[go: up one dir, main page]

JP2005282481A - Canister - Google Patents

Canister Download PDF

Info

Publication number
JP2005282481A
JP2005282481A JP2004098381A JP2004098381A JP2005282481A JP 2005282481 A JP2005282481 A JP 2005282481A JP 2004098381 A JP2004098381 A JP 2004098381A JP 2004098381 A JP2004098381 A JP 2004098381A JP 2005282481 A JP2005282481 A JP 2005282481A
Authority
JP
Japan
Prior art keywords
heat storage
storage agent
canister
temperature
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004098381A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshida
博行 吉田
Koji Yamazaki
弘二 山碕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Mahle Filter Systems Japan Corp
Original Assignee
Osaka Gas Co Ltd
Tennex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tennex Corp filed Critical Osaka Gas Co Ltd
Priority to JP2004098381A priority Critical patent/JP2005282481A/en
Priority to US11/091,932 priority patent/US7323041B2/en
Priority to EP05006955A priority patent/EP1582731B1/en
Priority to DE602005001075T priority patent/DE602005001075T2/en
Publication of JP2005282481A publication Critical patent/JP2005282481A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase adsorption amount by equalizing temperature distribution of a canister at a time of adsorption and desorption. <P>SOLUTION: N-eicosane (melting point 36 degrees celsius) of which phase change temperature is higher than atmospheric temperature as phase change material absorbing and desorbing latent heat according to temperature change is microencapsulated by melamine or the like to be made into powder heat accumulating agent, and the same is extruded with binder to be made into a shaped heat accumulating agent A. Although shaped activated carbon is mixed and filled in a case 1 to make blend ratio of the shaped heat accumulating agent A average 20 wt%, the blend ratio continuously changes to be 30wt% at an atmospheric air release opening 6 side part and 10 wt% at a vapor flow inlet 4 side part. Since temperature at the atmospheric air release opening 6 side becomes the highest at a time of adsorption, temperature rise is suppressed by the shaped heat accumulating agent A, temperature distribution of each part is equalized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えば自動車用内燃機関の蒸発燃料の処理などに用いられる活性炭等の吸着材を利用したキャニスタに関する。   The present invention relates to a canister that uses an adsorbent such as activated carbon used for, for example, treatment of evaporated fuel of an internal combustion engine for automobiles.

例えば自動車用内燃機関においては、車両の燃料タンクから蒸発した燃料蒸気の外部への放出を防止するために、燃料蒸気の吸着および脱離が可能なキャニスタが設けられており、車両停止後等に発生する燃料蒸気を一時的に吸着し、かつ、その後の運転中に、吸着していた燃料成分を新気とともに脱離させて内燃機関で燃焼処理するようになっている。ここで、活性炭等の吸着材を用いたキャニスタにおいては、燃料蒸気を吸着する際には、いわゆる発熱反応であるため、キャニスタの温度が上昇し、その温度上昇に伴って吸着性能が低下し、逆に、吸着した燃料成分が脱離する際には、いわゆる吸熱反応であるため、キャニスタの温度が低下し、その温度低下に伴って脱離性能が低下することが知られている。   For example, in an internal combustion engine for an automobile, a canister capable of adsorbing and desorbing fuel vapor is provided in order to prevent the fuel vapor evaporated from the fuel tank of the vehicle from being released to the outside. The generated fuel vapor is temporarily adsorbed, and during the subsequent operation, the adsorbed fuel components are desorbed together with fresh air and burned in the internal combustion engine. Here, in a canister using an adsorbent such as activated carbon, when adsorbing fuel vapor, since it is a so-called exothermic reaction, the temperature of the canister rises, and the adsorption performance decreases as the temperature rises, On the contrary, when the adsorbed fuel component is desorbed, it is a so-called endothermic reaction, so that it is known that the temperature of the canister decreases, and the desorption performance decreases as the temperature decreases.

このようなキャニスタの吸着時ならびに脱離時の温度変化を抑制するために、従来から、活性炭等の吸着材に蓄熱剤を混合することが検討されている。例えば、特許文献1には、金属等の比熱の大きな物質からなる蓄熱剤を吸着材に混合したキャニスタが開示されている。   In order to suppress the temperature change during adsorption and desorption of such a canister, it has been conventionally studied to mix a heat storage agent with an adsorbent such as activated carbon. For example, Patent Document 1 discloses a canister in which a heat storage agent made of a substance having a large specific heat such as a metal is mixed with an adsorbent.

しかし、キャニスタ内に多量の蓄熱剤を配合すると、本来の吸着作用に必要な吸着材の割合が相対的に減少するので、近時、上記の蓄熱剤として、相変化物質を利用したものが注目されている。例えば、特許文献2,3には、相変化に伴って潜熱の吸収および放出を生じる脂肪族炭化水素等の相変化物質をマイクロカプセル中に封入して粉末状の蓄熱剤とし、この粉末状の蓄熱剤を、吸着材と混合して一体に成形し、あるいは粒状の吸着材(活性炭)の表面に付着させて、潜熱蓄熱型吸着材としたものが開示されている。このような相変化に伴う潜熱を利用した蓄熱剤によれば、比較的少量の蓄熱剤でもって、燃料蒸気の吸着および脱離に伴う温度変化が抑制され、吸着性能および脱離性能の向上が図れる。
特開2001−248504号公報 特開2001−145832号公報 特開2003−311118号公報
However, when a large amount of heat storage agent is blended in the canister, the proportion of the adsorbent necessary for the original adsorption action is relatively reduced. Recently, the use of a phase change material as the above heat storage agent has attracted attention. Has been. For example, in Patent Documents 2 and 3, a phase change material such as an aliphatic hydrocarbon that absorbs and releases latent heat in accordance with a phase change is enclosed in a microcapsule to form a powder heat storage agent. A heat storage agent is mixed with an adsorbent and molded integrally, or attached to the surface of a granular adsorbent (activated carbon) to form a latent heat storage adsorbent. According to such a heat storage agent using latent heat accompanying phase change, a relatively small amount of heat storage agent suppresses the temperature change associated with the adsorption and desorption of fuel vapor, thereby improving the adsorption performance and desorption performance. I can plan.
JP 2001-248504 A JP 2001-145832 A JP 2003-31118 A

キャニスタは、直線状あるいはUターン形状等に構成されるケース内の流路の流れ方向の一端に蒸気の流入・流出部が設けられ、他端に大気開放口が設けられるが、蒸気の吸着は、上記流入・流出部側の部分から上記大気開放口側へ向かって徐々に進行し、逆に、蒸気の脱離は、上記大気開放口側の部分から上記流入・流出部側へ向かって徐々に進行するので、吸着時および脱離時のキャニスタの温度分布は一様ではない。従って、蓄熱剤を各部に均一に配合したのでは、蓄熱作用による吸着量向上が必ずしも最良のものとならない。   The canister is provided with an inflow / outflow portion of steam at one end in the flow direction of the flow path in the case configured in a linear shape or a U-turn shape and the like, and an air opening is provided at the other end. , Gradually proceeds from the inlet / outlet side to the atmosphere opening side, and conversely, the desorption of the vapor gradually proceeds from the atmosphere opening side to the inlet / outlet side. Therefore, the temperature distribution of the canister during adsorption and desorption is not uniform. Therefore, if the heat storage agent is blended uniformly in each part, the improvement in the amount of adsorption due to the heat storage action is not necessarily the best.

また、相変化に伴う潜熱を利用した蓄熱剤は、キャニスタの温度変化によって相変化が生じないと、熱の吸収もしくは放出が得られないので、吸着時の温度上昇の抑制と脱離時の温度低下の抑制との双方の効果を得ることは、本質的に困難であり、相変化温度とキャニスタの使用条件下での雰囲気温度との関係から、吸着時もしくは脱離時のいずれか一方にのみ効果が得られることになる。従って、このような相変化物質に特有の性質を考慮して、キャニスタの蓄熱剤として利用する必要がある。   In addition, heat storage agents that use latent heat that accompanies phase change cannot absorb or release heat unless phase change occurs due to temperature changes in the canister. It is inherently difficult to obtain both the effects of suppressing the decrease. From the relationship between the phase change temperature and the ambient temperature under the use conditions of the canister, it is only possible during adsorption or desorption. An effect will be obtained. Therefore, it is necessary to use it as a heat storage agent for a canister in consideration of the properties peculiar to such a phase change material.

本発明のキャニスタは、温度変化に応じて潜熱の吸収および放出を生じる相変化物質を利用した蓄熱剤を、吸着材と混合してケース内に充填するとともに、流れ方向の一端に蒸気の流入・流出部を設け、かつ他端に大気開放口を設けたものであって、特に、上記蓄熱剤の配合割合が一様ではなく、上記流入・流出部側から上記大気開放口側の間の流れ方向に沿って、上記蓄熱剤の配合割合が変化している。   The canister of the present invention mixes a heat storage agent using a phase change material that absorbs and releases latent heat according to a temperature change with an adsorbent and fills the case with the inflow / outflow of steam at one end in the flow direction. An outflow part is provided, and an air opening is provided at the other end, and in particular, the mixing ratio of the heat storage agent is not uniform, and the flow between the inflow / outflow part side and the air opening side The blending ratio of the heat storage agent changes along the direction.

つまり、蒸気の吸着時あるいは脱離時のキャニスタの温度分布を考慮して、蓄熱剤の配合割合が各部で最適なものとなっている。   That is, in consideration of the temperature distribution of the canister at the time of vapor adsorption or desorption, the mixing ratio of the heat storage agent is optimal in each part.

本発明では、好ましくは、キャニスタの使用条件下の雰囲気温度よりも相変化温度が高い蓄熱剤を用いるとともに、この蓄熱剤の配合割合が、上記大気開放口側で相対的に高くなっている。   In the present invention, preferably, a heat storage agent having a phase change temperature higher than the atmospheric temperature under the use conditions of the canister is used, and the blending ratio of the heat storage agent is relatively high on the atmosphere opening side.

あるいは、キャニスタの使用条件下の雰囲気温度よりも相変化温度が低い蓄熱剤を用いるとともに、この蓄熱剤の配合割合が、上記流入・流出部側で相対的に高くなっている。   Or while using the thermal storage agent whose phase change temperature is lower than the atmospheric temperature of the use conditions of a canister, the mixture ratio of this thermal storage agent is relatively high in the said inflow / outflow part side.

つまり、発熱反応である吸着時には、吸着材の温度つまりキャニスタの温度が上昇する。潜熱を利用した蓄熱剤によって、この吸着時の温度上昇を抑制するには、吸着前の雰囲気温度に近い温度状態では相変化前(例えば固相)であって吸着による温度上昇により相変化(例えば液相への変化)する必要があるので、蓄熱剤としては、キャニスタの使用条件下で想定される雰囲気温度よりも相変化温度が高い蓄熱剤が必要である。そして、一般に、吸着時には、大気開放口側の温度が最も高く上昇するが、この大気開放口側の部分に蓄熱剤を多く配合すれば、潜熱として吸収できる熱量が大となる。従って、吸着時におけるキャニスタ各部の温度が、より均一な温度分布に近付く。   That is, at the time of adsorption which is an exothermic reaction, the temperature of the adsorbent, that is, the temperature of the canister rises. In order to suppress the temperature rise at the time of adsorption by the heat storage agent using latent heat, the phase change (for example, solid phase) is performed before the phase change (for example, solid phase) in the temperature state close to the atmospheric temperature before adsorption, and the phase change (for example, by the temperature increase by adsorption) Therefore, as the heat storage agent, a heat storage agent having a phase change temperature higher than the atmospheric temperature assumed under the use conditions of the canister is necessary. In general, at the time of adsorption, the temperature on the air opening side rises highest, but if a large amount of heat storage agent is added to the air opening side, the amount of heat that can be absorbed as latent heat increases. Therefore, the temperature of each part of the canister at the time of adsorption approaches a more uniform temperature distribution.

一方、吸熱反応である脱離時には、吸着材の温度つまりキャニスタの温度が低下する。潜熱を利用した蓄熱剤によって、この脱離時の温度低下を抑制するには、脱離前の雰囲気温度に近い温度状態では相変化前(例えば液相)であって脱離による温度低下により相変化(例えば固相への変化)する必要があるので、蓄熱剤としては、キャニスタの使用条件下で想定される雰囲気温度よりも相変化温度が低い蓄熱剤が必要である。そして、一般に、脱離時には、流入・流出部側の温度が最も低くなるが、この流入・流出部側の部分に蓄熱剤を多く配合すれば、潜熱として放出できる熱量が大となる。従って、脱離時におけるキャニスタ各部の温度が、より均一な温度分布に近付く。   On the other hand, at the time of desorption that is an endothermic reaction, the temperature of the adsorbent, that is, the temperature of the canister, decreases. In order to suppress this temperature drop during desorption with a heat storage agent using latent heat, the phase is changed before the phase change (for example, liquid phase) in the temperature state close to the ambient temperature before desorption, and the phase decreases due to the temperature decrease due to desorption. Since it is necessary to change (for example, change to a solid phase), as the heat storage agent, a heat storage agent having a phase change temperature lower than the atmospheric temperature assumed under the use conditions of the canister is required. In general, the temperature on the inflow / outflow part side is the lowest at the time of desorption, but if a large amount of heat storage agent is added to the inflow / outflow part side, the amount of heat that can be released as latent heat increases. Therefore, the temperature of each part of the canister at the time of desorption approaches a more uniform temperature distribution.

また本発明では、各部の蓄熱剤の配合割合(吸着材と蓄熱剤との総量に対する蓄熱剤の割合)が、0〜40wt%の範囲内にあることが望ましい。蓄熱剤が過度に多いと、本来の吸着作用を有する吸着材の割合が相対的に減少し、温度変化を抑制しても吸着量の面では却って不利となる。   Moreover, in this invention, it is desirable for the mixture ratio (ratio of the heat storage agent with respect to the total amount of an adsorbent and a heat storage agent) of each part to exist in the range of 0-40 wt%. If the amount of the heat storage agent is excessively large, the ratio of the adsorbent having the original adsorption action is relatively reduced, and even if the temperature change is suppressed, it is disadvantageous in terms of the adsorption amount.

本発明の一つの態様では、上記ケース内が上記流れ方向に沿って複数の領域に区画されており、各領域でそれぞれ蓄熱剤の配合割合が異なるように、配合割合が段階的に変化している。蓄熱剤を混合しない吸着材のみが収容される領域があってもよい。   In one aspect of the present invention, the inside of the case is partitioned into a plurality of regions along the flow direction, and the blending ratio changes stepwise so that the blending ratio of the heat storage agent is different in each region. Yes. There may be a region in which only the adsorbent that does not mix the heat storage agent is accommodated.

なお、各領域はガスが通流可能な仕切壁によって物理的に区画されていてもよく、あるいは物理的な仕切壁を具備せずに複数の領域に区画された構成であってもよい。   Each region may be physically partitioned by a partition wall through which gas can flow, or may be configured to be partitioned into a plurality of regions without having a physical partition wall.

また本発明の一つの態様では、複数の領域に明確に区画されることなく、蓄熱剤の配合割合が、上記の流れ方向に沿って、連続的に変化している。   Moreover, in one aspect of the present invention, the blending ratio of the heat storage agent is continuously changed along the flow direction without being clearly divided into a plurality of regions.

上記蓄熱剤としては、温度変化に応じて潜熱の吸収および放出を生じる相変化物質を利用したものであれば、種々の形態のものを利用することが可能であり、特に限定されるものではないが、例えば、前述した特許文献2あるいは特許文献3等に開示されているような温度変化に応じて潜熱の吸収および放出を生じる相変化物質をマイクロカプセル中に封入してなる微細な蓄熱剤を利用することができる。   The heat storage agent is not particularly limited as long as it uses a phase change material that absorbs and releases latent heat according to a temperature change, and various forms can be used. However, for example, a fine heat storage agent in which a phase change material that absorbs and releases latent heat in response to a temperature change as disclosed in Patent Document 2 or Patent Document 3 is enclosed in a microcapsule. Can be used.

そして、好ましくは、上記蓄熱剤は、相変化物質をマイクロカプセル中に封入してなる微細な蓄熱剤を、バインダとともに粒状に成形した成形蓄熱剤からなり、この成形蓄熱剤が、粒状の吸着材と混合して用いられる。   Preferably, the heat storage agent comprises a molded heat storage agent in which a fine heat storage agent formed by encapsulating a phase change substance in a microcapsule is molded into a particle together with a binder, and the molded heat storage agent is a granular adsorbent. Used in combination with.

マイクロカプセル化した微細は蓄熱剤は、前述した特許文献2あるいは特許文献3等によって公知であり、上記相変化物質は、例えば、融点が10℃〜80℃の有機化合物および無機化合物からなる。例えば、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘンイコサン、ドコサンなどの直鎖の脂肪族炭化水素、天然ワックス、石油ワックス、LiNO3・3H2O、Na2SO4・10H2O、Na2HPO4・12H2Oなどの無機化合物の水和物、カプリン酸、ラウリル酸等の脂肪酸、炭素数が12から15の高級アルコール、バルミチン酸メチル、ステアリン酸メチル等のエステル等が挙げられる。上記相変化物質は、上記から選ばれる2種類以上の化合物を併用してもよい。そして、これらを芯材料として、コアセルベーション法、in−situ法(界面反応法)等の公知の方法により、マイクロカプセルとしたものを用いることができる。マイクロカプセルの外殻としては、メラミン、ゼラチン、ガラス等の公知の材料が使用され得る。このマイクロカプセル化した蓄熱剤の粒子径は、数μm〜数十μm程度が好ましい。マイクロカプセルが過度に小さいと、カプセルを構成する外殻が占める割合が増え、溶解・凝固を繰り返す相変化物質の割合が相対的に減少するので、粉末状蓄熱剤の単位体積当たりの蓄熱量が低下する。逆に、マイクロカプセルが過度に大きくても、カプセルの強度が必要となってくるため、やはりカプセルを構成する外殻が占める割合が増え、粉末状蓄熱剤の単位体積当たりの蓄熱量が低下する。 The microencapsulated fine heat storage agent is known from Patent Document 2 or Patent Document 3 described above, and the phase change material is composed of, for example, an organic compound and an inorganic compound having a melting point of 10 ° C. to 80 ° C. For example, linear aliphatic hydrocarbons such as tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosane, heikosan, docosan, natural wax, petroleum wax, LiNO 3 .3H 2 O, Na 2 SO 4 .10H 2 O Hydrates of inorganic compounds such as Na 2 HPO 4 · 12H 2 O, fatty acids such as capric acid and lauric acid, higher alcohols having 12 to 15 carbon atoms, esters such as methyl palmitate and methyl stearate It is done. The phase change material may be used in combination of two or more compounds selected from the above. And these can be used as core materials, and microcapsules can be used by a known method such as a coacervation method or an in-situ method (interface reaction method). As the outer shell of the microcapsule, known materials such as melamine, gelatin, and glass can be used. The particle size of the microencapsulated heat storage agent is preferably about several μm to several tens of μm. If the microcapsule is too small, the proportion of the outer shell constituting the capsule increases, and the proportion of the phase change material that repeats dissolution and solidification relatively decreases, so the amount of heat storage per unit volume of the powdered heat storage agent is reduced. descend. On the contrary, even if the microcapsule is excessively large, the strength of the capsule becomes necessary, so the ratio of the outer shell constituting the capsule also increases, and the heat storage amount per unit volume of the powder heat storage agent decreases. .

本発明では、好ましくは、上記のマイクロカプセル化した粉末状蓄熱剤を、バインダとともに適宜な形状および寸法に成形し、粒状の成形蓄熱剤とする。このように蓄熱剤のみを成形することで、成形時のマイクロカプセルの破壊は最小限のものとなる。バインダとしては、種々のものを用いることができるが、最終的なキャニスタとして要求される温度や溶媒に対する安定性ならびに強度の上から、フェノール樹脂やアクリル樹脂等の熱硬化性樹脂が好適である。そして、この粒状の成形蓄熱剤を同じく粒状の吸着材と混合して用いることで、所期の蓄熱作用を確保しつつ、振動を受けたときの両者の分離を抑制することができる。さらに粒状をなす成形蓄熱剤や吸着材の間に適宜な間隙が確保され、吸着・脱離作用を損なうことがないとともに、キャニスタとしての圧力損失が少ない。また、吸着材の外表面が粉末状蓄熱剤によって覆われることがないので、吸着速度の低下等の悪影響を生じることがない。粒状の成形蓄熱剤の粒子径は、例えば、数百μm〜数mm程度とする。   In the present invention, preferably, the above microencapsulated powder heat storage agent is molded into an appropriate shape and size together with a binder to obtain a granular shaped heat storage agent. By molding only the heat storage agent in this way, the destruction of the microcapsules during molding is minimized. Various binders can be used, but a thermosetting resin such as a phenol resin or an acrylic resin is preferable in terms of stability and strength with respect to temperature and solvent required as a final canister. And by using this granular shaped heat storage agent mixed with the same granular adsorbent, separation of the two when subjected to vibration can be suppressed while ensuring the desired heat storage effect. Furthermore, an appropriate gap is secured between the granular shaped heat storage agent and the adsorbent, so that the adsorption / desorption action is not impaired and the pressure loss as a canister is small. Further, since the outer surface of the adsorbent is not covered with the powder heat storage agent, there is no adverse effect such as a decrease in the adsorption rate. The particle diameter of the granular shaped heat storage agent is, for example, about several hundred μm to several mm.

粒状の成形蓄熱剤の大きさと粒状の吸着材の大きさは、両者の経時的な分離を抑制するとともにガスが流れる流路を適切に確保するために、なるべく同じ大きさもしくは近似した大きさであることが望ましい。具体的には、成形蓄熱剤の平均粒子径が、吸着材の平均粒子径の10%〜300%であることが望ましく、成形蓄熱剤の平均粒子径が、吸着材の平均粒子径の50%〜150%であることがさらに望ましい。   The size of the granular shaped heat storage agent and the size of the granular adsorbent should be the same or approximate as much as possible in order to prevent separation of both of them over time and to ensure an appropriate flow path for gas flow. It is desirable to be. Specifically, the average particle size of the molded heat storage agent is desirably 10% to 300% of the average particle size of the adsorbent, and the average particle size of the molded heat storage agent is 50% of the average particle size of the adsorbent. More desirably, it is ˜150%.

上記吸着材としては、公知の種々のものを利用可能であるが、例えば、活性炭を用いることができる。そして、所定寸法に個々に成形したものを用いてもよく、あるいは、破砕した活性炭等の吸着材を、所定のメッシュに分類して用いてもよい。なお、同様に、粒状の成形蓄熱剤についても、当初から所定寸法に形成するほか、大きな寸法に成形したものを破砕して用いることも可能である。   Various known materials can be used as the adsorbent, and for example, activated carbon can be used. And what was individually shape | molded to the predetermined dimension may be used, or you may classify | categorize and use adsorbents, such as crushed activated carbon, for a predetermined mesh. Similarly, the granular shaped heat storage agent can be formed into a predetermined size from the beginning, and can be used after being crushed into a large size.

好ましい形状としては、成形蓄熱剤および吸着材が、それぞれ、直径1〜3mmでかつ長さ1〜5mmの円柱状をなしている。この円柱状の成形蓄熱剤および吸着材は、例えば連続的に押し出したものを切断ないしは破断することによって容易に得られる。このような円柱状のもの同士を組み合わせることによって、経時的な両者の分離がより確実に抑制される。   As a preferable shape, the molded heat storage agent and the adsorbent each have a cylindrical shape having a diameter of 1 to 3 mm and a length of 1 to 5 mm. This cylindrical shaped heat storage agent and adsorbent can be easily obtained by, for example, cutting or breaking a continuously extruded material. By combining such cylindrical objects, separation of both over time is more reliably suppressed.

この発明によれば、吸着時ないしは脱離時に、キャニスタの温度分布がより均一となるような形で潜熱の吸収による温度上昇の抑制あるいは潜熱の放出による温度低下の抑制を行うことができ、効果的に吸着量を向上させることができる。   According to the present invention, at the time of adsorption or desorption, the temperature distribution of the canister can be suppressed more uniformly by suppressing the increase in temperature due to the absorption of latent heat or the decrease in temperature due to the release of latent heat. Thus, the adsorption amount can be improved.

以下、本発明の具体的な実施例について説明する。   Hereinafter, specific examples of the present invention will be described.

メラミン粉末5gに37%ホルムアルデヒド水溶液6.5gと水10gを加え、pHを8に調整した後、約70℃まで加熱し、メラミン−ホルムアルデヒド初期縮合物水溶液を得た。   6.5 g of 37% formaldehyde aqueous solution and 10 g of water were added to 5 g of melamine powder and the pH was adjusted to 8, and then heated to about 70 ° C. to obtain an aqueous solution of melamine-formaldehyde initial condensate.

pHを4.5に調整したスチレン無水酸共重合体のナトリウム塩水溶液100g中に、相変化物質としてn−エイコサン80gを溶解した混合液を、上記メラミン−ホルムアルデヒド初期縮合物水溶液に激しく攪拌しながら添加し、乳化を行ったのち、pHを9に調整してカプセル化を行った。このカプセル体分散液の溶媒を乾燥により除去し、メラミンの膜で覆われたn−エイコサンのマイクロカプセル粉末体(蓄熱剤)を得た。なお、n−エイコサンの相変化温度つまり融点は、36℃であり、これは、キャニスタの使用条件下の雰囲気温度を25℃と想定した場合に、該雰囲気温度よりも高いものとなる。   While vigorously stirring the above melamine-formaldehyde initial condensate aqueous solution, a mixed solution prepared by dissolving 80 g of n-eicosane as a phase change substance in 100 g of a sodium salt aqueous solution of a styrene anhydride copolymer adjusted to pH 4.5. After addition and emulsification, the pH was adjusted to 9 and encapsulation was performed. The solvent of the capsule dispersion was removed by drying to obtain an n-eicosane microcapsule powder (heat storage agent) covered with a melamine film. The phase change temperature, that is, the melting point of n-eicosane is 36 ° C., which is higher than the atmospheric temperature when the atmospheric temperature under the use condition of the canister is assumed to be 25 ° C.

この粉末状の蓄熱剤にバインダとしてカルボキシメチルセルロース水溶液を添加して、混合した後、円柱状に押し出し成形し、これを乾燥させるとともに切断して、直径約2mm、長さ1〜5mmの円柱状成形蓄熱剤(A)を得た。   A carboxymethyl cellulose aqueous solution as a binder is added to this powder heat storage agent and mixed, then extruded into a cylindrical shape, dried and cut to form a cylindrical shape having a diameter of about 2 mm and a length of 1 to 5 mm. A heat storage agent (A) was obtained.

また、同様の押し出し成形により、直径約2mm、長さ1〜5mmの円柱状に成形された木質系成形活性炭を得た。   In addition, a wood-based activated carbon molded into a cylindrical shape having a diameter of about 2 mm and a length of 1 to 5 mm was obtained by the same extrusion molding.

平均の配合割合として、上記の成形蓄熱剤(A)が20wt%、上記の成形活性炭が80wt%、の割合となるように混合したものを、図1に示すように、ナイロン樹脂製の吸着材容量が900ccのケース1に充填し、キャニスタを得た。特に、蒸気流入口4および蒸気流出口5を備えた図左方の端部で、成形蓄熱剤(A)が10wt%、成形活性炭が90wt%、となり、大気開放口6を備えた図右方の端部で、成形蓄熱剤(A)が30wt%、成形活性炭が70wt%、となり、両者間で成形蓄熱剤(A)の配合割合が連続的に変化するようにした。従って、ケース1の長手方向の中央部では、成形蓄熱剤(A)が20wt%、成形活性炭が80wt%、となる。   As shown in FIG. 1, an adsorbent made of nylon resin was mixed so that the above-mentioned molded heat storage agent (A) was 20 wt% and the above-mentioned molded activated carbon was 80 wt% as an average blending ratio. A case 1 having a capacity of 900 cc was filled to obtain a canister. In particular, at the left end of the figure provided with the steam inlet 4 and the steam outlet 5, the molded heat storage agent (A) is 10 wt%, the molded activated carbon is 90 wt%, and the right side of the figure provided with the atmosphere opening 6 At the end, the molded heat storage agent (A) was 30 wt% and the molded activated carbon was 70 wt%, and the blending ratio of the molded heat storage agent (A) was continuously changed between the two. Accordingly, in the central portion of the case 1 in the longitudinal direction, the molded heat storage agent (A) is 20 wt% and the molded activated carbon is 80 wt%.

なお、このような連続的に変化する分布は、ケース1内に充填する際に、成形蓄熱剤(A)と成形活性炭とを混合しつつ充填するようにし、かつ両者の供給速度をそれぞれ充填中に変化させることにより、容易に実現できる。   In addition, such a continuously changing distribution is such that when the case 1 is filled, the molded heat storage agent (A) and the molded activated carbon are mixed while being mixed, and the supply rates of both are being filled. It can be easily realized by changing to.

実施例1と同じ成形蓄熱剤(A)と成形活性炭とを用い、図2に示すように、ケース1内を、流れ方向に沿って3つの領域に区画するように、成形蓄熱剤(A)の配合割合を段階的に変化させた。成形蓄熱剤(A)を10wt%、成形活性炭を90wt%、の割合で均一に混合したものを、蒸気流入口4,蒸気流出口5側の第1領域11に充填し、成形蓄熱剤(A)を20wt%、成形活性炭を80wt%、の割合で均一に混合したものを、中央の第2領域12に充填し、成形蓄熱剤(A)を30wt%、成形活性炭を70wt%、の割合で均一に混合したものを、大気開放口6側の第3領域13に充填した。
(比較例1)
実施例1,2で用いた円柱状の木質系成形活性炭のみを、実施例1,2と同じナイロン樹脂製のケース1に充填し、キャニスタとした。
(比較例2)
実施例1,2と同じ成形蓄熱剤(A)を20wt%、成形活性炭を80wt%、の割合で均一に混合したものを、実施例1,2と同じナイロン樹脂製のケース1の全体に充填し、キャニスタを得た。
Using the same molded heat storage agent (A) and molded activated carbon as in Example 1, as shown in FIG. 2, the molded heat storage agent (A) is divided into three regions along the flow direction as shown in FIG. The blending ratio was changed stepwise. What was uniformly mixed at a rate of 10 wt% of the molded heat storage agent (A) and 90 wt% of the molded activated carbon was filled in the first region 11 on the steam inlet 4 side and the steam outlet 5 side, and the molded heat storage agent (A ) 20 wt% and molded activated carbon 80 wt% uniformly mixed in the second region 12 in the center, molded heat storage agent (A) 30 wt%, molded activated carbon 70 wt% The uniformly mixed material was filled in the third region 13 on the atmosphere opening 6 side.
(Comparative Example 1)
Only the cylindrical wood-based molded activated carbon used in Examples 1 and 2 was filled in the same nylon resin case 1 as in Examples 1 and 2 to obtain a canister.
(Comparative Example 2)
Fill the entire case 1 made of the same nylon resin as in Examples 1 and 2 with 20 wt% of the same molded heat storage agent (A) as in Examples 1 and 2 and 80 wt% in the ratio of molded activated carbon. And got the canister.

図3は、上記キャニスタのより具体的な構造を示すものであり、上記ケース1は円筒状をなし、一端が流入・流出部側端壁2によって閉塞されているとともに、他端が大気開放口側端壁3によって閉塞されている。上記流入・流出部側端壁2には、燃料タンクに接続される蒸気流入口4とエンジン吸気路に接続される蒸気流出口5とが並んで形成され、上記大気開放口側端壁3には、大気に開放される大気開放口6が形成されている。上記流入・流出部側端壁2の内側には、空間7を残すように周縁にフランジを備えた多孔板8と不織布等からなるシート状フィルタ部材9とが重ねて配置されている。上記大気開放口側端壁3の内側には、同様に、空間23となる間隙を残して、平板状の多孔板21とシート状フィルタ部材22とが配置されており、2つのシート状フィルタ部材9,22の間が、吸着材を充填する吸着材収容空間10となっている。大気開放口側端壁3と上記多孔板21との間には、複数の圧縮コイルばね24が配設され、これによって、吸着材収容空間10内に充填された吸着材に適宜な押圧力が付与されている。   FIG. 3 shows a more specific structure of the canister. The case 1 has a cylindrical shape, one end is closed by the inflow / outflow part side end wall 2 and the other end is opened to the atmosphere. It is blocked by the side end wall 3. A steam inlet 4 connected to the fuel tank and a steam outlet 5 connected to the engine intake passage are formed side by side on the inflow / outflow portion side end wall 2. Is formed with an air opening 6 that is open to the atmosphere. Inside the inflow / outflow portion side end wall 2, a perforated plate 8 having a flange on the periphery and a sheet-like filter member 9 made of nonwoven fabric or the like are disposed so as to leave a space 7. Similarly, a flat porous plate 21 and a sheet-like filter member 22 are arranged on the inner side of the end wall 3 on the air opening side, leaving a gap as a space 23, and two sheet-like filter members are arranged. Between 9 and 22 is an adsorbent accommodating space 10 filled with an adsorbent. A plurality of compression coil springs 24 are disposed between the air opening side end wall 3 and the perforated plate 21, whereby an appropriate pressing force is applied to the adsorbent filled in the adsorbent accommodating space 10. Has been granted.

実施例1では、上述のように、この吸着材収容空間10に充填される成形活性炭と成形蓄熱剤(A)との配合割合が連続的に変化する。また、実施例2では、上述のように、上記吸着材収容空間10が、第1領域11〜第3領域13に区画され、それぞれに異なる配合割合の成形蓄熱剤と成形活性炭とが充填されているが、図3に示すように、各領域の間に、必ずしも物理的な仕切壁は必要ない。   In Example 1, as described above, the blending ratio of the molded activated carbon filled in the adsorbent accommodating space 10 and the molded heat storage agent (A) continuously changes. Further, in Example 2, as described above, the adsorbent accommodating space 10 is partitioned into the first region 11 to the third region 13, and each of them is filled with a molded heat storage agent and a molded activated carbon having different blending ratios. However, as shown in FIG. 3, a physical partition wall is not necessarily required between the regions.

図4は、上記キャニスタの異なる具体例を示しており、この構成例では、配合割合が段階的に異なる複数の領域の間に、それぞれの成形蓄熱剤が混合することのないように、物理的な仕切壁26が設けられている。この仕切壁26は、不織布等の通気性を有する円形のフィルタ部材からなり、隣接する領域の間に介在しているが、ケース1に対しては、特に固定されていない。なお、図4は、仕切壁26により2つの領域に区画した構成を例示しているが、実施例2のように3つあるいはそれ以上の領域に区画することが可能である。   FIG. 4 shows different specific examples of the canister, and in this configuration example, physical molding heat storage agents are not mixed between a plurality of regions having different blending ratios in stages. A partition wall 26 is provided. The partition wall 26 is made of a circular filter member having air permeability such as a nonwoven fabric and is interposed between adjacent regions, but is not particularly fixed to the case 1. FIG. 4 illustrates the configuration partitioned into two regions by the partition wall 26, but it is possible to partition into three or more regions as in the second embodiment.

また、本発明は、図5に示すように、Uターン形状の流路を有するキャニスタにおいても、同様に適用することが可能である。すなわち、この構成例では、ケース1は、全体として直方体形状をなし、かつ中間の隔壁31によって図上方の第1ケース部32と図下方の第2ケース部33とに分割されている。第1,第2ケース部32,33は、いずれも断面矩形の筒状をなし、第1ケース部32の一端が流入・流出部側端壁2によって閉塞されているとともに、第2ケース部33の一端が大気開放口側端壁3によって閉塞されている。上記流入・流出部側端壁2には、燃料タンクに接続される蒸気流入口4とエンジン吸気路に接続される蒸気流出口5とが並んで形成され、上記大気開放口側端壁3には、大気に開放される大気開放口6が形成されている。つまり、これら三者が、ケース1の同じ面に配置されている。上記流入・流出部側端壁2の内側には、空間7となる間隙を残して、多孔板8とシート状フィルタ部材9とが重ねて配置されており、上記大気開放口側端壁3の内側には、同様に、空間23となる間隙を残して、平板状の多孔板21とシート状フィルタ部材22とが重ねて配置されている。   Further, as shown in FIG. 5, the present invention can be similarly applied to a canister having a U-turn channel. That is, in this configuration example, the case 1 has a rectangular parallelepiped shape as a whole and is divided into a first case part 32 in the upper part of the figure and a second case part 33 in the lower part of the figure by an intermediate partition wall 31. Each of the first and second case portions 32 and 33 has a cylindrical shape with a rectangular cross section. One end of the first case portion 32 is closed by the inflow / outflow portion side end wall 2 and the second case portion 33. Is closed by the atmosphere opening port side end wall 3. A steam inlet 4 connected to the fuel tank and a steam outlet 5 connected to the engine intake passage are formed side by side on the inflow / outflow portion side end wall 2. Is formed with an air opening 6 that is open to the atmosphere. That is, these three members are arranged on the same surface of the case 1. A perforated plate 8 and a sheet-like filter member 9 are disposed inside the inflow / outflow portion side end wall 2 so as to leave a space to be a space 7. Similarly, on the inner side, the plate-like perforated plate 21 and the sheet-like filter member 22 are disposed so as to overlap each other, leaving a gap as a space 23.

またケース1の他端に、連通部端壁34が取り付けられているとともに、上記第1,第2ケース部32,33の他端開口面を覆うように、不織布等からなるフィルタ部材35が配置されている。このフィルタ部材35は、上記連通部端壁34に設けられた複数個の突起部34aによって支持されており、これによって、連通部端壁34とフィルタ部材35との間に、第1ケース部32と第2ケース部33とを連通する連通路となる空間36が形成されている。従って、第1ケース部32内に、2つのフィルタ部材35,9に挟まれた第1の吸着材収容空間10aが構成され、かつ第2ケース部33内に、2つのフィルタ部材35,22に挟まれた第2の吸着材収容空間10bが構成され、これら2つの吸着材収容空間10a,10bが、流路として実質的に直列に接続されている。なお、大気開放口側端壁3と多孔板21との間、および流入・流出部側端壁2と多孔板8との間、の双方に、それぞれ複数の圧縮コイルばね24が配設されている。   In addition, a communication member end wall 34 is attached to the other end of the case 1, and a filter member 35 made of nonwoven fabric or the like is disposed so as to cover the other end opening surfaces of the first and second case portions 32 and 33. Has been. The filter member 35 is supported by a plurality of projecting portions 34 a provided on the communication portion end wall 34, whereby the first case portion 32 is interposed between the communication portion end wall 34 and the filter member 35. A space 36 is formed as a communication path that communicates with the second case portion 33. Accordingly, the first adsorbent accommodating space 10 a sandwiched between the two filter members 35, 9 is configured in the first case portion 32, and the two filter members 35, 22 are formed in the second case portion 33. A sandwiched second adsorbent accommodating space 10b is configured, and these two adsorbent accommodating spaces 10a and 10b are connected substantially in series as flow paths. A plurality of compression coil springs 24 are disposed between the air release port side end wall 3 and the perforated plate 21 and between the inflow / outflow portion side end wall 2 and the perforated plate 8. Yes.

このようなUターン形状のキャニスタにおいても、図3,図4のような直線状のキャニスタと比較して、キャニスタとしての本質は何ら変わるものではなく、上記実施例1あるいは実施例2の蓄熱剤の分布を同様に適用することができる。   Even in such a U-turn canister, the essence as a canister is not different from that of a linear canister as shown in FIGS. 3 and 4, and the heat storage agent of Example 1 or Example 2 is used. Can be applied as well.

図6は、上記のUターン形状のキャニスタとして、上記実施例1の配合割合の分布を適用した例を示す。同様に、図7は、上記のUターン形状のキャニスタとして、上記実施例2の配合割合の分布を適用した例を示す。   FIG. 6 shows an example in which the compounding ratio distribution of Example 1 is applied as the U-turn canister. Similarly, FIG. 7 shows an example in which the distribution of the blending ratio of Example 2 is applied as the U-turn canister.

上記の各実施例と比較例2とを用いてキャニスタの吸着量を測定したところ、図8に示すような結果が得られた。   When the amount of adsorption of the canister was measured using each of the above Examples and Comparative Example 2, a result as shown in FIG. 8 was obtained.

すなわち、成形活性炭に成形蓄熱剤(A)を均一に配合した比較例2に比較して、成形蓄熱剤(A)を最適な分布で配合した実施例1,2では、成形蓄熱剤(A)の使用量が同様であるにも拘わらず、吸着量の大幅な向上がみられた。   That is, in Examples 1 and 2 in which the molded heat storage agent (A) was blended in an optimal distribution as compared with Comparative Example 2 in which the molded heat storage agent (A) was uniformly blended with the molded activated carbon, the molded heat storage agent (A) In spite of the same amount used, the amount of adsorption was greatly improved.

なお、吸着量の測定方向は、次の通りである。まず、雰囲気温度25℃の下で、図9に示す試験回路51の燃料容器53に試験用のキャニスタを接続し、エアフローメータ52の入口52a,52bを通して所定流量(1.0L/min)の空気を、燃料容器53内の液体燃料(ガソリン)53a中に吹き込み、バブリングを発生させて、その燃料蒸気53bをキャニスタに吸着させる。そして、キャニスタの大気開放口6側からの漏れ(破過)を、漏れ検知装置54で測定し、漏れ量が2.0gとなるまで、吸着させる。次に、キャニスタを図10に示す試験回路61に組み替え、真空ポンプ62およびエアフローメータ63を用いて、キャニスタに大気開放口6側から空気を搬送し、ガソリン蒸気の脱離を行う。以上のガソリン蒸気の吸着・脱離を6回繰り返し、最終3回におけるガソリン蒸気の吸着量を平均して、各キャニスタの吸着量とした。   In addition, the measurement direction of the adsorption amount is as follows. First, a test canister is connected to the fuel container 53 of the test circuit 51 shown in FIG. 9 at an ambient temperature of 25 ° C., and air at a predetermined flow rate (1.0 L / min) is passed through the inlets 52 a and 52 b of the air flow meter 52. Is blown into the liquid fuel (gasoline) 53a in the fuel container 53 to generate bubbling, and the fuel vapor 53b is adsorbed to the canister. Then, leakage (breakthrough) from the atmosphere opening 6 side of the canister is measured by the leakage detection device 54 and adsorbed until the leakage amount becomes 2.0 g. Next, the canister is replaced with the test circuit 61 shown in FIG. 10, and air is conveyed from the atmosphere opening 6 side to the canister using the vacuum pump 62 and the air flow meter 63 to desorb gasoline vapor. The above adsorption / desorption of gasoline vapor was repeated 6 times, and the adsorption amount of gasoline vapor in the last 3 times was averaged to obtain the adsorption amount of each canister.

図11は、実施例1,2および比較例1,2について、キャニスタ内の各部の温度分布、特に、吸着終了時の温度分布を測定した結果を示している。キャニスタ内の温度は、基本的に、成形活性炭のみを用いた比較例1に見られるように、吸着時には、雰囲気温度(25℃)よりも温度上昇し、かつ大気開放口6側ほど高い温度となる。融点が36℃である成形蓄熱剤(A)の相変化物質は、雰囲気温度の下では固相であり、融点以上に温度上昇すると潜熱を吸収して液相に相変化するため、この成形蓄熱剤(A)を含む実施例1,2および比較例2は、その潜熱吸収作用によって、比較例1よりも温度が低く抑制される。ここで、実施例1,2は、温度上昇が最も顕著な大気開放口6側部分において成形蓄熱剤(A)により吸収し得る熱量が、比較例2よりも大となり、従って、この大気開放口6側部分での温度を、比較例2よりも低く抑制することができる。そのため、大気開放口6側部分における吸着材の吸着性能の低下を抑制できる。なお、蒸気流入口4,蒸気流出口5側部分についてみると、実施例1,2は比較例2よりも成形蓄熱剤(A)が少ないため温度が高くなるが、絶対的な温度そのものが大気開放口6側部分よりも低いので、キャニスタ全体の吸着量に与える悪影響は相対的に小さく、キャニスタ全体の吸着量としては、上述したように、比較例2よりも向上することになる。   FIG. 11 shows the results of measuring the temperature distribution of each part in the canister, particularly the temperature distribution at the end of adsorption, for Examples 1 and 2 and Comparative Examples 1 and 2. The temperature inside the canister is basically higher than the ambient temperature (25 ° C.) during adsorption and higher toward the atmosphere opening 6 side, as seen in Comparative Example 1 using only molded activated carbon. Become. The phase change material of the molding heat storage agent (A) having a melting point of 36 ° C. is a solid phase under the atmospheric temperature, and when the temperature rises above the melting point, it absorbs latent heat and changes into a liquid phase. In Examples 1 and 2 and Comparative Example 2 containing the agent (A), the temperature is suppressed to be lower than that of Comparative Example 1 due to the latent heat absorption action. Here, in Examples 1 and 2, the amount of heat that can be absorbed by the molded heat storage agent (A) at the portion of the atmosphere opening 6 side where the temperature rise is most remarkable is larger than that of Comparative Example 2, and therefore this atmosphere opening The temperature at the 6-side portion can be suppressed lower than that in Comparative Example 2. For this reason, it is possible to suppress a decrease in the adsorption performance of the adsorbent at the air opening 6 side portion. As for the steam inlet 4 and the steam outlet 5 side, Examples 1 and 2 are higher in temperature than Comparative Example 2 because there is less molded heat storage agent (A), but the absolute temperature itself is atmospheric. Since it is lower than the opening 6 side portion, the adverse effect on the adsorption amount of the entire canister is relatively small, and the adsorption amount of the entire canister is improved as compared with Comparative Example 2 as described above.

図12に示すように、Uターン形状のキャニスタにおいて、上記の成形活性炭のみを第1の吸着材収容空間10a内に充填し、上記の成形蓄熱剤(A)と成形活性炭とを混合したものを、第2の吸着材収容空間10b内に充填した。特に、第2の吸着材収容空間10bにおいて、第1の吸着材収容空間10aに連なる連通路(空間36)側の端部で、成形蓄熱剤(A)が0wt%、成形活性炭が100wt%、となり、大気開放口6側の端部で、成形蓄熱剤(A)が40wt%、成形活性炭が60wt%、となり、両者間で成形蓄熱剤(A)の配合割合が連続的に変化するようにした。従って、キャニスタ全体としての平均的な配合割合としては、成形蓄熱剤(A)が10wt%、成形活性炭が90wt%、となる。第1の吸着材収容空間10aにおける成形活性炭は、例えば粗悪燃料の使用などにより活性炭の劣化が著しいような場合に、前処理層として機能するものである。この場合、キャニスタ全体での成形蓄熱剤(A)は、それだけ減少することになる。なお、Uターン形状のキャニスタに限られず、前述した直線状のキャニスタとして構成することも勿論可能である。   As shown in FIG. 12, in a U-turn canister, only the above-mentioned molded activated carbon is filled in the first adsorbent housing space 10a, and the above-mentioned molded heat storage agent (A) and molded activated carbon are mixed. The second adsorbent accommodating space 10b was filled. In particular, in the second adsorbent accommodating space 10b, at the end portion on the side of the communication path (space 36) connected to the first adsorbent accommodating space 10a, the molded heat storage agent (A) is 0 wt%, the molded activated carbon is 100 wt%, Thus, at the end of the atmosphere opening 6 side, the molded heat storage agent (A) is 40 wt%, the molded activated carbon is 60 wt%, and the blending ratio of the molded heat storage agent (A) continuously changes between the two. did. Therefore, the average blending ratio of the canister as a whole is 10 wt% for the molded heat storage agent (A) and 90 wt% for the molded activated carbon. The molded activated carbon in the first adsorbent accommodating space 10a functions as a pretreatment layer when the activated carbon is significantly deteriorated due to, for example, use of poor fuel. In this case, the molded heat storage agent (A) in the entire canister is reduced accordingly. Of course, the canister is not limited to the U-turn canister, and can be configured as the linear canister described above.

上記実施例1と同様の方法により、相変化物質としてn−ヘキサデカンを用いて、円柱状成形蓄熱剤(B)を得た。なお、n−ヘキサデカンの相変化温度つまり融点は、16℃であり、これは、キャニスタの使用条件下に想定される雰囲気温度(25℃)よりも低いものとなる。   By the same method as in Example 1 above, a cylindrical shaped heat storage agent (B) was obtained using n-hexadecane as the phase change material. The phase change temperature, that is, the melting point of n-hexadecane is 16 ° C., which is lower than the atmospheric temperature (25 ° C.) assumed under the use conditions of the canister.

平均の配合割合として、上記の成形蓄熱剤(B)が20wt%、上記の成形活性炭が80wt%、の割合となるように混合したものを、図13に示すように、ナイロン樹脂製のケース1に充填し、キャニスタを得た。特に、蒸気流入口4および蒸気流出口5を備えた図左方の端部で、成形蓄熱剤(B)が30wt%、成形活性炭が70wt%、となり、大気開放口6を備えた図右方の端部で、成形蓄熱剤(B)が10wt%、成形活性炭が90wt%、となり、両者間で成形蓄熱剤(B)の配合割合が連続的に変化するようにした。従って、ケース1の長手方向の中央部では、成形蓄熱剤(B)が20wt%、成形活性炭が80wt%、となる。つまり、実施例4は、実施例1に比較して、成形蓄熱剤の増減方向が逆となっている。   As shown in FIG. 13, a case 1 made of nylon resin was mixed so that the above-mentioned molded heat storage agent (B) was 20 wt% and the above-mentioned molded activated carbon was 80 wt%. The canister was obtained. In particular, at the left end of the figure with the steam inlet 4 and the steam outlet 5, the molded heat storage agent (B) is 30 wt%, the molded activated carbon is 70 wt%, and the right side of the figure with the air opening 6 is provided. At the end, the molded heat storage agent (B) was 10 wt% and the molded activated carbon was 90 wt%, and the blending ratio of the molded heat storage agent (B) was continuously changed between the two. Therefore, in the central part of the case 1 in the longitudinal direction, the molded heat storage agent (B) is 20 wt% and the molded activated carbon is 80 wt%. That is, in Example 4, the increase / decrease direction of the molded heat storage agent is reversed compared to Example 1.

図14は、実施例4および比較例1について、キャニスタ内の各部の温度分布、特に、脱離終了時の温度分布を測定した結果を示している。キャニスタ内の温度は、基本的に、成形活性炭のみを用いた比較例1に見られるように、脱離時には、雰囲気温度(25℃)よりも温度低下し、かつ蒸気流出口5側ほど低い温度となる。融点が16℃である成形蓄熱剤(B)の相変化物質は、雰囲気温度の下では液相であり、融点以下に温度低下すると潜熱を放出して固相に相変化するため、この成形蓄熱剤(B)を含む実施例4は、その潜熱放出作用によって、比較例1よりも温度が高く保たれる。ここで、実施例4は、温度低下が最も顕著な蒸気流出口5側部分において成形蓄熱剤(B)の配合割合が高いので、この部分の温度低下をより確実に抑制することができる。そのため、蒸気流出口5側部分での脱離が十分に行われ、該部分における吸着材の吸着性能の低下を抑制できる。   FIG. 14 shows the results of measuring the temperature distribution of each part in the canister, particularly the temperature distribution at the end of desorption, for Example 4 and Comparative Example 1. The temperature in the canister is basically lower than the ambient temperature (25 ° C.) at the time of desorption and lower at the vapor outlet 5 side, as seen in Comparative Example 1 using only molded activated carbon. It becomes. The phase change material of the molded heat storage agent (B) having a melting point of 16 ° C. is a liquid phase under the atmospheric temperature, and when the temperature falls below the melting point, it releases latent heat and changes into a solid phase. Example 4 containing the agent (B) is kept at a higher temperature than Comparative Example 1 due to its latent heat release action. Here, in Example 4, since the blending ratio of the molded heat storage agent (B) is high in the steam outlet 5 side portion where the temperature drop is most remarkable, the temperature drop in this portion can be more reliably suppressed. Therefore, desorption at the vapor outlet 5 side portion is sufficiently performed, and a decrease in the adsorption performance of the adsorbent at the portion can be suppressed.

図15に示すように、Uターン形状のキャニスタにおいて、上記の成形活性炭のみを第1の吸着材収容空間10a内に充填し、上記の成形蓄熱剤(B)と成形活性炭とを混合したものを、第2の吸着材収容空間10b内に充填した。特に、第2の吸着材収容空間10bにおいて、第1の吸着材収容空間10aに連なる連通路(空間36)側の端部で、成形蓄熱剤(B)が40wt%、成形活性炭が60wt%、となり、大気開放口6側の端部で、成形蓄熱剤(B)が0wt%、成形活性炭が100wt%、となり、両者間で成形蓄熱剤(B)の配合割合が連続的に変化するようにした。従って、キャニスタ全体としての平均的な配合割合としては、成形蓄熱剤(B)が10wt%、成形活性炭が90wt%、となる。この実施例5は、実施例3と同じく、第1の吸着材収容空間10aにおける成形活性炭が、例えば粗悪燃料の使用などにより活性炭の劣化が著しいような場合に、前処理層として機能するものである。なお、Uターン形状のキャニスタに限られず、前述した直線状のキャニスタとして構成することも勿論可能である。   As shown in FIG. 15, in a U-turn canister, only the above-mentioned molded activated carbon is filled in the first adsorbent housing space 10a, and the above-mentioned molded heat storage agent (B) and molded activated carbon are mixed. The second adsorbent accommodating space 10b was filled. In particular, in the second adsorbent accommodating space 10b, at the end on the side of the communication path (space 36) connected to the first adsorbent accommodating space 10a, the molded heat storage agent (B) is 40 wt%, the molded activated carbon is 60 wt%, Thus, at the end of the atmosphere opening 6 side, the molded heat storage agent (B) is 0 wt% and the molded activated carbon is 100 wt%, so that the blending ratio of the molded heat storage agent (B) continuously changes between them. did. Therefore, the average blending ratio of the entire canister is 10 wt% for the molded heat storage agent (B) and 90 wt% for the molded activated carbon. As in Example 3, Example 5 functions as a pretreatment layer when the molded activated carbon in the first adsorbent accommodation space 10a is significantly deteriorated due to, for example, use of poor fuel. is there. Of course, the canister is not limited to the U-turn canister, and can be configured as the linear canister described above.

以上、キャニスタの使用条件下での雰囲気温度を25℃と想定して、相変化物質としてn−エイコサン(融点36℃)およびn−ヘキサデカン(融点16℃)を利用した各実施例を説明したが、自動車におけるキャニスタの配置等によって、雰囲気温度がより高い場合、あるいは逆により低い場合があり得るのは言うまでもなく、従って、相変化物質としては、想定される雰囲気温度を基準として、吸着時もしくは脱離時に相変化が生じるように、適宜に選定されるものである。   As described above, each example using n-eicosane (melting point: 36 ° C.) and n-hexadecane (melting point: 16 ° C.) as the phase change material has been described assuming that the atmospheric temperature under the use condition of the canister is 25 ° C. Needless to say, the ambient temperature may be higher or lower depending on the arrangement of the canister in the automobile. Therefore, as the phase change material, the adsorption or desorption may be performed based on the assumed ambient temperature. It is appropriately selected so that a phase change occurs at the time of separation.

実施例1のキャニスタの説明図。2 is an explanatory diagram of a canister according to Embodiment 1. FIG. 実施例2のキャニスタの説明図。FIG. 6 is an explanatory diagram of a canister according to a second embodiment. キャニスタのより具体的な構成を示す断面図。Sectional drawing which shows the more concrete structure of a canister. キャニスタの具体的な構成の異なる例を示す断面図。Sectional drawing which shows the example from which the concrete structure of a canister differs. キャニスタの具体的な構成のさらに異なる例を示す断面図。Sectional drawing which shows the further different example of the concrete structure of a canister. Uターン形状とした実施例1のキャニスタの説明図。Explanatory drawing of the canister of Example 1 made into U-turn shape. Uターン形状とした実施例2のキャニスタの説明図。Explanatory drawing of the canister of Example 2 made into U-turn shape. 実施例および比較例の吸着量を示す特性図。The characteristic view which shows the adsorption amount of an Example and a comparative example. 吸着時の試験回路を示す説明図。Explanatory drawing which shows the test circuit at the time of adsorption | suction. 脱離時の試験回路を示す説明図。Explanatory drawing which shows the test circuit at the time of detachment | desorption. 実施例および比較例の吸着終了時の温度分布を示す特性図。The characteristic view which shows the temperature distribution at the time of completion | finish of adsorption | suction of an Example and a comparative example. 実施例3のキャニスタの説明図。FIG. 6 is an explanatory diagram of a canister according to a third embodiment. 実施例4のキャニスタの説明図。FIG. 6 is an explanatory diagram of a canister according to a fourth embodiment. 実施例4および比較例の脱離終了時の温度分布を示す特性図。The characteristic view which shows the temperature distribution at the time of completion | finish of detachment | desorption of Example 4 and a comparative example. 実施例5のキャニスタの説明図。FIG. 10 is an explanatory diagram of a canister according to a fifth embodiment.

符号の説明Explanation of symbols

1…ケース
4…蒸気流入口
5…蒸気流出口
6…大気開放口
1 ... Case 4 ... Vapor inlet 5 ... Vapor outlet 6 ... Open to atmosphere

Claims (8)

温度変化に応じて潜熱の吸収および放出を生じる相変化物質を利用した蓄熱剤を、吸着材と混合してケース内に充填するとともに、流れ方向の一端に蒸気の流入・流出部を設け、かつ他端に大気開放口を設けたキャニスタにおいて、
上記流入・流出部側から上記大気開放口側の間の流れ方向に沿って、上記蓄熱剤の配合割合が変化していることを特徴とするキャニスタ。
A heat storage agent using a phase change material that absorbs and releases latent heat according to temperature changes is mixed with the adsorbent and filled in the case, and a steam inflow / outflow section is provided at one end in the flow direction, and In a canister with an air opening at the other end,
The canister, wherein a blending ratio of the heat storage agent is changed along a flow direction between the inflow / outflow part side and the atmosphere opening side.
キャニスタの使用条件下の雰囲気温度よりも相変化温度が高い蓄熱剤を用いるとともに、この蓄熱剤の配合割合が、上記大気開放口側で相対的に高くなっていることを特徴とする請求項1に記載のキャニスタ。   The heat storage agent having a phase change temperature higher than the atmospheric temperature under the use condition of the canister is used, and the blending ratio of the heat storage agent is relatively high on the atmosphere opening side. Canister as described in キャニスタの使用条件下の雰囲気温度よりも相変化温度が低い蓄熱剤を用いるとともに、この蓄熱剤の配合割合が、上記流入・流出部側で相対的に高くなっていることを特徴とする請求項1に記載のキャニスタ。   The heat storage agent having a phase change temperature lower than the atmospheric temperature under the use conditions of the canister is used, and the blending ratio of the heat storage agent is relatively high on the inflow / outflow side. The canister according to 1. 各部の蓄熱剤の配合割合が、0〜40wt%の範囲内にあることを特徴とする請求項1〜3のいずれかに記載のキャニスタ。   The canister according to any one of claims 1 to 3, wherein the proportion of the heat storage agent in each part is in the range of 0 to 40 wt%. 上記ケース内が上記流れ方向に沿って複数の領域に区画されており、各領域でそれぞれ蓄熱剤の配合割合が異なるように、配合割合が段階的に変化していることを特徴とする請求項1〜4のいずれかに記載のキャニスタ。   The inside of the case is divided into a plurality of regions along the flow direction, and the blending ratio changes stepwise so that the blending ratio of the heat storage agent is different in each region. The canister according to any one of 1 to 4. 蓄熱剤を混合しない吸着材のみが収容される領域を含むことを特徴とする請求項5に記載のキャニスタ。   The canister according to claim 5, comprising a region in which only the adsorbent that does not mix the heat storage agent is accommodated. 上記蓄熱剤の配合割合が、上記の流れ方向に沿って、連続的に変化していることを特徴とする請求項1〜4のいずれかに記載のキャニスタ。   The canister according to any one of claims 1 to 4, wherein a blending ratio of the heat storage agent continuously changes along the flow direction. 上記蓄熱剤は、相変化物質をマイクロカプセル中に封入してなる微細な蓄熱剤を、バインダとともに粒状に成形した成形蓄熱剤からなり、この成形蓄熱剤が、粒状の吸着材と混合して用いられることを特徴とする請求項1〜7のいずれかに記載のキャニスタ。   The heat storage agent is composed of a molded heat storage agent in which a fine heat storage agent formed by encapsulating a phase change material in a microcapsule is molded in a granular form together with a binder, and this molded heat storage agent is used by mixing with a granular adsorbent. The canister according to claim 1, wherein the canister is formed.
JP2004098381A 2004-03-30 2004-03-30 Canister Pending JP2005282481A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004098381A JP2005282481A (en) 2004-03-30 2004-03-30 Canister
US11/091,932 US7323041B2 (en) 2004-03-30 2005-03-29 Gas storage canister
EP05006955A EP1582731B1 (en) 2004-03-30 2005-03-30 Gas storage canister
DE602005001075T DE602005001075T2 (en) 2004-03-30 2005-03-30 Fuel vapor storage canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098381A JP2005282481A (en) 2004-03-30 2004-03-30 Canister

Publications (1)

Publication Number Publication Date
JP2005282481A true JP2005282481A (en) 2005-10-13

Family

ID=35181151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098381A Pending JP2005282481A (en) 2004-03-30 2004-03-30 Canister

Country Status (1)

Country Link
JP (1) JP2005282481A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001862A (en) * 2008-06-23 2010-01-07 Futaba Industrial Co Ltd Canister
JP2010138789A (en) * 2008-12-11 2010-06-24 Aisan Ind Co Ltd Evaporated fuel processor
JP2011169219A (en) * 2010-02-18 2011-09-01 Aisan Industry Co Ltd Canister
JP2013151875A (en) * 2012-01-24 2013-08-08 Aisan Industry Co Ltd Trap canister
JP2017089499A (en) * 2015-11-10 2017-05-25 マツダ株式会社 Canister
WO2023080208A1 (en) * 2021-11-05 2023-05-11 大阪ガスケミカル株式会社 Canister and automotive vehicle provided with same
JP2023069542A (en) * 2021-11-05 2023-05-18 大阪ガスケミカル株式会社 canister
JP2023069543A (en) * 2021-11-05 2023-05-18 大阪ガスケミカル株式会社 canister

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001862A (en) * 2008-06-23 2010-01-07 Futaba Industrial Co Ltd Canister
JP2010138789A (en) * 2008-12-11 2010-06-24 Aisan Ind Co Ltd Evaporated fuel processor
US8177893B2 (en) 2008-12-11 2012-05-15 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
JP2011169219A (en) * 2010-02-18 2011-09-01 Aisan Industry Co Ltd Canister
JP2013151875A (en) * 2012-01-24 2013-08-08 Aisan Industry Co Ltd Trap canister
JP2017089499A (en) * 2015-11-10 2017-05-25 マツダ株式会社 Canister
WO2023080208A1 (en) * 2021-11-05 2023-05-11 大阪ガスケミカル株式会社 Canister and automotive vehicle provided with same
JP2023069542A (en) * 2021-11-05 2023-05-18 大阪ガスケミカル株式会社 canister
JP2023069543A (en) * 2021-11-05 2023-05-18 大阪ガスケミカル株式会社 canister

Similar Documents

Publication Publication Date Title
US7543574B2 (en) Canister
US7323041B2 (en) Gas storage canister
JP5638298B2 (en) Granulated heat storage material and evaporative fuel processing device
US8015965B2 (en) Fuel vapor storage canister, fuel vapor adsorbent for canister, and method of producing fuel vapor adsorbent
EP3530930B1 (en) Canister
JP5242360B2 (en) Evaporative fuel processing equipment
JP2008303846A (en) Canister
US11896949B2 (en) Adsorbent, canister and method for producing adsorbent
US8506691B2 (en) Shaped heat storage materials including heat transfer members
JP2005233106A (en) Canister
JP2009264273A (en) Canister
JP2013151875A (en) Trap canister
JPWO2020067007A1 (en) Manufacturing method of adsorbent, canister and adsorbent
JP4471700B2 (en) Canister
JP2005282481A (en) Canister
JP2010007671A (en) Canister
JP4526333B2 (en) Canister adsorbent, method for producing the same, and canister for preventing fuel evaporation
JP2010142679A (en) Heat storage medium-imparted combined adsorbing material and method for producing the same
JP2010096118A (en) Evaporated fuel treating device
JP2005325708A (en) Canister
JP2006207485A (en) Canister
JP5462765B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP4861136B2 (en) Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP4439995B2 (en) Canister
JP2019049215A (en) Canister