JP2005302467A - Lithium ion secondary battery, battery pack thereof and overcharge protection method thereof - Google Patents
Lithium ion secondary battery, battery pack thereof and overcharge protection method thereof Download PDFInfo
- Publication number
- JP2005302467A JP2005302467A JP2004115306A JP2004115306A JP2005302467A JP 2005302467 A JP2005302467 A JP 2005302467A JP 2004115306 A JP2004115306 A JP 2004115306A JP 2004115306 A JP2004115306 A JP 2004115306A JP 2005302467 A JP2005302467 A JP 2005302467A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- current
- ion secondary
- lithium ion
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
Abstract
【課題】電池の温度上昇時にトリップして電流を減衰させる復帰型安全素子及び電池の内圧上昇時に破断する安全弁膜を備えた非復帰の電流遮断機能を有しているリチウムイオン二次電池およびそのパック電池であって、過充電時の安全性が高い電池を提供する。
【解決手段】過充電時に、まず、前記復帰型安全素子が作動して電流値を減衰させ、さらに減衰した電流で充電を続けることで電池内圧を上昇させて前記電流遮断機構を作動させて過充電時の安全性を確保する。この復帰型安全素子はPTC素子またはサーモスタットであり、その作動温度を70℃〜100℃とし、電流値を30mA〜200mAに減衰するものであり、前記電流遮断機構の作動圧を0.4MPa〜1.6MPaとする。
【選択図】図1A lithium-ion secondary battery having a non-returning current interruption function including a resettable safety element that trips when the battery temperature rises and attenuates current, and a safety valve membrane that breaks when the internal pressure of the battery rises, and the like Provided is a battery pack that is highly safe when overcharged.
At the time of overcharging, first, the return-type safety element is activated to attenuate the current value, and further, charging is continued with the attenuated current to increase the internal pressure of the battery to activate the current interruption mechanism. Ensure safety when charging. This return-type safety element is a PTC element or a thermostat, has an operating temperature of 70 ° C. to 100 ° C., a current value is attenuated to 30 mA to 200 mA, and an operating pressure of the current interrupting mechanism is 0.4 MPa to 1 MPa. .6 MPa.
[Selection] Figure 1
Description
本発明は、リチウムイオン二次電池およびその電池パックに関し、特に、好適な電流遮断機構と復帰型安全素子により過充電時の電池を保護する方法および装置に関する。 The present invention relates to a lithium ion secondary battery and a battery pack thereof, and more particularly, to a method and apparatus for protecting a battery during overcharge by a suitable current interruption mechanism and a resettable safety element.
近年、AV機器やパソコン等、電子機器のコードレス化やポータブル化に伴って、非水電解質を備える高エネルギー密度のリチウムイオン二次電池やアルカリ電解質を備えるアルカリ蓄電池などの小型二次電池が多く採用されている。これら機器の高性能化、高機能化が進むのに伴い、高容量かつ安全な電池が望まれている。 In recent years, along with the cordless and portable use of electronic devices such as AV equipment and personal computers, many small secondary batteries such as high energy density lithium ion secondary batteries equipped with non-aqueous electrolyte and alkaline storage batteries equipped with alkaline electrolyte have been adopted. Has been. As these devices become more sophisticated and functional, high-capacity and safe batteries are desired.
リチウムイオン二次電池やリチウムポリマー電池などの非水系二次電池の場合、電解液に有機溶媒を使用していることもあり、充電器の故障などにより過充電状態になって電池の温度が上昇するのを温度ヒューズ、サーモスタット、Positive Temperture Coefficient(PTC)素子などの温度保護素子を使用して、ある一定温度以下に制限させている。 In the case of non-aqueous secondary batteries such as lithium ion secondary batteries and lithium polymer batteries, an organic solvent may be used in the electrolyte, and the battery temperature rises due to overcharge due to a failure of the charger. The temperature is limited to a certain temperature or less by using a temperature protection element such as a temperature fuse, a thermostat, or a positive temperature coefficient (PTC) element.
または封口板内に電池の内圧を検出して電流を遮断させる電流遮断機構を設けある一定温度以下に制限させている。 Alternatively, a current cut-off mechanism that cuts off the current by detecting the internal pressure of the battery is provided in the sealing plate so as to be limited to a certain temperature or lower.
温度ヒューズは一度異常充電され所定の温度まで上昇すると非復帰となるため、このような異常状態を経験した電池が再び使用されないようにするメリットがある。しかしながら高温下での保存、わずかな外部短絡による誤作動の懸念がある。 Since the thermal fuse is abnormally charged once and rises to a predetermined temperature, it does not return, so there is an advantage that a battery that has experienced such an abnormal state is not used again. However, there are concerns about malfunctions due to storage at high temperatures and slight external shorts.
PTC素子は復帰型のため温度ヒューズのような誤作動の心配はないが、逆に一般的な充電電流値、例えば、1時間で電池の設計容量に達する電流値(1C)程度の充電電流での過充電において、所定の温度でトリップしても100mA程度の電流が流れ続け、より電池として危険な高電圧状態となってしまう。また20Vのような高電圧での連続充電によりPTC素子が故障する懸念がある。 Since the PTC element is a return type, there is no fear of malfunction like a thermal fuse, but conversely, with a general charging current value, for example, a charging current of about 1C that reaches the battery design capacity in one hour. In this overcharge, even when tripping at a predetermined temperature, a current of about 100 mA continues to flow, resulting in a higher voltage state that is more dangerous as a battery. Moreover, there is a concern that the PTC element may fail due to continuous charging at a high voltage such as 20V.
また、このPTC素子は、耐圧を超えてショートモードになるような電圧に対しては、ヒューズでバックアップすることが提案されている(例えば特許文献1参照)。 Further, it has been proposed that the PTC element is backed up with a fuse against a voltage that exceeds the withstand voltage and enters a short mode (see, for example, Patent Document 1).
従来から封口板の電流遮断機構と復帰型安全素子であるPTC素子の組合せはあるが、1C程度の充電電流での過充電時に作動するのは電流遮断機構であり、PTC素子は、もっぱら短絡などでの過大な電流が電池に流れるのを防止するもので、過充電時には作動しにくい設計となっている。
しかしながら近年、電池の安全性を高めるために電池のガス発生を少なくする開発が進んでいる。例えば、より安定な溶媒であるγブチロラクトン(GBL)などの電解液からなる電池では、GBLの特性上、過充電状態でのガス発生が少なく、前述の電流遮断機構で過充電を止めるのは難しい。 However, in recent years, in order to increase the safety of the battery, development to reduce the gas generation of the battery is progressing. For example, in a battery made of an electrolyte such as γ-butyrolactone (GBL), which is a more stable solvent, there is little gas generation in an overcharged state due to the characteristics of GBL, and it is difficult to stop overcharge by the above-described current interruption mechanism. .
本発明はこれらの課題を解決するもので、過充電でのガス発生が少ない電池であっても復帰型安全素子であるPTC素子またはサーモスタットの作動温度と電流遮断機構作動圧を最適化することで安くて信頼性の高い非復帰型素子を提供するものである。 The present invention solves these problems by optimizing the operating temperature and the current interrupting mechanism operating pressure of a PTC element or thermostat that is a resettable safety element even in a battery that generates little gas during overcharging. A cheap and highly reliable non-returnable element is provided.
上記目的を達成するため、本発明は電池の温度上昇時にトリップして電流を減衰させる復帰型安全素子及び電池の内圧上昇時に破断する安全弁膜を備えた非復帰の電流遮断機能を有しているリチウムイオン二次電池の過充電保護方法であって、過充電時に、まず、前記復帰型安全素子が作動して電流値を減衰させ、さらに減衰した電流で充電を続けることで電池内圧を上昇させて前記電流遮断機構を作動させて過充電による発火を防止するものである。 In order to achieve the above object, the present invention has a non-returning current interrupting function including a resettable safety element that trips when the temperature of the battery rises and attenuates the current and a safety valve membrane that breaks when the internal pressure of the battery rises. A method for overcharge protection of a lithium ion secondary battery, wherein at the time of overcharge, first the return type safety element is activated to attenuate the current value, and further to continue charging with the attenuated current to increase the battery internal pressure. The current interrupting mechanism is activated to prevent ignition due to overcharging.
さらに、本発明のリチウムイオン二次電池においては、復帰型安全素子がPTC素子またはサーモスタットであり、その作動温度が70℃〜100℃で、電流値を30mA〜200mAにトリップするものであり、電流遮断機構の作動圧が0.4MPa〜1.6MPaとしたものである。 Furthermore, in the lithium ion secondary battery of the present invention, the resettable safety element is a PTC element or a thermostat, the operating temperature is 70 ° C. to 100 ° C., and the current value is tripped to 30 mA to 200 mA. The operating pressure of the shut-off mechanism is 0.4 MPa to 1.6 MPa.
これらの場合のPTC素子またはサーモスタットは、電池パックのときのように電池表面の外に密着して取付けられていても同様な作用、効果を示すものである。 The PTC element or thermostat in these cases exhibits the same actions and effects even when attached in close contact with the outside of the battery surface as in the case of a battery pack.
以上の述べたように、本発明は過充電において、復帰型安全素子であるPTC素子またはサーモスタットが作動して電流を減衰させた後、封口板に内蔵された電流遮断機構を作動させることで、温度ヒューズのような非復帰型の課題であった高温保存での誤作動、わずかな外部短絡によって作動し使用できなくなるようなことを防止することが可能で、信頼性の高いリチウムイオン二次電池及びその電池パックを提供することができる。 As described above, in the present invention, in the overcharge, after the PTC element or thermostat as the resettable safety element operates to attenuate the current, the current interrupting mechanism built in the sealing plate is operated, Reliable lithium-ion secondary battery that can prevent malfunctions caused by non-recoverable problems such as thermal fuses, high-temperature storage malfunctions, and operation due to a slight external short-circuit, making it unusable. And a battery pack thereof.
以下、図を用いて本発明の好ましい実施の形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図1において、1は扁平な角形の電池パックで、リチウムイオン二次電池からなる電池2を備えている。そして、電池2の一端部が端子ユニット13にて覆われている。この端子ユニット13は、絶縁性樹脂から成る絶縁カバーと第1の外部接続端子15と第2の外部接続端子16とがインサート成形により一体化されている構成である。第1の外部接続端子15は断面形状が略門型で、その両側の接続脚部17が電池ケース3の一端部外面に重なるように端子ユニット13から下方に延出されている。また、端子ユニット13の端面には第1と第2の外部接続端子15、16を外部に露出させる窓部19が開口されている。そして、第1の外部接続端子15の接続脚部17は電池ケース3の外面に溶接24にて接続されている。
In FIG. 1, reference numeral 1 denotes a flat rectangular battery pack, which includes a
以下、ここで、二つの好ましい実施の形態を、図1の電池パックを基に説明する。 Hereinafter, two preferred embodiments will be described based on the battery pack of FIG.
図2は、図1のA−A断面図で、封口板内に復帰型安全素子と電流遮断機能を有する本発明の過充電保護機能を備えた角形電池と、この電池を用いた電池パックである。 FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and shows a rectangular battery having an overcharge protection function according to the present invention having a resettable safety element and a current interruption function in a sealing plate, and a battery pack using this battery. is there.
図2において、電池2は、電池ケース3内に正極板と負極板とをセパレータを介して積層した極板群と電解液からなる発電要素4を収容して構成されている。電池ケース3の一端開口は、突起部5を備えたキャップ6を有する封口板7にて絶縁ガスケット8を介して封口されており、キャップ6が一方の極性の接続電極、電池ケース3が他方の極性の接続電極を構成している。封口板7は、フィルタ9内にインナーガスケット10を介して安全弁機構11と復帰型安全素子12とキャップ6を収容配置して構成され、フィルタ9が発電要素4に接続され、フィルタ9とキャップ6が安全弁機構11と復帰型安全素子12を介して接続されている。
In FIG. 2, the
また、端子ユニット13の下面外周部には環状突部(図示せず)が突設されて内部にリード板22を収容配置する収容空間が形成されている。環状突部と電池ケース3の開口端のかしめ部との間には、弾性体23を介在させている。弾性体23としては、耐電解液性を有する発泡ポリエチレンやブチルゴムなどが好適に用いられる。
An annular protrusion (not shown) protrudes from the outer periphery of the lower surface of the
図1でも述べたように、第1の外部接続端子15の接続脚部17は電池ケース3の外面に溶接24にて接続されている。この接続脚部17と電池ケース3の溶接24は、図2に示すように、電池ケース3の一端部の補強板27の配置位置に配置されている。また、第2の外部接続端子16とリード板22の一端が溶接(図示せず)にて接続され、リード板22の他端が封口板のキャップ6の突起部5に溶接25bにて接続されている。
As described in FIG. 1, the
これに対して、図3は図1のA−A断面図で、封口板内に電流遮断機構を有しているリチウムイオン二次電池と、この電池表面に密着させる形で取付けられている電池の温度上昇時にトリップして電流を減衰させる復帰型安全素子とからなるリチウムイオン二次電池パックである。 On the other hand, FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1, and a lithium ion secondary battery having a current blocking mechanism in the sealing plate and a battery attached in close contact with the battery surface. It is a lithium ion secondary battery pack comprising a resettable safety element that trips when the temperature rises and attenuates the current.
これに対し、図3において、電池内部にはステンレス製のスペーサ14を設け、復帰型安全素子を設けない代わりに、第1リード板22aと第2リード板22bの間に復帰型安全素子26を介装して構成され、所定温度以上になるとリード板22の抵抗が急激に高くなって電流を遮断する機能を有しているリード板22を、電池表面に密着させる形で取付けられている。
On the other hand, in FIG. 3, instead of providing a
このように本発明の封口板の電流遮断機構と封口板内もしくは電池表面の外側に密着させる形で取付けた復帰型安全素子であるPTC素子またはサーモスタットからなる復帰型素子は、非復帰型素子である温度ヒューズの課題であった高温保存での誤作動、わずかな外部短絡によって作動し使用できなくなるようなことを防止することが可能である。 Thus, the return type element comprising the PTC element or thermostat, which is a return type safety element attached in close contact with the current blocking mechanism of the seal plate of the present invention and the inside of the seal plate or the outside of the battery surface, is a non-return type element. It is possible to prevent malfunction caused by high-temperature storage, which is a problem of a certain thermal fuse, and that it cannot be used due to a slight external short circuit.
またPTC素子やサーモスタットは、1ItA電流での過充電で動作した後も、PTC素子の場合は100mA程度の電流が流れ続け、サーモスタットでは動作後電池温度が低下すると復帰して再充電され、より電池として危険な高電圧状態となってしまうといった課題がある。 Also, PTC elements and thermostats continue to flow at a current of about 100 mA in the case of PTC elements even after being operated by overcharging at a current of 1 ItA, and the thermostat returns and recharges when the battery temperature drops after operation. As a result, there is a problem that a dangerous high voltage state occurs.
このような課題を改善すべくサーモスタットとPTC素子を組合せ、PTC素子の発熱を利用して充電中はサーモスタットが復帰しないようにした保持機能付サーモスタットが開発されているが、当然のことながらPTC素子とサーモスタットを使用しており高価な部品となっている。また小型化が難しいといった課題を有している。 In order to improve such a problem, a thermostat with a holding function has been developed in which a thermostat and a PTC element are combined to prevent the thermostat from returning during charging by using the heat generated by the PTC element. The thermostat is used and it is an expensive part. Moreover, it has the subject that size reduction is difficult.
本発明の場合、PTC素子と封口板内に組み込まれた2枚の溶接された金属箔からなる電流遮断機構であり、バイメタルを用いたサーモスタットと比較した場合、格段に安い材料で製造することが可能である。 In the case of the present invention, it is a current interruption mechanism composed of two welded metal foils incorporated in a PTC element and a sealing plate, and can be manufactured with a material that is much cheaper than a thermostat using a bimetal. Is possible.
またGBLのような過充電状態でのガス発生が少ない溶媒を主成分とする電解液を使用した場合、従来のような最初に電流遮断機構で過充電をとめる方式では、SOC=140%〜180%での内部圧力が重要であり、遮断のタイミングが遅れると発火に到る可能性があった。そのため遮断圧を非常に低く設計し、さらに高い精度が求められ、ものづくりが難しい。 In addition, when an electrolytic solution mainly composed of a solvent that generates little gas in an overcharged state such as GBL is used, in the conventional method in which overcharge is first stopped by a current interruption mechanism, SOC = 140% to 180% The internal pressure in% was important, and ignition could occur if the timing of shut-off was delayed. Therefore, the isolation pressure is designed to be very low, and higher accuracy is required, making manufacturing difficult.
本発明の場合、最初にPTC素子を作動させて電流を減衰させて電池の温度上昇を抑制させた後、減衰した電流で過充電を続けることで電解液を分解し、ガス発生させるため、遮断のタイミングは従来ほど重要でない。従って過充電でのガス発生量の少ない電池に適している。 In the case of the present invention, the PTC element is first activated to attenuate the current to suppress the temperature rise of the battery, and then the overcharge is continued with the attenuated current to decompose the electrolyte and generate gas. The timing of is not as important as before. Therefore, it is suitable for a battery that generates a small amount of gas during overcharge.
従って、復帰型安全素子であるPTC素子またはサーモスタットの作動温度は、電池の熱暴走開始温度に至らない温度であり、異常充電時の電池表面の最高温度(火傷の懸念)を鑑みて100℃以下が、また高温での放電特性から70℃以上が望ましい。 Therefore, the operating temperature of the PTC element or thermostat that is the resettable safety element is a temperature that does not reach the thermal runaway start temperature of the battery, and is 100 ° C. or less in view of the maximum temperature of the battery surface (anxiety of burns) during abnormal charging. However, 70 ° C. or higher is desirable from the viewpoint of discharge characteristics at a high temperature.
また、電流遮断機構は、高温保存での誤作動、生産性から0.4MPa以上が、また過充電での確実な作動から1.6MPa以下が望ましい。 In addition, the current interruption mechanism is desirably 0.4 MPa or more from malfunction due to high temperature storage and productivity, and 1.6 MPa or less from reliable operation by overcharge.
以下に本発明の実施例について角形リチウムイオン二次電池を用いたパックを用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail using a pack using a prismatic lithium ion secondary battery.
正極板には、正極活物質としてコバルト酸リチウムを用い、これに導電性付与剤としてアセチレンブラック、結着剤としてポリテトラフルオロエチレン(PTFE)、増粘剤としてCMCを混合し、水を分散媒としてスラリー状の正極用合剤を作製した。集電体にはアルミニウム箔を用い、上記正極用合剤を塗布して正極板用シートを作製、乾燥後、所定の厚さに圧延成形し、正極板を作製した。上記極板には目的に応じてタブ式リードを超音波で溶接した。 In the positive electrode plate, lithium cobaltate is used as a positive electrode active material, acetylene black as a conductivity-imparting agent, polytetrafluoroethylene (PTFE) as a binder, CMC as a thickener, and water as a dispersion medium. A slurry-like positive electrode mixture was prepared. An aluminum foil was used as the current collector, and the positive electrode mixture was applied to produce a positive electrode plate sheet. After drying, the sheet was rolled to a predetermined thickness to produce a positive electrode plate. A tab type lead was ultrasonically welded to the electrode plate according to the purpose.
負極板には、活物質として黒鉛化メソカーボンマイクロビーズ(MCMB)、結着剤としてスチレン−ブタジエン共重合ゴム(SBR)、増粘剤としてCMCを混合し、水を分散媒としてスラリー状の負極用合剤を作製した。集電体として銅箔を用い、上記集電体の両面に負極用合剤を塗布して負極板用シートを作製した。つぎに上記負極板用シートを乾燥し、所定の厚さに圧延し、所定の寸法に裁断して負極板を作製した。上記負極板の一部にはニッケル製のタブ式リードを超音波で溶着した。 In the negative electrode plate, graphitized mesocarbon microbeads (MCMB) as an active material, styrene-butadiene copolymer rubber (SBR) as a binder, CMC as a thickener, and a slurry negative electrode using water as a dispersion medium A preparation for use was prepared. A copper foil was used as a current collector, and a negative electrode mixture was applied to both surfaces of the current collector to prepare a negative electrode sheet. Next, the negative electrode plate sheet was dried, rolled to a predetermined thickness, and cut into predetermined dimensions to produce a negative electrode plate. A tab-type lead made of nickel was welded to a part of the negative electrode plate with ultrasonic waves.
上記の正極板と負極板を、ポリエチレンの微多孔膜であるセパレータを介して巻回して極板群を作製した。 The positive electrode plate and the negative electrode plate were wound through a separator that is a microporous film of polyethylene to prepare an electrode plate group.
上記極板群をケースに挿入し、非水電解液を注入した。電解液にはエチレンカーボネートとγブチロラクトン(GBL)とを体積比で2:3の割合で混合した溶媒に六フッ化燐酸リチウム1.0mol/lを溶解させた非水電解質溶液を用いた。正極のタブ式リードはケースの内壁に導接した。負極のタブ式リードは封口板の端子部に接続し、封口板を用いて封口し、活性化充放電を数サイクル実施し、電池容量850mAhの角形リチウムイオン二次電池を作製した。 The electrode plate group was inserted into a case and a non-aqueous electrolyte was injected. As the electrolyte, a non-aqueous electrolyte solution in which 1.0 mol / l of lithium hexafluorophosphate was dissolved in a solvent in which ethylene carbonate and γ-butyrolactone (GBL) were mixed at a volume ratio of 2: 3 was used. The positive tab type lead was in contact with the inner wall of the case. The tab lead of the negative electrode was connected to the terminal portion of the sealing plate, sealed with the sealing plate, activated and discharged several cycles, and a prismatic lithium ion secondary battery with a battery capacity of 850 mAh was produced.
封口板には、充電電流850mA(1ItA(It:時間、A:電流))の場合、それぞれ60℃、70℃、80℃、100℃、110℃で作動するPTC素子と1.0MPaの電池内圧を検知して電流を遮断する機能を備えたものを用いて作製した電池を、それぞれ比較例1、実施例1、実施例2、実施例3、比較例2の電池とする。 When the charging current is 850 mA (1 ItA (It: time, A: current)), the sealing plate has a PTC element operating at 60 ° C., 70 ° C., 80 ° C., 100 ° C., and 110 ° C. and a battery internal pressure of 1.0 MPa, respectively. Batteries produced using a battery having a function of detecting current and blocking current are referred to as batteries of Comparative Example 1, Example 1, Example 2, Example 3, and Comparative Example 2, respectively.
そして、封口板に、充電電流1ItAの場合、80℃で作動するPTC素子のみを備えた以外は上記と同様にして、比較例3の電池とする。 In the case of a charging current of 1 ItA on the sealing plate, the battery of Comparative Example 3 is obtained in the same manner as above except that only the PTC element operating at 80 ° C. is provided.
これら実施例1〜実施例3、比較例1〜比較例3の角形リチウムイオン電池各10セルを用いて、連続過充電試験と高温保存試験を行なった結果を表1に示す。 Table 1 shows the results of a continuous overcharge test and a high temperature storage test using 10 cells of each of the prismatic lithium ion batteries of Examples 1 to 3 and Comparative Examples 1 to 3.
なお、連続過充電試験は、3.0Vの終止電圧まで0.85A(1.0ItA)の定電流で残存放電した後、充電電圧20V、充電電流0.85A(1ItA相当)で連続過充電試験を120時間行ったときの発火の有無を確認した。 In addition, the continuous overcharge test is a continuous overcharge test at a charging voltage of 20 V and a charging current of 0.85 A (equivalent to 1 ItA) after remaining discharge at a constant current of 0.85 A (1.0 ItA) up to a final voltage of 3.0 V. The presence or absence of ignition when 120 hours was performed was confirmed.
また、高温保存試験は、3.0Vの終止電圧まで0.85A(1.0ItA)の定電流で残存放電した後、電池電圧が4.2Vに達するまでは1400mA(0.7ItA)の定電流充電を行い、その後、電流値が減衰して100mA(0.05ItA)になるまで充電した満充電の電池を、電池を60℃の環境下で20日間保存したときの電流遮断機構の誤動作の有無を確認した。 In the high temperature storage test, after a residual discharge at a constant current of 0.85 A (1.0 ItA) to a final voltage of 3.0 V, a constant current of 1400 mA (0.7 ItA) until the battery voltage reaches 4.2 V. Whether or not the current interruption mechanism malfunctions when a fully charged battery is charged and then charged until the current value decays to 100 mA (0.05 ItA) is stored in a 60 ° C. environment for 20 days. It was confirmed.
表1より明らかなように、実施例の電池は、PTC素子が作動して充電電流は0.1Aまで減衰し、その状態での過充電が続き、24h時間〜30時間後には電池内圧が上昇して電流遮断機構が作動して充電できない状態となった。つまり過充電のような異常な状態となった場合でも、非復帰となり電池としてそれ以上使用されることを防止できることがわかった。 As is clear from Table 1, in the battery of the example, the PTC element was activated, the charging current was attenuated to 0.1 A, the overcharge in that state continued, and the internal pressure of the battery increased after 24 hours to 30 hours As a result, the current interrupting mechanism was activated and charging was impossible. That is, it was found that even when an abnormal state such as overcharging occurs, the battery is not restored and can be prevented from being used further as a battery.
一方、比較例1の場合、60℃で高温保存すると、PTC素子が誤動作して、放電できない不具合が発生した。また、比較例2の場合、PTCの作動温度が110℃と高く、電池の熱暴走領域まで温度が上昇して、発火に至るものが発生した。 On the other hand, in the case of Comparative Example 1, when the high temperature storage was performed at 60 ° C., the PTC element malfunctioned, and a problem that could not be discharged occurred. Moreover, in the case of the comparative example 2, the operating temperature of PTC was as high as 110 degreeC, the temperature rose to the thermal runaway area | region of a battery, and the thing leading to ignition generate | occur | produced.
また、比較例3の場合、実施例2と同様にPTC素子が80℃で作動して充電電流は0.1Aまで減衰し、その状態での充電が続き、5日後に突然充電電流値が0.85Aまで復帰し、その後発火に到った。電流値が0.85Aに復帰したのはおそらく20Vでの長時間の充電によりPTC素子の耐電圧が限界に達し、破壊したものと推定される。このようにPTC素子のみの場合、20Vのような高電圧、長時間充電でPTC素子が故障し、発火に至る場合がある。 In the case of Comparative Example 3, as in Example 2, the PTC element operates at 80 ° C., the charging current decays to 0.1 A, charging continues in that state, and the charging current value suddenly becomes 0 after 5 days. .Returned to 85A, and then fired. The reason why the current value returned to 0.85 A is presumed that the withstand voltage of the PTC element reached its limit due to long-term charging at 20 V and was destroyed. Thus, in the case of only the PTC element, there is a case where the PTC element breaks down due to a high voltage such as 20 V and long-time charging, resulting in ignition.
次に、封口板に、充電電流1ItAの場合、80℃で作動するPTC素子と、それぞれ0.2MPa、0.4MPa、1.6MPa、2.0MPaの電池内圧を検知して電流を遮断する機能を備えたものを用いて作製した電池を、それぞれ比較例4、実施例4、実施例5、比較例5の電池とする。 Next, when the charging current is 1 ItA on the sealing plate, the PTC element operating at 80 ° C. and the function of detecting the internal pressure of the battery of 0.2 MPa, 0.4 MPa, 1.6 MPa, and 2.0 MPa to cut off the current, respectively. Batteries manufactured using the batteries having the above-described characteristics are batteries of Comparative Example 4, Example 4, Example 5, and Comparative Example 5, respectively.
これら実施例4〜実施例5、比較例4〜比較例5の角形リチウムイオン電池を用いて、連続過充電試験と、高温保存試験を行なった結果を表2に示す。 Table 2 shows the results of a continuous overcharge test and a high temperature storage test using the prismatic lithium ion batteries of Examples 4 to 5 and Comparative Examples 4 to 5.
表2より明らかなように、実施例の電池は、PTC素子が作動して充電電流は0.1Aまで減衰し、その状態での過充電が続き、24h時間〜30時間後には電池内圧が上昇して電流遮断機構が作動して充電できない状態となった。つまり過充電のような異常な状態となった場合でも、非復帰となり電池としてそれ以上使用されることを防止できることがわかった。 As is clear from Table 2, in the battery of the example, the PTC element was activated, the charging current was attenuated to 0.1 A, the overcharge in that state continued, and the internal pressure of the battery increased after 24 hours to 30 hours As a result, the current interrupting mechanism was activated and charging was impossible. That is, it was found that even when an abnormal state such as overcharging occurs, the battery is not restored and can be prevented from being used further as a battery.
一方、比較例4の場合、60℃で高温保存すると、電池内圧が0.2MPaに達するものがあり、電流遮断機構が誤動作して、電池として機能しなくなる不具合が発生した。また、比較例5の場合、電流遮断機構が作動する電池内圧に達しないので、充電電流が流れ続け、局部的な正負極間の短絡により、発火に至るものが発生した。 On the other hand, in the case of Comparative Example 4, when the battery was stored at a high temperature of 60 ° C., the battery internal pressure reached 0.2 MPa, and the current interruption mechanism malfunctioned, causing a problem that the battery could not function. Moreover, in the case of the comparative example 5, since it did not reach the battery internal pressure which a current interruption mechanism act | operates, the charging current continued flowing, and what led to ignition generate | occur | produced by the short circuit between local positive and negative electrodes.
さらに、PTC素子を電池パック内に取付けた実施例を説明する。図3において、正極板、負極板、セパレータを上記と同様の方法で極板群とし、ケースに挿入し、電解液を注入した。封口板には、1.0MPaの電池内圧を検知して電流を遮断する電流遮断機構のみを装備したものを使用した以外は実施例2と同様な方法で角形リチウムイオン電池を作製した。 Further, an embodiment in which the PTC element is mounted in the battery pack will be described. In FIG. 3, a positive electrode plate, a negative electrode plate, and a separator were made into an electrode plate group by the same method as described above, inserted into a case, and an electrolyte solution was injected. A prismatic lithium ion battery was produced in the same manner as in Example 2 except that the sealing plate was equipped with only a current interrupting mechanism that detects the internal pressure of the battery of 1.0 MPa and interrupted the current.
この電池表面の外側に、80℃で作動するPTC素子を密着させる形で取付けてパックとした電池パックを実施例6の電池パック、110℃で作動するPTC素子を取付けた電池パックを比較例6の電池パックとする。 A battery pack in which the PTC element operating at 80 ° C. is attached in close contact with the outside of the battery surface to form a pack is a battery pack of Example 6, and a battery pack having a PTC element operating at 110 ° C. is comparative example 6. Battery pack.
これらの電池パックを上記と同様な方法で連続過充電試験、高温保存試験を行なった結果を表3に示す。 Table 3 shows the results of performing a continuous overcharge test and a high temperature storage test on these battery packs in the same manner as described above.
電池内部の封口板に1.0MPaの電池内圧を検知して電流を遮断する電流遮断機構と、電池表面の外側に密着させて80℃で作動するPTC素子を取付けた実施例6の電池パックの場合、表1に示す封口板に、80℃で作動するPTC素子と、1.0MPaの電池内圧を検知して電流を遮断する機能を備えた実施例2と同様に、PTC素子が作動して充電電流は0.1Aまで減衰し、その状態での過充電が続き、24h時間〜26時間後には電池内圧が上昇して電流遮断機構が作動して充電できない状態となった。 The battery pack of Example 6 in which a current blocking mechanism that detects a battery internal pressure of 1.0 MPa is cut off on the sealing plate inside the battery and a PTC element that is in close contact with the outside of the battery surface and operates at 80 ° C. are attached. In the case, the PTC element operates on the sealing plate shown in Table 1 in the same manner as in Example 2 having a PTC element that operates at 80 ° C. and a function of detecting a battery internal pressure of 1.0 MPa to cut off the current. The charging current decayed to 0.1 A, overcharging in that state continued, and after 24 hours to 26 hours, the internal pressure of the battery increased and the current interruption mechanism was activated, making charging impossible.
電池内部の封口板に1.0MPaの電池内圧を検知して電流を遮断する電流遮断機構と、電池表面の外側に密着させて110℃で作動するPTC素子を取付けた比較例6の電池パックの場合、PTCの作動温度が110℃と高く、電池の熱暴走領域まで温度が上昇して、発火に至るものが発生した。 The battery pack of Comparative Example 6 is provided with a current blocking mechanism that detects an internal pressure of 1.0 MPa on the sealing plate inside the battery and interrupts the current, and a PTC element that adheres to the outside of the battery surface and operates at 110 ° C. In this case, the operating temperature of the PTC was as high as 110 ° C., and the temperature rose to the thermal runaway region of the battery, which led to ignition.
つまり本発明はPTC素子を電池表面の外側に密着させる構造でも同様な効果を発揮できることがわかり、PTCの代わりにサーモスタットを用いても同様の結果が得られる。 In other words, it can be seen that the present invention can exert the same effect even in a structure in which the PTC element is adhered to the outside of the battery surface, and the same result can be obtained even if a thermostat is used instead of the PTC.
以上、本発明は過充電において、復帰型安全素子であるPTC素子またはサーモスタットが作動して電流を減衰させた後、封口板に内蔵された電流遮断機構を作動させることで、温度ヒューズのような非復帰型の課題であった高温保存での誤作動、わずかな外部短絡によって作動し使用できなくなるようなことを防止することが可能で、信頼性の高いリチウムイオン二次電池及びその電池パックを提供することができる。 As described above, in the overcharge, after the PTC element or the thermostat as the resettable safety element is activated and the current is attenuated, the current interruption mechanism built in the sealing plate is activated, so that A highly reliable lithium ion secondary battery and its battery pack can be prevented from malfunctioning when stored at high temperatures, which was a non-returnable problem, and being unable to operate due to a slight external short circuit. Can be provided.
本発明のリチウムイオン二次電池およびその電池パックは、安全性の優れたポータブル用電源等として有用である。 The lithium ion secondary battery and its battery pack of the present invention are useful as a portable power source having excellent safety.
1 電池パック
2 電池
3 電池ケース(接続電極)
5 キャップの突起部(接続電極)
6 キャップ
13 端子ユニット
15 第1の外部接続端子
16 第2の外部接続端子
17 接続脚部
22 リード板
23 弾性体
24 溶接
26 復帰型安全素子
27 補強板
1
5 Cap protrusion (connection electrode)
6
Claims (4)
過充電時に、まず、前記復帰型安全素子が作動して電流値を減衰させ、さらに減衰した電流で充電を続けることで電池内圧を上昇させて前記電流遮断機構を作動させて過充電による発火を防止するリチウムイオン二次電池の過充電保護方法。 Overcharge protection method for a lithium ion secondary battery having a non-returning current interruption function having a return type safety element that trips when the battery temperature rises and attenuates the current, and a safety valve membrane that breaks when the internal pressure of the battery rises Because
At the time of overcharge, first, the resettable safety element is actuated to attenuate the current value, and further charging is continued with the attenuated current, thereby increasing the internal pressure of the battery and operating the current interrupt mechanism to cause ignition due to overcharge. How to prevent overcharge protection of lithium ion secondary battery.
過充電時に、まず、前記復帰型安全素子が作動して電流値を減衰させ、さらに減衰した電流で充電を続けることで電池内圧を上昇させて前記電流遮断機構を作動させて過充電による発火を防止するリチウムイオン二次電池パックの過充電保護方法。 Trips when the temperature of the lithium ion secondary battery with a non-returning current interruption function equipped with a safety valve membrane that breaks when the internal pressure of the battery rises and when the temperature of the battery attached in close contact with the battery surface rises An overcharge protection method for a lithium ion secondary battery pack comprising a resettable safety element that attenuates current,
At the time of overcharge, first, the resettable safety element is actuated to attenuate the current value, and further charging is continued with the attenuated current, thereby increasing the internal pressure of the battery and operating the current interrupt mechanism to cause ignition due to overcharge. How to prevent overcharge protection of lithium ion secondary battery pack.
前記復帰型安全素子は、PTC素子またはサーモスタットであり、その作動温度が70℃〜100℃で、電流値を30mA〜200mAに減衰するものであり、前記電流遮断機構の作動圧が0.4MPa〜1.6MPaであるリチウムイオン二次電池。 A lithium ion secondary battery having a non-returning current interruption function comprising a resettable safety element that trips when the battery temperature rises and attenuates the current, and a safety valve membrane that breaks when the internal pressure of the battery rises,
The return-type safety element is a PTC element or a thermostat, whose operating temperature is 70 ° C. to 100 ° C., the current value is attenuated to 30 mA to 200 mA, and the operating pressure of the current interrupting mechanism is 0.4 MPa to A lithium ion secondary battery having a pressure of 1.6 MPa.
前記復帰型安全素子は、PTC素子またはサーモスタットであり、その作動温度が70℃〜100℃で、電流値を30mA〜200mAに減衰するものであり、前記電流遮断機構の作動圧が0.4MPa〜1.6MPaであるリチウムイオン二次電池パック。 Trips when the temperature of the lithium ion secondary battery with a non-returning current interruption function equipped with a safety valve membrane that breaks when the internal pressure of the battery rises and when the temperature of the battery attached in close contact with the battery surface rises A lithium ion secondary battery pack comprising a resettable safety element that attenuates current,
The return-type safety element is a PTC element or a thermostat, whose operating temperature is 70 ° C. to 100 ° C., the current value is attenuated to 30 mA to 200 mA, and the operating pressure of the current interrupting mechanism is 0.4 MPa to A lithium ion secondary battery pack having a pressure of 1.6 MPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004115306A JP4929563B2 (en) | 2004-04-09 | 2004-04-09 | Overcharge protection method for lithium ion secondary battery pack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004115306A JP4929563B2 (en) | 2004-04-09 | 2004-04-09 | Overcharge protection method for lithium ion secondary battery pack |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005302467A true JP2005302467A (en) | 2005-10-27 |
JP4929563B2 JP4929563B2 (en) | 2012-05-09 |
Family
ID=35333710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004115306A Expired - Fee Related JP4929563B2 (en) | 2004-04-09 | 2004-04-09 | Overcharge protection method for lithium ion secondary battery pack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4929563B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013149523A (en) * | 2012-01-20 | 2013-08-01 | Gs Yuasa Corp | Storage element module |
JP2019046536A (en) * | 2017-08-29 | 2019-03-22 | 積水化学工業株式会社 | Storage battery module and storage battery unit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09129214A (en) * | 1995-11-07 | 1997-05-16 | Wako Denshi Kk | Safety device for battery |
JPH10275612A (en) * | 1996-07-09 | 1998-10-13 | Matsushita Electric Ind Co Ltd | Secondary battery and assembled sealing plate for secondary battery |
JP2001319636A (en) * | 2000-05-11 | 2001-11-16 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2002164085A (en) * | 2000-11-24 | 2002-06-07 | Sony Corp | Nonaqueous electrolyte battery |
-
2004
- 2004-04-09 JP JP2004115306A patent/JP4929563B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09129214A (en) * | 1995-11-07 | 1997-05-16 | Wako Denshi Kk | Safety device for battery |
JPH10275612A (en) * | 1996-07-09 | 1998-10-13 | Matsushita Electric Ind Co Ltd | Secondary battery and assembled sealing plate for secondary battery |
JP2001319636A (en) * | 2000-05-11 | 2001-11-16 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2002164085A (en) * | 2000-11-24 | 2002-06-07 | Sony Corp | Nonaqueous electrolyte battery |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013149523A (en) * | 2012-01-20 | 2013-08-01 | Gs Yuasa Corp | Storage element module |
JP2019046536A (en) * | 2017-08-29 | 2019-03-22 | 積水化学工業株式会社 | Storage battery module and storage battery unit |
Also Published As
Publication number | Publication date |
---|---|
JP4929563B2 (en) | 2012-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100929036B1 (en) | Protection circuit of battery pack, battery pack having same and operation method thereof | |
TWI262615B (en) | Electrochemical cell comprising electrode lead with protector element | |
KR100591421B1 (en) | Lithium Ion Secondary Battery with Shape Memory Safety Vent | |
TW400661B (en) | Non-aqueous liquid electrolyte battery | |
CN103227308B (en) | Enclosed-type battery | |
JPWO2015146078A1 (en) | Cylindrical sealed battery and battery pack | |
KR19980071780A (en) | Lithium secondary battery having thermal switch | |
JP2004362956A (en) | Rechargeable battery | |
KR101546545B1 (en) | Pouch type lithium secondary battery | |
JPWO2010125755A1 (en) | Assembly sealing body and battery using the same | |
US20100203367A1 (en) | End cover assembly for battery and battery containing the same | |
JPH0562664A (en) | Explosion-proof non-aqueous secondary battery | |
JPH117931A (en) | Rechargeable battery | |
JPH1140203A (en) | Rechargeable battery | |
JP2003051304A (en) | Non-aqueous electrolyte secondary battery | |
JPH08153536A (en) | Sealed nonaqueous secondary battery | |
US7354677B2 (en) | Battery pack | |
KR100662174B1 (en) | Nonaqueous Electrolyte Secondary Battery | |
KR101608694B1 (en) | A Safeguard Apparatus Preventing Overcharge for A Secondary Battery | |
JP2004152580A (en) | Secondary battery and secondary battery pack with temperature protection element unit | |
CN102544397B (en) | A kind of lithium rechargeable battery | |
KR20180082748A (en) | Battery Cell Comprising Electrode Lead Employed with Thermal Fuse of Interrupting Electricity at High Temperature | |
WO2015079672A1 (en) | Cylindrical battery | |
JP2005251548A (en) | Prismatic secondary battery | |
JP4191469B2 (en) | Square battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070405 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20070514 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120130 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |