[go: up one dir, main page]

JP2005308628A - Reactor pressure vessel replacement method - Google Patents

Reactor pressure vessel replacement method Download PDF

Info

Publication number
JP2005308628A
JP2005308628A JP2004128104A JP2004128104A JP2005308628A JP 2005308628 A JP2005308628 A JP 2005308628A JP 2004128104 A JP2004128104 A JP 2004128104A JP 2004128104 A JP2004128104 A JP 2004128104A JP 2005308628 A JP2005308628 A JP 2005308628A
Authority
JP
Japan
Prior art keywords
reactor
pressure vessel
reactor pressure
building
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004128104A
Other languages
Japanese (ja)
Inventor
Hiromi Fujisawa
博美 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP2004128104A priority Critical patent/JP2005308628A/en
Publication of JP2005308628A publication Critical patent/JP2005308628A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a method for replacing a nuclear reactor pressure vessel enabling full safety in carrying in/out operations of the nuclear reactor pressure vessel when the nuclear reactor pressure vessel installed inside a reactor building is replaced. <P>SOLUTION: This method for replacing a nuclear reactor pressure vessel includes a process for carrying out the nuclear reactor pressure vessel from a nuclear reactor storage vessel, a process for fixing an additional shielding plate 56 on the remaining inner surface of a nuclear reactor shielding wall 5 inside the nuclear reactor storage vessel, and a process for carrying in a new nuclear reactor pressure vessel into the nuclear reactor storage vessel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原子炉建屋内に据え付けられた原子炉圧力容器の交換方法に関する。   The present invention relates to a method for replacing a reactor pressure vessel installed in a reactor building.

原子力発電所は、原子炉圧力容器を交換することにより、原子力発電所の延命化(長寿命化)を図ることができる。原子炉圧力容器の原子炉建屋からの搬出、及び原子炉建屋への搬入に関しては、原子炉建屋の屋根に開口部を設置し,この開口部を通して原子炉圧力容器を搬出搬入する方法が提案されている(特許文献1参照)。
また、原子炉建屋外に配置した原子炉圧力容器を横臥状態に吊り上げて運搬し、原子炉格納容器の開口部上方において圧力容器を起立させて原子炉格納容器内に搬入する方法と、逆の手順で原子炉圧力容器を原子炉建屋外に搬出する方法が提案されている(特許文献2参照)。
特開2003−215294号公報 特開昭57−151892号公報
The nuclear power plant can extend the life of the nuclear power plant by extending the reactor pressure vessel. With regard to carrying out the reactor pressure vessel from the reactor building and carrying it into the reactor building, a method has been proposed in which an opening is provided on the roof of the reactor building and the reactor pressure vessel is carried out and carried in through this opening. (See Patent Document 1).
Also, the reactor pressure vessel placed outside the reactor building is lifted and transported in a lying state, and the reverse of the method of raising the pressure vessel above the opening of the reactor containment vessel and carrying it into the reactor containment vessel. There has been proposed a method for carrying out the reactor pressure vessel to the outside of the reactor building according to the procedure (see Patent Document 2).
JP 2003-215294 A JP-A-57-151892

しかしながら、前者の技術では、縦長の原子炉圧力容器を起立させた状態で搬出入するため、原子炉建屋を跨ぐ形の巨大な門型支持構造体を設ける必要がある。また、原子炉圧力容器の吊り下げ時に使用済燃料プール側に落下しないような措置を建屋内に施す必要があるが、措置を施すと建屋内天井クレーンが走行できなくなり、付帯工事が遅れてしまうという問題がある。
一方、後者の技術では、原子炉圧力容器を横臥状態に吊り上げて搬入する際の手順が示されているが、原子炉圧力容器を搬出するために必要な具体的な原子炉設備の構成については提案されていない。すなわち、原子炉圧力容器を搬出する際は、放射性物質の屋外への飛散を未然に防止する必要等があるため、単に搬入方法の逆の手順で原子炉圧力容器を搬出したのでは安全を十分に確保できない等の問題がある。特に、原子炉圧力容器のみを搬出、搬入する(原子炉遮蔽壁は搬出、搬入せず)際に発生する様々な問題が未解決である。
However, in the former technique, since a vertically long reactor pressure vessel is carried in and out while standing, it is necessary to provide a huge gate-type support structure that straddles the reactor building. In addition, it is necessary to take measures in the building so that it does not fall to the spent fuel pool side when the reactor pressure vessel is suspended. There is a problem.
On the other hand, in the latter technique, the procedure for lifting and loading the reactor pressure vessel in a lying state is shown, but for the specific reactor equipment configuration required to carry out the reactor pressure vessel, Not proposed. In other words, when carrying out the reactor pressure vessel, it is necessary to prevent the radioactive material from being scattered outside, so it is sufficient to simply remove the reactor pressure vessel in the reverse order of the loading method. There are problems such as being unable to secure. In particular, various problems that occur when only the reactor pressure vessel is carried out and carried in (the reactor shielding wall is not carried out or carried in) are unsolved.

本発明は、上述した事情に鑑みてなされたもので、原子炉建屋内に据え付けられた原子炉圧力容器を交換する際に、原子炉圧力容器の搬出搬入作業の安全性を十分に確保することができる原子炉圧力容器交換方法を提案することを目的とする。   The present invention has been made in view of the above-described circumstances, and when replacing the reactor pressure vessel installed in the reactor building, sufficiently ensure the safety of carrying out and carrying in the reactor pressure vessel. The purpose of this is to propose a reactor pressure vessel replacement method.

本発明に係る原子炉圧力容器交換方法では、上記課題を解決するために以下の手段を採用した。
本発明は、原子炉圧力容器交換方法において、原子炉格納容器から原子炉圧力容器を搬出する工程と、原子炉格納容器内に残された原子炉遮蔽壁の内面に追加遮蔽板を取り付ける工程と、新たな原子炉圧力容器を原子炉格納容器内に搬入する工程と、を有するようにした。この発明によれば、原子炉遮蔽壁の炉心域からの被ばくを回避しつつ、原子炉格納容器内に残された原子炉遮蔽壁を再利用することができる。
The reactor pressure vessel replacement method according to the present invention employs the following means in order to solve the above problems.
The present invention relates to a reactor pressure vessel replacement method, a step of unloading the reactor pressure vessel from the reactor containment vessel, and a step of attaching an additional shielding plate to the inner surface of the reactor shielding wall left in the reactor containment vessel. And a step of carrying a new reactor pressure vessel into the reactor containment vessel. According to this invention, the reactor shielding wall left in the reactor containment vessel can be reused while avoiding exposure of the reactor shielding wall from the core region.

また、追加遮蔽板の取り付け工程が、内面に設けられた金属保温支持材と干渉しないように縦分割した追加遮蔽板を内面に取り付ける工程と、金属保温支持材を撤去する工程と、金属保温支持材が撤去された内面に、更に追加遮蔽板を取り付ける工程と、を有するものでは、原子炉遮蔽壁の炉心域からの被ばくを回避しつつ、金属保温支持材を撤去することができる。   In addition, the step of attaching the additional shielding plate to the inner surface so that the attaching step of the additional shielding plate does not interfere with the metal heat insulating support material provided on the inner surface, the step of removing the metal heat insulating support material, and the metal heat insulating support With the step of attaching an additional shielding plate to the inner surface from which the material has been removed, the metal heat insulating support material can be removed while avoiding exposure of the reactor shielding wall from the core region.

また、追加遮蔽板の取り付け工程が、仮遮蔽材を原子炉遮蔽壁の上方から吊り下げて、内面に設けられた金属保温支持材を避けて内面に配置する工程を有するものでは、
容易に仮遮蔽板を原子炉遮蔽壁に取り付けることができる。
また、仮遮蔽材が、新たな原子炉圧力容器を搬入して金属保温材を設置した後に、撤去されるものでは、その後の原子炉の運転を安全かつ確実に行うことができる。
In addition, the step of attaching the additional shielding plate includes a step of suspending the temporary shielding material from above the reactor shielding wall and avoiding the metal heat insulating support material provided on the inner surface, and placing it on the inner surface.
The temporary shielding plate can be easily attached to the reactor shielding wall.
Further, when the temporary shielding material is removed after carrying in a new reactor pressure vessel and installing the metal heat insulating material, the subsequent operation of the reactor can be performed safely and reliably.

本発明によれば以下の効果を得ることができる。
本発明は、原子炉圧力容器交換方法において、原子炉格納容器から原子炉圧力容器を搬出する工程と、原子炉格納容器内に残された原子炉遮蔽壁の内面に追加遮蔽板を取り付ける工程と、新たな原子炉圧力容器を原子炉格納容器内に搬入する工程と、を有するようにした。
これにより、原子炉遮蔽壁の炉心域からの被ばくを回避しつつ、原子炉格納容器内に残された原子炉遮蔽壁を再利用することができるので、作業従事者の安全を確保することができると共に、原子炉圧力容器の交換に掛かる費用を抑えることができる。
According to the present invention, the following effects can be obtained.
The present invention relates to a reactor pressure vessel replacement method, a step of unloading the reactor pressure vessel from the reactor containment vessel, and a step of attaching an additional shielding plate to the inner surface of the reactor shielding wall left in the reactor containment vessel. And a step of carrying a new reactor pressure vessel into the reactor containment vessel.
As a result, the reactor shielding wall remaining in the reactor containment vessel can be reused while avoiding exposure of the reactor shielding wall from the core region, so that the safety of workers can be ensured. In addition, the cost for replacing the reactor pressure vessel can be reduced.

以下、本発明の原子炉圧力容器交換方法の実施形態について図を参照して説明する。
図1は、沸騰水型原子力発電プラント(BWRプラント)の一部である原子炉施設1の構成を示す縦断面図である。図2は、原子炉圧力容器4の詳細構成を示す縦断面図である。
原子炉施設1は、原子炉建屋2と、付属棟20と、原子炉建屋2と付属棟20とを接続する渡り通路30から構成される。
Hereinafter, an embodiment of a reactor pressure vessel replacement method of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a configuration of a nuclear reactor facility 1 which is a part of a boiling water nuclear power plant (BWR plant). FIG. 2 is a longitudinal sectional view showing a detailed configuration of the reactor pressure vessel 4.
The nuclear reactor facility 1 includes a nuclear reactor building 2, an attached building 20, and a crossing passage 30 that connects the nuclear reactor building 2 and the attached building 20.

原子炉建屋2は、地上に立設され、その内部に原子炉格納容器3(Primary Containment Vessel)を備える。
原子炉格納容器3は、原子炉の安全上重要な建造物であって、原子炉圧力容器4と冷却系統設備等の構造物を収容する。一般的に、電球形あるいは釣鐘形の鋼鉄製又は鉄筋コンクリート造で気密・耐圧構造となっており、原子炉の事故、原子炉冷却系の破損などの異常時に、放射性物質が外部に放出されるのを防ぐ役目をする。なお、本実施形態では、釣鐘形に形成される。
原子炉圧力容器4(Reactor Pressure Vessel)は、上部及び底部が半球状の立型円筒形で原子炉圧力容器上蓋(RPV上蓋53)と原子炉圧力容器胴4bとから構成される。原子炉圧力容器4は、ペデスタル9の上に設置され、基礎ボルトで固定されて自立している。なお、ペデスタル9は、原子炉圧力容器4の基礎となるためコンクリートと鉄板枠又は鉄筋の構造物である。
原子炉圧力容器4の外側には、原子炉からの放射線を遮蔽するための原子炉遮蔽壁5が設けられる。原子炉遮蔽壁5は、厚さが600〜700mmの鉄板枠のコンクリート構造物である。
原子炉圧力容器4の上蓋であるRPV上蓋53は、ボルトにより原子炉圧力容器胴4bのフランジ4cに固定される。また、原子炉圧力容器4には、主蒸気出口ノズル80等のノズルが取り付けられており、原子炉圧力容器4外部の配管に接続されている。
The reactor building 2 is erected on the ground and includes a reactor containment vessel 3 (Primary Containment Vessel) inside.
The reactor containment vessel 3 is a building important for safety of the reactor, and houses the reactor pressure vessel 4 and structures such as cooling system equipment. Generally, it is made of light bulb-shaped or bell-shaped steel or reinforced concrete, and has an airtight and pressure-resistant structure, and radioactive materials are released to the outside in the event of an accident such as a reactor accident or damage to the reactor cooling system. It serves to prevent. In addition, in this embodiment, it forms in a bell shape.
The reactor pressure vessel 4 (Reactor Pressure Vessel) is a vertical cylindrical shape with a hemispherical top and bottom, and includes a reactor pressure vessel upper lid (RPV upper lid 53) and a reactor pressure vessel body 4b. The reactor pressure vessel 4 is installed on the pedestal 9 and is fixed by a foundation bolt and is self-supporting. Note that the pedestal 9 is a structure of concrete and a steel plate frame or a reinforcing bar because it serves as the foundation of the reactor pressure vessel 4.
A reactor shielding wall 5 for shielding radiation from the reactor is provided outside the reactor pressure vessel 4. The reactor shielding wall 5 is an iron plate frame concrete structure having a thickness of 600 to 700 mm.
The RPV upper lid 53, which is the upper lid of the reactor pressure vessel 4, is fixed to the flange 4c of the reactor pressure vessel body 4b by bolts. In addition, a nozzle such as a main steam outlet nozzle 80 is attached to the reactor pressure vessel 4 and is connected to piping outside the reactor pressure vessel 4.

原子炉格納容器3の上部には、燃料集合体10や原子炉圧力容器4内の構造物を交換或いは取り出す時に、燃料集合体10等からの放射線を遮蔽する遮蔽水が張られる原子炉ウェル6が設けられる。原子炉圧力容器4を交換する際には、原子炉ウェル6から原子炉圧力容器4を搬出、搬入する。   At the top of the reactor containment vessel 3, when the structure in the fuel assembly 10 or the reactor pressure vessel 4 is exchanged or taken out, the reactor well 6 is filled with shielding water that shields radiation from the fuel assembly 10 or the like. Is provided. When exchanging the reactor pressure vessel 4, the reactor pressure vessel 4 is unloaded from the reactor well 6 and loaded.

図3は、原子炉建屋2の運転床11の平面配置図である。
原子炉建屋2内の運転床11には、使用済みの燃料集合体10を保管するための使用済燃料プール7と、炉内から取り出した炉内構造物を保管するための機器プール8とが、原子炉ウェル6を挟んで対称的に配置される。使用済燃料プール7には、使用済みの燃料集合体からの放射線を遮蔽するために水が張られる。
FIG. 3 is a plan layout view of the operation floor 11 of the reactor building 2.
The operation floor 11 in the reactor building 2 includes a spent fuel pool 7 for storing the spent fuel assembly 10 and an equipment pool 8 for storing the reactor internal structure taken out from the reactor. Are arranged symmetrically with respect to the reactor well 6. The spent fuel pool 7 is filled with water to shield radiation from the spent fuel assembly.

運転床11には、原子炉ウェル6、使用済燃料プール7、機器プール8とを跨ぐように、走行レール12が敷設される。そして、この走行レール12上には、原子炉圧力容器4を吊り下げて搬送する門型クレーン13が載置される。
門型クレーン13は、補助ホイスト13aが設けられる。なお、補助ホイスト13aの走行レール(ホイストレール)は、後述する原子炉圧力容器4の交換作業の際に、受け台18上に仮置きされた原子炉圧力容器4と干渉せずに、原子炉圧力容器4の上方を走行可能な高さに取り付ける。
また、原子炉建屋2の機器プール8側の側壁2aには門型クレーン13が通過可能な第1開口部41が設けられ、更にこの第1開口部41には第1気密扉42が設けられる。これにより、門型クレーン13の通過以外の時に、放射性物質が原子炉建屋2から外部に放出されることが防止される。
A traveling rail 12 is laid on the operation floor 11 so as to straddle the reactor well 6, the spent fuel pool 7, and the equipment pool 8. A portal crane 13 that suspends and conveys the reactor pressure vessel 4 is placed on the traveling rail 12.
The portal crane 13 is provided with an auxiliary hoist 13a. Note that the traveling rail (hoist rail) of the auxiliary hoist 13a does not interfere with the reactor pressure vessel 4 temporarily placed on the cradle 18 during the replacement operation of the reactor pressure vessel 4 to be described later. The pressure vessel 4 is attached to a height at which it can travel.
A first opening 41 through which the portal crane 13 can pass is provided on the side wall 2a on the equipment pool 8 side of the reactor building 2, and a first hermetic door 42 is further provided in the first opening 41. . Thereby, it is prevented that a radioactive substance is discharged | emitted from the reactor building 2 outside at the time other than passage of the portal crane 13. FIG.

図1に戻り、付属棟20は、渡り通路30を介して原子炉建屋2に接続される。付属棟20は、原子炉圧力容器4の搬出搬入に用いられる施設であって、原子炉建屋2と略同一高さに立設し、その内部は空洞となっている。
また、付属棟20及び渡り通路30にも、走行レール12が敷設される。したがって、門型クレーン13は、原子炉建屋2と付属棟20との間を渡り通路30を介して往復移動可能となっている。
また、付属棟20の地上階21には、原子炉圧力容器4を積載した重量物運搬輸送車22(図10参照)が通過可能な第2開口部43が設けられ、更にこの第2開口部43には第2気密扉44が設けられる。第2気密扉44は、第1気密扉42と同時に開放されないようにインターロック制御が施される。これにより、原子炉圧力容器4の搬出時に、原子炉建屋2内を負圧に維持することができ、放射性物質が外部に放出されることが防止される。
Returning to FIG. 1, the attached building 20 is connected to the reactor building 2 through the transfer passage 30. The attached building 20 is a facility used to carry out and carry in the reactor pressure vessel 4, and is erected at substantially the same height as the reactor building 2, and its inside is hollow.
The traveling rails 12 are also laid in the attached building 20 and the crossing passage 30. Therefore, the portal crane 13 can reciprocate through the passage 30 between the reactor building 2 and the attached building 20.
In addition, a second opening 43 through which a heavy goods transporting vehicle 22 (see FIG. 10) loaded with the reactor pressure vessel 4 can pass is provided on the ground floor 21 of the annex building 20, and this second opening is further provided. A second hermetic door 44 is provided at 43. The second hermetic door 44 is interlocked so as not to be opened simultaneously with the first hermetic door 42. Thereby, when the reactor pressure vessel 4 is carried out, the inside of the reactor building 2 can be maintained at a negative pressure, and the radioactive substance is prevented from being released to the outside.

原子炉建屋2と付属棟20とを接続する渡り通路30の床下、言い換えれば原子炉建屋2と付属棟20の間の空間には、原子炉圧力容器4の搬出の際に、原子炉ウェル6内又は原子炉圧力容器4内から取り外される機器50、例えば、PCVトップヘッド51、RPV上蓋保温材52、RPV上蓋53等を収容する機器収容領域60が設けられる。通常、これらの機器50は、原子炉建屋2の運転床11に仮置きされるものであるが、原子炉圧力容器4の搬出作業の際に邪魔になってしまう場合が少なくない。このため、搬出作業の安全性を損なう場合がある。そこで、これらの機器50を機器収容領域60に収容することにより、搬出作業の安全性を確保する。
機器収容領域60は、複数の階層61を備える。そして、各階層61の床面62は、開閉可能に構成される。つまり、各階層61の床面62を閉じることにより、原子炉ウェル6内又は原子炉圧力容器4内等から取り外された複数の機器50を積み重ねるように収容することができる。
In the space between the reactor building 2 and the accessory building 20, in other words, in the space between the reactor building 2 and the accessory building 20, the reactor well 6 A device storage area 60 is provided to store the device 50 to be removed from the inside or the reactor pressure vessel 4, for example, the PCV top head 51, the RPV upper lid heat insulating material 52, the RPV upper lid 53 and the like. Normally, these devices 50 are temporarily placed on the operation floor 11 of the reactor building 2, but there are not a few cases where these devices 50 get in the way when the reactor pressure vessel 4 is carried out. For this reason, the safety | security of carrying out work may be impaired. Therefore, by storing these devices 50 in the device storage area 60, the safety of the unloading work is ensured.
The device storage area 60 includes a plurality of levels 61. The floor surface 62 of each floor 61 is configured to be openable and closable. That is, by closing the floor surface 62 of each level 61, a plurality of devices 50 removed from the reactor well 6 or the reactor pressure vessel 4 can be accommodated so as to be stacked.

次に、原子炉圧力容器4の交換作業について図4から図11を用いて説明する。
本工程は、原子炉圧力容器4のみ(原子炉遮蔽壁5は搬出せず)を搬出、搬入する工程である。
具体的には、解列工程、搬出準備工程、原子炉圧力容器搬出工程、原子炉遮蔽壁内面手入れ工程、新規原子炉圧力容器搬入工程、原子炉圧力容器周辺復旧工程、燃料再装荷工程、併入工程からなる。
Next, replacement work of the reactor pressure vessel 4 will be described with reference to FIGS.
This step is a step of carrying out and carrying in only the reactor pressure vessel 4 (the reactor shielding wall 5 is not carried out).
Specifically, disassembly process, unloading preparation process, reactor pressure vessel unloading process, reactor shield wall inner surface cleaning process, new reactor pressure vessel loading process, reactor pressure vessel peripheral recovery process, fuel reloading process, It consists of an entry process.

まず、解列工程では、原子炉ウェルカバー14を取り外し、次いでPCVトップヘッド51、RPV上蓋保温材52、RPV上蓋53等を原子炉ウェル6内から取り外す。
これらの機器は、図4に示すように、原子炉ウェル6内又は原子炉圧力容器4内から取り外した順に、機器収容領域60の下層階から収容する。具体的には、機器収容領域60における最下位層の床以外の床面62を開放しておき、PCVトップヘッド51を最下位の階層61に収容する。次に、最下位の階層61の直上の床面62を閉じて、RPV上蓋保温材52を収容する。同様にして、RPV上蓋53等を最上階層61に積み重ねるように収容する。
続いて、原子炉ウェル6と機器プール8に水を張り、蒸気乾燥器81や気水分離器82と一体となっているシュラウドヘッド83等の炉内構造物を炉内から取り外し、機器プール8に移送する。次いで、使用済燃料プール7のプールゲート15を開放し、炉内から燃料集合体10を取り出し使用済燃料プール7ヘ移送する。
First, in the disconnection process, the reactor well cover 14 is removed, and then the PCV top head 51, the RPV upper lid heat insulating material 52, the RPV upper lid 53, etc. are removed from the reactor well 6.
As shown in FIG. 4, these devices are accommodated from the lower floor of the device accommodating region 60 in the order of removal from the reactor well 6 or the reactor pressure vessel 4. Specifically, the floor surface 62 other than the lowest floor in the device accommodation area 60 is opened, and the PCV top head 51 is accommodated in the lowest hierarchy 61. Next, the floor surface 62 immediately above the lowest floor 61 is closed to accommodate the RPV upper lid heat insulating material 52. Similarly, the RPV upper lid 53 and the like are accommodated so as to be stacked on the uppermost layer 61.
Subsequently, the reactor well 6 and the equipment pool 8 are filled with water, and the in-furnace structures such as the shroud head 83 integrated with the steam dryer 81 and the steam separator 82 are removed from the inside of the furnace, and the equipment pool 8 Transport to. Next, the pool gate 15 of the spent fuel pool 7 is opened, and the fuel assembly 10 is taken out from the furnace and transferred to the spent fuel pool 7.

次いで、搬出準備工程では、制御棒案内管86、制御棒駆動機構87等の炉内構造物を全て取り外す。
そして、原子炉ウェル6の水位が原子炉圧力容器4のフランジ4cより下がっていることを確認して、機器プール8の水抜きを行い、プールゲート16を取り外す。ここで、必須ではないが、作業従事者への被ばく低減には有効であるため、原子炉圧力容器4や接続配管は化学除染を実施することが望ましい。
次に、原子炉圧力容器4内の水抜きをする前に、炉心シュラウド84の頂部に内部遮蔽体78を取り付ける(図5参照)。
そして、原子炉圧力容器4に接続する配管とその支持構造物を必要最小限の範囲で撤去する。
原子炉圧力容器4のフランジ4cに遮蔽蓋70を取り付ける。原子炉圧力容器4と原子炉格納容器3とは、バルクヘッド76等を介して接続されているので、バルクヘッド76等から原子炉圧力容器4の搬出の際に干渉する部分を撤去する。
次に、スタビライザ77を取り外し、原子炉遮蔽壁5から原子炉圧力容器4を切り離す。
また、図5に示すように、原子炉圧力容器4と金属保温材93の間隙にモルタル94を充填する。モルタル94は、炉心域の高線量部は高密度に、炉心域から離れた部分は低密度にする。具体的には、原子炉圧力容器の底部に密度の低いモルタル94を充填する。一方、原子炉圧力容器胴4bと金属保温材93との間隙に密度の高いモルタル94を充填する。これにより、過剰な遮蔽による重量増加を避ける。そして、既設ノズル等の開口部も金属保温材93や鉄板で塞ぎ、モルタル94を注入する。
なお、金属保温材93は、原子炉圧力容器4のスタビライザブラケット4dに設けた支持材96により支えられる。
そして、原子炉遮蔽壁5の内壁に取り付けられている金属保温材93の固定部縁切りを行う。
Next, in the unloading preparation process, all the in-furnace structures such as the control rod guide tube 86 and the control rod drive mechanism 87 are removed.
And it confirms that the water level of the reactor well 6 has fallen from the flange 4c of the reactor pressure vessel 4, drains the equipment pool 8, and removes the pool gate 16. FIG. Here, although not essential, since it is effective in reducing the exposure to workers, it is desirable to carry out chemical decontamination of the reactor pressure vessel 4 and the connection piping.
Next, before draining the water in the reactor pressure vessel 4, an internal shield 78 is attached to the top of the core shroud 84 (see FIG. 5).
Then, the piping connected to the reactor pressure vessel 4 and the supporting structure thereof are removed in a necessary minimum range.
A shielding lid 70 is attached to the flange 4 c of the reactor pressure vessel 4. Since the reactor pressure vessel 4 and the reactor containment vessel 3 are connected via the bulkhead 76 and the like, the part that interferes when the reactor pressure vessel 4 is carried out is removed from the bulkhead 76 and the like.
Next, the stabilizer 77 is removed, and the reactor pressure vessel 4 is separated from the reactor shielding wall 5.
Further, as shown in FIG. 5, mortar 94 is filled in the gap between the reactor pressure vessel 4 and the metal heat insulating material 93. In the mortar 94, the high-dose portion in the core region has a high density, and the portion away from the core region has a low density. Specifically, a low-density mortar 94 is filled at the bottom of the reactor pressure vessel. On the other hand, a high-density mortar 94 is filled in the gap between the reactor pressure vessel body 4 b and the metal heat insulating material 93. This avoids weight gain due to excessive shielding. And the opening part, such as an existing nozzle, is also closed with the metal heat insulating material 93 or an iron plate, and the mortar 94 is inject | poured.
The metal heat insulating material 93 is supported by a support material 96 provided on the stabilizer bracket 4d of the reactor pressure vessel 4.
And the fixed part edge cutting of the metal heat insulating material 93 attached to the inner wall of the reactor shielding wall 5 is performed.

次いで、原子炉圧力容器搬出工程では、まず、門型クレーン13を付属棟20から原子炉ウェル6の上部へ移動させる。
そして、原子炉圧力容器4の4つの主蒸気出口ノズル80に接続する配管を切断した後に、主蒸気出口ノズル80のそれぞれに吊りピン71を嵌合し、溶接して固定する。吊りピン71は、門型クレーン13の走行方向に略直角な方向に向けて取り付ける。なお、主蒸気出口ノズル80の向きが適切でない場合は、原子炉圧力容器胴4bに孔を設けて吊りピン71を取り付けてもよい。また,フランジ4cの植え込みボルト穴を利用して2つの吊り金具を門型クレーン13の走行方向に直角な相対する方向に取り付ける方法であってもよい。
また、4つの吊りピン71が、略同一高さに位置する場合には、原子炉圧力容器4を水平(横臥)状態にした際に、下側の吊りピン71に掛けるワイヤ73が上側の吊りピン71に干渉してしまう。そこで、下側になる吊りピン71の突き出し長さを上側になる吊りピン71よりも長くする。
そして、4つの吊りピン71にワイヤ73を掛けて、原子炉圧力容器4をペデスタル9から切り離す。
Next, in the reactor pressure vessel unloading process, first, the portal crane 13 is moved from the attached building 20 to the upper portion of the reactor well 6.
Then, after cutting the pipes connected to the four main steam outlet nozzles 80 of the reactor pressure vessel 4, the suspension pins 71 are fitted into each of the main steam outlet nozzles 80 and fixed by welding. The suspension pin 71 is attached in a direction substantially perpendicular to the traveling direction of the portal crane 13. If the orientation of the main steam outlet nozzle 80 is not appropriate, a hole may be provided in the reactor pressure vessel body 4b and the suspension pin 71 may be attached. Moreover, the method of attaching two suspension metal fittings in the opposite direction perpendicular | vertical to the running direction of the portal crane 13 using the implantation bolt hole of the flange 4c may be sufficient.
When the four suspension pins 71 are located at substantially the same height, when the reactor pressure vessel 4 is placed in a horizontal (horizontal) state, the wire 73 that is hung on the lower suspension pin 71 is suspended on the upper side. It will interfere with the pin 71. Therefore, the protruding length of the hanging pin 71 on the lower side is made longer than that of the hanging pin 71 on the upper side.
Then, the wire 73 is hung on the four suspension pins 71 to separate the reactor pressure vessel 4 from the pedestal 9.

原子炉圧力容器4を吊り上げ、原子炉圧力容器4の下端が原子炉遮蔽壁5の頂部の上方まで移動したら、吊り上げ作業を一旦停止する。そして、図6に示すように、原子炉遮蔽壁5の頂部に受け台18を置き、この受け台18上に原子炉圧力容器4を仮置きする。
また、原子炉圧力容器4の金属保温材93は円筒状に放射状に配置されているので、門型クレーン13に設けられた補助ホイスト13aを使って、金属保温材93の外面に外面遮蔽材95を取り付ける(図7参照)。外面遮蔽材95は、原子炉圧力容器4が水平(横臥)状態となっても移動しないように所定の固定具を使って固定される。
次に、搬出する原子炉圧力容器4全体の重心位置より下方にあり且つ使用済燃料プール7側にある2つの既設ノズル(再循環入口ノズルが最適)に吊りピン72を取り付ける。吊りピン72の取り付け方法は、吊りピン71の場合と同様である。また、吊りピン72も門型クレーン13の走行方向に略直角な方向に向けて取り付ける。ノズルの向きが適切でない場合は原子炉圧力容器胴4bに孔を空けて吊りピン72を取り付ける。
そして、門型クレーン13のワイヤ73の吊り位置を変更する。具体的には、4つの吊りピン71のうち使用済燃料プール7側にある2つの吊りピン71にワイヤ73を外して、2つの吊りピン72にワイヤ73を掛ける。
そして、原子炉圧力容器4の吊り上げを再開し、原子炉圧力容器4が干渉物(バルクヘッド76の開口部、原子炉ウェル6の使用済燃料プール7側の壁面、門型クレーン13本体、原子炉建屋2の天井トラス等)に干渉しないように、門型クレーン13を移動しつつ、原子炉圧力容器4を機器プール8側に徐々に傾ける(図8参照)。
そして、原子炉圧力容器4が運転床11に対して略水平(横臥)状態になったら、搬出用のシート等で覆い表面汚染と表面線量率を計測後、門型クレーン13を付属棟20に向けて走行させる(図9参照)。
次いで、第1開口部41の第1気密扉42を開き、門型クレーン13を通過させて、渡り通路30に移動させる。第1気密扉42は、門型クレーン13の通過後に直ちに閉じて、放射性物質の原子炉建屋2外への拡散を防止する。
そして、原子炉圧力容器4を付属棟20まで移動させたら、再びワイヤを伸ばし、原子炉圧力容器4を横臥状態のまま、地上階21まで吊り降ろす(図10参照)。この際、付属棟20の地上階21には、重量物運搬輸送車22を待機させ、吊り降ろした原子炉圧力容器4を搭載させる。
そして、吊りピン71,72からワイヤを取り外し、原子炉圧力容器4を搭載した重量物運搬輸送車22を第2開口部43から付属棟20外に移動させる。
When the reactor pressure vessel 4 is lifted and the lower end of the reactor pressure vessel 4 moves to above the top of the reactor shielding wall 5, the lifting operation is temporarily stopped. Then, as shown in FIG. 6, a cradle 18 is placed on the top of the reactor shielding wall 5, and the reactor pressure vessel 4 is temporarily placed on the cradle 18.
Further, since the metal heat insulating material 93 of the reactor pressure vessel 4 is radially arranged in a cylindrical shape, the outer surface shielding material 95 is provided on the outer surface of the metal heat insulating material 93 using the auxiliary hoist 13a provided in the portal crane 13. Is attached (see FIG. 7). The outer surface shielding member 95 is fixed by using a predetermined fixing tool so that the reactor pressure vessel 4 does not move even when the reactor pressure vessel 4 is in a horizontal (horizontal) state.
Next, the suspension pins 72 are attached to two existing nozzles (recirculation inlet nozzle is optimal) located below the center of gravity of the entire reactor pressure vessel 4 to be carried out and on the spent fuel pool 7 side. The attachment method of the suspension pin 72 is the same as that of the suspension pin 71. Further, the suspension pin 72 is also attached in a direction substantially perpendicular to the traveling direction of the portal crane 13. When the direction of the nozzle is not appropriate, a hole is made in the reactor pressure vessel body 4b and the suspension pin 72 is attached.
And the suspension position of the wire 73 of the portal crane 13 is changed. Specifically, the wire 73 is detached from the two suspension pins 71 on the spent fuel pool 7 side among the four suspension pins 71 and the wires 73 are hung on the two suspension pins 72.
Then, the lifting of the reactor pressure vessel 4 is resumed, and the reactor pressure vessel 4 becomes an interference (opening of the bulkhead 76, the wall surface of the reactor well 6 on the spent fuel pool 7 side, the portal crane 13 main body, the atom The reactor pressure vessel 4 is gradually tilted toward the equipment pool 8 side while moving the portal crane 13 so as not to interfere with the ceiling truss of the reactor building 2 (see FIG. 8).
Then, when the reactor pressure vessel 4 becomes substantially horizontal (horizontal) with respect to the operation floor 11, the reactor is covered with an unloading sheet or the like, and after measuring surface contamination and surface dose rate, the portal crane 13 is attached to the attached building 20. (See FIG. 9).
Next, the first airtight door 42 of the first opening 41 is opened, and the portal crane 13 is passed through and moved to the crossing passage 30. The first hermetic door 42 is closed immediately after passing through the portal crane 13 to prevent the radioactive material from diffusing out of the reactor building 2.
Then, after the reactor pressure vessel 4 is moved to the annex building 20, the wire is extended again, and the reactor pressure vessel 4 is hung down to the ground floor 21 while lying down (see FIG. 10). At this time, on the ground floor 21 of the annex building 20, the heavy material transporting vehicle 22 is put on standby and the suspended reactor pressure vessel 4 is mounted.
Then, the wires are removed from the suspension pins 71, 72, and the heavy goods transporting vehicle 22 loaded with the reactor pressure vessel 4 is moved out of the attached building 20 from the second opening 43.

原子炉遮蔽壁内面手入れ工程では、原子炉遮蔽壁5の内面手入れのために金属保温支持材5bを撤去する必要がある。
原子炉遮蔽壁5の内面は、原子炉遮蔽壁5自体が原子炉からの放射線で放射化しており、放射線が全方位からでているため、作業者の遮蔽は全方位を考慮する必要がある。そこで、図11(b)に示すように、原子炉遮蔽壁5の頂部に肩掛けできる形状を有し、更に金属保温支持材5bに干渉しないよう縦分割された追加遮蔽板56を、原子炉遮蔽壁5の内面側に取り付け、原子炉遮蔽壁5の内面側空間の雰囲気線量率を作業可能な値まで低減させる。そして、作業足場(不図示)等を組み立てる。
次に、追加遮蔽板56の肩掛け部分以外を原子炉遮蔽壁5に溶接固定する。それと前後して、金属保温支持材5bを撤去する。
続いて、図11(c)に示すように、金属保温支持材5bを撤去した部分に更に追加遮蔽板56を取り付け、図11(a)に示すように、原子炉遮蔽壁5の高放射化領域内面全周を追加遮蔽壁56で覆う。原子炉遮蔽壁5の頂部は、スタビライザ77が取り付くので、追加遮蔽材56の肩掛け部分は撤去する。そして、作業足場(不図示)等を解体する。
また、図12(b)に示すように、原子炉遮蔽壁5の頂部に、垂れ幕形状をした鉛毛シート等の仮遮蔽材55を金属保温支持部材5bと干渉しないように垂れ掛け、原子炉遮蔽壁5の内面側空間の雰囲気線量率を作業可能な値まで低減させる方法を用いてもよい。この方法は、雰囲気線量がそれ程高くない場合に適用可能である。そして、作業足場(不図示)等を組み立てる。
続いて、追加遮蔽板56の内面を塗装するが、垂れ幕形状をした仮遮蔽材55を全面撤去すると雰囲気線量が上昇するので、仮遮蔽材55を部分的に一時撤去しながら塗装する必要がある。塗装が乾燥するまでの期間はその部分の仮遮蔽材55は復旧できないので、次の塗装作業に移行するまで時間を要するが、原子炉遮蔽壁5の形状を元のまま維持することができるという利点がある。そして、作業足場(不図示)等を解体し、仮遮蔽材55も撤去する。
In the reactor shielding wall inner surface care process, it is necessary to remove the metal heat insulating support material 5b for the inner surface maintenance of the reactor shielding wall 5.
Since the inner surface of the reactor shielding wall 5 is activated by radiation from the reactor and the radiation is emitted from all directions, it is necessary to consider all directions for shielding the operator. . Therefore, as shown in FIG. 11B, an additional shielding plate 56 that has a shape that can be shouldered on the top of the reactor shielding wall 5 and that is vertically divided so as not to interfere with the metal heat insulating support material 5b is provided for the reactor shielding. It is attached to the inner surface side of the wall 5, and the atmospheric dose rate in the inner surface side space of the reactor shielding wall 5 is reduced to a workable value. Then, a work scaffold (not shown) and the like are assembled.
Next, the portions other than the shoulder portions of the additional shielding plate 56 are welded and fixed to the reactor shielding wall 5. Around that time, the metal heat insulating support material 5b is removed.
Subsequently, as shown in FIG. 11C, an additional shielding plate 56 is further attached to the portion where the metal heat insulating support material 5b has been removed, and as shown in FIG. The entire inner surface of the region is covered with an additional shielding wall 56. Since the stabilizer 77 is attached to the top of the reactor shielding wall 5, the shoulder portion of the additional shielding material 56 is removed. Then, the work scaffold (not shown) and the like are dismantled.
Further, as shown in FIG. 12B, a temporary shielding material 55 such as a lead-hair sheet having a hanging curtain shape is hung on the top of the reactor shielding wall 5 so as not to interfere with the metal heat insulating support member 5b. A method of reducing the atmospheric dose rate in the inner surface side space of the shielding wall 5 to a workable value may be used. This method is applicable when the atmospheric dose is not so high. Then, a work scaffold (not shown) and the like are assembled.
Subsequently, the inner surface of the additional shielding plate 56 is painted. However, when the temporary shielding material 55 in the form of a hanging curtain is entirely removed, the atmospheric dose increases, so it is necessary to paint while temporarily removing the temporary shielding material 55 partially. . During the period until the coating dries, the portion of the temporary shielding material 55 cannot be restored. Therefore, it takes time to move to the next painting operation, but the shape of the reactor shielding wall 5 can be maintained as it is. There are advantages. Then, the work scaffold (not shown) and the like are disassembled, and the temporary shielding material 55 is also removed.

新規原子炉圧力容器搬入工程では、まず、付属棟20に新規の原子炉圧力容器4を重量物運搬輸送車22により搬入する。
そして、門型クレーン13により、原子炉圧力容器4と原子炉遮蔽壁5とを水平(横臥)状態のまま4点吊り上げし、運転床11に搬入する。なお、原子炉圧力容器4は本体のみでもよいが、ジェットポンプ88、炉心シュラウド84、制御棒駆動機構ハウジング89等の炉内構造物を工場で取り付けておいて、搬入することが好ましい。
4点吊りの位置は、搬出時と同様に、既設ノズル(主蒸気出口ノズル80、再循環入口ノズル85)を使用してもよい。また、予め工場で既設ノズルの近くに専用吊りピンを取り付けておいてもよい。
続いて、原子炉ウェル6の上方において、原子炉圧力容器4を起立させて原子炉格納容器3内に吊り降ろす。
そして、原子炉圧力容器4の下端が原子炉遮蔽壁5の頂部の上方まで移動したら、吊り降ろし作業を一旦停止する。そして、原子炉遮蔽壁5の頂部に受け台18を置き、この受け台18上に原子炉圧力容器4を仮置きする。
次いで、原子炉圧力容器4の重心よりも下側にある2本のワイヤを外し、主蒸気出口ノズル80又はその近くに取り付けた専用吊りピンにワイヤ73を掛け直しする。原子炉圧力容器4のフランジ4cの植え込みボルト穴を利用して2つの吊り金具を取り付け、これを利用してもよい。
ワイヤ掛けが完了したら、原子炉圧力容器4を少し吊り上げて、原子炉遮蔽壁5の頂部に置いた受け台18を取り外し、原子炉圧力容器4をペデスタル9まで吊り降ろす。
そして、原子炉圧力容器4を所定位置に据え付け基礎ボルトで固定する。また、ワイヤ73等を取り外し、門型クレーン13を付属棟20に移動させる。
In the new reactor pressure vessel carrying-in process, first, the new reactor pressure vessel 4 is carried into the annex building 20 by the heavy goods transporting vehicle 22.
Then, the portal crane 13 lifts four points of the reactor pressure vessel 4 and the reactor shielding wall 5 in a horizontal (horizontal) state, and carries them into the operation floor 11. The reactor pressure vessel 4 may be the main body alone, but it is preferable to carry in the reactor after installing the reactor internals such as the jet pump 88, the core shroud 84, and the control rod drive mechanism housing 89 at the factory.
The existing nozzles (the main steam outlet nozzle 80 and the recirculation inlet nozzle 85) may be used for the four-point suspension position, as in the case of carrying out. In addition, a dedicated suspension pin may be attached near an existing nozzle in advance at the factory.
Subsequently, the reactor pressure vessel 4 is erected above the reactor well 6 and suspended in the reactor containment vessel 3.
Then, when the lower end of the reactor pressure vessel 4 moves to above the top of the reactor shielding wall 5, the suspension operation is temporarily stopped. Then, a cradle 18 is placed on the top of the reactor shielding wall 5, and the reactor pressure vessel 4 is temporarily placed on the cradle 18.
Next, the two wires below the center of gravity of the reactor pressure vessel 4 are removed, and the wire 73 is re-hanged on the dedicated suspension pin attached at or near the main steam outlet nozzle 80. Two suspension fittings may be attached using the stud bolt holes of the flange 4c of the reactor pressure vessel 4 and used.
When the wiring is completed, the reactor pressure vessel 4 is slightly lifted, the cradle 18 placed on the top of the reactor shielding wall 5 is removed, and the reactor pressure vessel 4 is suspended to the pedestal 9.
Then, the reactor pressure vessel 4 is installed at a predetermined position and fixed with a foundation bolt. Further, the wire 73 and the like are removed, and the portal crane 13 is moved to the attached building 20.

原子炉圧力容器周辺復旧工程では、原子炉圧力容器4と原子炉遮蔽壁5の間に金属保温材(不図示)やスタビライザ77を取り付ける。また、原子炉圧力容器4と原子炉格納容器3を接続するバルクヘッド76等を復旧する。更に、原子炉圧力容器4の既設ノズルに配管をつなぎ配管構造物を復旧する。
また、機器プール8のプールゲート16を取り付け、機器プール8を水張りする。そして、蒸気乾燥器81やシュラウドヘッド83等を機器プール8に戻す。
制御棒案内管86や制御棒駆動機構87等の炉内構造物を取り付ける。シュラウドヘッド83や蒸気乾燥器81の原子炉圧力容器4との取り合い調整も行う。
RPV上蓋53を装着し、耐圧試験を行うことで使用前の原子炉圧力バウンダリの健全性確認をする。また、RPV上蓋53を取り外し、燃料装荷に備える。
In the reactor pressure vessel periphery restoration process, a metal heat insulating material (not shown) and a stabilizer 77 are attached between the reactor pressure vessel 4 and the reactor shielding wall 5. Further, the bulkhead 76 that connects the reactor pressure vessel 4 and the reactor containment vessel 3 is restored. Furthermore, piping is connected to the existing nozzle of the reactor pressure vessel 4 to restore the piping structure.
Moreover, the pool gate 16 of the equipment pool 8 is attached, and the equipment pool 8 is filled with water. Then, the steam dryer 81 and the shroud head 83 are returned to the equipment pool 8.
Furnace structures such as the control rod guide tube 86 and the control rod drive mechanism 87 are attached. Coordination adjustment with the reactor pressure vessel 4 of the shroud head 83 and the steam dryer 81 is also performed.
The RPV upper lid 53 is attached and the pressure resistance test is performed to confirm the soundness of the reactor pressure boundary before use. Also, the RPV upper lid 53 is removed to prepare for fuel loading.

燃料再装荷工程では、原子炉ウェル6に水張りし、使用済燃料プール7のプールゲート15を開けて原子炉圧力容器4に燃料集合体10を装荷する。
続いて、機器プール8のプールゲート16を取り外し、シュラウドヘッド83と蒸気乾燥器81等の炉内構造物を復旧する。
炉内の復旧が完了したら、RPV上蓋53を装着して、原子炉圧カバウンダリの漏えい試験を行う。続いてRPV上蓋保温材52及びPCVトップヘッド51を装着して、原子炉格納容器3の機器ハッチ等開口部を閉鎖した後、原子炉格納容器バウンダリの全体漏えい率試験を行う。
そして、原子炉ウェルカバー14を取り付けて、運転床11の復旧作業を完了させる。
In the fuel reloading process, the reactor well 6 is filled with water, the pool gate 15 of the spent fuel pool 7 is opened, and the fuel assembly 10 is loaded into the reactor pressure vessel 4.
Subsequently, the pool gate 16 of the equipment pool 8 is removed, and the in-furnace structures such as the shroud head 83 and the steam dryer 81 are restored.
After the reactor is restored, the RPV upper lid 53 is attached and the reactor pressure boundary leakage test is performed. Subsequently, the RPV upper lid heat insulating material 52 and the PCV top head 51 are mounted and the opening of the reactor containment vessel 3 such as the equipment hatch is closed, and then the entire leakage rate test of the reactor containment vessel boundary is performed.
Then, the reactor well cover 14 is attached, and the restoration work of the operation floor 11 is completed.

併入工程では、起動再開に必要な原子炉建屋2の諸試験や系統構成を行い、起動し発電を再開して併入する。
なお、付属棟20や渡り通路30を解体する場合には、門型クレーン13を吊り降ろし,汚染がないことを確認して搬出する。また、付属棟20等を除染し、解体する。なお、第1開口部41は封鎖する。
以上の工程により、原子炉圧力容器4の交換作業が完了する。
In the merging process, various tests and system configuration of the reactor building 2 necessary for restarting the startup are performed, the startup is started, the power generation is restarted, and the startup is performed.
When disassembling the attached building 20 or the crossing passage 30, the portal crane 13 is suspended, and it is carried out after confirming that there is no contamination. In addition, the attached building 20 and the like are decontaminated and disassembled. The first opening 41 is sealed.
Through the above steps, the replacement operation of the reactor pressure vessel 4 is completed.

以上説明したように、本発明によれば、原子炉圧力容器4の交換方法において、原子炉格納容器3から原子炉圧力容器4を搬出する工程と、原子炉格納容器3内に残された原子炉遮蔽壁5の内面に追加遮蔽板56又は仮遮蔽材55を取り付ける工程と、新たな原子炉圧力容器4を原子炉格納容器3内に搬入する工程とを有するようにした。これにより、原子炉遮蔽壁5の炉心域からの被ばくを回避しつつ、原子炉遮蔽壁5の内面の復旧作業を行え、原子炉遮蔽壁5を再利用することができるので、作業従事者の安全を確保することができると共に、原子炉圧力容器4の交換に掛かる費用を抑えることができる。   As described above, according to the present invention, in the method for replacing the reactor pressure vessel 4, the step of unloading the reactor pressure vessel 4 from the reactor containment vessel 3 and the atoms remaining in the reactor containment vessel 3 are performed. A step of attaching the additional shielding plate 56 or the temporary shielding member 55 to the inner surface of the reactor shielding wall 5 and a step of carrying a new reactor pressure vessel 4 into the reactor containment vessel 3 are provided. Thereby, while avoiding exposure of the reactor shielding wall 5 from the core region, the inner surface of the reactor shielding wall 5 can be restored and the reactor shielding wall 5 can be reused. Safety can be ensured and the cost for replacement of the reactor pressure vessel 4 can be reduced.

なお、本発明は、上述の実施の形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

原子炉施設1の構成を示す縦断面図Longitudinal sectional view showing the configuration of nuclear reactor facility 1 原子炉圧力容器4の詳細構成を示す縦断面図Longitudinal sectional view showing the detailed configuration of the reactor pressure vessel 4 原子炉建屋2の運転床11の平面図Plan view of the operation floor 11 of the reactor building 2 原子炉圧力容器4の交換作業を説明する図The figure explaining the exchange work of the reactor pressure vessel 4 図4に続く交換作業図Replacement work diagram following FIG. 図5に続く交換作業図Replacement work diagram following FIG. 図6に続く交換作業図Replacement work diagram following FIG. 図7に続く交換作業図Replacement work diagram following FIG. 図8に続く交換作業図Replacement work diagram following FIG. 図9に続く交換作業図Replacement work diagram following FIG. 図10に続く交換作業図Replacement work diagram following FIG. 図11に代わる交換作業図Replacement work diagram instead of FIG.

符号の説明Explanation of symbols

3 原子炉格納容器
4 原子炉圧力容器
5 原子炉遮蔽壁
5b 金属保温支持材
55 仮遮蔽材
56 追加遮蔽板


3 Reactor containment vessel 4 Reactor pressure vessel 5 Reactor shielding wall 5b Metal insulation support material 55 Temporary shielding material 56 Additional shielding plate


Claims (4)

原子炉格納容器から原子炉圧力容器を搬出する工程と、
前記原子炉格納容器内に残された原子炉遮蔽壁の内面に追加遮蔽板を取り付ける工程と、
新たな原子炉圧力容器を前記原子炉格納容器内に搬入する工程と、
を有することを特徴とする原子炉圧力容器交換方法。
Carrying out the reactor pressure vessel from the reactor containment vessel;
Attaching an additional shielding plate to the inner surface of the reactor shielding wall left in the reactor containment vessel;
Carrying a new reactor pressure vessel into the reactor containment vessel;
A reactor pressure vessel replacement method characterized by comprising:
前記追加遮蔽板の取り付け工程は、
前記内面に設けられた金属保温支持材と干渉しないように縦分割した追加遮蔽板を前記内面に取り付ける工程と、
前記金属保温支持材を撤去する工程と、
前記金属保温支持材が撤去された前記内面に、更に追加遮蔽板を取り付ける工程と、
を有することを特徴とする請求項1に記載の原子炉圧力容器交換方法。
The step of attaching the additional shielding plate includes:
Attaching an additional shielding plate vertically divided so as not to interfere with the metal heat insulating support provided on the inner surface to the inner surface;
Removing the metal thermal insulation support;
A step of further attaching an additional shielding plate to the inner surface from which the metal heat insulating support material has been removed,
The reactor pressure vessel replacement method according to claim 1, wherein:
前記追加遮蔽板の取り付け工程は、
仮遮蔽材を前記原子炉遮蔽壁の上方から吊り下げて、前記内面に設けられた金属保温支持材を避けて前記内面に配置する工程を有することを特徴とする請求項1に記載の原子炉圧力容器交換方法。
The step of attaching the additional shielding plate includes:
2. The nuclear reactor according to claim 1, further comprising a step of suspending a temporary shielding material from above the reactor shielding wall and disposing the temporary shielding material on the inner surface while avoiding a metal heat insulating support material provided on the inner surface. Pressure vessel replacement method.
前記仮遮蔽材は、前記新たな原子炉圧力容器を搬入して金属保温材を設置した後に、撤去されることを特徴とする請求項3に記載の原子炉圧力容器交換方法。


The method of claim 3, wherein the temporary shielding material is removed after the new reactor pressure vessel is carried in and a metal heat insulating material is installed.


JP2004128104A 2004-04-23 2004-04-23 Reactor pressure vessel replacement method Pending JP2005308628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128104A JP2005308628A (en) 2004-04-23 2004-04-23 Reactor pressure vessel replacement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128104A JP2005308628A (en) 2004-04-23 2004-04-23 Reactor pressure vessel replacement method

Publications (1)

Publication Number Publication Date
JP2005308628A true JP2005308628A (en) 2005-11-04

Family

ID=35437569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128104A Pending JP2005308628A (en) 2004-04-23 2004-04-23 Reactor pressure vessel replacement method

Country Status (1)

Country Link
JP (1) JP2005308628A (en)

Similar Documents

Publication Publication Date Title
JP4850214B2 (en) Carrying out the reactor internals
JP3663924B2 (en) Method for handling reactor internal structure and apparatus used for the method
JP4177987B2 (en) Reactor vessel handling
US20020157327A1 (en) Method of handling a structure and equipment of handling the same
JP2000206294A (en) How to carry out large equipment
JP4055157B2 (en) Reactor pressure vessel replacement method
JP6312911B1 (en) Reactor pressure vessel dismantling method
JP3343447B2 (en) How to unload the reactor pressure vessel
JP2002131483A (en) Handling of large structures
JP4276808B2 (en) Equipment for carrying out nuclear power plant equipment
JP2013002924A (en) Bridge type crane and method of disassembling nuclear power plant
JP4096911B2 (en) Reactor pressure vessel replacement method
JP4055156B2 (en) Reactor pressure vessel replacement method
US6731715B2 (en) Reactor vessel handling method
JP2005308628A (en) Reactor pressure vessel replacement method
JP3101095B2 (en) Decommissioning method and system for reactor pressure vessel
JP2015049060A (en) Fuel debris carry-out apparatus and carry-out method in boiling water nuclear power plant
JP2005308624A (en) Reactor facility
JP2011090011A (en) Reactor internal carry-out method
JP4088492B2 (en) Method for storing in-furnace structure and storage container used therefor
JP2000346993A (en) Handling of large structures inside the reactor building
JP2000304890A (en) Replacing furnace internals
JPH1184052A (en) Method for carrying out in-pile structure of pressurized water reactor
JP6301764B2 (en) Method of unloading nuclear equipment, unloading device thereof, and method of retrieving fuel debris
JPH0513225B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071116