2 (en) 2007-07-02 2011-04-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7928928B2 (en) 2004-09-27 2011-04-19 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing perceived color shift
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7952787B2 (en) 2006-06-30 2011-05-31 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7986451B2 (en) 2004-09-27 2011-07-26 Qualcomm Mems Technologies, Inc. Optical films for directing light towards active areas of displays
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US8004743B2 (en) 2006-04-21 2011-08-23 Qualcomm Mems Technologies, Inc. Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8054528B2 (en) 2004-09-27 2011-11-08 Qualcomm Mems Technologies Inc. Display device having an array of spatial light modulators with integrated color filters
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8094362B2 (en) 2004-03-06 2012-01-10 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8344377B2 (en) 2004-09-27 2013-01-01 Qualcomm Mems Technologies, Inc. Display element having filter material diffused in a substrate of the display element
US8362987B2 (en) 2004-09-27 2013-01-29 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
KR101451774B1 (en) * 2013-10-01 2014-10-16 주식회사 화니텍 Method for manufacturing structure producing structural color
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8885244B2 (en) 2004-09-27 2014-11-11 Qualcomm Mems Technologies, Inc. Display device
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US8111445B2 (en) 2004-02-03 2012-02-07 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8094362B2 (en) 2004-03-06 2012-01-10 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
US8054528B2 (en) 2004-09-27 2011-11-08 Qualcomm Mems Technologies Inc. Display device having an array of spatial light modulators with integrated color filters
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US7889415B2 (en) 2004-09-27 2011-02-15 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US7839557B2 (en) 2004-09-27 2010-11-23 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7898521B2 (en) 2004-09-27 2011-03-01 Qualcomm Mems Technologies, Inc. Device and method for wavelength filtering
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7911428B2 (en) 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7928928B2 (en) 2004-09-27 2011-04-19 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing perceived color shift
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US8344377B2 (en) 2004-09-27 2013-01-01 Qualcomm Mems Technologies, Inc. Display element having filter material diffused in a substrate of the display element
US8362987B2 (en) 2004-09-27 2013-01-29 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7986451B2 (en) 2004-09-27 2011-07-26 Qualcomm Mems Technologies, Inc. Optical films for directing light towards active areas of displays
US9097885B2 (en) 2004-09-27 2015-08-04 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8885244B2 (en) 2004-09-27 2014-11-11 Qualcomm Mems Technologies, Inc. Display device
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8004743B2 (en) 2006-04-21 2011-08-23 Qualcomm Mems Technologies, Inc. Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7952787B2 (en) 2006-06-30 2011-05-31 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
US7920319B2 (en) 2007-07-02 2011-04-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8736949B2 (en) 2007-07-31 2014-05-27 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
JP2011507307A (en) * 2007-12-17 2011-03-03 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Photovoltaic device with interference ribbon mask
WO2009079307A3 (en) * 2007-12-17 2009-08-13 Qualcomm Mems Technologies Inc Photovoltaics with interferometric ribbon masks
US8193441B2 (en) 2007-12-17 2012-06-05 Qualcomm Mems Technologies, Inc. Photovoltaics with interferometric ribbon masks
WO2009079307A2 (en) * 2007-12-17 2009-06-25 Qualcomm Mems Technologies, Inc. Photovoltaics with interferometric ribbon masks
JP2009169419A (en) * 2008-01-14 2009-07-30 Sysview Technology Inc Color-based microdevice of liquid crystal on silicon (lcos) microdisplay
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
KR101451774B1 (en) * 2013-10-01 2014-10-16 주식회사 화니텍 Method for manufacturing structure producing structural color

Similar Documents

Publication Publication Date Title
JP2005308871A (en) Interference color filter
US7616277B2 (en) Transflective LCD device having dual thickness color filter
US20230266512A1 (en) Nanoparticle-Based Holographic Photopolymer Materials and Related Applications
KR100700635B1 (en) Color filter for transflective liquid crystal display device and manufacturing method thereof
KR100381077B1 (en) Liquid crystal display device and electronic apparatus
CN101813825B (en) Interferometric light modulator and display device
JPH06194639A (en) Liquid crystal display panel
US6933994B1 (en) Liquid crystal display including an anisotropic scattering layer
JP2003255336A (en) Color filter substrate for transflective liquid crystal display and method of manufacturing the same
CN109143659B (en) Reflection type color display based on spiral photonic crystal and manufacturing method thereof
JP4504482B2 (en) Color filter
KR20010084736A (en) Method for fabricating a colorfilter for transflective LCD
WO2017198072A1 (en) Color film substrate and preparation method therefor, and display device
JP4494552B2 (en) Transmission type liquid crystal display device
JP3941322B2 (en) Electrode substrate for reflective liquid crystal display device and reflective liquid crystal display device using the same
KR102723640B1 (en) Plasmonic color-filter based on coaxial hole and disk array structure
JP2003177392A (en) Liquid crystal display
JP2003186033A (en) Liquid crystal display
JP4335067B2 (en) Electro-optic device
JP4123294B2 (en) Liquid crystal display
JP4241315B2 (en) Color filter substrate, electro-optical device, method for manufacturing color filter substrate, method for manufacturing electro-optical device, and electronic apparatus
JP3900189B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JP3666599B2 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
TWI384274B (en) Transflective liquid crystal display device
JP3894217B2 (en) Liquid crystal display