[go: up one dir, main page]

JP2005291675A - Combustion type exhaust gas treatment device - Google Patents

Combustion type exhaust gas treatment device Download PDF

Info

Publication number
JP2005291675A
JP2005291675A JP2004111290A JP2004111290A JP2005291675A JP 2005291675 A JP2005291675 A JP 2005291675A JP 2004111290 A JP2004111290 A JP 2004111290A JP 2004111290 A JP2004111290 A JP 2004111290A JP 2005291675 A JP2005291675 A JP 2005291675A
Authority
JP
Japan
Prior art keywords
combustion
exhaust gas
inner cylinder
wall surface
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004111290A
Other languages
Japanese (ja)
Other versions
JP4177782B2 (en
Inventor
Kenji Hattori
賢二 服部
Kazunobu Shibuya
和信 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2004111290A priority Critical patent/JP4177782B2/en
Publication of JP2005291675A publication Critical patent/JP2005291675A/en
Application granted granted Critical
Publication of JP4177782B2 publication Critical patent/JP4177782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion type exhaust gas treatment device of low manufacturing cost, capable of effectively preventing the accumulation of SiO<SB>2</SB>powder inside of a combustion cylinder, and reducing the air quantity without lowering a decomposition rate of PFC<SB>S</SB>and the like. <P>SOLUTION: This combustion type exhaust gas treatment device for decomposing harmful substances included in the exhaust gas by burning the same, comprises the combustion cylinder 4 of a double cylinder structure composed of an inner cylinder 2 connected with a combustion nozzle 5 and constituting a combustion part B for burning the exhaust gas, and an outer cylinder 3 mounted around the inner cylinder 2, and a number of air holes penetrated through a wall face are formed for taking the air into the whole area of a side wall face of the inner cylinder 2 of the combustion part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

半導体製造装置等から排出される毒性、燃焼爆発性、環境影響への危険性を有する成分を分解し、安全な濃度で排出させる燃焼式排ガス処理装置に関する。   The present invention relates to a combustion-type exhaust gas treatment apparatus that decomposes components having toxicity, combustion explosive properties, and environmental hazards discharged from semiconductor manufacturing equipment and the like and discharges them at a safe concentration.

半導体製造工程における排ガスの処理装置として、排ガスを燃料ガスとともに燃焼させて排ガスを処理する燃焼式排ガス処理装置が用いられている。近年、半導体の製造工程では、基板サイズが大型化している。特に大型TFT液晶の生産においては、この数年で基板サイズが数倍となっている。半導体材料ガスの使用量は、基板サイズに比例して増加し、排出される排ガスの量も増加している。半導体材料ガスのうち例えばSiH4は、燃焼分解によってSiO2が発生する。SiO2の発生量が多くなると排ガス処理装置にSiO2粉末が堆積し、排ガス処理装置の連続運転に支障を来すため、排ガス処理装置には、SiO2粉末の堆積防止対策が要求される。 2. Description of the Related Art As an exhaust gas treatment device in a semiconductor manufacturing process, a combustion type exhaust gas treatment device for treating exhaust gas by burning exhaust gas together with fuel gas is used. In recent years, in the semiconductor manufacturing process, the substrate size has been increased. Especially in the production of large TFT liquid crystal, the substrate size has increased several times over the past few years. The amount of semiconductor material gas used increases in proportion to the substrate size, and the amount of exhaust gas discharged also increases. Of the semiconductor material gas, for example, SiH 4 generates SiO 2 by combustion decomposition. When the amount of generated SiO 2 increases, SiO 2 powder accumulates in the exhaust gas treatment device, which hinders continuous operation of the exhaust gas treatment device. Therefore, the exhaust gas treatment device is required to take measures to prevent the deposition of SiO 2 powder.

一方、半導体製造工程のうち、チャンバークリーニングやエッチング装置等で使用されるPFCS(CF4、C2F6、C3F8、SF6、NF3、CHF3の6種類のガスを言う)は、地球温暖化係数が高く環境への影響が大きい成分である。この分解処理に使用される排ガス処理装置は、地球温暖化防止の観点から高い分解率を有することや、CO2の放出量を低減させる観点からより高効率なエネルギー利用率を有すること等が要求される。 On the other hand, PFC S used in chamber cleaning, etching equipment, etc. in the semiconductor manufacturing process (refers to 6 types of gases: CF 4 , C 2 F 6 , C 3 F 8 , SF 6 , NF 3 , and CHF 3 ) Is a component having a high global warming potential and a large impact on the environment. Exhaust gas treatment equipment used for this decomposition treatment is required to have a high decomposition rate from the viewpoint of preventing global warming and to have a more efficient energy utilization rate from the viewpoint of reducing CO 2 emission. Is done.

燃焼筒の内部にSiO2粉末が堆積するのを防止した燃焼式排ガス処理装置として、内筒の内壁に沿った内筒の燃焼ガスの流れ方向に空気が導入されるように構成した装置が公知である(例えば特許文献1参照)。特許文献1に記載された燃焼式排ガス処理装置は、図10に示すように、燃焼部Bとなる内筒102と該内筒102の周囲を覆う外筒103とからなる2重構造に形成された燃焼筒を備える。内筒102の下端部に燃料ガスを燃焼させて処理ガスを燃焼させるためのバーナー部104が設けられ、該バーナー部104には、排ガスを内筒102内に供給するように接続された燃焼ノズル105が取り付けられ、バーナー部104の下端に二次燃焼用空気を供給するための空気供給口106が設けられている。さらに燃焼部Bの端部には冷却部Cとしての冷却用内筒107が設けられている。 Known as a combustion type exhaust gas treatment apparatus that prevents SiO 2 powder from accumulating inside the combustion cylinder, an apparatus configured to introduce air in the flow direction of the combustion gas in the inner cylinder along the inner wall of the inner cylinder is known. (For example, see Patent Document 1). As shown in FIG. 10, the combustion exhaust gas treatment device described in Patent Document 1 is formed in a double structure including an inner cylinder 102 that becomes a combustion section B and an outer cylinder 103 that covers the periphery of the inner cylinder 102. Equipped with a combustion cylinder. A burner section 104 for burning the processing gas by burning the fuel gas is provided at the lower end of the inner cylinder 102, and a combustion nozzle connected to supply the exhaust gas into the inner cylinder 102 to the burner section 104 105 is attached, and an air supply port 106 for supplying secondary combustion air to the lower end of the burner unit 104 is provided. Furthermore, a cooling inner cylinder 107 as a cooling unit C is provided at the end of the combustion unit B.

図10に示すように、燃焼部Bの内筒102は、直径の異なる複数の筒状部材を組合わせて多段形状に構成されている。上下の筒状部材を重ね合わせるに際し、上側の筒状部材の下端が下側の筒状部材の上端を覆うように重ね合わせ、上側の筒状部材の重ね合せ部の内面側と下側の筒状部材の重ね合わせ部の外面側との間に隙間Sが形成される。燃焼部Bの内筒102の外部の空気がこの隙間Sを通って内筒102の内壁面に沿って内部に流入する。空気は燃焼ガスの流れ方向と同じ方向に流入する。   As shown in FIG. 10, the inner cylinder 102 of the combustion section B is configured in a multistage shape by combining a plurality of cylindrical members having different diameters. When the upper and lower cylindrical members are overlapped, the upper cylindrical member is overlapped so that the lower end of the upper cylindrical member covers the upper end of the lower cylindrical member, and the inner and lower cylinders of the overlapping portion of the upper cylindrical member are overlapped. A gap S is formed between the outer surfaces of the overlapping portions of the member. Air outside the inner cylinder 102 of the combustion section B flows through the gap S along the inner wall surface of the inner cylinder 102. Air flows in the same direction as the flow direction of the combustion gas.

また特に文献に記載されていないが、上記の装置と共通な筒状構造を有する燃焼部の端部に、噴霧水を導入して燃焼ガスを冷却させる冷却部を設けた燃焼式排ガス処理装置が知られている。この噴霧水冷却型の燃焼式排ガス処理装置は、基本的に燃焼後の排ガスの総流量を低減させることができる。その結果、最終処理のためのスクラバーの容量を小さくし、処理装置に導入する空気量を低減し、クリーンルーム等の管理された外気の導入量を低減させる。   Although not specifically described in the literature, there is a combustion type exhaust gas treatment apparatus provided with a cooling unit that introduces spray water and cools the combustion gas at the end of the combustion unit having a cylindrical structure common to the above-described device. Are known. This spray water cooling type combustion exhaust gas treatment device can basically reduce the total flow rate of exhaust gas after combustion. As a result, the capacity of the scrubber for final processing is reduced, the amount of air introduced into the processing apparatus is reduced, and the amount of introduced outside air managed in a clean room or the like is reduced.

特開平11-270831号公報JP 11-270831 A

近年、排ガス処理装置に導入される排ガス中のSiH4の濃度が高くなり、燃焼により発生するSiO2粉末の堆積量も増加している。そのため燃焼筒のSiO2粉末堆積量増加に対する対策が必要である。例えば排ガス中のSiH4の濃度は、以前0.1〜0.5%程度であったが、近年は0.5〜1%、あるいはそれ以上になっている。また、燃焼筒に導入され処理される排ガスの処理量も増加している。 In recent years, the concentration of SiH 4 in the exhaust gas introduced into the exhaust gas treatment device has increased, and the amount of deposited SiO 2 powder generated by combustion has also increased. Therefore, it is necessary to take measures against increasing the amount of SiO 2 powder deposited in the combustion cylinder. For example, the concentration of SiH 4 in the exhaust gas was about 0.1 to 0.5% before, but has recently become 0.5 to 1% or more. Also, the amount of exhaust gas that is introduced into the combustion cylinder and processed is increasing.

従来の特許文献1に記載の装置では、内筒102の内壁面に沿って流入し燃焼ガスの流れ方向に導入される空気量を更に増やすことによって、堆積するSiO2粉末の量を減らすことができた。しかしながら、この方法では、内筒に導入する空気量を増やすために、燃焼部内の燃焼温度が低下することから、NF3等のPFCSを分解するために必要な温度を維持できず、分解率が低下するという欠点を有していた。 In the conventional apparatus described in Patent Document 1, the amount of SiO 2 powder deposited can be reduced by further increasing the amount of air that flows along the inner wall surface of the inner cylinder 102 and is introduced in the flow direction of the combustion gas. did it. However, in this method, since the combustion temperature in the combustion section decreases to increase the amount of air introduced into the inner cylinder, the temperature necessary for decomposing PFC S such as NF 3 cannot be maintained, and the decomposition rate Has the disadvantage of lowering.

また、特許文献1に記載の装置は、空気導入手段として内筒が直径の異なる複数の部材を多段構造に組み立てて、部材どうしの間に隙間Sが形成されるように組み立てられている。このように複数の筒状の部材を組合わせて多段状に制作することは、部材自体のコストが高くなり、更に精密な制作を必要とするために、製造コストも高くなるという問題があった。   Further, the apparatus described in Patent Document 1 is assembled such that a plurality of members having different inner cylinder diameters are assembled in a multistage structure as an air introduction means, and a gap S is formed between the members. Producing a multi-stage shape by combining a plurality of cylindrical members in this way has a problem in that the cost of the member itself increases, and more precise production is required, resulting in an increase in manufacturing cost. .

また、噴霧水冷却型の燃焼式排ガス処理装置の場合は、この装置の特徴が空気量を低減できる点にあり、導入空気量を更に低減することは、きわめて重要な問題である。   Further, in the case of a spray water cooling type combustion exhaust gas treatment device, the feature of this device is that the amount of air can be reduced, and further reduction of the amount of introduced air is a very important problem.

本発明は上記従来技術の欠点に鑑みなされたものであり、燃焼筒内部におけるSiO2粉末の堆積を効果的に防止することができると共に、PFCS等の分解率を低下させずに空気量を低減することが可能であり、製造コストが安価である燃焼式排ガス処理装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned drawbacks of the prior art, and can effectively prevent the accumulation of SiO 2 powder inside the combustion cylinder and reduce the amount of air without reducing the decomposition rate of PFC S or the like. It is an object of the present invention to provide a combustion exhaust gas treatment device that can be reduced and has a low manufacturing cost.

本発明は
(1)排ガス中に含まれる有害物質を燃焼させて分解処理する燃焼式排ガス処理装置において、燃焼ノズルが接続され排ガスを燃焼させるための燃焼部を構成する内筒と該内筒の周囲に設けられる外筒とからなる二重筒構造の燃焼筒を備え、前記燃焼部の内筒の側壁面全域に空気を取り入れるための壁面を連通する多数の通気孔が設けられていることを特徴とする燃焼式排ガス処理装置、
(2)燃焼部の内筒が、円筒体の側壁面全域に多数の貫通孔が穿設されたものである上記(1)記載の燃焼式排ガス処理装置、
(3)燃焼部の内筒が、円筒体の側壁面が多孔質体からなるものである上記(1)記載の燃焼式排ガス処理装置、
(4)燃焼部の内筒が、円筒体の側壁面が網状体から形成したものである上記(1)記載の燃焼式排ガス処理装置、
(5)燃焼部内筒の円筒体の直径D[mm]、燃焼排ガスの平均流速V[m/s]、通気孔の直径d[mm]、通気孔より流入する空気の平均流速v[m/s]とした場合、燃焼排ガスと通気孔より流入する空気の速度比α=v/Vに前記通気孔の直径dを乗じた数値αdが4以下となるように、燃焼部が形成されている上記(2)〜(4)のいずれかに記載の燃焼式排ガス処理装置、
を要旨とするものである。
The present invention is (1) a combustion type exhaust gas treatment apparatus that burns and decomposes harmful substances contained in exhaust gas, and an inner cylinder that constitutes a combustion section connected to a combustion nozzle and combusts exhaust gas, and the inner cylinder A combustion cylinder having a double cylinder structure including an outer cylinder provided in the periphery is provided, and a large number of ventilation holes communicating with the wall surface for taking in air are provided in the entire side wall surface of the inner cylinder of the combustion section. Combustion type exhaust gas treatment device,
(2) The combustion exhaust gas treatment apparatus according to (1) above, wherein the inner cylinder of the combustion section has a large number of through-holes formed in the entire side wall surface of the cylindrical body.
(3) The combustion-type exhaust gas treatment apparatus according to (1), wherein the inner cylinder of the combustion section has a cylindrical side wall surface made of a porous body.
(4) The combustion-type exhaust gas treatment apparatus according to (1), wherein the inner cylinder of the combustion section is formed by forming a side wall surface of the cylindrical body from a net-like body,
(5) The diameter D [mm] of the cylinder of the inner cylinder of the combustion section, the average flow velocity V [m / s] of the combustion exhaust gas, the diameter d [mm] of the vent hole, and the average flow velocity v [m / of the air flowing from the vent hole s], the combustion portion is formed so that a numerical value αd obtained by multiplying the velocity ratio α = v / V of the combustion exhaust gas and the air flowing from the vent hole by the diameter d of the vent hole is 4 or less. The combustion type exhaust gas treatment device according to any one of (2) to (4) above,
Is a summary.

本発明燃焼式排ガス処理装置は、燃焼部の内筒の側壁面全域に壁面の外部から内部に連通する多数の通気孔が設けられている構成を採用したことにより、従来の複数の円筒状の部材を組合わせて構成した燃焼部を有する装置と比較して、燃焼筒の内部におけるSiO2粉末の堆積を効果的に防止することができると共に、NF3の分解率を低下させずに燃焼筒内に導入する空気量を低減させることができる。 The combustion type exhaust gas treatment apparatus of the present invention employs a configuration in which a large number of air holes communicating from the outside to the inside of the wall surface are provided in the entire side wall surface of the inner cylinder of the combustion unit, thereby providing a plurality of conventional cylindrical shapes. Compared with a device having a combustion part composed of a combination of members, it is possible to effectively prevent the accumulation of SiO 2 powder inside the combustion cylinder and to reduce the decomposition rate of NF 3 without reducing the decomposition rate of NF 3 The amount of air introduced into the inside can be reduced.

更に本発明装置は、従来の装置と比較して構造が簡単であるから、部品点数を削減することができ、装置の製造も容易であり、装置のコスト低減を図ることができる。   Furthermore, since the device of the present invention has a simple structure as compared with the conventional device, the number of parts can be reduced, the device can be easily manufactured, and the cost of the device can be reduced.

本発明装置が従来の装置に対し上記効果が得られる理由を以下に説明する。上記従来の装置では、燃焼部の外側の空気が、円筒状の部材同士の隙間から燃焼ガスの流れる方向と同一方向である燃焼部の内筒の内壁面に沿って流入して、空気の保護膜が形成され、この保護膜が燃焼部の内壁面にSiO2粉末が付着し堆積するのを防止していた。この保護膜は、燃焼部内部の燃焼ガスとの乱流混合により破壊され、SiO2粉末堆積防止効果が得られなくなる。そこで従来は、SiO2粉末堆積防止効果を大きくするために、内筒の壁面から流入する空気量を増加させて、燃焼ガスとの乱流混合を減少させ良好な保護膜を形成しようとしたが、この空気量を増加させると燃焼温度が低下して分解率の低下を招くことが判った。 The reason why the apparatus of the present invention can achieve the above-described effect over the conventional apparatus will be described below. In the above-described conventional apparatus, the air outside the combustion section flows in along the inner wall surface of the inner cylinder of the combustion section in the same direction as the flow direction of the combustion gas from the gap between the cylindrical members, thereby protecting the air. A film was formed, and this protective film prevented the SiO 2 powder from adhering and depositing on the inner wall surface of the combustion part. This protective film is destroyed by turbulent mixing with the combustion gas inside the combustion section, and the SiO 2 powder accumulation preventing effect cannot be obtained. Therefore, in the past, in order to increase the effect of preventing SiO 2 powder accumulation, the amount of air flowing in from the wall surface of the inner cylinder was increased to reduce turbulent mixing with the combustion gas and to form a good protective film. It has been found that increasing the amount of air lowers the combustion temperature and lowers the decomposition rate.

これに対し、本発明装置は燃焼部の内筒の側壁面全域に連通する多数の通気孔が設けられているから、内筒の外部から多数の通気孔を通して内筒全域に効率良く空気が送り込まれる。内筒の側壁面全体から内部に送り込まれた空気は、内筒内部の燃焼ガスと急速に混合して内筒内部の壁面に保護膜として形成され、SiO2粉末の堆積が防止される。 On the other hand, the device according to the present invention is provided with a large number of vent holes communicating with the entire side wall surface of the inner cylinder of the combustion section, so that air is efficiently fed from the outside of the inner cylinder to the entire inner cylinder through the numerous vent holes. It is. The air sent into the inside from the entire side wall surface of the inner cylinder is rapidly mixed with the combustion gas inside the inner cylinder and formed as a protective film on the wall surface inside the inner cylinder, thereby preventing the deposition of SiO 2 powder.

従来の装置では、空気の導入は燃焼筒の壁面に沿った方向である。これに対し本発明装置は、燃焼部の内筒側壁面の全域から燃焼ガスの流れ方向に対して交差する方向に空気を流入させる。その結果、内筒の内部に流入する吸気量を減らしても、十分なSiO2粉末の堆積防止を図ることができる。 In conventional devices, the introduction of air is in the direction along the wall of the combustion cylinder. On the other hand, the device according to the present invention allows air to flow in from the entire area of the inner cylinder side wall surface of the combustion section in a direction intersecting the flow direction of the combustion gas. As a result, even if the amount of intake air flowing into the inner cylinder is reduced, it is possible to sufficiently prevent the SiO 2 powder from being deposited.

従来の装置では、筒状部材同士の隙間から空気を導入するので、導入される空気は燃焼部内部に入ってから壁面と接触する部分で加熱される。従って内筒内の温度低下は避けられない。これに対し本発明の装置は、燃焼部の内筒側壁面の全域の多数の通気孔から外部の空気を内筒内部に導入する。燃焼部の内部に流入する空気は、壁面の多数の通気孔を通過するときに壁面からの伝熱により加熱される。内部に流入する空気が通気孔を通過する際に壁面と接触する面積は、上記従来の装置の隙間と比較すると、はるかに大きな面積であり大きな熱容量を持っている。その結果、壁面から流入する空気は、効率良く熱交換して加熱されるから内筒内部の燃焼温度が低下しない。   In the conventional apparatus, since air is introduced from the gap between the cylindrical members, the introduced air is heated at a portion that comes into contact with the wall surface after entering the combustion portion. Therefore, a temperature drop in the inner cylinder is inevitable. On the other hand, the apparatus of the present invention introduces external air into the inner cylinder from a large number of air holes in the entire area of the inner cylinder side wall surface of the combustion section. The air flowing into the combustion section is heated by heat transfer from the wall surface when passing through a large number of air holes in the wall surface. The area where the air flowing into the interior contacts with the wall surface when passing through the vent hole is much larger than the gap of the conventional apparatus and has a large heat capacity. As a result, the air flowing in from the wall surface is efficiently heat-exchanged and heated, so that the combustion temperature inside the inner cylinder does not decrease.

以下、図面を用いて本発明を詳細に説明する。図1は本発明燃焼式排ガス処理装置の一例を示す概念図である。図1に示す燃焼式排ガス処理装置は、燃焼部Bとなる内筒2及び該内筒2の周囲を覆う外筒3からなる二重筒構造を有する燃焼筒4を備えている。燃焼部Bの内筒2には排ガスを燃焼させるための燃焼ノズル5が接続されている。内筒2は図2(a)、(b)に示すように、円筒体からなり、側壁面21全域に壁面の内外に連通する多数の通気孔が設けられている。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a conceptual diagram showing an example of the combustion exhaust gas treatment apparatus of the present invention. The combustion exhaust gas treatment apparatus shown in FIG. 1 includes a combustion cylinder 4 having a double cylinder structure including an inner cylinder 2 that becomes a combustion section B and an outer cylinder 3 that covers the periphery of the inner cylinder 2. A combustion nozzle 5 for combusting exhaust gas is connected to the inner cylinder 2 of the combustion section B. As shown in FIGS. 2 (a) and 2 (b), the inner cylinder 2 is formed of a cylindrical body, and a large number of vent holes communicating with the inside and outside of the wall surface are provided in the entire side wall surface 21.

燃焼部Bの内筒2の外形形状は特に限定されないが、製造が容易であり、燃焼効率等が良いことから円筒体が好ましい。図2(a)、(b)に示すように、内筒2の側壁面21全域に壁面の内外に連通する多数の通気孔が設けられている。この通気孔は側壁面21の全体にほぼ均一に分布した状態に形成され、燃焼部の内筒2の外部から内部にその壁面を貫通していて、側壁面21の全体から一様に空気が通過可能であればよい。   The outer shape of the inner cylinder 2 of the combustion part B is not particularly limited, but a cylindrical body is preferable because it is easy to manufacture and has good combustion efficiency. As shown in FIGS. 2 (a) and 2 (b), a large number of air holes communicating with the inside and outside of the wall surface are provided in the entire side wall surface 21 of the inner cylinder 2. The vent holes are formed in a substantially uniformly distributed state on the entire side wall surface 21 and penetrate the wall surface from the outside to the inside of the inner cylinder 2 of the combustion part, so that air is uniformly distributed from the entire side wall surface 21. It only needs to be able to pass.

側壁面21に通気孔を有する内筒2の具体例としては、内筒2を金属粒子の焼結体等の多孔質体から構成したもの[図2(a)参照]、複数の金網を積層したものを円筒状に巻回し側壁面を構成したもの[図2(b)参照]、金属板に多数の貫通孔を穿設したものを円筒状に巻回して側壁面を形成したもの、予め金属製円筒を形成しその側壁面に後加工により貫通孔を穿設したもの等が挙げられる。   As a specific example of the inner cylinder 2 having a vent hole in the side wall surface 21, the inner cylinder 2 is composed of a porous body such as a sintered body of metal particles [see FIG. 2 (a)], and a plurality of wire meshes are laminated. The side wall surface is configured by winding it into a cylindrical shape (see FIG. 2 (b)), the side wall surface being formed by winding a metal plate with a large number of through holes in a cylindrical shape, For example, a metal cylinder is formed and a through hole is formed in the side wall surface by post-processing.

図3は内筒2の縦断面図である。例えば図3に示すように、内筒2の側壁面21に設けられている通気孔24は、燃焼排ガスの流れ方向Pに対して、その方向Pと直交に交わる水平方向に、直線的に側壁面21を貫通する孔として形成されている。なお通気孔24の形状は図3に示すような水平方向に直線的に形成する以外に、角度を設けて形成したり、非直線的な貫通孔として形成してもよい。この場合、燃焼部の内筒の側壁部の外側から、内筒の内側に対して燃焼排ガスの流れ方向に傾斜するような角度に形成することで、更に大きな効果が得られる。また、内筒の側壁面を多孔質体から構成した場合には、通気孔は、壁面を直線的に貫通するものではなく、ランダムな方向に通路が形成される。   FIG. 3 is a longitudinal sectional view of the inner cylinder 2. For example, as shown in FIG. 3, the vent hole 24 provided in the side wall surface 21 of the inner cylinder 2 is linearly side with respect to the flow direction P of the combustion exhaust gas in the horizontal direction perpendicular to the direction P. It is formed as a hole that penetrates the wall surface 21. The shape of the vent hole 24 may be formed at an angle or as a non-linear through hole, in addition to being linearly formed in the horizontal direction as shown in FIG. In this case, an even greater effect can be obtained by forming the angle from the outside of the side wall portion of the inner cylinder of the combustion section to be inclined in the flow direction of the combustion exhaust gas with respect to the inner side of the inner cylinder. Further, when the side wall surface of the inner cylinder is formed of a porous body, the vent hole does not penetrate the wall surface linearly, and a passage is formed in a random direction.

内筒2は、天井面22が開口しており、底面23には燃焼ノズル5が接続される。図3に示すように燃焼ノズル5は、該ノズル5の出口が内筒2の内側に臨み、内筒2の底面23の略中央に設けられている。また内筒2の下端部にある底面23のノズル5の周囲には、外部に貫通する孔からなる二次燃焼用空気供給口6が設けられている。また図1に示すように、燃焼部Bの内筒2の燃焼ガスの流出側端部には、複数の筒状部材が組み合わされて、各筒状部材間に隙間ができるように構成された、冷却部Cとして機能する冷却用内筒7が設けられている。   The inner cylinder 2 has a ceiling surface 22 opened, and a combustion nozzle 5 is connected to the bottom surface 23. As shown in FIG. 3, the combustion nozzle 5 is provided at the approximate center of the bottom surface 23 of the inner cylinder 2 with the outlet of the nozzle 5 facing the inner cylinder 2. Further, around the nozzle 5 on the bottom surface 23 at the lower end portion of the inner cylinder 2, a secondary combustion air supply port 6 comprising a hole penetrating to the outside is provided. Also, as shown in FIG. 1, a plurality of cylindrical members are combined in the combustion gas outflow side end of the inner cylinder 2 of the combustion section B so that a gap is formed between the cylindrical members. A cooling inner cylinder 7 that functions as the cooling unit C is provided.

図3に示すように燃焼部Bの内筒2の円筒体の直径D[mm]、燃焼部Bの燃焼排ガスの平均流速V[m/s]、通気孔24の直径d[mm]、通気孔より流入する空気の平均流速v[m/s]とした場合、燃焼排ガスと通気孔より流入する空気の速度比α=v/Vに前記通気孔の直径dを乗じた数値αdが4以下となるように、燃焼部を形成するのが好ましい。具体的には、上記条件を満足するように、運転条件に応じて内筒2の円筒体の直径D、通気孔24の直径d、通気孔24の側壁面の面積に対する割合などを選択すればよい。   As shown in FIG. 3, the diameter D [mm] of the cylindrical body of the inner cylinder 2 of the combustion section B, the average flow velocity V [m / s] of the combustion exhaust gas in the combustion section B, the diameter d [mm] of the vent hole 24, When the average flow velocity v [m / s] of the air flowing in from the pores is set, the numerical value αd obtained by multiplying the velocity ratio α = v / V of the combustion exhaust gas and the air flowing in from the ventilation holes by the diameter d of the ventilation holes is 4 or less. It is preferable to form the combustion part so that Specifically, in order to satisfy the above conditions, the diameter D of the cylindrical body of the inner cylinder 2, the diameter d of the vent hole 24, the ratio to the area of the side wall surface of the vent hole 24, etc. may be selected according to the operating conditions. Good.

図1に示す装置の燃焼ノズル5の入口側5aには、燃料ガス供給路と排ガス供給路とが接続されている(特に図示しない)。燃料ガス供給路からは、燃料ガス等の燃料が供給される。排ガス供給路からは、半導体製造原料ガス等の有害物質を含む被除去成分としての排ガスが供給される。燃料ガスを燃焼ノズル5の先端付近において燃焼させることにより、排ガス中の有害成分が燃焼分解される。   A fuel gas supply path and an exhaust gas supply path are connected to the inlet side 5a of the combustion nozzle 5 of the apparatus shown in FIG. 1 (not shown in particular). Fuel such as fuel gas is supplied from the fuel gas supply path. From the exhaust gas supply path, exhaust gas as a component to be removed including harmful substances such as semiconductor manufacturing raw material gas is supplied. By burning the fuel gas near the tip of the combustion nozzle 5, harmful components in the exhaust gas are burned and decomposed.

燃料ガス中には予め空気が混合されているが、排ガス中の被除去成分を効率良く燃焼させるには、更に火炎の外側から空気を供給する必要がある。このような空気は内筒2の下端部に設けられた二次燃焼用空気供給口6から供給される。二次燃焼用空気供給口6の孔径を調整することで、最適な燃焼が行える空気供給量に調整することができる。   Although air is previously mixed in the fuel gas, it is necessary to supply air from the outside of the flame in order to efficiently burn the components to be removed in the exhaust gas. Such air is supplied from a secondary combustion air supply port 6 provided at the lower end of the inner cylinder 2. By adjusting the hole diameter of the secondary combustion air supply port 6, it is possible to adjust the air supply amount so that optimum combustion can be performed.

本発明装置が対象とする排ガスとは、可燃性成分や有毒成分を含むもの、或いは環境保護の観点から大気中に排出する際に除去したり濃度を低減させる必要のある成分等を含む排ガスであり、例えば半導体を製造する際の各種の工程において排出されるガスである。具体的には、SiH4、SiH2Cl2、GeH4、B2H6、AsH3、PH3、NF3、C2F6等を含むガスが挙げられる。 Exhaust gas targeted by the device of the present invention includes exhaust gas containing flammable components and toxic components, or exhaust gas containing components that need to be removed or reduced in concentration when discharged into the atmosphere from the viewpoint of environmental protection. For example, it is a gas discharged in various processes when manufacturing a semiconductor. Specifically, a gas containing SiH 4 , SiH 2 Cl 2 , GeH 4 , B 2 H 6 , AsH 3 , PH 3 , NF 3 , C 2 F 6 and the like can be given.

また、燃焼ノズルに供給される燃料ガスとしては、水素、メタン、プロパン、ブタン、エチレン、天然ガス、或いはこれらの混合ガスを主燃料とし、これに必要に応じて空気や酸素富化された空気等を助燃ガスとして混合したものが用いられる。   The fuel gas supplied to the combustion nozzle is mainly hydrogen, methane, propane, butane, ethylene, natural gas, or a mixed gas thereof, and air or oxygen-enriched air as necessary. Or the like as a combustion gas is used.

図4は噴霧水冷却型の本発明燃焼式排ガス処理装置の概念図である。噴霧水冷却型の装置の場合には、図4に示すように燃焼部Bの端部に連なる冷却部Cを水冷式として形成すればよい。図4に示す燃焼式排ガス処理装置1は、内筒2及び外筒3からなる燃焼部Bを構成する燃焼筒4に、冷却部Cを構成する水噴霧器8が配管された冷却筒9が接続されている。燃焼部Bの外筒3の上端から燃焼ノズル5が内筒2の上端のバーナー部10に接続されている。また燃焼部Bの外筒3の側面上方には空気供給口11が設けられ、冷却部Cの冷却筒9の側面下方には排気口12が設けられている。   FIG. 4 is a conceptual diagram of the sprayed water cooling type combustion exhaust gas treatment apparatus of the present invention. In the case of the spray water cooling type apparatus, the cooling section C connected to the end of the combustion section B may be formed as a water cooling type as shown in FIG. In the combustion exhaust gas treatment apparatus 1 shown in FIG. 4, a cooling cylinder 9 in which a water sprayer 8 constituting a cooling part C is connected to a combustion cylinder 4 constituting a combustion part B consisting of an inner cylinder 2 and an outer cylinder 3. Has been. The combustion nozzle 5 is connected to the burner portion 10 at the upper end of the inner cylinder 2 from the upper end of the outer cylinder 3 of the combustion portion B. An air supply port 11 is provided above the side surface of the outer cylinder 3 of the combustion unit B, and an exhaust port 12 is provided below the side surface of the cooling cylinder 9 of the cooling unit C.

図4に示す燃焼式排ガス処理装置1では、内筒2の側壁面全域に壁面を連通する通気孔が設けられている。内筒2の天井面側にはバーナー部10が設けられ、底面側が開口した状態になっている。図1に示す冷却筒で冷却するタイプの装置に用いる内筒と比較して、上下の位置関係が逆の状態で使用されるが、基本的な側壁部等の構造は同様である。図4に示す装置1では、該装置1の上部から燃料ガスと一緒に導入された排ガスは、燃焼部Bにおいて空気供給口11などから供給される空気と共に内筒2の内部で燃焼する。そして、燃焼ガスは冷却部に設けられた水噴霧器8から噴霧された水によって冷却され、排気口12から排出される。   In the combustion exhaust gas treatment apparatus 1 shown in FIG. 4, a vent hole that communicates the wall surface is provided over the entire side wall surface of the inner cylinder 2. A burner portion 10 is provided on the ceiling surface side of the inner cylinder 2, and the bottom surface side is open. Compared with the inner cylinder used in the type of cooling apparatus shown in FIG. 1, the upper and lower positional relationship is used in an opposite state, but the structure of the basic side wall and the like is the same. In the apparatus 1 shown in FIG. 4, the exhaust gas introduced together with the fuel gas from the upper part of the apparatus 1 is combusted in the inner cylinder 2 together with the air supplied from the air supply port 11 or the like in the combustion part B. The combustion gas is cooled by the water sprayed from the water sprayer 8 provided in the cooling unit, and is discharged from the exhaust port 12.

以下、本発明の実施例、比較例を示す。
比較例1
図10に示す構造で、SiH4 0.25 l/min、N2 50 l/minを処理することを標準的な排ガスの負荷条件として想定している従来の燃焼式排ガス処理装置を用いて、SiH4 2 l/min、N2 200 l/minの排ガスを1時間燃焼処理した場合に、装置内に導入する吸気量を4m3/min、6.5m3/min、10m3/minと変化させて、内筒に堆積したSiO2粉末の重量を測定した。その結果を図5に、SiH4 0.25 l/min、N2 50 l/minの排ガスを処理した場合の結果を合わせて示す。図5に示すように、吸気量が増えると内筒の燃焼部に導入される空気流量も増加するために、SiH4の燃焼分解に伴い発生するSiO2の粉末堆積量も減少した。
Examples of the present invention and comparative examples are shown below.
Comparative Example 1
With the structure shown in FIG. 10, SiH 4 0.25 l / min and N 2 50 l / min are treated as a standard exhaust gas load condition, and SiH 4 2 l / min, when 1 hour combustion treatment of exhaust gas of N 2 200 l / min, by changing the amount of intake air introduced into the apparatus 4m 3 /min,6.5m 3 / min, and 10 m 3 / min, The weight of the SiO 2 powder deposited on the inner cylinder was measured. The results are shown in FIG. 5 together with the results of treating exhaust gas of SiH 4 0.25 l / min and N 2 50 l / min. As shown in FIG. 5, as the amount of intake air increases, the flow rate of air introduced into the combustion section of the inner cylinder also increases, so the amount of SiO 2 powder deposited due to the combustion decomposition of SiH 4 also decreases.

更に、排ガスとしてNF3を1 l/min供給し希釈N2量を変化させた以外は上記と同一の燃焼条件で装置を運転させた場合のNF3の残存率を測定した結果を図6に示す。図6を見るとNF3の残存率は吸気量の増加に応じて増加している。すなわちこの実験結果は、従来の装置では吸気量を増加させるとNF3の分解率が低下することを示すものである。 Furthermore, Fig. 6 shows the results of measuring the residual ratio of NF 3 when operating the system under the same combustion conditions as above except that NF 3 was supplied at 1 l / min as exhaust gas and the amount of diluted N 2 was changed. Show. As shown in FIG. 6, the residual ratio of NF 3 increases as the intake air amount increases. That is, this experimental result indicates that the decomposition rate of NF 3 decreases in the conventional apparatus when the intake air amount is increased.

実施例1
比較例1の装置の燃焼部の部品(内筒)を、図1に示す円筒形状の壁面全体に多数の貫通孔からなる通気孔が設けられたものとして実施例1の装置を構成した。排ガスの負荷条件を比較例1と同様にSiH4 2 l/min、N2 200 l/minとし、吸気量を4〜10m3/minまで変化させた時の内筒に堆積したSiO2粉末の重量を測定した。結果を図7に示す。図7を見ると比較例1の場合は、吸気量が減少するとSiO2粉末堆積物の重量が多くなるが、実施例1の場合は、吸気量が減少してもSiO2粉末堆積物の重量が増加せず、本発明装置の効果が判る。
Example 1
The apparatus of Example 1 was configured with the combustor part (inner cylinder) of the apparatus of Comparative Example 1 provided with a plurality of through holes formed in the entire cylindrical wall surface shown in FIG. The exhaust gas load conditions were SiH 4 2 l / min and N 2 200 l / min as in Comparative Example 1, and the SiO 2 powder deposited on the inner cylinder when the intake air amount was changed from 4 to 10 m 3 / min. The weight was measured. The results are shown in FIG. As shown in FIG. 7, in the case of Comparative Example 1, the weight of the SiO 2 powder deposit increases as the amount of intake air decreases, but in the case of Example 1, the weight of the SiO 2 powder deposit increases even if the amount of intake air decreases. The effect of the device of the present invention can be understood.

実施例1の装置を用いて、吸気量を4m3/minとし、排ガスとしてNF3を1 l/min供給し、希釈N2量を変化させ、それ以外は上記と同一の燃焼条件で装置を運転させた場合のNF3の残存率を測定した。結果を図8に示す。図8を見ると、実施例1の装置のNF3の残存率は、比較例1の装置の残存率よりも高くならず、分解性能の相違は認められなかった。すなわち図8のグラフより、実施例1の装置は、NF3の分解性能を低下させず、良好なNF3の分解性能を維持しながら、SiO2粉末の堆積を防止することが可能であることが判る。 Using the device of Example 1, the intake air amount was 4 m 3 / min, NF 3 was supplied as exhaust gas at 1 l / min, the dilution N 2 amount was changed, and the device was operated under the same combustion conditions as above. The residual ratio of NF 3 when operating was measured. The results are shown in FIG. Referring to FIG. 8, the residual ratio of NF 3 in the apparatus of Example 1 was not higher than the residual ratio of the apparatus in Comparative Example 1, and no difference in decomposition performance was observed. That the graph of FIG. 8, it is device of Example 1, without reducing the performance of decomposing NF 3, while maintaining the performance of decomposing good NF 3, it is possible to prevent the SiO 2 powder deposition I understand.

[実験例]
実施例1の装置において、内筒の貫通孔の直径を0.5〜1mmに変化させたものを準備し、各々の内筒を用いた場合について、排ガスの負荷条件を比較例1と同様にSiH4 2 l/min、N2 200 l/minとし、吸気量を3〜10m3/minまで変化させた時の内筒に堆積したSiO2粉末の重量を測定した。燃焼部内筒の円筒体の直径D[mm]、燃焼排ガスの平均流速V[m/s]、通気孔の直径d[mm]、通気孔より流入する空気の平均流速v[m/s]とした場合、燃焼排ガスと通気孔より流入する空気の速度比α=v/Vに前記通気孔の直径dを乗じた数値αdと、内筒に堆積したSiO2粉末の重量との関係のグラフを図9に示す。このグラフより、αdの数値が4を超えるとSiO2粉末の堆積重量が増加する。αdの数値が4以下であると、SiO2粉末の堆積防止効果が安定して得られることが判る。
[Experimental example]
In the apparatus of Example 1, those in which the diameter of the through hole of the inner cylinder was changed to 0.5 to 1 mm were prepared, and in the case of using each inner cylinder, the load condition of the exhaust gas was changed to SiH 4 as in Comparative Example 1. The weight of SiO 2 powder deposited on the inner cylinder was measured when the air intake amount was changed from 3 to 10 m 3 / min at 2 l / min and N 2 200 l / min. The diameter D [mm] of the cylinder of the combustion section inner cylinder, the average flow velocity V [m / s] of the combustion exhaust gas, the diameter d [mm] of the vent hole, and the average flow velocity v [m / s] of the air flowing from the vent hole In this case, a graph showing a relationship between a numerical value αd obtained by multiplying the velocity ratio α = v / V of combustion exhaust gas and air flowing in from the vent hole by the diameter d of the vent hole and the weight of the SiO 2 powder deposited on the inner cylinder. It is shown in FIG. From this graph, when the value of αd exceeds 4, the deposited weight of the SiO 2 powder increases. It can be seen that when the value of αd is 4 or less, the deposition preventing effect of the SiO 2 powder can be stably obtained.

本発明燃焼式排ガス処理装置の一例を示す概念図である。It is a conceptual diagram which shows an example of this invention combustion type exhaust gas processing apparatus. (a)、(b)は内筒の態様を示す外観斜視図である。(a), (b) is an external appearance perspective view which shows the aspect of an inner cylinder. 図1の内筒の縦断面図である。FIG. 2 is a longitudinal sectional view of the inner cylinder in FIG. 本発明燃焼式排ガス処理装置の他の例を示す概念図である。It is a conceptual diagram which shows the other example of this invention combustion type exhaust gas processing apparatus. 比較例1の燃焼式排ガス処理装置の吸気量とSiO2堆積量の関係を示すグラフである。6 is a graph showing the relationship between the intake air amount and the SiO 2 deposition amount of the combustion exhaust gas treatment apparatus of Comparative Example 1. 比較例1の燃焼式排ガス処理装置の希釈N2流量とNF3残存率の関係を示すグラフである。4 is a graph showing the relationship between the diluted N 2 flow rate and the NF 3 residual rate of the combustion exhaust gas treatment apparatus of Comparative Example 1. 実施例1の燃焼式排ガス処理装置の吸気量とSiO2堆積量の関係を示すグラフである。3 is a graph showing the relationship between the intake air amount and the SiO 2 deposition amount of the combustion exhaust gas treatment apparatus of Example 1. 実施例1の燃焼式排ガス処理装置の希釈N2流量とNF3残存率の関係を示すグラフである。 3 is a graph showing the relationship between the diluted N 2 flow rate and the NF 3 residual rate of the combustion exhaust gas treatment apparatus of Example 1. 実験例のSiO2堆積量とαdの数値との関係を示すグラフである。It is a graph showing the relationship between the value of the SiO 2 deposition amount and αd experimental examples. 従来の燃焼式排ガス処理装置を示す概念図である。It is a conceptual diagram which shows the conventional combustion type exhaust gas processing apparatus.

符号の説明Explanation of symbols

1 燃焼式排ガス処理装置
2 内筒
3 外筒
4 燃焼筒
5 燃焼ノズル
6 二次燃焼用空気供給口
21 内筒の側壁面
B 燃焼部
C 冷却部
P 燃焼ガスの流れ方向
1 Combustion exhaust gas treatment system
2 Inner cylinder
3 outer cylinder
4 Combustion cylinder
5 Combustion nozzle
6 Secondary combustion air supply port
21 Side wall of inner cylinder
B Combustion section
C Cooling unit
P Combustion gas flow direction

Claims (5)

排ガス中に含まれる有害物質を燃焼させて分解処理する燃焼式排ガス処理装置において、燃焼ノズルが接続され排ガスを燃焼させるための燃焼部を構成する内筒と該内筒の周囲に設けられる外筒とからなる二重筒構造の燃焼筒を備え、前記燃焼部の内筒の側壁面全域に空気を取り入れるための壁面を連通する多数の通気孔が設けられていることを特徴とする燃焼式排ガス処理装置。   In a combustion-type exhaust gas treatment apparatus that burns and decomposes harmful substances contained in exhaust gas, an inner cylinder that constitutes a combustion unit to which a combustion nozzle is connected and burns the exhaust gas, and an outer cylinder that is provided around the inner cylinder Combustion-type exhaust gas characterized in that a plurality of vent holes communicating with the wall surface for taking in air are provided in the entire side wall surface of the inner cylinder of the combustion section. Processing equipment. 燃焼部の内筒が、円筒体の側壁面全域に多数の貫通孔が穿設されたものである請求項1記載の燃焼式排ガス処理装置。   2. The combustion-type exhaust gas treatment apparatus according to claim 1, wherein the inner cylinder of the combustion section has a large number of through holes formed in the entire side wall surface of the cylindrical body. 燃焼部の内筒が、円筒体の側壁面が多孔質体からなるものである請求項1記載の燃焼式排ガス処理装置。   2. The combustion-type exhaust gas treatment apparatus according to claim 1, wherein the inner cylinder of the combustion section has a cylindrical side wall surface made of a porous body. 燃焼部の内筒が、円筒体の側壁面が網状体から形成したものである請求項1記載の燃焼式排ガス処理装置。   2. The combustion type exhaust gas treatment apparatus according to claim 1, wherein the inner cylinder of the combustion section is formed by forming a side wall surface of the cylindrical body from a net-like body. 燃焼部内筒の円筒体の直径D[mm]、燃焼排ガスの平均流速V[m/s]、通気孔の直径d[mm]、通気孔より流入する空気の平均流速v[m/s]とした場合、燃焼排ガスと通気孔より流入する空気の速度比α=v/Vに前記通気孔の直径dを乗じた数値αdが4以下となるように、燃焼部が形成されている請求項2〜4のいずれかに記載の燃焼式排ガス処理装置。
The diameter D [mm] of the cylinder of the combustion section inner cylinder, the average flow velocity V [m / s] of the combustion exhaust gas, the diameter d [mm] of the vent hole, and the average flow velocity v [m / s] of the air flowing from the vent hole In this case, the combustion part is formed so that a numerical value αd obtained by multiplying the velocity ratio α = v / V of the combustion exhaust gas and the air flowing in from the vent hole by the diameter d of the vent hole is 4 or less. The combustion type exhaust gas treatment apparatus according to any one of?
JP2004111290A 2004-04-05 2004-04-05 Combustion exhaust gas treatment equipment Expired - Lifetime JP4177782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111290A JP4177782B2 (en) 2004-04-05 2004-04-05 Combustion exhaust gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111290A JP4177782B2 (en) 2004-04-05 2004-04-05 Combustion exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JP2005291675A true JP2005291675A (en) 2005-10-20
JP4177782B2 JP4177782B2 (en) 2008-11-05

Family

ID=35324793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111290A Expired - Lifetime JP4177782B2 (en) 2004-04-05 2004-04-05 Combustion exhaust gas treatment equipment

Country Status (1)

Country Link
JP (1) JP4177782B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540212A (en) * 2007-09-20 2010-12-24 アプライド マテリアルズ インコーポレイテッド Apparatus and method for detoxifying electronic device manufacturing wastewater with ambient air
CN102235814A (en) * 2011-04-20 2011-11-09 江苏剑桥涂装工程有限公司 Direct-combustion hot blast heater
CN103912884A (en) * 2014-01-13 2014-07-09 沈阳农业大学 Biomass carbonization furnace tail gas treatment device
JP2016522379A (en) * 2013-04-25 2016-07-28 エドワーズ リミテッド Radiant burner
CN111623362A (en) * 2020-07-09 2020-09-04 浙江吉成新材股份有限公司 Atmospheric diffusion type VOC tail gas combustion device and combustion method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540212A (en) * 2007-09-20 2010-12-24 アプライド マテリアルズ インコーポレイテッド Apparatus and method for detoxifying electronic device manufacturing wastewater with ambient air
CN102235814A (en) * 2011-04-20 2011-11-09 江苏剑桥涂装工程有限公司 Direct-combustion hot blast heater
JP2016522379A (en) * 2013-04-25 2016-07-28 エドワーズ リミテッド Radiant burner
CN103912884A (en) * 2014-01-13 2014-07-09 沈阳农业大学 Biomass carbonization furnace tail gas treatment device
US10161628B2 (en) 2014-03-14 2018-12-25 Edwards Limited Radiant burner
CN111623362A (en) * 2020-07-09 2020-09-04 浙江吉成新材股份有限公司 Atmospheric diffusion type VOC tail gas combustion device and combustion method thereof

Also Published As

Publication number Publication date
JP4177782B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
CN101069041B (en) Reactor design to reduce particle deposition during process abatement
KR102282782B1 (en) exhaust gas treatment device
TWI442007B (en) Combustive destruction of noxious substances
JP5437734B2 (en) Combustion exhaust gas treatment equipment
US9956525B2 (en) Apparatus for purifying waste gases for integrated semiconductor
US20040207102A1 (en) Method of cooling high-temperature exhaust gas, apparatus therefor and combustion treatment equipment
JP2011174695A (en) Process abatement reactor
JPH08511615A (en) Exhaust gas purification method and device
US20180259182A1 (en) Systems and methods for improved waste gas abatement
JP5547307B2 (en) Scrubber burner
JP3316619B2 (en) Combustion type exhaust gas treatment equipment
JP2003202108A (en) Flame retardant burner
CN107664304A (en) Perforation flame holder and the system for including the protection to grinding fuel or corrosive fuel
JP4177782B2 (en) Combustion exhaust gas treatment equipment
JP6162793B2 (en) Double coaxial processing module
US10814271B2 (en) Device and system for decomposing and oxidizing gaseous pollutant
JP3460122B2 (en) Combustion type abatement system and burner for combustion abatement system
KR101431452B1 (en) Scrubber System of Heating Type
CN205832842U (en) A kind of emission-control equipment
JP2013160456A (en) Decomposition treatment device of persistent substances
JP4535558B2 (en) Combustion exhaust gas treatment equipment
EP3502560B1 (en) Burner head for exhaust gas treatment device and method for manufacturing same, and combustion chamber for exhaust gas treatment device, and manufacturing method and maintenance method for same
JP4619798B2 (en) Hazardous gas purification equipment
JP6258797B2 (en) Exhaust gas combustion purification system
US20050031500A1 (en) Semiconductor waste gas processing device with flame path

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4177782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term