[go: up one dir, main page]

JP2005306923A - INORGANIC POWDER AND COMPOSITION CONTAINING THE SAME - Google Patents

INORGANIC POWDER AND COMPOSITION CONTAINING THE SAME Download PDF

Info

Publication number
JP2005306923A
JP2005306923A JP2004122671A JP2004122671A JP2005306923A JP 2005306923 A JP2005306923 A JP 2005306923A JP 2004122671 A JP2004122671 A JP 2004122671A JP 2004122671 A JP2004122671 A JP 2004122671A JP 2005306923 A JP2005306923 A JP 2005306923A
Authority
JP
Japan
Prior art keywords
less
particles
inorganic powder
resin
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004122671A
Other languages
Japanese (ja)
Inventor
Yusaku Harada
祐作 原田
Yasuhisa Nishi
泰久 西
Mitsuyoshi Iwasa
光芳 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004122671A priority Critical patent/JP2005306923A/en
Publication of JP2005306923A publication Critical patent/JP2005306923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

【課題】無機質粉末の充填率が高くても成形性が良く、かつ成形時のバリが少ない例えば半導体封止材料を得るために好適な無機質粉末とそれを含有させた脂組成物を提供する。
【解決手段】体積基準頻度粒度分布において、0.07μm以上0.5μm未満、3μm以上15μm未満及び30μm以上70μm未満の領域にそれぞれ極大径を有し、しかも0.5μm以上3μm未満の粒子含有率Aと15μm以上30μm未満の粒子含有率Bの比率A/Bが1.2〜3.3であることを特徴とする無機質粉末。また、上記無機質粉末をゴム及び樹脂のいずれか一方に含有させてなることを特徴とする組成物。
【選択図】 なし
Provided are an inorganic powder suitable for obtaining, for example, a semiconductor encapsulating material and a fat composition containing the same, which have good moldability even with a high filling ratio of the inorganic powder and have few burrs during molding.
In a volume-based frequency particle size distribution, particles having a maximum diameter in regions of 0.07 μm or more and less than 0.5 μm, 3 μm or more and less than 15 μm, and 30 μm or more and less than 70 μm, and 0.5 μm or more and less than 3 μm. An inorganic powder characterized in that a ratio A / B of A and a particle content B of 15 μm or more and less than 30 μm is 1.2 to 3.3. Moreover, the said inorganic powder is contained in any one of rubber | gum and resin, The composition characterized by the above-mentioned.
[Selection figure] None

Description

本発明は、無機質粉末、及びこれをゴム及び樹脂のいずれか一方に含有させてなる組成物に関する。詳しくは、無機質粉末の充填率が高くても流動性、成形性が良く、かつ成形時のバリが少ない半導体封止材料を得るために好適な無機質粉末及び組成物に関する。 The present invention relates to an inorganic powder, and a composition containing the inorganic powder and either rubber or resin. Specifically, the present invention relates to an inorganic powder and a composition suitable for obtaining a semiconductor encapsulating material having good fluidity and moldability even with a high filling rate of the inorganic powder and having few burrs during molding.

近年、電子機器の小型軽量化、高性能化の要求に対応して、半導体パッケージの小型化、薄型化、狭ピッチ化が益々加速している。また、その実装方法も配線基板などへの高密度実装に好適な表面実装が主流になりつつある。このように、半導体パッケージおよびその実装方法が進展する中、半導体封止材料にも高性能化、特に半田耐熱性、耐湿性、低熱膨張性、機械的特性、電気絶縁性などの機能向上が要求されている。これらの要求を満たすためエポキシ樹脂に無機質粉末、特に非晶質シリカ粉末を充填した樹脂組成物が一般に用いられており、半導体封止材料のほとんどがこの樹脂組成物によるものである。この半導体封止材料に充填される無機質粉末は、半田耐熱性、耐湿性、低熱膨張性、機械的強度向上の観点から、エポキシ樹脂に高充填させることが望ましい。   In recent years, in response to demands for smaller and lighter electronic devices and higher performance, semiconductor packages have been increasingly reduced in size, thickness, and pitch. As the mounting method, surface mounting suitable for high-density mounting on a wiring board or the like is becoming mainstream. As semiconductor packages and their mounting methods are progressing in this way, semiconductor sealing materials are also required to have higher performance, particularly improved solder heat resistance, moisture resistance, low thermal expansion, mechanical properties, electrical insulation, and other functions. Has been. In order to satisfy these requirements, a resin composition in which an epoxy resin is filled with an inorganic powder, particularly an amorphous silica powder, is generally used, and most of the semiconductor sealing material is based on this resin composition. It is desirable that the inorganic powder filled in the semiconductor sealing material is highly filled in an epoxy resin from the viewpoints of soldering heat resistance, moisture resistance, low thermal expansion, and mechanical strength.


しかしながら、無機質粉末を高充填することで、半導体封止材料の溶融粘度を上昇させ、未充填、ワイヤー流れ、チップシフトなどの成形加工上の不良を増大させるという問題が生じている。半導体パッケージ内部はリードフレーム、半導体素子、ボンディングワイヤーなどにより構成されているが、高密度実装技術および微細加工技術の進歩にともなうボンディングワイヤーの形状の複雑化、本数の増加、リードフレーム形状の複雑化などにより、成形加工上の不具合が、好ましくない問題として益々クローズアップされている。

However, the high filling of the inorganic powder raises the problem of increasing the melt viscosity of the semiconductor sealing material and increasing defects in molding processing such as unfilling, wire flow, and chip shift. The inside of the semiconductor package is composed of lead frames, semiconductor elements, bonding wires, etc., but with the progress of high-density mounting technology and microfabrication technology, the shape of the bonding wire increases, the number of wires increases, and the shape of the lead frame increases As a result, problems in molding process are increasingly being raised as undesirable problems.

この問題に対し、無機質粉末の形状や粒度分布を最適化する試み、あるいはエポキシ樹脂やフェノール樹脂硬化剤などの樹脂成分の粘度を封止形成される温度域において極めて小さくすることによって溶融粘度を低く保ち、成形加工の不具合を低減する試み、などが検討されている。   To solve this problem, try to optimize the shape and particle size distribution of the inorganic powder, or lower the melt viscosity by making the viscosity of resin components such as epoxy resins and phenol resin curing agents extremely low in the temperature range where sealing is formed. Attempts have been made to maintain and reduce defects in the molding process.

無機質粉末を高充填しても半導体封止材料の溶融粘度を損なわせないようにした無機質粉末側の改善技術としては、ロジンラムラー線図で表示した直線の勾配を0.6〜0.95とし、粒度分布を広くする方法(特許文献1)、ワーデルの球形度で0.7〜1.0とし、より球形度を高くする方法(特許文献2)、更には平均粒径0.1〜1μm程度の球状微小粉末を少量添加する方法(特許文献3)などが提案されている。   As an improvement technique on the inorganic powder side so as not to impair the melt viscosity of the semiconductor encapsulating material even when highly filled with inorganic powder, the gradient of the straight line displayed in the Rosin Ramler diagram is 0.6 to 0.95, A method of widening the particle size distribution (Patent Document 1), a method of increasing the sphericity by 0.7 to 1.0 with a Wadel sphericity (Patent Document 2), and an average particle size of about 0.1 to 1 μm A method of adding a small amount of spherical fine powder (Patent Document 3) has been proposed.

また、樹脂側の改善技術としては、エポキシ樹脂、フェノール樹脂硬化剤の溶融粘度を低下させる方法(特許文献4)、混練過程での熱履歴による樹脂硬化反応の進行、溶融粘度の上昇を防止するため、配合成分のうち予備混合の段階で硬化反応が進まない原材料を組み合わせ、これらの原材料が溶融あるいは軟化するより高い温度で溶融混合した後に溶融混練を行う方法(特許文献5)、混練機の選択や混練条件を最適化することにより硬化反応の進行を最小限に抑え、溶融粘度を低く保つ方法(特許文献6)などが提案されている。   Moreover, as an improvement technique on the resin side, a method of reducing the melt viscosity of an epoxy resin or a phenol resin curing agent (Patent Document 4), a progress of a resin curing reaction due to a thermal history in a kneading process, and an increase in melt viscosity are prevented. Therefore, a method of combining the raw materials that do not proceed with the curing reaction at the premixing stage among the blended components, and performing melt kneading after melting and mixing these raw materials at a higher temperature (Patent Document 5), A method (Patent Document 6) that keeps the melt viscosity low by minimizing the progress of the curing reaction by optimizing selection and kneading conditions has been proposed.

これらの技術によって改善がなされたが、今日の電子分野、特に半導体パッケージやその実装方法の急速な進展に対していまだ十分とはいえず、これに応じることができるものとして、無機質粉末の充填率が高くても成形性が良い半導体封止材料の開発が切望されている。また、成形性を向上させるために樹脂組成物の溶融粘度を低く抑える結果、成形時に金型のエアーベント部から樹脂組成物が溢れ出る現象、すなわち『バリ』が著しく発生するという問題も新たにクローズアップされており、流動性の向上とバリの低減を両立させるも要求されている。
特開平6−80863号公報 特開平3−66151号公報 特開平5−239321号公報 特開平9−291136号公報 特開平3−195764号公報 特開平9−52228号公報
Although improvements have been made by these technologies, it is still not sufficient for the rapid development of today's electronic field, especially semiconductor packages and their mounting methods. Development of a semiconductor encapsulating material that has good moldability even if it is high is eagerly desired. In addition, as a result of keeping the melt viscosity of the resin composition low in order to improve moldability, there is a new problem that the resin composition overflows from the air vent part of the mold at the time of molding, that is, the `` burr '' remarkably occurs. Closed up, it is also required to achieve both improved fluidity and reduced burr.
Japanese Patent Laid-Open No. 6-80863 JP-A-3-66151 JP-A-5-239321 Japanese Patent Laid-Open No. 9-291136 Japanese Patent Laid-Open No. 3-19564 JP-A-9-52228

本発明の目的は、無機質粉末の充填率が高くても成形性が良く、かつ成形時のバリが少ない半導体封止材料を得るために好適な無機質粉末とそれを含有させた脂組成物を提供することである。   An object of the present invention is to provide an inorganic powder suitable for obtaining a semiconductor encapsulating material having good moldability even with a high filling rate of the inorganic powder and having few burrs during molding, and a fat composition containing the same. It is to be.

本発明は、体積基準頻度粒度分布において、0.07μm以上0.5μm未満、3μm以上15μm未満及び30μm以上70μm未満の領域にそれぞれ極大径を有し、しかも0.5μm以上3μm未満の粒子含有率Aと15μm以上30μm未満の粒子含有率Bの比率A/Bが1.2〜3.3であることを特徴とする無機質粉末である。この場合において、粒子含有率が、0.07μm以上0.5μm未満の粒子が3〜6%、3μm以上15μm未満が40〜60%、30μm以上70μm未満が20〜40%、0.5μm以上3μm未満が8〜10%、15μm以上30μm未満が2〜9%であることが好ましい。また、3μm以下の粒子を分取した際の体積基準累積粒度分布において、0.1μm以下の粒子を10%以上含有し、0.05μm未満の粒子を実質的に含有しないことが特に好ましい。また、上記いずれかの無機質粉末が球形非晶質シリカ粉末であることが好ましい。   In the volume-based frequency particle size distribution, the present invention has a maximum particle size in a region of 0.07 μm or more and less than 0.5 μm, 3 μm or more and less than 15 μm, and 30 μm or more and less than 70 μm, and a particle content of 0.5 μm or more and less than 3 μm. The inorganic powder is characterized in that the ratio A / B of A and the particle content B of 15 μm or more and less than 30 μm is 1.2 to 3.3. In this case, particles having a particle content of 0.07 μm or more and less than 0.5 μm are 3 to 6%, 3 μm or more and less than 15 μm are 40 to 60%, 30 μm or more and less than 70 μm are 20 to 40%, 0.5 μm or more and 3 μm. It is preferable that less than 8 to 10% and 15 to 30 μm is 2 to 9%. In addition, in the volume-based cumulative particle size distribution when particles of 3 μm or less are collected, it is particularly preferable that particles of 0.1 μm or less are contained in an amount of 10% or more and particles of less than 0.05 μm are not substantially contained. Moreover, it is preferable that any one of the inorganic powders is a spherical amorphous silica powder.

さらに、本発明は、上記いずれかの無機質粉末をゴム及び樹脂のいずれか一方に含有させてなることを特徴とする組成物である。 Furthermore, the present invention is a composition comprising any one of the above inorganic powders in one of rubber and resin.

本発明によれば、無機質粉末の充填率が高くても成形性が良く、かつ成形時のバリが少ない半導体封止材料を得るために好適な無機質粉末及び組成物が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the inorganic powder and composition suitable in order to obtain a semiconductor sealing material with favorable moldability and few burr | flash at the time of shaping | molding even if the filling rate of inorganic powder is high are provided.

本発明の無機質粉末は、上記粒度特性を有するものであるところ、その極大径とは、無機質粉末の頻度粒度分布において極大値を示す粒子径のことである。   The inorganic powder of the present invention has the above particle size characteristics, and the maximum diameter is a particle diameter that exhibits a maximum value in the frequency particle size distribution of the inorganic powder.

バリの発生を抑制するためには、金型エアーベント部から流出する樹脂組成物の流れを防止させることが必要であり、樹脂組成物中の無機質粉末がエアーベント部を閉塞させることが最も効果的である。そこで、流動性を損なわず、バリを低減させるためには、無機質粉末の最密充填構造を形成させることが望ましく、その完全な実現は不可能であるが、本発明ではそれに近い構造を有する粒度分布として、種々検討の結果、本発明に到達したものであり。 In order to suppress the generation of burrs, it is necessary to prevent the flow of the resin composition flowing out from the mold air vent part, and it is most effective that the inorganic powder in the resin composition blocks the air vent part. Is. Therefore, in order to reduce burrs without impairing fluidity, it is desirable to form a close-packed structure of inorganic powder, and its complete realization is impossible. As a distribution, the present invention has been achieved as a result of various studies.

すなわち、本発明において、30μm以上70μm未満の領域の粒子は、ゴム・樹脂組成物の充填材の主材である(以下、30μm以上70μm未満の粒子を「主材粒子」ともいう。)。極大径が30μm未満であると、ゴム・樹脂組成物の溶融粘度が著しく上昇し、またエアーベント部からゴム・樹脂組成物が流出するのを抑制する効果が小さくなる。逆に、極大径が70μmを超えると、その粒子サイズが障害となり、ゴム・樹脂組成物の用途が半導体封止材料である場合、成型時に半導体チップを損傷させる、ワイヤー切断・ワイヤー流れを起こす、等の問題を起こす恐れがある。40μm以上60μm未満の領域に極大径を有することが特に好ましい。 That is, in the present invention, particles in the region of 30 μm or more and less than 70 μm are the main material of the filler of the rubber / resin composition (hereinafter, particles of 30 μm or more and less than 70 μm are also referred to as “main material particles”). When the maximum diameter is less than 30 μm, the melt viscosity of the rubber / resin composition is remarkably increased, and the effect of suppressing the rubber / resin composition from flowing out from the air vent portion is reduced. Conversely, when the maximum diameter exceeds 70 μm, the particle size becomes an obstacle, and when the rubber / resin composition is used as a semiconductor sealing material, the semiconductor chip is damaged at the time of molding, causing wire cutting / wire flow. There is a risk of causing problems. It is particularly preferable to have a maximum diameter in the region of 40 μm or more and less than 60 μm.

3μm以上15μm未満の領域の粒子は、主材粒子の間隙に入り込んで充填構造を密にし、溶融粘度を低下させ、バリの低減等が可能となる(以下、この粒子を「介入粗粉粒子」ともいう。)。この粒子領域における極大径は、主材粒子の極大径に対し、0.1〜0.2倍程度の大きさであることが好ましく、特に4μm以上12μm未満に極大径を有することが好ましい。 Particles in the region of 3 μm or more and less than 15 μm enter the gaps between the main material particles to make the packing structure dense, reduce the melt viscosity, and reduce burrs, etc. (hereinafter referred to as “intervening coarse particles”) Also called.) The maximum diameter in this particle region is preferably about 0.1 to 0.2 times the maximum diameter of the main material particles, and preferably has a maximum diameter of 4 μm or more and less than 12 μm.

0.07μm以上0.5μm未満の領域の粒子は、主材粒子と介入粗粉粒子で構成される密充填構造の間隙に更に入り込んで充填構造を更に密なものとし、溶融粘度の更なる低下と、バリ発生防止効果等を著しく高めることができる(以下、この粒子を「介入微粉粒子」ともいう。)。   Particles in the region of 0.07 μm or more and less than 0.5 μm enter further into the gap of the closely packed structure composed of the main material particles and the intervention coarse powder particles to make the packed structure more dense, and further lower the melt viscosity. Thus, the effect of preventing the occurrence of burrs can be remarkably enhanced (hereinafter, these particles are also referred to as “intervening fine powder particles”).

15μm以上30μm未満の領域に存在する粒子(以下、この粒子を「粗粉調整粒子」ともいう。)は、その配合量を調整することで、主材粒子と介入粗粉粒子の充填構造を密にすることができる。同様に、0.5μm以上3μm未満の領域に存在する粒子(以下、この粒子を「微粉調整粒子」ともいう。)は、その配合量を調整することで、介入粗粉粒子と介入微粉粒子の充填構造を密にすることができる。   Particles existing in the region of 15 μm or more and less than 30 μm (hereinafter, these particles are also referred to as “coarse powder adjusting particles”) have a dense packing structure of the main material particles and the intervention coarse powder particles by adjusting the blending amount thereof. Can be. Similarly, particles existing in the region of 0.5 μm or more and less than 3 μm (hereinafter, these particles are also referred to as “fine powder adjusting particles”) can be obtained by adjusting the amount of the intervening coarse particles and intervening fine particles. The filling structure can be made dense.

微粉調整粒子の含有率(A)と粗粉調整粒子の含有率(B)との比率(A/B)は、1.2〜3.3であることが好ましい。この比率が3.3よりも著しく大きくなると、主材粒子の間隙へ入り込めない粒子が多くなり密充填構造の形成が阻害される。また、この比率が1.2よりも著しく小さいと、構成粒子全体の微粉量が増加するため、溶融粘度が高まり、成形性を著しく悪化させる恐れがある。 The ratio (A / B) of the fine powder adjusting particle content (A) and the coarse powder adjusting particle content (B) is preferably 1.2 to 3.3. When this ratio is significantly larger than 3.3, the number of particles that cannot enter the gaps between the main material particles increases, and the formation of a densely packed structure is hindered. On the other hand, if this ratio is significantly smaller than 1.2, the amount of fine powder of the entire constituent particles increases, so that the melt viscosity increases and the moldability may be significantly deteriorated.

上記各粒子の構成比率(体積含有率)としては、介入微粉粒子(すなわち0.07μm以上0.5μm未満の粒子)が3〜6%、介入粗粉粒子(すなわち3μm以上15μm未満の粒子)が40〜60%、主材粒子(すなわち30μm以上70μm未満の粒子)が20〜40%、微粉調整粒子(すなわち0.5μm以上3μm未満の粒子)が8〜10%、及び粗粉調整粒子(すなわち15μm以上30μm未満の粒子)が2〜9%であることが好ましい。このような粒度構成であると、理論最密充填構造に一段と近づけることが可能となり、本発明の上記効果が助長される。   The composition ratio (volume content) of each particle is 3 to 6% of intervention fine powder particles (that is, particles of 0.07 μm or more and less than 0.5 μm), and intervention coarse powder particles (that is, particles of 3 μm or more and less than 15 μm). 40 to 60%, main material particles (that is, particles of 30 μm or more and less than 70 μm) are 20 to 40%, fine powder adjusting particles (that is, particles of 0.5 μm or more and less than 3 μm) are 8 to 10%, and coarse powder adjusting particles (that is, It is preferable that the particle | grains of 15 micrometers or more and less than 30 micrometers are 2-9%. With such a particle size configuration, it is possible to make it closer to the theoretical close packed structure, and the above-described effects of the present invention are promoted.

本発明の無機質粉末においては、3μm以下の粒子を分取した際の体積基準累積粒度分布において、0.1μm以下の粒子を10%以上含有しておらず、しかも0.05μm未満の粒子を実質的に含有しないことが好ましい。このような超微粒子は、無機質粉末による最密充填構造の形成を阻害するからである。   In the inorganic powder of the present invention, in the volume-based cumulative particle size distribution when particles having a size of 3 μm or less are separated, the particles having a size of 0.1 μm or less are not contained in an amount of 10% or more, and less than 0.05 μm is substantially contained. It is preferable not to contain it. This is because such ultrafine particles inhibit the formation of the close-packed structure with the inorganic powder.

本発明において、「0.05μm未満の粒子を実質的に含有しない」とは、電子顕微鏡により倍率50,000倍で撮影した任意の写真100枚について、0.05μm未満の粒子個数を数え、写真1枚あたりの平均値として換算した値が50個未満であると定義される。0.05μm未満の粒子は少ない程好適であるが、平均粒子数50個以上で本発明の効果が急激に失われることはなく、この程度の個数ならば間違いなく本発明の効果が助長される。   In the present invention, “substantially does not contain particles of less than 0.05 μm” means that the number of particles of less than 0.05 μm is counted for any 100 photographs taken with an electron microscope at a magnification of 50,000 times. It is defined that the value converted as an average value per sheet is less than 50. The smaller the number of particles less than 0.05 μm, the better. However, when the average number of particles is 50 or more, the effect of the present invention is not rapidly lost. .

本発明の無機質粉末の粒度分布は、レーザー回折光散乱法による粒度測定に基づく値であり、粒度分布測定機としては、例えば「モデルLS−230」(ベックマンコールター社製)にて測定することができる。測定に際しては、前処理として、溶媒に水を用い、PIDS(Polarization Intensity Differential Scattering)濃度を45〜55質量%になるように調製し、200W出力のホモジナイザーに1分間かけて分散させる。なお、水の屈折率には1.33を用い、粉末の屈折率については粉末の材質の屈折率を考慮した。たとえば、非晶質シリカについては屈折率を1.46として測定した。なお、測定した粒度分布は、粒子径チャンネルがlog(μm)=0.04の幅になるよう変換して種々の解析を行った。   The particle size distribution of the inorganic powder of the present invention is a value based on particle size measurement by a laser diffraction light scattering method, and as a particle size distribution measuring machine, for example, “Model LS-230” (manufactured by Beckman Coulter, Inc.) can be used. it can. In the measurement, as a pretreatment, water is used as a solvent, and a concentration of PIDS (Polarization Intensity Differential Scattering) is adjusted to 45 to 55% by mass and dispersed in a 200 W output homogenizer for 1 minute. In addition, 1.33 was used for the refractive index of water, and the refractive index of the powder material was taken into consideration for the refractive index of the powder. For example, amorphous silica was measured with a refractive index of 1.46. The measured particle size distribution was subjected to various analyzes by converting the particle diameter channel so that the log (μm) = 0.04 width.

また、0.1μm以下の超微粒子は、上記方法では測定が困難である。0.1μm以下の超微粒子を精度良く測定するためには、3μm以下の粒子を分取し、動的光散乱法により測定しなければならない。3μm以上の粒子が存在すると測定精度にばらつきがでる。測定機としては、例えば「マイクロトラックUPA150」(日機装社製)などがある。測定に際しては、前処理として、溶媒に水を用い、濃度が1質量%になるように調製し、200W出力のホモジナイザーに5分間かけて分散させ、その後、遠心分離を行う。遠心分離には、例えばプラネタリーミキサー「あわとり練太郎AR-360M」(シンキー社製)などを用いることができる。本発明では、公転2000rpmの条件で10分間遠心分離を行った。遠心分離後、3時間静置し、粗大粒子を沈降させ、その上澄み液を分取し測定に用いた。 Moreover, it is difficult to measure ultrafine particles of 0.1 μm or less by the above method. In order to accurately measure ultrafine particles of 0.1 μm or less, particles of 3 μm or less must be collected and measured by a dynamic light scattering method. When particles of 3 μm or more are present, measurement accuracy varies. An example of the measuring machine is “Microtrac UPA150” (manufactured by Nikkiso Co., Ltd.). At the time of measurement, as a pretreatment, water is used as a solvent, the concentration is adjusted to 1% by mass, the mixture is dispersed in a 200 W output homogenizer for 5 minutes, and then centrifuged. For the centrifugation, for example, a planetary mixer “Awatori Nertaro AR-360M” (manufactured by Shinky Corporation) can be used. In the present invention, centrifugation was performed for 10 minutes under the condition of revolution 2000 rpm. After centrifugation, the mixture was allowed to stand for 3 hours to precipitate coarse particles, and the supernatant was collected and used for measurement.

本発明の無機質粉末は球状であることが好ましい。「球状」の程度としては、平均球形度が0.85以上であることが好ましい。一般に無機質粉末の平均球形度を上げればゴム・樹脂組成物の転がり抵抗が少なくなり、溶融粘度が低下する傾向にある。本発明においては、平均球形度を0.90以上とすることが特に好ましい。   The inorganic powder of the present invention is preferably spherical. As the degree of “spherical”, the average sphericity is preferably 0.85 or more. Generally, if the average sphericity of the inorganic powder is increased, the rolling resistance of the rubber / resin composition is decreased, and the melt viscosity tends to decrease. In the present invention, the average sphericity is particularly preferably 0.90 or more.

平均球形度は、実体顕微鏡、例えば「モデルSMZ−10型」(ニコン社製)、走査型電子顕微鏡等にて撮影した粒子像を画像解析装置、例えば(日本アビオニクス社製など)に取り込み、次のようにして測定することができる。すなわち、写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)として算出することができる。このようにして得られた任意の粒子200個の球形度を求めその平均値を平均球形度とした。 The average sphericity is obtained by taking a particle image taken with a stereomicroscope such as “Model SMZ-10” (Nikon Corporation), a scanning electron microscope or the like into an image analyzer such as Nihon Avionics Co., Ltd. It can measure as follows. That is, the projected area (A) and the perimeter (PM) of particles are measured from a photograph. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained was determined, and the average value was defined as the average sphericity.

上記以外の球形度の測定法としては、粒子像分析装置、例えば「モデルFPIA−1000」(シスメックス社製)などにて定量的に自動計測された個々の粒子の真円度から、式、球形度=(真円度)により換算して求めることもできる。 As a method for measuring sphericity other than the above, a particle image analyzer, for example, “Model FPIA-1000” (manufactured by Sysmex Corporation) or the like can be used to calculate the sphericity from the roundness of individual particles. Degree = (roundness) 2 can also be obtained by conversion.

本発明における無機質粉末は、シリカ、アルミナ、チタニア、マグネシア、カルシア、窒化アルミニウム、窒化珪素、窒化硼素、炭化珪素等の無機質粉末であり、それらの粉末を単独で用いても二種類以上混合したものであってもよい。とくに、半導体チップと半導体封止材料との熱膨張率を近づけるという点、半田耐熱性、耐湿性、金型の低摩耗性という観点において、結晶質シリカを高温で溶融する方法ないしは合成法で製造された非晶質シリカが最適である。また、その非晶質率は、粉末X線回折装置、例えば「モデルMini Flex」(RIGAKU社製)を用い、CuKα線の2θが26°〜27.5°の範囲において試料のX線回折分析を行い、特定回折ピークの強度比から測定することができる。すなわち、結晶質シリカは、26.7°に主ピークが存在するが、非晶質シリカではピークは存在しない。非晶質シリカと結晶質シリカが混在していると、結晶質シリカの割合に応じた26.7°のピーク高さが得られるので、結晶質シリカ標準試料のX線強度に対する試料のX線強度の比から、結晶質シリカ混在比(試料のX線回折強度/結晶質シリカのX線回折強度)を算出し、式、非晶質率(%)=(1−結晶質シリカ混在比)×100から非晶質率を求めることができる。   The inorganic powder in the present invention is an inorganic powder such as silica, alumina, titania, magnesia, calcia, aluminum nitride, silicon nitride, boron nitride, silicon carbide, etc., and those powders may be used alone or in combination of two or more. It may be. In particular, it is manufactured by a method that melts crystalline silica at a high temperature or a synthetic method from the viewpoint of close thermal expansion coefficient between the semiconductor chip and the semiconductor sealing material, solder heat resistance, moisture resistance, and low wear of the mold. Amorphized silica is most suitable. The amorphous ratio is determined by X-ray diffraction analysis of the sample using a powder X-ray diffractometer such as “Model Mini Flex” (manufactured by RIGAKU) in the range of 2θ of CuKα ray of 26 ° to 27.5 °. And can be measured from the intensity ratio of the specific diffraction peak. That is, crystalline silica has a main peak at 26.7 °, but amorphous silica has no peak. When amorphous silica and crystalline silica are mixed, a peak height of 26.7 ° corresponding to the ratio of crystalline silica can be obtained, so the X-ray of the sample relative to the X-ray intensity of the crystalline silica standard sample From the intensity ratio, the crystalline silica mixture ratio (X-ray diffraction intensity of the sample / X-ray diffraction intensity of the crystalline silica) is calculated, and the formula, amorphous ratio (%) = (1-crystalline silica mixture ratio) The amorphous ratio can be determined from x100.

本発明の無機質粉末は、イオン性不純物として抽出水中のNaイオン濃度とClイオン濃度とがそれぞれ1ppm以下、放射性不純物としてU、Th濃度がそれぞれ1ppb以下であることが好ましい。イオン性不純物が多い場合には、半導体チップの信頼性、耐湿性に悪影響を与える恐れがある。また、放射性不純物が多いと、α線によるソフトエラーの原因になることが知られており、特に半導体メモリーの封止用として使用する場合には注意が必要である。   The inorganic powder of the present invention preferably has an Na ion concentration and a Cl ion concentration of 1 ppm or less in the extracted water as ionic impurities, and U and Th concentrations of 1 ppb or less as radioactive impurities, respectively. When there are many ionic impurities, there exists a possibility of having a bad influence on the reliability and moisture resistance of a semiconductor chip. Further, it is known that a large amount of radioactive impurities may cause a soft error due to α-rays, and care must be taken particularly when used for sealing a semiconductor memory.

本発明の無機質粉末は、本発明で規定する特性を有していればどのような方法で製造されたものでもよい。その一例を示すと、高温火炎の形成とシリカ粉末原料の噴射とが可能な溶融炉と、溶融処理物の捕集系とからなる設備にて、シリカ粉末原料の粒度、原料供給量、炉内温度、炉内圧力、炉内風量条件等を調整して種々の粒度構成をもった非晶質シリカ粉末を製造し、それを更に分級、篩分け、混合して製造することができる。上記設備には多くの公知があり(例えば、特開平11−057451号公報)、それを採用することができる。   The inorganic powder of the present invention may be produced by any method as long as it has the characteristics defined in the present invention. For example, in a facility consisting of a melting furnace capable of forming a high-temperature flame and injecting silica powder raw material, and a collection system for the molten processed material, the particle size of the silica powder raw material, the amount of raw material supplied, Amorphous silica powder having various particle size configurations can be produced by adjusting temperature, furnace pressure, furnace air flow conditions, etc., and further classified, sieved and mixed. There are many known facilities (for example, JP-A-11-057451), which can be employed.

次に、本発明の組成物について説明する。この組成物は本発明の無機質粉末をゴム及び樹脂の少なくとも一方に含有させてなるものである。組成物中の無機質粉末の割合は10〜99質量%であることが好ましい。   Next, the composition of the present invention will be described. This composition contains the inorganic powder of the present invention in at least one of rubber and resin. The proportion of the inorganic powder in the composition is preferably 10 to 99% by mass.

本発明で使用されるゴムとしては、例えばシリコーンゴム、ウレタンゴム、アクリルゴム、ブチルゴム、エチレンプロピレンゴム、エチレン酢酸ビニル共重合体等をあげることができる。また、樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネイト、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂等をあげることができる。これらのゴム又は樹脂は一種以上が使用される。   Examples of the rubber used in the present invention include silicone rubber, urethane rubber, acrylic rubber, butyl rubber, ethylene propylene rubber, and ethylene vinyl acetate copolymer. Examples of the resin include epoxy resins, silicone resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyamides such as polyimide, polyamideimide, and polyetherimide, and polyesters such as polybutylene terephthalate and polyethylene terephthalate. , Polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) Examples thereof include resins. One or more of these rubbers or resins are used.

これらの中、半導体封止材料用樹脂としては、1分子中にエポキシ基を2個以上有するエポキシ樹脂が好ましい。その具体例をあげれば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF及びビスフェノールSなどのグリシジルエーテル、フタル酸やダイマー酸などの多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、β−ナフトールノボラック型エオキシ樹脂、1,6−ジヒドロキシナフタレン型エポキシ樹脂、2,7−ジヒドロキシナフタレン型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素などのハロゲンを導入したエポキシ樹脂等である。中でも、耐湿性や耐ハンダリフロー性の点からは、オルソクレゾールノボラック型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、ナフタレン骨格のエポキシ樹脂等が好適である。   Among these, as the resin for semiconductor sealing material, an epoxy resin having two or more epoxy groups in one molecule is preferable. Specific examples include phenol novolac type epoxy resins, orthocresol novolak type epoxy resins, epoxidized phenol and aldehyde novolak resins, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, phthalic acid, Glycidyl ester acid epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, alkyl-modified polyfunctional epoxy resin obtained by reaction of polybasic acid such as dimer acid and epochlorohydrin, β-naphthol novolak-type epoxy resin, 1,6-dihydroxynaphthalene-type epoxy resin, 2,7-dihydroxynaphthalene-type epoxy resin, bishydroxybiphenyl-type epoxy resin, and halo such as bromine to impart flame retardancy Is introduced epoxy resin or the like down. Among these, from the viewpoint of moisture resistance and solder reflow resistance, orthocresol novolac type epoxy resins, bishydroxybiphenyl type epoxy resins, epoxy resins having a naphthalene skeleton, and the like are preferable.

エポキシ樹脂の硬化剤については、エポキシ樹脂と反応して硬化させるものであれば特に限定されず、例えば、フェノール、クレゾール、キシレノール、レゾルシノール、クロロフェノール、t−ブチルフェノール、ノニルフェノール、イソプロピルフェノール、オクチルフェノール等の群から選ばれた1種又は2種以上の混合物をホルムアルデヒド、パラホルムアルデヒド又はパラキシレンとともに酸化触媒下で反応させて得られるノボラック型樹脂、ポリパラヒドロキシスチレン樹脂、ビスフェノールAやビスフェノールS等のビスフェノール化合物、ピロガロールやフロログルシノール等の3官能フェノール類、無水マレイン酸、無水フタル酸や無水ピロメリット酸等の酸無水物、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン等をあげることができる。   The epoxy resin curing agent is not particularly limited as long as it is cured by reacting with the epoxy resin. For example, phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol, isopropylphenol, octylphenol, etc. Bisphenol compounds such as novolak-type resin, polyparahydroxystyrene resin, bisphenol A and bisphenol S obtained by reacting a mixture of one or more selected from the group with formaldehyde, paraformaldehyde or paraxylene under an oxidation catalyst , Trifunctional phenols such as pyrogallol and phloroglucinol, acid anhydrides such as maleic anhydride, phthalic anhydride and pyromellitic anhydride, metaphenylenediamine, diaminodiphenylmethane Aromatic amines such as diaminodiphenyl sulfone, and the like.

本発明の組成物には、次の成分を必要に応じて配合することができる。すなわち、低応力化剤として、シリコーンゴム、ポリサルファイドゴム、アクリル系ゴム、ブタジエン系ゴム、スチレン系ブロックコポリマーや飽和型エラストマー等のゴム状物質、各種熱可塑性樹脂、シリコーン樹脂等の樹脂状物質、更にはエポキシ樹脂、フェノール樹脂の一部又は全部をアミノシリコーン、エポキシシリコーン、アルコキシシリコーンなどで変性した樹脂など、シランカップリング剤として、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシランなど、表面処理剤として、Zrキレート、チタネートカップリング剤、アルミニウム系カップリング剤など、難燃助剤として、Sb2O3、Sb2O4、Sb2O5など、難燃剤として、ハロゲン化エポキシ樹脂やリン化合物など、着色剤として、カーボンブラック、酸化鉄、染料、顔料などである。更には、ワックス等の離型剤を添加することができる。その具体例をあげれば、天然ワックス類、合成ワックス類、直鎖脂肪酸塩の金属塩、酸アミド類、エステル類、パラフィンなどである。   The composition of the present invention may contain the following components as necessary. That is, as a low stress agent, silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, rubbery substances such as styrene block copolymers and saturated elastomers, various thermoplastic resins, resinous substances such as silicone resins, Is an epoxy resin, a resin obtained by modifying a part or all of a phenol resin with aminosilicone, epoxysilicone, alkoxysilicone, or the like. As a silane coupling agent, γ-glycidoxypropyltrimethoxysilane, β- (3,4- Epoxy cyclohexyl) Epoxy silanes such as ethyltrimethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, aminosilanes such as N-phenylaminopropyltrimethoxysilane, phenyltrimethoxysilane, methyltri Hydrophobic silane compounds such as methoxysilane and octadecyltrimethoxysilane, mercaptosilane, etc., surface treatment agents such as Zr chelate, titanate coupling agents, aluminum coupling agents, flame retardant aids such as Sb2O3, Sb2O4, Sb2O5, etc. Examples of flame retardants include halogenated epoxy resins and phosphorus compounds, and examples of colorants include carbon black, iron oxide, dyes, and pigments. Furthermore, a release agent such as wax can be added. Specific examples include natural waxes, synthetic waxes, metal salts of linear fatty acid salts, acid amides, esters, paraffins and the like.

とくに、高い耐湿信頼性や高温放置安定性が要求される場合には、各種イオントラップ剤の添加が有効である。イオントラップ剤の具体例としては、協和化学社製商品名「DHF−4A」、「KW−2000」、「KW−2100」や東亜合成化学工業社製商品名「IXE−600」などである。   In particular, when high moisture resistance reliability and high temperature storage stability are required, the addition of various ion trapping agents is effective. Specific examples of the ion trapping agent include Kyowa Chemical Co., Ltd. trade names “DHF-4A”, “KW-2000”, “KW-2100”, and Toa Gosei Kagaku Kogyo Co., Ltd. trade names “IXE-600”.

本発明の組成物には、エポキシ樹脂と硬化剤との反応を促進させるために硬化促進剤を配合することができる。その硬化促進剤としては、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、ベンジルジメチルアミン、2−メチルイミダゾール等がある。   In the composition of the present invention, a curing accelerator can be blended in order to promote the reaction between the epoxy resin and the curing agent. Examples of the curing accelerator include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, and 2-methylimidazole.

本発明の組成物は、上記各材料の所定量をブレンダーやヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、一軸又は二軸押し出し機等により混練したものを冷却後、粉砕することによって製造することができる。   The composition of the present invention is produced by blending a predetermined amount of each of the above materials with a blender, a Henschel mixer or the like, then kneading with a heating roll, kneader, uniaxial or biaxial extruder, etc., and cooling and then pulverizing. be able to.

本発明の組成物を用いて、半導体を封止するには、トランスファーモールド、マルチプランジャー等の公知の成形法が採用される。   In order to seal the semiconductor using the composition of the present invention, a known molding method such as transfer molding or multi-plunger is employed.

実施例1〜5 比較例1〜18
天然珪石を粉砕、その粉砕物を溶融炉内のLPG、酸素との燃焼により形成される高温火炎中に供給し、溶融・球状化処理を行った。溶融処理物を重力沈降室、サイクロン、バグフィルター、ブロワーからなる捕集系へ空気輸送し、分級した。火炎形成条件、原料粒度、原料供給量、分級条件などを調整し、単一の極大径(0.1μm、0.4μm、5μm、12μm、36μm、58μm)を有する6種の球状非晶質シリカ粉末を製造した。この粉体を適宜混合し、表1、表2、表3に示される23種の粉末を製造した。また、球形度の制御は、主として火炎形成条件、原料供給量を調整することにより行った。粉体名A〜Eが実施例に係る無機質粉末であり、粉体名F〜Wが比較例に係る無機質粉末である。粉体名A〜Wの非晶質率はいずれも99%以上、平均球形度は0.90以上であった。これらの粉末の粒度特性を上記方法に従い測定した。それらの結果を表1(実施例)、表2(比較例)、表3(比較例)に示す。
Examples 1-5 Comparative Examples 1-18
Natural silica was pulverized, and the pulverized product was supplied into a high-temperature flame formed by combustion with LPG and oxygen in the melting furnace, and melted and spheroidized. The molten material was pneumatically transported to a collection system consisting of a gravity sedimentation chamber, a cyclone, a bag filter, and a blower, and classified. Six kinds of spherical amorphous silica having a single maximum diameter (0.1 μm, 0.4 μm, 5 μm, 12 μm, 36 μm, 58 μm) by adjusting flame forming conditions, raw material particle size, raw material supply amount, classification conditions, etc. A powder was produced. The powders were mixed as appropriate to produce 23 types of powders shown in Tables 1, 2 and 3. The sphericity was controlled mainly by adjusting the flame formation conditions and the raw material supply amount. Powder names A to E are inorganic powders according to the examples, and powder names F to W are inorganic powders according to the comparative example. In all of the powder names A to W, the amorphous ratio was 99% or more, and the average sphericity was 0.90 or more. The particle size characteristics of these powders were measured according to the above method. The results are shown in Table 1 (Example), Table 2 (Comparative Example), and Table 3 (Comparative Example).

得られた球状非晶質シリカ粉末の半導体封止材料の充填材としての特性を評価するため、球状非晶質シリカ粉末A〜W90部(質量部、以下同じ)に対し、4,4’−ビス(2,3−エポキシプロポキシ)−3,3’、5,5’−テトラメチルビフェニル型エポキシ樹脂4.3部、テトラヒドロ無水フタル酸4.4部、トリフェニルホスフィン0.2部、γ−グリシドキシプロピルトリメトキシシラン0.5部、カーボンブラック0.2部、カルナバワックス0.4部を加え、ヘンシェルミキサーにてドライブレンドした後、得られた配合物を同方向噛み合い二軸押出混練機(スクリュー径D=25mm、ニーディングディスク長10Dmm、パドル回転数150rpm、吐出量5kg/h、ヒーター温度105〜110℃)で加熱混練した。吐出物を冷却プレス機にて冷却した後、粉砕して半導体封止材料を得た。得られた材料の成形性とバリ長さを次に示す方法に従って評価した。それらの結果を表1、表2、表3に示す。   In order to evaluate the characteristics of the obtained spherical amorphous silica powder as a filler for a semiconductor encapsulating material, 4,4′- with respect to 90 parts (parts by mass, the same applies hereinafter) of spherical amorphous silica powders A to W. Bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl type epoxy resin 4.3 parts, tetrahydrophthalic anhydride 4.4 parts, triphenylphosphine 0.2 parts, γ- Add 0.5 parts of glycidoxypropyltrimethoxysilane, 0.2 parts of carbon black, and 0.4 parts of carnauba wax, dry blend with a Henschel mixer, and mix the resulting mixture in the same direction. Heat kneading with a machine (screw diameter D = 25 mm, kneading disk length 10 Dmm, paddle rotation speed 150 rpm, discharge rate 5 kg / h, heater temperature 105 to 110 ° C.)The discharged material was cooled with a cooling press and then pulverized to obtain a semiconductor sealing material. The moldability and burr length of the obtained material were evaluated according to the following methods. The results are shown in Table 1, Table 2, and Table 3.

(1)成形性(スパイラルフロー)
EMMI−I−66(Epoxy Molding Material Institute;Society of Plastic Industry)に準拠したスパイラルフロー測定用金型を取り付けたトランスファー成形機を用いて、前記エポキシ樹脂組成物のスパイラルフロー値を測定した。トランスファー成形条件は、金型温度175℃、成形圧力7.4MPa、保圧時間90秒とした。
(1) Formability (spiral flow)
The spiral flow value of the epoxy resin composition was measured using a transfer molding machine equipped with a spiral flow measurement mold according to EMMI-I-66 (Epoxy Molding Material Institute; Society of Plastic Industry). The transfer molding conditions were a mold temperature of 175 ° C., a molding pressure of 7.4 MPa, and a pressure holding time of 90 seconds.

(2)バリ長さ
32ピンLOC(Lead on Chip)構造TSOP(Thin Small Outline Package;10mm×21mm、厚さ1.0mm、模擬ICチップサイズ9mm×18mm、リードフレーム42アロイ製)の半導体パッケージをトランスファー成形機により48個作製し、平均バリ長さを測定した。トランスファー成形条件は、金型温度175℃、成形圧力7.4MPa、保圧時間90秒とした。
(2) Burr length A 32-pin LOC (Lead on Chip) structure TSOP (Thin Small Outline Package; 10 mm × 21 mm, thickness 1.0 mm, simulated IC chip size 9 mm × 18 mm, lead frame 42 alloy) 48 pieces were produced by a transfer molding machine, and the average burr length was measured. The transfer molding conditions were a mold temperature of 175 ° C., a molding pressure of 7.4 MPa, and a pressure holding time of 90 seconds.

Figure 2005306923
Figure 2005306923

Figure 2005306923
Figure 2005306923

Figure 2005306923
Figure 2005306923

表1〜表3から明らかなように、本発明の無機質粉末の混合された組成物は、無機質粉末の充填率が90質量%以上であっても成形性が良好で、バリ長さが低いレベルにあることがわかる。   As is clear from Tables 1 to 3, the composition mixed with the inorganic powder of the present invention has a good moldability and a low burr length even when the filling rate of the inorganic powder is 90% by mass or more. You can see that

本発明の無機質粉末は、自動車、携帯電子機器、家庭電化製品等のモールディングコンパウンドなどの樹脂成形部品、更にはパテ、シーリング材、船舶用浮力材、合成木材、強化セメント外壁材、軽量外壁材などの充填材として使用される。また、本発明の組成物は、ガラス織布、ガラス不織布、その他有機基材に含浸硬化させてなる例えばプリント基板用のプリプレグ、プリプレグの1枚又は複数枚を銅箔等と共に加熱成型された電子部品、更には電線被覆材、半導体封止材、ワニスなどの製造に使用される。   The inorganic powder of the present invention includes resin molded parts such as molding compounds for automobiles, portable electronic devices, home appliances, etc., as well as putty, sealing materials, marine buoyancy materials, synthetic wood, reinforced cement outer wall materials, lightweight outer wall materials, etc. Used as a filler. Further, the composition of the present invention is an electronic material obtained by heat-molding one or a plurality of prepregs for a printed circuit board, for example, a prepreg for a printed circuit board or a prepreg formed by impregnating and curing glass woven fabric, glass nonwoven fabric, or other organic base material. It is used for the production of parts, and further, wire covering materials, semiconductor encapsulants, varnishes and the like.

Claims (5)

体積基準頻度粒度分布において、0.07μm以上0.5μm未満、3μm以上15μm未満及び30μm以上70μm未満の領域にそれぞれ極大径を有し、しかも0.5μm以上3μm未満の粒子含有率Aと15μm以上30μm未満の粒子含有率Bの比率A/Bが1.2〜3.3であることを特徴とする無機質粉末。 In the volume-based frequency particle size distribution, each particle has a maximum diameter in the region of 0.07 μm or more and less than 0.5 μm, 3 μm or more and less than 15 μm, and 30 μm or more and less than 70 μm, and the particle content A is 0.5 μm or more and less than 3 μm and 15 μm or more. An inorganic powder, wherein the ratio A / B of the particle content B of less than 30 μm is 1.2 to 3.3. 体積基準頻度粒度分布における粒子含有率が、0.07μm以上0.5μm未満の粒子が3〜6%、3μm以上15μm未満が40〜60%、30μm以上70μm未満が20〜40%、0.5μm以上3μm未満が8〜10%、15μm以上30μm未満が2〜9%であることを特徴とする請求項1記載の無機質粉末。 The particle content in the volume-based frequency particle size distribution is 3 to 6% for particles of 0.07 μm or more and less than 0.5 μm, 40 to 60% for particles of 3 to 15 μm, 20 to 40% for 30 to 70 μm, 0.5 μm 2. The inorganic powder according to claim 1, wherein 8 to 10% is less than 3 μm and 2 to 9% is 15 μm to less than 30 μm. 3μm以下の粒子を分取した際の体積基準累積粒度分布において、0.1μm以下の粒子を10%以上含有し、0.05μm未満の粒子を実質的に含有しないことを特徴とする請求項1又は2記載の無機質粉末。 2. The volume-based cumulative particle size distribution when particles having a size of 3 μm or less are collected, wherein particles having a size of 0.1 μm or less are contained at 10% or more, and particles having a size of less than 0.05 μm are not substantially contained. Or the inorganic powder of 2. 無機質粉末が球形非晶質シリカ粉末であることを特徴とする請求項1、2又は3記載の無機質粉末。 The inorganic powder according to claim 1, 2, or 3, wherein the inorganic powder is a spherical amorphous silica powder. 請求項1〜4記載のいずれかの無機質粉末をゴム及び樹脂のいずれか一方に含有させてなることを特徴とする組成物。 A composition comprising the inorganic powder according to claim 1 in any one of rubber and resin.
JP2004122671A 2004-04-19 2004-04-19 INORGANIC POWDER AND COMPOSITION CONTAINING THE SAME Pending JP2005306923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122671A JP2005306923A (en) 2004-04-19 2004-04-19 INORGANIC POWDER AND COMPOSITION CONTAINING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122671A JP2005306923A (en) 2004-04-19 2004-04-19 INORGANIC POWDER AND COMPOSITION CONTAINING THE SAME

Publications (1)

Publication Number Publication Date
JP2005306923A true JP2005306923A (en) 2005-11-04

Family

ID=35436064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122671A Pending JP2005306923A (en) 2004-04-19 2004-04-19 INORGANIC POWDER AND COMPOSITION CONTAINING THE SAME

Country Status (1)

Country Link
JP (1) JP2005306923A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108437A1 (en) * 2006-03-17 2007-09-27 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder and use thereof
WO2007132771A1 (en) * 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same
WO2007132770A1 (en) * 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same
WO2008078706A1 (en) * 2006-12-22 2008-07-03 Denki Kagaku Kogyo Kabushiki Kaisha Amorphous silica powder, method for production thereof, and semiconductor sealing material
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for resin composition addition and resin composition
WO2009139425A1 (en) * 2008-05-16 2009-11-19 電気化学工業株式会社 Amorphous siliceous powder, process for production of the same, and use thereof
WO2010073457A1 (en) * 2008-12-22 2010-07-01 電気化学工業株式会社 Powder, method for producing same, and resin composition containing same
JP2010275138A (en) * 2009-05-27 2010-12-09 Nippon Steel Materials Co Ltd Silica particles and resin composition containing the same
JP2013209290A (en) * 2013-07-05 2013-10-10 Nippon Steel & Sumikin Materials Co Ltd Silica particle and resin composition containing the same
JP2015036357A (en) * 2013-08-13 2015-02-23 電気化学工業株式会社 Surface-treated silica powder, slurry composition, and resin composition using the same
JP2015078080A (en) * 2013-10-15 2015-04-23 新日鉄住金マテリアルズ株式会社 Spherical silica particles, process for producing the same, and resin composition containing the same
CN117083242A (en) * 2021-03-30 2023-11-17 电化株式会社 Spherical inorganic powder and liquid sealing material

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351513B2 (en) * 2006-03-17 2013-11-27 電気化学工業株式会社 Silica powder and its use
US7820750B2 (en) 2006-03-17 2010-10-26 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder and use thereof
WO2007108437A1 (en) * 2006-03-17 2007-09-27 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder and use thereof
KR101027857B1 (en) 2006-03-17 2011-04-07 덴끼 가가꾸 고교 가부시키가이샤 Silica powder and its uses
TWI412506B (en) * 2006-05-12 2013-10-21 Denki Kagaku Kogyo Kk Ceramic powder and uses thereof
JP5354724B2 (en) * 2006-05-12 2013-11-27 電気化学工業株式会社 Ceramic powder and its use
US8273807B2 (en) 2006-05-12 2012-09-25 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and use thereof
WO2007132770A1 (en) * 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same
US8063120B2 (en) 2006-05-12 2011-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and use thereof
JP5294015B2 (en) * 2006-05-12 2013-09-18 電気化学工業株式会社 Ceramic powder and its use
US8476340B2 (en) 2006-05-12 2013-07-02 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and applications thereof
US8053495B2 (en) 2006-05-12 2011-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and applications thereof
WO2007132771A1 (en) * 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same
JP5410095B2 (en) * 2006-12-22 2014-02-05 電気化学工業株式会社 Amorphous siliceous powder, method for producing the same, and semiconductor sealing material
US8048817B2 (en) 2006-12-22 2011-11-01 Denki Kagaku Kogyo Kabushiki Kaisha Amorphous silica powder, process for its production, and sealing material for semiconductors
TWI402214B (en) * 2006-12-22 2013-07-21 Denki Kagaku Kogyo Kk An amorphous silica powder, a method for manufacturing the same, and a semiconductor sealing material
WO2008078706A1 (en) * 2006-12-22 2008-07-03 Denki Kagaku Kogyo Kabushiki Kaisha Amorphous silica powder, method for production thereof, and semiconductor sealing material
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for resin composition addition and resin composition
WO2009139425A1 (en) * 2008-05-16 2009-11-19 電気化学工業株式会社 Amorphous siliceous powder, process for production of the same, and use thereof
JP5553749B2 (en) * 2008-05-16 2014-07-16 電気化学工業株式会社 Amorphous siliceous powder, production method and use thereof
KR101256299B1 (en) 2008-05-16 2013-04-18 덴키 가가쿠 고교 가부시기가이샤 Amorphous siliceous powder, process for production of the same, and use thereof
WO2010073457A1 (en) * 2008-12-22 2010-07-01 電気化学工業株式会社 Powder, method for producing same, and resin composition containing same
JP5555639B2 (en) * 2008-12-22 2014-07-23 電気化学工業株式会社 Powder, method for producing the same, and resin composition containing the powder
JP2010275138A (en) * 2009-05-27 2010-12-09 Nippon Steel Materials Co Ltd Silica particles and resin composition containing the same
JP2013209290A (en) * 2013-07-05 2013-10-10 Nippon Steel & Sumikin Materials Co Ltd Silica particle and resin composition containing the same
JP2015036357A (en) * 2013-08-13 2015-02-23 電気化学工業株式会社 Surface-treated silica powder, slurry composition, and resin composition using the same
JP2015078080A (en) * 2013-10-15 2015-04-23 新日鉄住金マテリアルズ株式会社 Spherical silica particles, process for producing the same, and resin composition containing the same
CN117083242A (en) * 2021-03-30 2023-11-17 电化株式会社 Spherical inorganic powder and liquid sealing material

Similar Documents

Publication Publication Date Title
JP5351513B2 (en) Silica powder and its use
JP5294015B2 (en) Ceramic powder and its use
JP5380290B2 (en) Method for producing silica powder
JP5354724B2 (en) Ceramic powder and its use
JP3868347B2 (en) Inorganic powder and resin composition filled therewith
JP2005306923A (en) INORGANIC POWDER AND COMPOSITION CONTAINING THE SAME
JP4192073B2 (en) Method for producing silica powder
JP5259500B2 (en) Amorphous siliceous powder and its production method and application
JP4155729B2 (en) Spherical inorganic powder and use thereof
JP5526027B2 (en) Amorphous siliceous powder, method for producing the same, resin composition, and semiconductor sealing material
CN101563291B (en) Amorphous silica powder, method for producing same, and sealing material for semiconductor
JP3483817B2 (en) Spherical inorganic powder and its use
JP3868272B2 (en) Spherical inorganic powder and resin composition filled therewith
JP3865641B2 (en) Spherical inorganic powder and use thereof
JP2003137529A (en) Spherical inorganic powder and applications
JP4155719B2 (en) Spherical inorganic powder and its use
JP2019182715A (en) Amorphous silica powder, resin composition, and semiconductor encapsulation material
JP3571009B2 (en) Spherical inorganic powder and resin composition filled with the same
JP5345787B2 (en) Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant
JP2010195659A (en) Siliceous powder, method for producing the same and use thereof
TWI411594B (en) Ceramic powder and its use

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20081224

Free format text: JAPANESE INTERMEDIATE CODE: A02