[go: up one dir, main page]

JP2005306999A - Lactide-caprolactone copolymer - Google Patents

Lactide-caprolactone copolymer Download PDF

Info

Publication number
JP2005306999A
JP2005306999A JP2004125636A JP2004125636A JP2005306999A JP 2005306999 A JP2005306999 A JP 2005306999A JP 2004125636 A JP2004125636 A JP 2004125636A JP 2004125636 A JP2004125636 A JP 2004125636A JP 2005306999 A JP2005306999 A JP 2005306999A
Authority
JP
Japan
Prior art keywords
lactide
copolymer
caprolactone
chain length
average chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004125636A
Other languages
Japanese (ja)
Inventor
Noriyuki Shintani
紀幸 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP2004125636A priority Critical patent/JP2005306999A/en
Publication of JP2005306999A publication Critical patent/JP2005306999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a bioabsorbable polymer which is composed of a lactide and ε-caprolactone and in which self-curing is hardly progressed. <P>SOLUTION: Self-curing is suppressed by making the molar ratio of the lactide to the ε-caprolactone within a range from 80/20 to 20/80, and making the average chain lengths of the lactide and ε-caprolactone to 4.0 or shorter, respectively. In a preferred embodiment in which particularly the self-curing is hardly progressed, the average chain length of the lactide is 3.55 or shorter and 2.31 or longer, and/or the average chain length of the ε-caprolactone is 3.81 or shorter and 2.71 or longer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ラクチド−カプロラクトン共重合体に関するものであり、より詳しくは医療用材料として好適な力学特性を有するラクチド−カプロラクトン共重合体に関する。   The present invention relates to a lactide-caprolactone copolymer, and more particularly to a lactide-caprolactone copolymer having mechanical properties suitable as a medical material.

ポリラクチド(ポリ乳酸)は、一般に、融点が約170℃から190℃、ガラス転移点が50℃から60℃の生体吸収性高分子である。また、ポリラクチドは結晶性高分子であるため、その剛性は比較的高い。そのため、医療用材料としての用途は狭く、例えば骨のように硬い組織に用いる以外は使用されていない。骨以外の組織にも使途を拡大するためには、柔軟性を高めることが必須である。そのため、従来から様々な方法が検討されてきた(特許文献1及び2参照)。
特開平6−501045号公報 米国特許公報4057537号
Polylactide (polylactic acid) is generally a bioabsorbable polymer having a melting point of about 170 ° C. to 190 ° C. and a glass transition point of 50 ° C. to 60 ° C. In addition, since polylactide is a crystalline polymer, its rigidity is relatively high. Therefore, the use as a medical material is narrow, and it is not used other than using for a hard tissue like a bone, for example. In order to expand the use to tissues other than bone, it is essential to increase flexibility. Therefore, various methods have been studied conventionally (see Patent Documents 1 and 2).
JP-A-6-501045 US Patent Publication No. 4057537

ポリラクチドは、初期物性として剛性が高く柔軟性が求められる用途には適してないという問題点があるが、ガラス転移点が50℃から60℃であるので、室温下で結晶化は進み難いというメリットがある。一方、ポリラクチドの剛性を改良したラクチド−カプロラクトン共重合体の初期物性は、比較的柔軟であるが、室温で結晶化が進行する自己硬化性を有しているため柔軟性が変化してしまうという問題がある。特許文献1及び2は、ラクチドとε−カプロラクトンからなる共重合体が開示されているが、結晶化の制御については検討されていない。そして共重合体が、目的の製品への加工時や、加工後、或いは生体に埋植された場合において、所定温度下(通常、0℃から40℃の範囲)では、自己硬化が起こってしまう。そのため、本来目的とした使途に適した機能を発揮できなくなってしまうために、共重合体の柔軟性を制御する必要があった。   Polylactide has the problem that its initial physical properties are high in rigidity and not suitable for applications where flexibility is required. However, since the glass transition point is 50 ° C to 60 ° C, crystallization is difficult to proceed at room temperature. There is. On the other hand, the initial physical properties of the lactide-caprolactone copolymer with improved rigidity of polylactide are relatively flexible, but the flexibility changes due to the self-curing property that allows crystallization to proceed at room temperature. There's a problem. Patent Documents 1 and 2 disclose a copolymer composed of lactide and ε-caprolactone, but control of crystallization has not been studied. When the copolymer is processed into the target product, after processing, or when implanted into a living body, self-curing occurs at a predetermined temperature (usually in the range of 0 ° C. to 40 ° C.). . For this reason, it becomes necessary to control the flexibility of the copolymer because the function suitable for the intended purpose cannot be exhibited.

そこで、本願は、自己硬化がほとんど進行しないラクチドとε−カプロラクトンからなる生体吸収性高分子を提供することを目的とする。   Then, this application aims at providing the bioabsorbable polymer which consists of lactide and (epsilon) -caprolactone which self-cure hardly advances.

ポリラクチドを主鎖とする生体吸収性高分子と環状エステルと、の共重合体において、各分子の平均鎖長をより短くすると結晶性が低下し、柔軟性を向上させることができることは、特許文献1に記載されているが、この文献では、所定温度下に放置した際に、自己硬化が進行し難いとされる平均鎖長については言及されていない。発明者らは、特に上記課題に鑑み、如何にしたら自己硬化が進行しないラクチドとε−カプロラクトンからなる生体吸収性高分子が実現できるかを鋭意検討した結果、ラクチドとε−カプロラクトンとのモル比率を80/20から20/80の範囲にし、ラクチドおよびε−カプロラクトンの平均鎖長を4.0以下とすると、自己硬化が進行しにくいものが得られるという知見を見出した。本願発明は、かかる知見に基づいて達成された発明を出願した内容である。   In the copolymer of a bioabsorbable polymer having a polylactide as a main chain and a cyclic ester, if the average chain length of each molecule is shortened, the crystallinity is lowered and the flexibility can be improved. Although it is described in No. 1, this document does not mention the average chain length that is difficult for self-curing to proceed when left at a predetermined temperature. As a result of earnestly examining how the bioabsorbable polymer composed of lactide and ε-caprolactone, in which self-curing does not proceed, can be realized by the inventors, particularly in view of the above problems, the molar ratio of lactide to ε-caprolactone The present inventors have found that when the average chain length of lactide and ε-caprolactone is 4.0 or less in the range of 80/20 to 20/80, a product that is difficult to progress self-curing can be obtained. The present invention is the content of filing an invention achieved based on such knowledge.

そして、特に自己硬化が進行しにくい好ましい態様は、ラクチドの平均鎖長が、3.55以下2.31以上及び/又はε−カプロラクトンの平均鎖長が3.81以下2.71以上である。   A preferred embodiment in which self-curing is difficult to proceed is that the average chain length of lactide is 3.55 or less and 2.31 or more and / or the average chain length of ε-caprolactone is 3.81 or less and 2.71 or more.

ここで、自己硬化の評価は、所定温度下においた場合の柔軟性の劣化速度によって行った。すなわち、0から40℃の温度範囲の所定温度下に置いたときの、所定期間後における引張り試験による弾性率及び300%モジュラスが10%/日(1日後、10%の変化)以下の変化速度かどうかで評価した。この範囲を超える変化速度で、柔軟性が劣化するものは、医療用途に用いられる生体吸収性材料として、あまり実用的ではない。   Here, the self-curing was evaluated based on the deterioration rate of the flexibility when placed under a predetermined temperature. That is, when it is placed at a predetermined temperature in the temperature range of 0 to 40 ° C., the elastic modulus and the 300% modulus after a predetermined period are 10% / day (change of 10% after 1 day) or less. It was evaluated by whether or not. A material whose flexibility deteriorates at a change rate exceeding this range is not very practical as a bioabsorbable material used in medical applications.

本願発明に係る共重合体は「ポリラクチド」を主鎖とする。ここで「ポリラクチド」とは、L−ラクチド、D−ラクチド、DL−ラクチド、及びこれらの混合物のいずれかをいう。ラクチド、ε−カプロラクトン単量体は、使用前に不純物を取り除くために精製されることが好ましい。ラクチドの精製は、たとえばナトリウムによって乾燥されたトルエンからの再結晶によって行うことができる。また、ε−カプロラクトンの精製は、たとえばCaHから窒素雰囲気下で減圧蒸留によって精製される。これらの単量体は不純物に含まれる水酸基が1ppm以下になるまで精製されることが好ましい。そして、これらの単量体を塊状重合することによって本発明に係る共重合体を得ることができる。塊状重合とは、溶媒を含まず、懸濁液や乳濁液の中で行われない重合方法をいう。また「短鎖脂肪酸エステル」とは、複素環式化合物、炭素環式化合物のどちらもよいが、炭素環式化合物であることが好ましく、ε−カプロラクトンであることが更に好ましい。 The copolymer according to the present invention has “polylactide” as the main chain. Here, “polylactide” refers to any of L-lactide, D-lactide, DL-lactide, and mixtures thereof. The lactide, ε-caprolactone monomer is preferably purified to remove impurities before use. The purification of lactide can be effected, for example, by recrystallization from toluene dried with sodium. Moreover, epsilon-caprolactone is purified, for example, from CaH 2 by distillation under reduced pressure in a nitrogen atmosphere. These monomers are preferably purified until the hydroxyl group contained in the impurities is 1 ppm or less. The copolymer according to the present invention can be obtained by bulk polymerization of these monomers. Bulk polymerization refers to a polymerization method that does not include a solvent and is not performed in a suspension or emulsion. The “short chain fatty acid ester” may be either a heterocyclic compound or a carbocyclic compound, but is preferably a carbocyclic compound, and more preferably ε-caprolactone.

さらに、本願発明に係る共重合体は「生体吸収性高分子」を含む。ここで「生体吸収性高分子」とは、生体適合性高分子、バイオマテリアルとも呼ばれ、生体の損傷や、病変組織の治療をしたり、回復させたり、交換したりする材料のことをいう。   Furthermore, the copolymer according to the present invention includes a “bioabsorbable polymer”. Here, the term “bioabsorbable polymer” is also referred to as a biocompatible polymer or biomaterial, and refers to a material that treats, restores, or replaces damaged or damaged tissues. .

さらにまた「引張弾性率」とは、弾性率(modulus of elasticity intension)の一種をいい、伸び弾性率、ヤング率ともいう。一様な太さの棒の一端を固定し,他端を軸方向に引く(または押す)場合、棒の断面にはたらく応力をT、単位長さあたりの伸び(または縮み)をεとすれば、比例限界内でT=Eεという関係が成り立つ。このように伸び変形で応力Tとひずみεとの間に比例関係が成り立つとき、比例定数E=T/εをヤング率という。Pa,N/mで表示される。また「平均鎖長」とは、単位ブロック当たりの構成分子数の平均値をいう。 Furthermore, “tensile elastic modulus” refers to a kind of modulus of elasticity intensification, and is also referred to as elongation elastic modulus and Young's modulus. If one end of a rod of uniform thickness is fixed and the other end is pulled (or pushed) in the axial direction, the stress acting on the cross section of the rod is T, and the elongation (or shrinkage) per unit length is ε. The relationship T = Eε is established within the proportional limit. Thus, when a proportional relationship is established between the stress T and the strain ε due to elongation deformation, the proportional constant E = T / ε is referred to as Young's modulus. Displayed in Pa, N / m 2 . The “average chain length” refers to the average value of the number of constituent molecules per unit block.

さらにまた、本願発明に係る共重合体は「略非晶相」からなる。ここで「略非晶相」とは、非晶相及び微細な結晶相や不完全な結晶相を含むことを意味する。   Furthermore, the copolymer according to the present invention comprises a “substantially amorphous phase”. Here, “substantially amorphous phase” means including an amorphous phase, a fine crystal phase, and an incomplete crystal phase.

なお、本発明に係る「医療材料用共重合体」は、従来使用されていた骨以外に使用することができる。たとえば、半月板や血管の修復のための内部組織、ステント、人工皮膚などが挙げられるがこれらに限定されるものではない。   In addition, the “copolymer for medical materials” according to the present invention can be used other than bones conventionally used. Examples include, but are not limited to, meniscus and internal tissue for repairing blood vessels, stents, and artificial skin.

自己硬化がほとんど進行しないラクチドとε−カプロラクトンからなる生体吸収性高分子が得られることから、本来目的とした使途に適した機能を十分に発揮できる医療材料が提供される。   Since a bioabsorbable polymer composed of lactide and ε-caprolactone, which hardly undergoes self-curing, can be obtained, a medical material capable of sufficiently exhibiting a function suitable for the intended use is provided.

本願発明では、気密性の高い容器にラクチドとε−カプロラクトンとを入れ、そこにモノマー量に対し、1から1000ppmの触媒を添加する。その容器を減圧して密封し、120℃から190℃の温度範囲で0.5時間から2週間塊状重合を行う。平均鎖長を短くするため、合成温度が低いほど、合成時間を長くし、能動的にエステル交換を誘発させる必要がある。また、合成温度が高い場合は、ラクチド−カプロラクトン共重合体のランダム性が向上するため、エステル交換を行う必要は特にない。上記触媒としては、主にスズ、亜鉛、アルミニウム、マグネシウム、チタン、ナトリウム、ゲルマニウム、アンチモンなどの金属化合物等が挙げられる。   In the present invention, lactide and ε-caprolactone are placed in a highly airtight container, and 1 to 1000 ppm of catalyst is added to the monomer amount. The container is sealed under reduced pressure, and bulk polymerization is carried out in the temperature range of 120 ° C. to 190 ° C. for 0.5 hours to 2 weeks. In order to shorten the average chain length, the lower the synthesis temperature, the longer the synthesis time, and it is necessary to actively induce transesterification. In addition, when the synthesis temperature is high, the randomness of the lactide-caprolactone copolymer is improved, so there is no need to perform transesterification. Examples of the catalyst include metal compounds such as tin, zinc, aluminum, magnesium, titanium, sodium, germanium, and antimony.

<実施例1:ラクチドとε−カプロラクトンとのモル比率が、50/50>
L−ラクチド150gとε−カプロラクトン240gを1000mLの重合容器に入れ、モノマーに対して、オクチル酸スズを5×10−3モル%及びラウリルアルコールを2×10−2モル%添加する重合容器を減圧下で密封し、これを140℃の油浴中に浸漬し48時間合成した。得られた共重合体をエタノールにて精製した後、乾燥した。分子量は、ゲル浸透クロマトグラフィー(GPC)にて測定した結果、重量平均分子量は、600,000であった。また、ラクチドの平均鎖長は、3.6であり、ε−カプロラクトンの平均鎖長は、3.8であった。合成したラクチド−カプロラクトン共重合体を130℃で60分、50kg/cmの荷重をかけてフィルム状に熱プレスして成形し、1日後の力学的特性を調べた。その結果引張弾性率は、2.5MPa、300%モジュラスは、1.3MPaであった。常温放置5日後の弾性率は、2.6MPa、300%モジュラスは、1.6MPaであった。なお、引張弾性率の測定は、試料長30mm、測定機のクロスヘッドスピード50mm/minに設定して行った。
<Example 1: The molar ratio of lactide to ε-caprolactone is 50/50>
L-lactide 150 g and ε-caprolactone 240 g are put into a 1000 mL polymerization vessel, and the polymerization vessel in which 5 × 10 −3 mol% of octylate and 2 × 10 −2 mol% of lauryl alcohol are added to the monomer is decompressed. It was sealed below and immersed in an oil bath at 140 ° C. for 48 hours. The obtained copolymer was purified with ethanol and then dried. As a result of measuring the molecular weight by gel permeation chromatography (GPC), the weight average molecular weight was 600,000. The average chain length of lactide was 3.6, and the average chain length of ε-caprolactone was 3.8. The synthesized lactide-caprolactone copolymer was hot-pressed into a film with a load of 50 kg / cm 2 at 130 ° C. for 60 minutes, and the mechanical properties after one day were examined. As a result, the tensile elastic modulus was 2.5 MPa, and the 300% modulus was 1.3 MPa. The elastic modulus after 5 days of standing at room temperature was 2.6 MPa, and the 300% modulus was 1.6 MPa. The tensile modulus was measured by setting the sample length to 30 mm and the crosshead speed of the measuring machine to 50 mm / min.

<実施例2:ラクチドとε−カプロラクトンとのモル比率が、50/50>
L−ラクチド150gとε−カプロラクトン164gを1000mLの重合容器に入れ、モノマーに対して、オクチル酸スズを5×10−3モル%及びラウリルアルコールを2×10−2モル%添加する重合容器を減圧下で密封し、これを150℃の油浴中に浸漬し32時間合成した。得られた共重合体をエタノールにて精製した後、乾燥した。分子量は、GPCにて測定した結果、重量平均分子量は、600,000であった。また、ラクチドの平均鎖長は、2.7であり、ε−カプロラクトンの平均鎖長は、2.8であった。合成したラクチド−カプロラクトン共重合体をフィルム状に熱プレスして成形し、1日後の力学的特性を調べた。その結果弾性率は、2.1MPa、300%モジュラスは、0.8MPaであった。常温放置5日後の弾性率は、2.0MPa、300%モジュラスは、0.9MPaであった。
<Example 2: The molar ratio of lactide and ε-caprolactone is 50/50>
L-lactide 150 g and ε-caprolactone 164 g are put in a 1000 mL polymerization vessel, and a polymerization vessel in which 5 × 10 −3 mol% of octylate and 2 × 10 −2 mol% of lauryl alcohol are added to the monomer under reduced pressure. It was sealed below and immersed in an oil bath at 150 ° C. and synthesized for 32 hours. The obtained copolymer was purified with ethanol and then dried. As a result of measuring the molecular weight by GPC, the weight average molecular weight was 600,000. The average chain length of lactide was 2.7, and the average chain length of ε-caprolactone was 2.8. The synthesized lactide-caprolactone copolymer was hot-pressed into a film and molded, and the mechanical properties after one day were examined. As a result, the elastic modulus was 2.1 MPa, and the 300% modulus was 0.8 MPa. The elastic modulus after 5 days at room temperature was 2.0 MPa, and the 300% modulus was 0.9 MPa.

<実施例3:ラクチドとε−カプロラクトンとのモル比率が、50/50>
L−ラクチド150gとε−カプロラクトン178gを1000mLの重合容器に入れ、モノマーに対して、オクチル酸スズを5×10−3モル%及びラウリルアルコールを2×10−2モル%添加する重合容器を減圧下で密封し、これを170℃の油浴中に浸漬し16時間合成した。得られた共重合体をエタノールにて精製した後、乾燥した。分子量は、GPCにて測定した結果、重量平均分子量は、600,000であった。また、ラクチドの平均鎖長は、2.3であり、ε−カプロラクトンの平均鎖長は、2.7であった。合成したラクチド−カプロラクトン共重合体をフィルム状に熱プレスして成形し、1日後の力学的特性を調べた。その結果弾性率は、2.0MPa、300%モジュラスは、0.7MPaであった。常温放置5日後の弾性率は、1.9MPa、300%モジュラスは、0.7MPaであった。
<Example 3: The molar ratio of lactide to ε-caprolactone is 50/50>
L-lactide 150 g and ε-caprolactone 178 g are put in a 1000 mL polymerization vessel, and the polymerization vessel in which 5 × 10 −3 mol% of octylate and 2 × 10 −2 mol% of lauryl alcohol are added to the monomer under reduced pressure is added. It was sealed below and immersed in an oil bath at 170 ° C. and synthesized for 16 hours. The obtained copolymer was purified with ethanol and then dried. As a result of measuring the molecular weight by GPC, the weight average molecular weight was 600,000. The average chain length of lactide was 2.3, and the average chain length of ε-caprolactone was 2.7. The synthesized lactide-caprolactone copolymer was hot-pressed into a film and molded, and the mechanical properties after one day were examined. As a result, the elastic modulus was 2.0 MPa, and the 300% modulus was 0.7 MPa. The elastic modulus after 5 days at room temperature was 1.9 MPa, and the 300% modulus was 0.7 MPa.

<比較例:ラクチドとε−カプロラクトンとのモル比率が、50/50>
L−ラクチド150gとε−カプロラクトン136gを1000mLの重合容器に入れ、モノマーに対して、オクチル酸スズを5×10−3モル%及びラウリルアルコールを2×10−2モル%添加する重合容器を減圧下で密封し、これを130℃の油浴中に浸漬し16時間合成した。得られた共重合体をエタノールにて精製した後、乾燥した。分子量は、GPCにて測定した結果、重量平均分子量は、600,000であった。また、ラクチドの平均鎖長は、4.4であり、ε−カプロラクトンの平均鎖長は、5.3であった。合成したラクチド−カプロラクトン共重合体をフィルム状に熱プレスして成形し、1日後の力学的特性を調べた。その結果弾性率は、4.3MPa、300%モジュラスは、1.8MPaであった。常温放置5日後の弾性率は、16.7MPa、300%モジュラスは、5.1MPaであった。
<Comparative example: molar ratio of lactide and ε-caprolactone is 50/50>
Put 150 g of L-lactide and 136 g of ε-caprolactone in a 1000 mL polymerization vessel, and reduce the pressure of the polymerization vessel to which 5 × 10 −3 mol% of octylate and 2 × 10 −2 mol% of lauryl alcohol are added to the monomer. It was sealed below and immersed in an oil bath at 130 ° C. for 16 hours. The obtained copolymer was purified with ethanol and then dried. As a result of measuring the molecular weight by GPC, the weight average molecular weight was 600,000. The average chain length of lactide was 4.4, and the average chain length of ε-caprolactone was 5.3. The synthesized lactide-caprolactone copolymer was hot-pressed into a film and molded, and the mechanical properties after one day were examined. As a result, the elastic modulus was 4.3 MPa, and the 300% modulus was 1.8 MPa. The elastic modulus after 5 days at room temperature was 16.7 MPa, and the 300% modulus was 5.1 MPa.

<実施例と比較例からわかること>
図表1は、反応温度と得られたラクチド−カプロラクトン共重合体における各成分の平均鎖長との関係を記載した図表である。この図表から明らかなように、反応温度が高いほど、ラクチド、ε−カプロラクトンいずれの平均鎖長もが短くなる傾向がある。そして、140℃で顕著に短くなることもわかる(130℃では、ラクチドが、4.38、ε−カプロラクトンが5.28であるのに対し、140℃では、前者は、3.55、後者は、3.81と顕著に短くなっている)。
<Understanding from Examples and Comparative Examples>
Chart 1 is a chart describing the relationship between the reaction temperature and the average chain length of each component in the obtained lactide-caprolactone copolymer. As is apparent from this chart, the higher the reaction temperature, the shorter the average chain length of lactide and ε-caprolactone. It can also be seen that it is significantly shorter at 140 ° C. (at 130 ° C., lactide is 4.38 and ε-caprolactone is 5.28, whereas at 140 ° C., the former is 3.55 and the latter is 3) which is significantly shorter (3.81).

次に、図表2に、130℃、140℃、150℃の反応温度の場合の、張り試験による弾性率及び300%モジュラスの1日後、2日後、5日後の変化を示す。この図表から明らかなように、反応温度が、130℃のものつまり、各成分の平均鎖長が4を超えるものでは、柔軟性が顕著に劣化する。一方、反応温度が、140℃、150℃のものつまり、各成分の平均鎖長が4以下のものは、柔軟性の劣化が進行しにくいことがわかる。   Next, FIG. 2 shows changes in the elastic modulus and 300% modulus of the tensile test after 1 day, 2 days, and 5 days in the case of reaction temperatures of 130 ° C., 140 ° C., and 150 ° C. As is apparent from this chart, when the reaction temperature is 130 ° C., that is, when the average chain length of each component exceeds 4, the flexibility is significantly deteriorated. On the other hand, it can be seen that when the reaction temperature is 140 ° C. or 150 ° C., that is, the average chain length of each component is 4 or less, the deterioration of flexibility is difficult to proceed.

品質が安定した生体吸収性材料として、特に、柔軟性が要求される医療用材料として利用できる。   As a bioabsorbable material with stable quality, it can be used particularly as a medical material requiring flexibility.

反応温度と得られたラクチド−カプロラクトン共重合体における各成分の平均鎖長との関係を記載した図表である。It is the graph which described the relationship between reaction temperature and the average chain length of each component in the obtained lactide-caprolactone copolymer. 130℃、140℃、150℃の反応温度の場合の、張り試験による弾性率及び300%モジュラスの1日後、2日後、5日後の変化を示す。The change in elastic modulus and 300% modulus of the tensile test after 1 day, 2 days, and 5 days after reaction temperatures of 130 ° C, 140 ° C, and 150 ° C are shown.

Claims (8)

ポリラクチドを主鎖とする生体吸収性高分子の分子鎖中に、短鎖脂肪酸エステルが挿入されることによって結晶化の進行度合が調整されたものからなる共重合体であって、
室温で5日間放置した状態でも結晶化の進行度が一日当たり5%以下である共重合体からなる医療材料用共重合体。
A copolymer composed of a bioabsorbable polymer having a polylactide as a main chain, in which a progress degree of crystallization is adjusted by inserting a short-chain fatty acid ester,
A copolymer for medical materials comprising a copolymer having a degree of crystallization of 5% or less per day even when left at room temperature for 5 days.
前記共重合体は、室温で5日間放置した状態でも引張弾性率の増加率が一日当たり5%以下である共重合体からなる請求項1に記載の医療材料用共重合体。   The copolymer for medical materials according to claim 1, wherein the copolymer comprises a copolymer having an increase rate of tensile elastic modulus of 5% or less per day even when left at room temperature for 5 days. ラクチドとε−カプロラクトンとのモル比が、80/20から20/80の範囲にあるラクチドとε−カプロクラトンとの共重合体であって、ラクチドの平均鎖長が4以下である医療材料用共重合体。   A copolymer of lactide and ε-caprocraton having a molar ratio of lactide and ε-caprolactone in the range of 80/20 to 20/80, wherein the average chain length of lactide is 4 or less. Polymer. ε−カプロクラトンの平均鎖長が4以下である請求項3に記載の医療材料用共重合体。   The copolymer for medical materials according to claim 3, wherein the average chain length of ε-caprocratone is 4 or less. ラクチドの平均鎖長が、3.55以下2.31以上及び/又はε−カプロラクトンの平均鎖長が3.81以下2.71以上である請求項3又は4に記載の医療材料用共重合体。   The copolymer for medical materials according to claim 3 or 4, wherein an average chain length of lactide is 3.55 or less and 2.31 or more and / or an average chain length of ε-caprolactone is 3.81 or less and 2.71 or more. . 前記共重合体は、略非晶相からなる請求項1から5いずれかに記載の医療材料用共重合体。   The said copolymer is a copolymer for medical materials in any one of Claim 1 to 5 which consists of a substantially amorphous phase. ラクチドとε−カプロラクトンとのモル比が、80/20から20/80の範囲にあるラクチドとε−カプロクラトンとの共重合体であって、自己硬化抑制処理が施されている医療材料用共重合体。   A copolymer of lactide and ε-caprocratone having a molar ratio of lactide and ε-caprolactone in the range of 80/20 to 20/80, and having a self-curing suppression treatment applied thereto Coalescence. 前記自己硬化抑制処理は、ラクチド及びε−カプロクラトンの平均鎖長を短くする処理である請求項7に記載の医療材料用共重合体。   The copolymer for medical materials according to claim 7, wherein the self-curing suppression treatment is a treatment for shortening an average chain length of lactide and ε-caprocratone.
JP2004125636A 2004-04-21 2004-04-21 Lactide-caprolactone copolymer Pending JP2005306999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125636A JP2005306999A (en) 2004-04-21 2004-04-21 Lactide-caprolactone copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125636A JP2005306999A (en) 2004-04-21 2004-04-21 Lactide-caprolactone copolymer

Publications (1)

Publication Number Publication Date
JP2005306999A true JP2005306999A (en) 2005-11-04

Family

ID=35436130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125636A Pending JP2005306999A (en) 2004-04-21 2004-04-21 Lactide-caprolactone copolymer

Country Status (1)

Country Link
JP (1) JP2005306999A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100895A1 (en) * 2005-03-23 2006-09-28 Jms Co., Ltd. Adhesion-preventive film
WO2009069558A1 (en) 2007-11-29 2009-06-04 Gunze Limited Lactide/ε-caprolactone copolymer for medical implant, method for producing lactide/ε-caprolactone copolymer for medical implant, medical implant and artificial dura mater
JP2009131358A (en) * 2007-11-29 2009-06-18 Gunze Ltd Artificial dura mater
JP2011206095A (en) * 2010-03-29 2011-10-20 Gunze Ltd Fistula treatment material
WO2014167966A1 (en) * 2013-04-12 2014-10-16 国立大学法人京都工芸繊維大学 Method for producing lactide-lactone copolymer
JP5978131B2 (en) * 2010-07-20 2016-08-24 株式会社 京都医療設計 Stent device
JP2021193159A (en) * 2020-06-08 2021-12-23 東レ株式会社 Polyester copolymer
JP2022509214A (en) * 2018-11-27 2022-01-20 エボニック オペレーションズ ゲーエムベーハー A method for producing absorbent polyester as a granule or powder by bulk polymerization.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100895A1 (en) * 2005-03-23 2006-09-28 Jms Co., Ltd. Adhesion-preventive film
WO2009069558A1 (en) 2007-11-29 2009-06-04 Gunze Limited Lactide/ε-caprolactone copolymer for medical implant, method for producing lactide/ε-caprolactone copolymer for medical implant, medical implant and artificial dura mater
JP2009131358A (en) * 2007-11-29 2009-06-18 Gunze Ltd Artificial dura mater
JP2011206095A (en) * 2010-03-29 2011-10-20 Gunze Ltd Fistula treatment material
JP5978131B2 (en) * 2010-07-20 2016-08-24 株式会社 京都医療設計 Stent device
WO2014167966A1 (en) * 2013-04-12 2014-10-16 国立大学法人京都工芸繊維大学 Method for producing lactide-lactone copolymer
US9527955B2 (en) 2013-04-12 2016-12-27 National University Corporation Kyoto Institute Of Technology Method for producing lactide-lactone copolymer
JPWO2014167966A1 (en) * 2013-04-12 2017-02-16 国立大学法人京都工芸繊維大学 Method for producing lactide-lactone copolymer
JP2022509214A (en) * 2018-11-27 2022-01-20 エボニック オペレーションズ ゲーエムベーハー A method for producing absorbent polyester as a granule or powder by bulk polymerization.
JP7459093B2 (en) 2018-11-27 2024-04-01 エボニック オペレーションズ ゲーエムベーハー Method for producing absorbent polyester as granules or powder by bulk polymerization
JP2021193159A (en) * 2020-06-08 2021-12-23 東レ株式会社 Polyester copolymer
JP7512695B2 (en) 2020-06-08 2024-07-09 東レ株式会社 Polyester Copolymer

Similar Documents

Publication Publication Date Title
JP3161729B2 (en) Method for producing medically applicable article from copolymer of lactide and ε-caprolactone
ES2375637T3 (en) RESTORABLE POLY (ETERES-ESTERS) AND ITS USE FOR THE PRODUCTION OF MEDICAL IMPLANTS.
JP4452507B2 (en) DL-lactide-ε-caprolactone copolymer
EP1862186A1 (en) Adhesion-preventive film
Oh et al. Degradation behavior of 3D porous polydioxanone-b-polycaprolactone scaffolds fabricated using the melt-molding particulate-leaching method
JP2005306999A (en) Lactide-caprolactone copolymer
JP2587664B2 (en) Biodegradable and absorbable surgical materials
JPH07502554A (en) Copolymers of lactones and carbonates and methods for producing such copolymers
JP3453648B2 (en) Biodegradable and absorbable polymer having low metal content and method for producing the same.
JP4953052B2 (en) Anti-adhesion film
JP7484167B2 (en) Medical molded bodies, medical devices, nerve regeneration induction tubes
Cork et al. Tensile properties and in vitro degradation of P (TMC-co-LLA) elastomers
JP2020092874A (en) Medical molding
JP2009132769A (en) LACTIDE/epsilon-CAPROLACTONE COPOLYMER FOR MEDICAL IMPLANT
KR101568146B1 (en) Manufacturing method of ultra-high molecular weight poly glycol acid having biodegradable and implant having high stiffness and biodegradable manufacturing thereof
KR101258086B1 (en) Method for preparing biodegradable polymer materials, biodegradable polymer materials and product for bone fixing
JP7319466B2 (en) block copolymer
JP5208923B2 (en) Multi-block copolymer with shape memory properties
JP7661881B2 (en) Nerve regeneration induction tube
JP2008120888A (en) Biodegradable copolymer and method for producing the same
JP2021145920A (en) Cylindrical molded body
JP2008007609A (en) Manufacturing method of in-vivo decomposable and absorbable polymer of low metal catalyst content
JP2021145919A (en) Cylindrical molded article
JP2005220333A (en) Biologically decomposable and absorbable polymer and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223