[go: up one dir, main page]

JP2005307892A - Rotary machine and its assembling method - Google Patents

Rotary machine and its assembling method Download PDF

Info

Publication number
JP2005307892A
JP2005307892A JP2004127293A JP2004127293A JP2005307892A JP 2005307892 A JP2005307892 A JP 2005307892A JP 2004127293 A JP2004127293 A JP 2004127293A JP 2004127293 A JP2004127293 A JP 2004127293A JP 2005307892 A JP2005307892 A JP 2005307892A
Authority
JP
Japan
Prior art keywords
ring
circumferential direction
elements
coupling element
mounting groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004127293A
Other languages
Japanese (ja)
Inventor
Yukihiro Otani
幸広 大谷
Keizo Tanaka
恵三 田中
Yuuichiro Waki
勇一朗 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004127293A priority Critical patent/JP2005307892A/en
Publication of JP2005307892A publication Critical patent/JP2005307892A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary machine capable of further reinforcing rigidity in the peripheral direction. <P>SOLUTION: A stationary blade ring (7) is composed of an outer ring (5), an inner ring (6), a plurality of outer side shroud rings (8) arranged on the inner peripheral side of the outer ring (5), an inner side shroud ring (9) arranged on the outer peripheral side of the inner ring (6), and a stationary blade ring between both rings (8) and (9). Two inner side shroud elements (13) arranged in the peripheral direction among a plurality of the inner side shroud elements (13) are connected by a connection element (25) connected in the peripheral direction. The connection element (25) is mounted in a mounting channel (27) formed in two inner side shroud elements (13) across the circumferential direction. Two inner side shroud elements (13) are connected in the peripheral direction to reinforce rigidity in the peripheral direction. A divided face between adjacent inner side shroud elements (13) is tightened by a connection force in the peripheral direction, in particular, a pressing-in force. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回転機械、及び、それの組付方法に関し、特に、圧縮機、ポンプ、タービンのように静翼と動翼を構成する回転機械、及び、それの組付方法に関する。   The present invention relates to a rotating machine and an assembling method thereof, and more particularly, to a rotating machine constituting a stationary blade and a moving blade such as a compressor, a pump, and a turbine, and an assembling method thereof.

電気的駆動源、機械的駆動源のように、多様な動力源としてタービンが知られている。タービンは、ガス流、蒸気流が導入されるタービン車室の中に構成される回転機械系として提供されている。その回転機械系は、環状静翼列と環状動翼列とから形成されている。環状静翼列は、外輪と内輪と内外輪の間に挟まれて支持される固定翼列とから形成されている。   A turbine is known as various power sources such as an electric drive source and a mechanical drive source. The turbine is provided as a rotating mechanical system configured in a turbine casing into which a gas flow and a steam flow are introduced. The rotating mechanical system is formed of an annular stationary blade row and an annular moving blade row. The annular stationary blade row is formed of an outer ring, an inner ring, and a fixed blade row that is sandwiched and supported between the inner and outer rings.

環状静翼列は、その組立の便宜のために、半環状の上側静翼半環と半環状の下側静翼半環とに分割されている。上側静翼半環と下側静翼半環は水平面で面接合している。このように接合して組み立てられる上側静翼半環と下側静翼半環の翼列環状構造は、その接合領域が存在するために、半径方向組付け構造と周方向組付け構造を機械的に完全対称に構成することが困難である。その非対称性に起因する剛性構造の劣化を回避するために多様な構造的工夫がなされている。   For convenience of assembly, the annular stator blade row is divided into a semi-annular upper stator blade half ring and a semi-annular lower stator blade half ring. The upper stator blade half ring and the lower stator blade half ring are surface-bonded in a horizontal plane. In the cascade ring structure of the upper stator vane half ring and lower stator vane half ring that are joined and assembled in this manner, the radial assembly structure and the circumferential assembly structure are mechanically separated due to the existence of the joint region. It is difficult to construct a completely symmetrical structure. In order to avoid the deterioration of the rigid structure due to the asymmetry, various structural devices have been made.

静翼列の剛性を確保するために多数の静翼を内外輪に結合する結合強度を確実にする技術は、後掲特許文献1で知られている。既述の接合面領域の結合剛性を確保する技術は、後掲特許文献2で知られている。   A technique for ensuring the coupling strength for coupling a large number of stationary blades to inner and outer rings in order to ensure the rigidity of the stationary blade row is known from Patent Document 1 described later. A technique for ensuring the joint rigidity of the joint surface area as described above is known from Patent Document 2 described later.

周方向剛性は、静翼列を構成する多数の静翼要素と内外輪の間の機械的結合性に強く影響される。そのような機械的結合性は、個々の静翼要素の間の周方向結合性、内外輪の間の環状構造として形成される静翼列要素の集合体であるシュラウドの半径方向結合性、その他の要因により規定される。特に、シュラウドを半径方向に分割する分割面の存在は、周方向剛性の低下の重要な原因である。周方向剛性の低下は、タービン運転中の圧力荷重により下流側に静翼列を倒す倒れ力の増大を招く。このような増大は、下流側に倒れる静翼列が下流側の動翼又はロータディスクに接触し、その結果として重大な事故を誘発する恐れを完全に解消することができない。周方向剛性の強化のために溶接技術は有効であるが、溶接には他の問題点がある。   The circumferential rigidity is strongly influenced by the mechanical connectivity between the numerous stator blade elements constituting the stator blade row and the inner and outer rings. Such mechanical connectivity includes circumferential connectivity between individual stator blade elements, radial connectivity of shrouds, which are a collection of stationary blade row elements formed as an annular structure between inner and outer rings, etc. It is defined by the factors. In particular, the presence of a dividing surface that divides the shroud in the radial direction is an important cause of a decrease in circumferential rigidity. The reduction in circumferential rigidity leads to an increase in the fall force that causes the stationary blade row to fall downstream due to pressure load during turbine operation. Such an increase cannot completely eliminate the possibility that a stationary blade row that falls downstream contacts the downstream blade or rotor disk, and as a result, induces a serious accident. Although welding techniques are effective for enhancing circumferential rigidity, there are other problems with welding.

周方向剛性の一層の強化が求められている。溶接技術を用いないことは重要である。   There is a need for further enhancement of circumferential rigidity. It is important not to use welding techniques.

実開昭59−102901号Japanese Utility Model Publication No.59-102901 特開平9−112204号JP-A-9-112204

本発明の課題は、周方向剛性を一層に強化する回転機械、及び、それの組付方法を提供することにある。
本発明の他の課題は、周方向剛性を一層に簡素に強化する回転機械、及び、それの組付方法を提供することにある。
The subject of this invention is providing the rotary machine which reinforces circumferential rigidity further, and its assembling method.
Another object of the present invention is to provide a rotating machine and a method of assembling the rotating machine that further simply enhances the circumferential rigidity.

本発明による回転機械は、軸方向に並ぶ複数の動翼環(3)と、動翼環(3)の間に配置され軸方向(Z)に並ぶ複数の静翼環(7)とから構成されている。静翼環(7)の1つは、外輪(5)と、内輪(6)と、外輪(5)の内周側に配置され複数の外側シュラウド要素(12)が周方向に並ぶ外側シュラウド環(8)と、内輪(6)の外周側に配置され複数の内側シュラウド要素(13)が周方向に並ぶ内側シュラウド環(9)と、外側シュラウド環(8)と内側シュラウド環(9)の間に配置され複数の静翼要素(14)が周方向に並ぶ静翼環(7)と、複数の内側シュラウド要素(13)のうち周方向に並ぶ2つの内側シュラウド要素(13)を周方向に結合する結合要素(25)とから構成されている。結合要素(25)は、2つの内側シュラウド要素(13)に円周方向に跨って形成される装着溝(27)に装着されている。   The rotating machine according to the present invention includes a plurality of blade rings (3) arranged in the axial direction and a plurality of stationary blade rings (7) arranged between the blade rings (3) and arranged in the axial direction (Z). Has been. One of the stator blade rings (7) includes an outer ring (5), an inner ring (6), and an outer shroud ring arranged on the inner peripheral side of the outer ring (5) and having a plurality of outer shroud elements (12) arranged in the circumferential direction. (8), an inner shroud ring (9) arranged on the outer peripheral side of the inner ring (6) and arranged with a plurality of inner shroud elements (13) in the circumferential direction, an outer shroud ring (8) and an inner shroud ring (9). A stator blade ring (7) arranged between the plurality of stator blade elements (14) arranged in the circumferential direction and two inner shroud elements (13) arranged in the circumferential direction among the plurality of inner shroud elements (13) in the circumferential direction It is comprised from the coupling | bonding element (25) couple | bonded with. The coupling element (25) is mounted in a mounting groove (27) formed in the circumferential direction on the two inner shroud elements (13).

互いに周方向に隣り合う内側シュラウド要素(13)は周方向に結合し、周方向の剛性が強化される。隣り合う内側シュラウド要素(13)の間の分割面は、周方向結合力特に圧入力により引き締められる。結合要素が内側シュラウド要素の下流側に配置されることは、下流側に流体圧を受ける下流側部位が引き締められて周方向に拘束されるので特に重要である。静翼環(7)は、2つの半環の結合として構成される。半環の周方向剛性の強化は、2つの半環の結合領域の周方向剛性を強化することができる。   The inner shroud elements (13) adjacent to each other in the circumferential direction are coupled in the circumferential direction, and the rigidity in the circumferential direction is enhanced. The dividing surface between adjacent inner shroud elements (13) is tightened by a circumferential coupling force, in particular a pressure input. It is particularly important that the coupling element is arranged downstream of the inner shroud element because the downstream part that receives the fluid pressure is tightened and constrained in the circumferential direction. The vane ring (7) is configured as a combination of two half rings. Increasing the circumferential stiffness of the half rings can enhance the circumferential stiffness of the coupling region of the two half rings.

結合要素(25)は、装着溝(27)に放射方向に打ち込まれて2つの内側シュラウド要素を周方向に剛体化する。この場合には、結合要素(25)は内輪(6)により放射方向に閉じ込められ抜け出しが防止される。閉環状に形成される装着溝(27)に装着される閉環状の結合要素(25)は、機械的にその剛性が強い。結合要素(25)を軸方向に装着することは、静翼環(7)の全環又は半環を組立てた後に可能であるので、組付工程の自由度を拡張することができる。   The coupling element (25) is driven radially into the mounting groove (27) to stiffen the two inner shroud elements in the circumferential direction. In this case, the coupling element (25) is confined in the radial direction by the inner ring (6) and prevented from coming out. The closed annular coupling element (25) mounted in the closed mounting groove (27) is mechanically strong. Since it is possible to attach the coupling element (25) in the axial direction after assembling all or half of the stator blade ring (7), the degree of freedom of the assembly process can be expanded.

装着溝(27)は周方向に延びる部分環状穴として形成される。この場合には、結合要素(25)は装着溝(27)に摩擦嵌合することにより2つの内側シュラウド要素(13)を周方向に剛体化する。   The mounting groove (27) is formed as a partial annular hole extending in the circumferential direction. In this case, the coupling element (25) frictionally fits the mounting groove (27), thereby stiffening the two inner shroud elements (13) in the circumferential direction.

周方向に隣り合う外側シュラウド要素の周方向剛性強化は、内側シュラウド要素の周方向剛性強化に同じである。その場合には、外側結合要素は求心方向に圧入される。軸方向挿入は、内側の結合要素の挿入方法に同じである。   The circumferential stiffness enhancement of the outer shroud elements adjacent in the circumferential direction is the same as the circumferential stiffness enhancement of the inner shroud elements. In that case, the outer coupling element is pressed in the centripetal direction. Axial insertion is the same as the insertion method of the inner coupling element.

本発明による回転機械の組付方法は、下記の工程の集合:
外輪の半環と内輪の半環を機械加工により製造する工程、外輪の半環の内周側に規定数の外側シュラウド要素を順次に差し込む工程、内輪の半環の外周側に規定数の内側シュラウド要素を順次に差し込む工程、周方向に隣り合う2つの静翼要素に跨る結合要素を装着する工程
として構成されている。このような製造プロセスでは、内側シュラウド要素を順次に差し込む工程の後に、結合要素を軸方向に装着することにより、製造工程の自由度を拡張することができる。
The method of assembling a rotating machine according to the present invention comprises the following set of steps:
The process of manufacturing the outer ring half ring and the inner ring half ring by machining, sequentially inserting the prescribed number of outer shroud elements into the inner ring side of the outer ring half ring, and the prescribed number of inner sides on the outer ring side of the inner ring half ring. The shroud elements are sequentially inserted, and the connecting element straddling two stationary blade elements adjacent in the circumferential direction is mounted. In such a manufacturing process, the flexibility of the manufacturing process can be expanded by attaching the coupling element in the axial direction after the step of sequentially inserting the inner shroud elements.

本発明による回転機械、及び、それの組付方法は、周方向剛性を一層に強化することができ、その強化は機械構造的に簡素である。   The rotating machine according to the present invention and the assembling method thereof can further enhance the circumferential rigidity, and the strengthening is simple in terms of mechanical structure.

本発明による回転機械の実施の好ましい形態は、図に対応して、詳細に記述される。タービンの主要構造は、図1に概略的に示されるように、タービン車室1に貫通して支持される車軸2と、車軸2の周面側で車軸に固定されて多段に配置される動翼環(半環)3と、軸方向に隣り合う動翼環3の間に配置される静翼構造環(半環)4とから構成されている。主蒸気は、主蒸気入口Aから車室1の中に導入される。主蒸気の軸方向流れの向きは、静翼構造環4により調整されて、下流側の動翼環3に向かって噴射される。動翼環3は、流れ方向が調整されている軸流蒸気から周方向成分力を受けて回転する。周方向成分力は、上流側から下流側の間で多段に動翼環3に与えられる。   Preferred embodiments of the rotating machine according to the present invention will be described in detail with reference to the drawings. As shown schematically in FIG. 1, the main structure of the turbine is an axle 2 that is supported by penetrating through the turbine casing 1, and a motion that is fixed to the axle on the peripheral surface side of the axle 2 and arranged in multiple stages. A blade ring (semi-ring) 3 and a stationary blade structure ring (semi-ring) 4 disposed between axially adjacent blade rings 3 are configured. The main steam is introduced into the passenger compartment 1 from the main steam inlet A. The direction of the axial flow of the main steam is adjusted by the stationary blade structure ring 4 and injected toward the moving blade ring 3 on the downstream side. The rotor blade ring 3 rotates by receiving a circumferential component force from the axial flow steam whose flow direction is adjusted. The circumferential component force is given to the rotor blade ring 3 in multiple stages between the upstream side and the downstream side.

図2は、1つの段の静翼構造環4を示している。静翼構造環4は、外輪5と内輪6と静翼環7とから形成されている。静翼環7は、外輪5と内輪6の間の環状空間に配置されている。静翼環7は、外側シュラウド8と内側シュラウド9と環状静翼要素列11とから形成されている。外側シュラウド8は、周方向に分割され周方向に並ぶ多数(例示:数十)の外側シュラウド要素12の結合的集合である。内側シュラウド9は、周方向に分割され周方向に並ぶ多数の内側シュラウド要素13の結合的集合である。環状静翼要素列11は、周方向に分割され周方向に並ぶ多数の静翼要素14の結合的集合である。多数の外側シュラウド要素12は、外輪5の内周面側に形成される環状溝15に半円周線に沿って順次に挿入され、隣り合う外側シュラウド要素12は突き当たり的に半円周上で対面的に接合する。多数の内側シュラウド要素13は、内輪6の外周面側に形成される環状溝(又は環状突起)16に半円周線に沿って順次に挿入され、隣り合う内側シュラウド要素13は突き当たり的に半円周上で対面的に接合する。多数の静翼要素14は、そのように配列されている外側シュラウド8と内側シュラウド9の間に挿入されている。   FIG. 2 shows a single stage stator vane structure ring 4. The stationary blade structure ring 4 is formed of an outer ring 5, an inner ring 6, and a stationary blade ring 7. The stationary blade ring 7 is arranged in an annular space between the outer ring 5 and the inner ring 6. The vane ring 7 is formed by an outer shroud 8, an inner shroud 9, and an annular vane element row 11. The outer shroud 8 is a combined set of a large number (for example, several tens) of outer shroud elements 12 that are divided in the circumferential direction and arranged in the circumferential direction. The inner shroud 9 is a combined set of a number of inner shroud elements 13 that are divided in the circumferential direction and arranged in the circumferential direction. The annular vane element row 11 is a combined set of a large number of vane elements 14 divided in the circumferential direction and arranged in the circumferential direction. A number of outer shroud elements 12 are sequentially inserted along an annular groove 15 formed on the inner circumferential surface side of the outer ring 5 along a semicircular line, and adjacent outer shroud elements 12 abut on the semicircular circumference. Join face-to-face. A large number of inner shroud elements 13 are sequentially inserted along an annular groove (or annular projection) 16 formed on the outer peripheral surface side of the inner ring 6 along the semicircular line, and adjacent inner shroud elements 13 are abutted halfway. Join face-to-face on the circumference. A number of vane elements 14 are inserted between the outer shroud 8 and the inner shroud 9 so arranged.

図3は、外側シュラウド8の一部の外側シュラウド要素12と、内側シュラウド9の一部の内側シュラウド要素13と、環状静翼要素列11の一部の静翼要素14のそれぞれの立体形状とそれらの立体的配置関係を示している。円周方向に隣り合う外側シュラウド要素12と内側シュラウド要素13は、円周方向に互いに対向する回転方向前方側分割面17と回転方向後方側分割面18とをそれぞれに有している。回転方向前方側分割面17と回転方向後方側分割面18は、それぞれに、回転軸心線を含む放射面の2つの放射面部分とその放射面に対して斜めに向く斜面部分19とから形成されている。斜面部分19による外側シュラウド要素12の分割線と、斜面部分19による内側シュラウド要素13の分割線とは、放射方向又は半径方向Rに直交する円筒面(周面)に現れる。回転方向前方側分割面17と回転方向後方側分割面18との間の隙間21を完全に消去することは不可能であり、このために周方向剛性は機械的加工精度のみでは理想的には得られない。外側シュラウド要素12と内側シュラウド要素13と静翼要素14は、それぞれに、軸心線方向Zに適正な厚みを有している。内側シュラウド要素13の立体形状は、大きさの点を除いて、外側シュラウド要素12の立体形状に概ね同形である。静翼要素14の周方向Pの前後面は放射面に対して傾斜し、且つ、えん曲に曲がっている。周方向に隣り合う2つの静翼要素14の組は、その間の蒸気噴射流路22に蒸気を通すノズルを構成している。   FIG. 3 shows three-dimensional shapes of a part of the outer shroud element 12 of the outer shroud 8, a part of the inner shroud element 13 of the inner shroud 9, and a part of the stator blade elements 14 of the annular stator element array 11. These three-dimensional arrangement relationships are shown. The outer shroud element 12 and the inner shroud element 13 that are adjacent to each other in the circumferential direction respectively have a rotation direction front side dividing surface 17 and a rotation direction rear side dividing surface 18 that face each other in the circumferential direction. Each of the rotation direction front side dividing surface 17 and the rotation direction rear side dividing surface 18 is formed of two radiation surface portions of the radiation surface including the rotation axis and a slope portion 19 which is inclined with respect to the radiation surface. Has been. The dividing line of the outer shroud element 12 by the slope portion 19 and the dividing line of the inner shroud element 13 by the slope portion 19 appear on the cylindrical surface (circumferential surface) orthogonal to the radial direction or the radial direction R. It is impossible to completely eliminate the gap 21 between the rotation direction front side dividing surface 17 and the rotation direction rear side dividing surface 18, and for this reason, the circumferential rigidity is ideally determined only by the machining accuracy. I can't get it. The outer shroud element 12, the inner shroud element 13, and the stationary blade element 14 each have an appropriate thickness in the axial direction Z. The three-dimensional shape of the inner shroud element 13 is substantially the same as the three-dimensional shape of the outer shroud element 12 except for the size. The front and rear surfaces of the stationary blade element 14 in the circumferential direction P are inclined with respect to the radiation surface and bent to be curved. A set of two stationary blade elements 14 adjacent to each other in the circumferential direction constitutes a nozzle that allows steam to pass through the steam injection flow path 22 therebetween.

図4は、本発明による回転機械の周方向剛性強化構造の実施の好ましい形態を示している。図4は、外側シュラウド8又は内側シュラウド9のR視の展開図として表されている。本形態は、外側シュラウド8に対しても適用される。軸流方向の規定が重要である。軸流(例示:蒸気流)方向は、図中に矢付きで示されるZ方向に反対であるZ方向負方向として規定される。分割面17,18が内側シュラウド要素13の内周面(側面)に現れる2本の分割折れ線(以下、分割線と呼ばれる)を含む分割境界領域23のうち下流側領域(又は、出口側領域)24で、隣り合う2つの内側シュラウド要素13に跨って拘束ピース25が挿入的に、且つ、圧入的に埋め込まれる。本形態の拘束ピース25は、門型に形状化されている。回転方向前方側分割面17と回転方向後方側分割面18は、それぞれに概ね軸心線を含む放射面に平行である。下流側領域24の分割線は、以下、下流側仮想的分割線26と呼ばれる。下流側仮想的分割線26は、Z方向に延びている。   FIG. 4 shows a preferred embodiment of the circumferential rigidity enhancing structure for a rotating machine according to the present invention. FIG. 4 is represented as an exploded view of the outer shroud 8 or the inner shroud 9 in the R view. This embodiment is also applied to the outer shroud 8. The definition of the axial flow direction is important. An axial flow (example: vapor flow) direction is defined as a negative Z direction that is opposite to the Z direction indicated by an arrow in the figure. Downstream region (or exit side region) of the divided boundary region 23 including two divided broken lines (hereinafter referred to as dividing lines) where the dividing surfaces 17 and 18 appear on the inner peripheral surface (side surface) of the inner shroud element 13. At 24, the restraining piece 25 is inserted and press-fitted across two adjacent inner shroud elements 13. The restraint piece 25 of this embodiment is shaped like a portal. Each of the rotation direction front side division surface 17 and the rotation direction rear side division surface 18 is substantially parallel to the radiation surface including the axial center line. The dividing line of the downstream region 24 is hereinafter referred to as a downstream virtual dividing line 26. The downstream virtual dividing line 26 extends in the Z direction.

拘束ピース25は、Z方向に延びる拘束ピース圧入溝27に埋め込まれる。拘束ピース圧入溝27は、内周面側(気流の下流側として規定される出口側)DSで開放されている。拘束ピース圧入溝27は、隣り合う内側シュラウド要素13に跨って円周方向Pに延びる円周方向溝部分28と、円周方向溝部分28の円周方向一方側に連続し放射方向に一方側の内側シュラウド要素13の中で延びる一方側放射方向溝部分29と、円周方向溝部分28の円周方向他方側に連続し放射方向に他方側の内側シュラウド要素13の中で延びる他方側放射方向溝部分31とから形成されている。拘束ピース25は、円周方向溝部分28に位置的に対応する円周方向ピース部分32と、一方側放射方向溝部分29に位置的に対応する一方側放射方向ピース部分33と、他方側放射方向溝部分31に位置的に対応する他方側放射方向ピース部分34とから一体的に形成されている。高剛性金属で形成されている拘束ピース25は、拘束ピース圧入溝27に軸方向に打ち込まれ隣り合う2つの内側シュラウド要素13に跨って圧入的に埋め込まれる。   The restraining piece 25 is embedded in a restraining piece press-fitting groove 27 extending in the Z direction. The restraining piece press-fitting groove 27 is opened on the inner peripheral surface side (exit side defined as the downstream side of the airflow) DS. The constraining piece press-fitting groove 27 is continuous with the circumferential groove portion 28 extending in the circumferential direction P across the adjacent inner shroud elements 13 and one circumferential side of the circumferential groove portion 28 in the radial direction. One side radial groove portion 29 extending in the inner shroud element 13 and the other side radiation extending continuously in the other circumferential side of the circumferential groove portion 28 and extending radially in the inner shroud element 13 on the other side. The direction groove portion 31 is formed. The restraining piece 25 includes a circumferential piece portion 32 that corresponds in position to the circumferential groove portion 28, a one-side radial piece portion 33 that corresponds in position to the one-side radial groove portion 29, and the other-side radiation. The other side radial piece portion 34 corresponding to the directional groove portion 31 is integrally formed. The restraining piece 25 formed of a high-rigidity metal is driven into the restraining piece press-fitting groove 27 in the axial direction and is press-fitted between two adjacent inner shroud elements 13.

拘束ピース25は、環状に並んで隣り合う外側シュラウド要素12又は内側シュラウド要素13を半環状に連結(連成)して一体連結構造を形成することができ、半環構造の剛性を高めることができる。拘束ピース25の列は、外側シュラウド8又は内側シュラウド9の出口側(下流側)に配置されていて、上流側から下流側に(軸心線方向Zに)流れる気流35により下流側に押し倒される押倒し力(ピッチング力)に対して環状静翼要素列11の高剛性化により抵抗力が増大する。環状静翼要素列11に流れる気流35は、軸心線方向Zに平行ではなく軸心線方向Zに対して斜めに向く斜流であり、環状静翼要素列11には周方向成分の圧力が作用する。拘束ピース25は、下流側で環状静翼要素列11の周方向剛性を強化するので、既述の押倒し力に対する抵抗を強化することができる。拘束ピース25を軸方向に打ち込むことができるこのような側面装着の形態では、環状静翼要素列11が外側シュラウド8に組み付けられた後に、拘束ピース25を外側シュラウド要素12に装着することができて、組立作業の自由度が拡大される。門型である拘束ピース25は、加工が容易である。   The constraining piece 25 can connect (couple) the outer shroud elements 12 or the inner shroud elements 13 adjacent to each other in a ring shape in a semi-annular manner to form an integral connection structure, and increase the rigidity of the half ring structure. it can. The row of restraining pieces 25 is arranged on the outlet side (downstream side) of the outer shroud 8 or the inner shroud 9 and is pushed down by the airflow 35 flowing from the upstream side to the downstream side (in the axial direction Z). The resistance force is increased by increasing the rigidity of the annular stator blade element row 11 against the pushing force (pitching force). The airflow 35 flowing in the annular stator element row 11 is not parallel to the axial direction Z but obliquely directed to the axial direction Z, and the circumferential stationary component pressure is applied to the annular stator element row 11. Works. Since the restraint piece 25 enhances the circumferential rigidity of the annular stationary blade element row 11 on the downstream side, it is possible to enhance the resistance against the pushing force described above. In such a side-mounted configuration in which the restraining piece 25 can be driven in the axial direction, the restraining piece 25 can be attached to the outer shroud element 12 after the annular stator vane element row 11 is assembled to the outer shroud 8. Thus, the degree of freedom of assembly work is expanded. The gate-shaped restraint piece 25 is easy to process.

図5は、本発明による回転機械の周方向剛性強化構造の実施の好ましい他の形態を示している。本形態の拘束ピース25は、閉じた矩形状環に形状化されている。矩形型のような閉環は、変形しにくく既述の形態の門型より拘束力が強化されている。本形態の拘束ピース25は、2つの円周方向ピース部分32’と、軸方向に延びる両側の放射方向ピース部分33’とから一体的に閉じて形成されている。このような矩形環を挿入することができる拘束ピース圧入溝27は、隣り合う外側シュラウド要素12又は内側シュラウド要素13に放射方向に延びて形成されている。円周方向ピース部分32’は、隣り合う2つの外側シュラウド要素12又は内側シュラウド要素13の中で円周方向Pに跨って放射方向に打ち込まれる。拘束ピース25の放射方向Rに直交する端面は、外輪5の内周面又は内輪6の内周面に接合する。内輪6と外輪5は拘束ピース25に対して蓋の機能を有していて、拘束ピース25の脱落を阻止することができる。拘束ピース25が出口側に配置されることの意義は、既述の通りである。   FIG. 5 shows another preferred embodiment of the circumferential rigidity enhancing structure for a rotating machine according to the present invention. The restraint piece 25 of this embodiment is shaped into a closed rectangular ring. A closed ring such as a rectangular shape is less likely to be deformed and has a stronger restraining force than the portal shape of the above-described form. The restraint piece 25 of this embodiment is formed by integrally closing two circumferential piece portions 32 'and radial piece portions 33' on both sides extending in the axial direction. The constraining piece press-fit groove 27 into which such a rectangular ring can be inserted is formed to extend in the radial direction in the adjacent outer shroud element 12 or inner shroud element 13. The circumferential piece portion 32 ′ is driven in a radial direction across the circumferential direction P in two adjacent outer shroud elements 12 or inner shroud elements 13. An end surface orthogonal to the radial direction R of the restraining piece 25 is joined to the inner peripheral surface of the outer ring 5 or the inner peripheral surface of the inner ring 6. The inner ring 6 and the outer ring 5 have a lid function with respect to the restraining piece 25 and can prevent the restraining piece 25 from falling off. The significance of the restraint piece 25 being arranged on the outlet side is as described above.

図6は、本発明による回転機械の周方向剛性強化構造の実施の好ましい更に他の形態を示している。図6は、外側シュラウド8と環状静翼要素列11と内側シュラウド9のZ視の展開図として表されている。門型の第1拘束ピース25−Oは、外側シュラウド8の隣り合う2つの外側シュラウド要素12の下流側仮想的分割線26に跨って外側シュラウド8の下流側端面に接合している。門型の第2拘束ピース25−Iは、内側シュラウド9の隣り合う2つの内側シュラウド要素13の下流側仮想的分割線26に跨って内側シュラウド9の下流側端面に接合している。端面装着型の本形態の拘束ピース25−O,Iの脱落防止効果は図5の既述の形態の拘束ピース25のそれに同じである。   FIG. 6 shows still another preferred embodiment of the circumferential rigidity enhancing structure for a rotating machine according to the present invention. FIG. 6 is a developed view in Z view of the outer shroud 8, the annular stator blade element row 11, and the inner shroud 9. The gate-shaped first restraining piece 25 -O is joined to the downstream end face of the outer shroud 8 across the downstream virtual dividing line 26 of two adjacent outer shroud elements 12 of the outer shroud 8. The gate-shaped second restraint piece 25 -I is joined to the downstream end face of the inner shroud 9 across the downstream virtual dividing line 26 of two adjacent inner shroud elements 13 of the inner shroud 9. The effect of preventing the falling off of the restraining pieces 25-O, I of this embodiment of the end face mounting type is the same as that of the restraining piece 25 of the form described above in FIG.

図7は、本発明による回転機械の周方向剛性強化構造の実施の好ましい更に他の形態を示している。図7は、外側シュラウド8と環状静翼要素列11と内側シュラウド9のZ視の展開図として表されている。矩形環型の第1拘束ピース25−Oは、外側シュラウド8の隣り合う2つの外側シュラウド要素12の下流側仮想的分割線26に跨って外側シュラウド8の下流側端面に接合している。矩形環型の第2拘束ピース25−Iは、内側シュラウド9の隣り合う2つの内側シュラウド要素13の下流側仮想的分割線26に跨って内側シュラウド9の下流側端面に接合している。側面装着型の本形態の拘束ピース25−O,Iの組立作業の自由度拡大効果は、図4の既述の形態の拘束ピース25の通りである。   FIG. 7 shows still another preferred embodiment of the circumferential rigidity enhancing structure for a rotating machine according to the present invention. FIG. 7 is a developed view in Z view of the outer shroud 8, the annular stator blade element row 11, and the inner shroud 9. The rectangular ring-shaped first restraining piece 25 -O is joined to the downstream end face of the outer shroud 8 across the downstream virtual dividing line 26 of two adjacent outer shroud elements 12 of the outer shroud 8. The rectangular ring-shaped second restraint piece 25 -I is joined to the downstream end face of the inner shroud 9 across the downstream virtual dividing line 26 of the two inner shroud elements 13 adjacent to each other in the inner shroud 9. The effect of enlarging the degree of freedom in assembling the restraint pieces 25-O and I of the side-mounted type in this embodiment is the same as that of the restraint piece 25 in the form described above in FIG.

図8は、本発明による回転機械の周方向剛性強化構造の実施の好ましい更に他の形態を示している。本形態の拘束ピース25は、図5の拘束ピース25に置換されている。本形態の拘束ピース25は、2つの穴が開いた矩形板として形成され、外側シュラウド要素12又は内側シュラウド要素13の端面に埋め込まれ、2つのボルト36により外側シュラウド要素12又は内側シュラウド要素13に取り付けられている。端面結合型の本形態は、既述の脱落防止効果を有している。図7の拘束ピース25は、図8の拘束ピース25に置換され得る。   FIG. 8 shows still another preferred embodiment of the circumferential rigidity enhancing structure for a rotating machine according to the present invention. The restraint piece 25 of this embodiment is replaced with the restraint piece 25 of FIG. The constraining piece 25 of this embodiment is formed as a rectangular plate having two holes, and is embedded in the end face of the outer shroud element 12 or the inner shroud element 13. It is attached. This end face coupling type has the above-described drop-off preventing effect. The restraint piece 25 of FIG. 7 can be replaced with the restraint piece 25 of FIG.

図9は、本発明による回転機械の周方向剛性強化構造の実施の好ましい更に他の形態を示している。外側シュラウド要素12に現れる分割面26には、軸方向Zに直交し又は直交する成分を持ち軸方向に延びる軸方向直交分割面37が追加されている。隣り合う2つの外側シュラウド要素12は、軸方向直交分割面37に直交する螺軸線を持つボルト38により面接合的に結合する。ボルト穴は、拘束ピース圧入溝27の代わりに形成される。その結合部位が出口側に配置される点は、既述の通りである。このように分割面どうしを結合する本形態は、内側シュラウド9にも適用され得る。側面固定型の本形態の結合作業は、翼全体の組立の後に可能であり、既述の作業の自由度拡大効果を有している。   FIG. 9 shows still another preferred embodiment of the circumferential rigidity enhancing structure for a rotating machine according to the present invention. An axial orthogonal dividing surface 37 having a component orthogonal to or orthogonal to the axial direction Z and extending in the axial direction is added to the dividing surface 26 that appears in the outer shroud element 12. Two adjacent outer shroud elements 12 are joined in a face-joint manner by a bolt 38 having a screw axis perpendicular to the axially orthogonal dividing surface 37. The bolt hole is formed instead of the restraining piece press-fitting groove 27. The point that the binding site is arranged on the outlet side is as described above. Thus, this form which couple | bonds the dividing surfaces may be applied also to the inner shroud 9. FIG. The side-fixing type coupling operation of this embodiment is possible after the assembly of the entire wing, and has the effect of expanding the degree of freedom of the operations described above.

静翼構造環は、原則的に2分割される。2つの環の接合面の近傍のみに周方向剛性を強化することは、本発明とは異なる考えに依拠している。橋脚、ダムのアーチ構造で周知であるように、アーチの中央部分の周方向剛性の強化は、アーチの端部の周方向剛性を強化する。半環状の内外シュラウドの接合面近傍で本発明の拘束ピース25が適用される。上側半環の最下端の外側シュラウド要素12と内側シュラウド要素13に下側半環の最上端の外側シュラウド要素12と内側シュラウド要素13とをそれぞれに拘束ピース25で連成的に連結することにより、半環どうしの接合領域の周方向剛性を強化することができる。その接合領域で拘束ピース25を特別に高剛性に形成し、且つ、特別にサイズを大きくすることにより、環全体の剛性を均等化することができる。   In principle, the stator blade structure ring is divided into two. Reinforcing the circumferential rigidity only in the vicinity of the joint surface of the two rings relies on a different idea from the present invention. As is well known for bridge piers and dam arch structures, increasing the circumferential stiffness of the central portion of the arch enhances the circumferential stiffness of the end of the arch. The restraint piece 25 of the present invention is applied in the vicinity of the joining surface of the semi-annular inner and outer shrouds. By connecting the outermost shroud element 12 and the inner shroud element 13 at the uppermost end of the lower half ring to the outermost shroud element 12 and the inner shroud element 13 at the lowermost end of the upper half ring, respectively, by the constraining pieces 25. The circumferential rigidity of the joining region between the half rings can be enhanced. By forming the restraining piece 25 with a particularly high rigidity in the joining region, and by specifically increasing the size, the rigidity of the entire ring can be equalized.

実施のその他の形態:
隣り合う外側シュラウド要素12又は内側シュラウド要素13の周方向の接合面領域に跨り周方向に延びる部分環状ピンを埋め込み、そのピンと外側シュラウド要素12又は内側シュラウド要素13の摩擦結合により周方向剛性を高めることは有意義である。その場合に、環状ピンの断面は、円形に限られず、星型、歯車型のように周面の面積が大きい形状の摩擦面に形成することが望ましい。焼嵌めによる挿入は有効である。
Other forms of implementation:
A partial annular pin extending in the circumferential direction is embedded across the circumferential joining surface region of the adjacent outer shroud element 12 or inner shroud element 13, and circumferential rigidity is increased by frictional coupling between the pin and the outer shroud element 12 or inner shroud element 13. That is meaningful. In that case, the cross section of the annular pin is not limited to a circular shape, and it is desirable to form a friction surface having a large peripheral surface area such as a star shape or a gear shape. Insertion by shrink fitting is effective.

図1の半環の組立又は組付は、下記の工程を含む。
(1)外輪5の半環と内輪6の半環を機械加工により製造すること
(2)外輪5の半環の内周側に規定数の外側シュラウド要素12を順次に差し込むこと
(3)内輪5の半環の外周側に規定数の内側シュラウド要素13を順次に差し込むこと
(4)工程(2)と工程(3)の後に、又は、工程(2)と工程(3)とに同時的に規定数の静翼要素を外側シュラウド要素と内側シュラウド要素の間に装着すること
(5)周方向に隣り合う2つの静翼要素に跨る結合要素25を装着すること
ここで、工程(5)は、結合要素(25)が軸方向に挿入される場合には、工程(3)の後に工程(4)を実行することができる。結合要素25を放射方向に装着する場合と結合
要素25を軸方向に装着する場合のいずれの場合にも、結合要素25は内輪6により求心方向に抜け出すことはない。このような組付順序は、外側シュラウドを結合要素により結合する場合にも適用され得る。
The assembly or assembly of the half ring of FIG. 1 includes the following steps.
(1) Manufacturing half ring of outer ring 5 and half ring of inner ring 6 by machining (2) Inserting a predetermined number of outer shroud elements 12 sequentially into the inner circumference side of the half ring of outer ring 5 (3) Inner ring (5) After step (2) and step (3) or simultaneously with step (2) and step (3) Mounting a predetermined number of vane elements between the outer shroud element and the inner shroud element (5) mounting a coupling element 25 straddling two circumferentially adjacent vane elements, wherein step (5) If the coupling element (25) is inserted axially, step (4) can be carried out after step (3). In both cases where the coupling element 25 is mounted in the radial direction and when the coupling element 25 is mounted in the axial direction, the coupling element 25 does not slip out in the centripetal direction by the inner ring 6. Such an assembling sequence can also be applied when the outer shroud is coupled by the coupling element.

図1は、本発明による回転機械の好ましい形態を示す断面図である。FIG. 1 is a sectional view showing a preferred embodiment of a rotating machine according to the present invention. 図2は、シュラウドを示す斜軸投影図である。FIG. 2 is an oblique projection showing the shroud. 図3は、静翼環を示す斜軸投影図である。FIG. 3 is an oblique projection showing the stator blade ring. 図4は、周方向剛性強化の好ましい形態を示す展開図である。FIG. 4 is a developed view showing a preferred form of circumferential rigidity enhancement. 図5は、周方向剛性強化の好ましい他の形態を示す展開図である。FIG. 5 is a development view showing another preferred form of circumferential rigidity enhancement. 図6は、周方向剛性強化の好ましい更に他の形態を示す展開図である。FIG. 6 is a developed view showing still another preferred form of circumferential rigidity enhancement. 図7は、周方向剛性強化の好ましい更に他の形態を示す展開図である。FIG. 7 is a developed view showing still another preferred form of circumferential rigidity enhancement. 図8は、周方向剛性強化の好ましい更に他の形態を示す展開図である。FIG. 8 is a developed view showing still another preferred form of circumferential rigidity enhancement. 図9は、周方向剛性強化の好ましい更に他の形態を示す展開図である。FIG. 9 is a development view showing still another preferred form of circumferential rigidity enhancement.

符号の説明Explanation of symbols

3…動翼環
5…外輪
6…内輪
7…静翼環
8…外側シュラウド環
9…内側シュラウド環
12…外側シュラウド要素
13…内側シュラウド要素
14…静翼要素
25…結合要素
27…装着溝
Z…軸方向
3 ... Rotor ring 5 ... Outer ring 6 ... Inner ring 7 ... Stator blade ring 8 ... Outer shroud ring 9 ... Inner shroud ring 12 ... Outer shroud element 13 ... Inner shroud element 14 ... Stator blade element 25 ... Coupling element 27 ... Mounting groove Z ... Axial direction

Claims (14)

軸方向に並ぶ複数の動翼環と、
前記動翼環の間に配置され前記軸方向に並ぶ複数の静翼環とを具え、
前記静翼環の1つは、
外輪と、
内輪と、
前記外輪の内周側に配置され複数の外側シュラウド要素が周方向に並ぶ外側シュラウド環と、
前記内輪の外周側に配置され複数の内側シュラウド要素が周方向に並ぶ内側シュラウド環と、
前記外側シュラウド環と前記内側シュラウド環の間に配置され複数の静翼要素が周方向に並ぶ静翼列環と、
前記複数の内側シュラウド要素のうち前記周方向に並ぶ2つの内側シュラウド要素を前記周方向に結合する結合要素とを具え、
前記結合要素は、前記2つの前記内側シュラウド要素に円周方向に跨って形成される装着溝に装着されている
回転機械。
A plurality of blade rings arranged in the axial direction;
A plurality of stationary blade rings arranged between the rotor blade rings and arranged in the axial direction;
One of the stator blade rings is
Outer ring,
Inner ring,
An outer shroud ring arranged on the inner circumferential side of the outer ring and in which a plurality of outer shroud elements are arranged in the circumferential direction;
An inner shroud ring arranged on the outer peripheral side of the inner ring and in which a plurality of inner shroud elements are arranged in the circumferential direction;
A stationary blade row ring arranged between the outer shroud ring and the inner shroud ring and in which a plurality of stationary blade elements are arranged in the circumferential direction;
A coupling element that couples two inner shroud elements arranged in the circumferential direction among the plurality of inner shroud elements in the circumferential direction;
The coupling element is mounted in a mounting groove formed in a circumferential direction on the two inner shroud elements.
前記結合要素は前記内側シュラウド要素の下流側に配置されている
請求項1の回転機械。
The rotating machine according to claim 1, wherein the coupling element is disposed downstream of the inner shroud element.
前記結合要素は、前記装着溝に放射方向に打ち込まれて前記2つの内側シュラウド要素を周方向に剛体化する
請求項1の回転機械。
The rotating machine according to claim 1, wherein the coupling element is driven into the mounting groove in a radial direction to rigidize the two inner shroud elements in the circumferential direction.
前記結合要素は、前記装着溝に軸方向に打ち込まれて前記2つの内側シュラウド要素を周方向に剛体化する
請求項1の回転機械。
The rotary machine according to claim 1, wherein the coupling element is axially driven into the mounting groove to rigidize the two inner shroud elements in the circumferential direction.
前記装着溝は閉環状に形成されている
請求項1〜4の回転機械。
The rotary machine according to claim 1, wherein the mounting groove is formed in a closed ring shape.
前記装着溝は周方向に延びる部分環状穴として形成され、前記結合要素は前記装着溝に摩擦嵌合することにより前記2つの内側シュラウド要素を周方向に剛体化する
請求項1の回転機械。
The rotating machine according to claim 1, wherein the mounting groove is formed as a partial annular hole extending in a circumferential direction, and the coupling element frictionally fits the mounting groove to stiffen the two inner shroud elements in the circumferential direction.
前記複数の外側シュラウド要素のうち前記周方向に並ぶ2つの外側シュラウド要素を前記周方向に結合する外側結合要素を更に具え、
前記外側結合要素は、前記2つの前記外側シュラウド要素に円周方向に跨って形成される外側装着溝に装着されている
請求項1の回転機械。
An outer coupling element that couples two circumferential outer shroud elements of the plurality of outer shroud elements in the circumferential direction;
The rotating machine according to claim 1, wherein the outer coupling element is mounted in an outer mounting groove formed in a circumferential direction on the two outer shroud elements.
前記外側結合要素は前記静翼要素の下流側に配置されている
請求項7の回転機械。
The rotating machine according to claim 7, wherein the outer coupling element is disposed downstream of the stationary blade element.
前記外側結合要素は、前記外側装着溝に求心方向に打ち込まれて前記2つの外側シュラウド要素を周方向に剛体化する
請求項7の回転機械。
The rotating machine according to claim 7, wherein the outer coupling element is driven into the outer mounting groove in a centripetal direction to stiffen the two outer shroud elements in the circumferential direction.
前記外側結合要素は、前記外側装着溝に軸方向に打ち込まれて前記2つの外側シュラウド要素を周方向に剛体化する
請求項7の回転機械。
The rotating machine according to claim 7, wherein the outer coupling element is axially driven into the outer mounting groove to stiffen the two outer shroud elements in the circumferential direction.
前記外側装着溝は閉環状に形成されている
請求項7〜10から選択される1請求項の回転機械。
The rotating machine according to claim 1, wherein the outer mounting groove is formed in a closed ring shape.
前記外側装着溝は周方向に延びる部分環状穴として形成され、前記外側結合要素は前記外側装着溝に摩擦嵌合することにより前記2つの外側シュラウド要素を周方向に剛体化する
請求項7の回転機械。
8. The outer mounting groove is formed as a partial annular hole extending in the circumferential direction, and the outer coupling element frictionally fits the outer mounting groove to stiffen the two outer shroud elements in the circumferential direction. machine.
下記の工程の集合:
外輪の半環と内輪の半環を機械加工により製造する工程、
外輪の半環の内周側に規定数の外側シュラウド要素を順次に差し込む工程、
内輪の半環の外周側に規定数の内側シュラウド要素を順次に差し込む工程、
周方向に隣り合う2つの静翼要素に跨る結合要素を装着する工程
を具える回転機械の組付方法。
The following set of steps:
Manufacturing the outer ring half ring and the inner ring half ring by machining;
Sequentially inserting a specified number of outer shroud elements into the inner ring side of the outer ring half ring;
Sequentially inserting a specified number of inner shroud elements into the outer ring side of the inner ring half ring,
A method of assembling a rotating machine comprising the step of mounting a coupling element straddling two stationary blade elements adjacent in the circumferential direction.
前記装着する工程は内側シュラウド要素を順次に差し込む前記工程の後に実行され、前記装着する工程では、結合要素は軸方向に差し込まれる
請求項13の回転機械の組付方法。
The method of assembling a rotating machine according to claim 13, wherein the attaching step is executed after the step of sequentially inserting the inner shroud elements, and in the attaching step, the coupling element is inserted in the axial direction.
JP2004127293A 2004-04-22 2004-04-22 Rotary machine and its assembling method Withdrawn JP2005307892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127293A JP2005307892A (en) 2004-04-22 2004-04-22 Rotary machine and its assembling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127293A JP2005307892A (en) 2004-04-22 2004-04-22 Rotary machine and its assembling method

Publications (1)

Publication Number Publication Date
JP2005307892A true JP2005307892A (en) 2005-11-04

Family

ID=35436942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127293A Withdrawn JP2005307892A (en) 2004-04-22 2004-04-22 Rotary machine and its assembling method

Country Status (1)

Country Link
JP (1) JP2005307892A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198293A (en) * 2006-01-27 2007-08-09 Mitsubishi Heavy Ind Ltd Stationary blade ring for axial flow compressor
KR101022810B1 (en) 2010-08-31 2011-03-17 터보파워텍(주) Nozzle Box for Turbine
WO2012057309A1 (en) * 2010-10-29 2012-05-03 三菱重工業株式会社 Turbine and method for manufacturing turbine
JP2012246919A (en) * 2011-05-26 2012-12-13 United Technologies Corp <Utc> Airfoil and vane, made of ceramic composite material, for gas turbine engine, and method for forming the airfoil made of ceramic composite material
CN107061371A (en) * 2017-03-31 2017-08-18 苏州工业园区驿力机车科技股份有限公司 A kind of fan cover

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198293A (en) * 2006-01-27 2007-08-09 Mitsubishi Heavy Ind Ltd Stationary blade ring for axial flow compressor
KR101022810B1 (en) 2010-08-31 2011-03-17 터보파워텍(주) Nozzle Box for Turbine
WO2012057309A1 (en) * 2010-10-29 2012-05-03 三菱重工業株式会社 Turbine and method for manufacturing turbine
JP2012097601A (en) * 2010-10-29 2012-05-24 Mitsubishi Heavy Ind Ltd Turbine and method for manufacturing turbine
CN103097668A (en) * 2010-10-29 2013-05-08 三菱重工业株式会社 Turbine and method for manufacturing turbine
US20130149125A1 (en) * 2010-10-29 2013-06-13 Mitsubishi Heavy Industries, Ltd. Turbine and method for manufacturing turbine
KR101503293B1 (en) * 2010-10-29 2015-03-18 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Turbine and method for manufacturing turbine
CN105386798A (en) * 2010-10-29 2016-03-09 三菱日立电力系统株式会社 Stationary blade unit and turbine
US9551224B2 (en) 2010-10-29 2017-01-24 Mitsubishi Hitachi Power Systems, Ltd. Turbine and method for manufacturing turbine
JP2012246919A (en) * 2011-05-26 2012-12-13 United Technologies Corp <Utc> Airfoil and vane, made of ceramic composite material, for gas turbine engine, and method for forming the airfoil made of ceramic composite material
CN107061371A (en) * 2017-03-31 2017-08-18 苏州工业园区驿力机车科技股份有限公司 A kind of fan cover
CN107061371B (en) * 2017-03-31 2023-12-19 苏州驿力机车科技股份有限公司 Fan cover of fan

Similar Documents

Publication Publication Date Title
JP6866146B2 (en) Cooling circuit for multiple wall blades
US10267162B2 (en) Platform core feed for a multi-wall blade
US20170175544A1 (en) Cooling circuits for a multi-wall blade
JP6924021B2 (en) Platform core supply for multi-wall blades
CN107989660B (en) Partially clad trailing edge cooling circuit with pressure side impact
US10221696B2 (en) Cooling circuit for a multi-wall blade
JP7073071B2 (en) Cooling circuit for multi-wall blades
CN106996314A (en) Cooling circuit for many wall blades
US10208607B2 (en) Cooling circuit for a multi-wall blade
CN207363710U (en) Cooling circuit and corresponding turbine device and turbomachinery for multi wall blade
US10227877B2 (en) Cooling circuit for a multi-wall blade
JP6327505B2 (en) Impeller and rotating machine
JP5706483B2 (en) Vacuum pump
JP6096639B2 (en) Rotating machine
JP2005307892A (en) Rotary machine and its assembling method
KR20080100198A (en) Blade Bearing Ring Assembly of Turbocharger with Variable Turbine Structure
JP2016223404A (en) Compressor housing for supercharger and method for manufacturing the same
JP6485658B2 (en) Rotating body cooling structure and rotor and turbomachine including the same
WO2018155652A1 (en) Axial flow rotary machine
JP2005291208A (en) Integral covered nozzle with attached overcover
CN108699964B (en) Turbine shaft and supercharger
JP2016035247A (en) Centrifugal compressor
JP2004150371A (en) Manufacturing method of hydraulic machine runner
JP2000303994A (en) Axial compressor
JPS5965502A (en) Stationary blade of turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703