JP2005281764A - Production method of low yield ratio high strength hot-rolled steel strip - Google Patents
Production method of low yield ratio high strength hot-rolled steel strip Download PDFInfo
- Publication number
- JP2005281764A JP2005281764A JP2004097072A JP2004097072A JP2005281764A JP 2005281764 A JP2005281764 A JP 2005281764A JP 2004097072 A JP2004097072 A JP 2004097072A JP 2004097072 A JP2004097072 A JP 2004097072A JP 2005281764 A JP2005281764 A JP 2005281764A
- Authority
- JP
- Japan
- Prior art keywords
- less
- cooling
- steel sheet
- temperature
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 97
- 239000010959 steel Substances 0.000 title claims abstract description 97
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000001816 cooling Methods 0.000 claims abstract description 86
- 238000005096 rolling process Methods 0.000 claims abstract description 38
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 36
- 238000001556 precipitation Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 8
- 230000001186 cumulative effect Effects 0.000 claims abstract description 5
- 238000005098 hot rolling Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 230000009466 transformation Effects 0.000 abstract description 30
- 239000000203 mixture Substances 0.000 abstract description 12
- 238000003466 welding Methods 0.000 abstract description 9
- 230000006866 deterioration Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 7
- 229910001563 bainite Inorganic materials 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000007858 starting material Substances 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910001035 Soft ferrite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は熱延鋼板の製造法に係り、特に低降伏比高強度熱延鋼板の製造方法に関する。 The present invention relates to a method for manufacturing a hot-rolled steel sheet, and more particularly to a method for manufacturing a high-strength hot-rolled steel sheet having a low yield ratio.
熱延鋼板は種々の分野で用いられ、それぞれの用途に応じた特性が付与されている。このうち溶接鋼管を製造するためのものは、一般に高強度とともに降伏比の低いことが要求され、これによって地震などの災害時にライン配管が致命的な破壊を免れるようにされている。このような溶接鋼管製造用の熱延鋼帯は、スラブを連続熱間圧延することによって最終板厚とされ、全長が100m以上の鋼帯となりコイル状に巻き取られている。溶接鋼管はこのような熱延鋼板コイルを順次巻き戻しながら、連続的に溶接することによって製造される。したがって、熱延鋼帯内に材質のばらつきがあると、製品である溶接鋼管の材質がばらつくので熱延鋼帯は全長に亘って極力均質であることが望ましい。 Hot-rolled steel sheets are used in various fields, and are given characteristics according to their respective uses. Of these, those for producing welded steel pipes are generally required to have a high strength and a low yield ratio, so that the line piping is free from fatal destruction in the event of a disaster such as an earthquake. Such a hot-rolled steel strip for producing a welded steel pipe has a final plate thickness by continuous hot rolling of a slab, and becomes a steel strip having a total length of 100 m or more and is wound in a coil shape. A welded steel pipe is manufactured by continuously welding such hot-rolled steel sheet coils while sequentially rewinding them. Therefore, if there are variations in the material within the hot-rolled steel strip, the material of the welded steel pipe that is the product will vary, so it is desirable that the hot-rolled steel strip be as homogeneous as possible over the entire length.
このような低降伏比を実現し、かつ材質のバラツキの小さい熱延鋼板の製造手段として特許文献1には、Siを0.5〜2%含む鋼をフェライト、オーステナイト二相域で熱間圧延を終了し、熱延後3〜7秒間経過してから注水冷却を開始し、150℃以下まで平均冷却速度30℃/s以上で急冷して巻き取ることにより降伏比65%以下、かつ強度延性バランス(引張強さ×全伸び)のコイル内変動が3000MPa・%未満の加工用高張力熱延鋼帯及びその製造方法が開示されている。
As a means for producing a hot-rolled steel sheet having such a low yield ratio and a small variation in material,
また、特許文献2には、低降伏比で、かつ低温靭性に優れたラインパイプ用熱延鋼板の製造方法として、Nb、Moを含有する鋼をAr3直上で圧延し、その後5〜10秒の間を10℃/s以下の冷却速度で緩徐冷し、その後15℃/s以上の冷却速度で冷却し400〜500℃で巻き取るという手段が提案されている。 In Patent Document 2, as a method for producing a hot-rolled steel sheet for a line pipe having a low yield ratio and excellent low-temperature toughness, steel containing Nb and Mo is rolled immediately above Ar 3 and then 5 to 10 seconds. A method is proposed in which the temperature is slowly cooled at a cooling rate of 10 ° C./s or less, then cooled at a cooling rate of 15 ° C./s or more, and wound at 400 to 500 ° C.
しかし、特許文献1に記載の手段では、フェライト変態を促進させるために合金成分としてSiを多量に添加しているため、鋼管製造時に抵抗部にSiの酸化物が形成されやすく溶接部品質が劣化するという問題がある。さらに特許文献1に記載の熱延鋼板を利用してアーク溶接して構造部材等に組み立てるときには、特に入熱の大きい溶接方法を用いると溶接熱影響部組織が粗大な上部ベイナイトとなり、溶接部靭性が劣化するという問題がある。
However, in the means described in
一方、特許文献2に記載の手段では、圧延終了後、5〜10秒の間の限られた時間を10℃/s以下の冷却速度で緩徐冷してフェライト変態を進行させるものであるために、冷却前の熱延仕上条件を圧下歪み量が大きくかつ、圧延終了温度がAr3以上30℃の狭い範囲になるように制御しなければならず、到底長さ100mにも及ぶ熱延コイルの全長にわたって安定して低降伏比を実現できない。 On the other hand, in the means described in Patent Document 2, the ferrite transformation proceeds by slow cooling at a cooling rate of 10 ° C./s or less for a limited time of 5 to 10 seconds after the end of rolling. The hot rolling finishing conditions before cooling must be controlled so that the amount of rolling strain is large and the rolling end temperature is in a narrow range of Ar 3 or more and 30 ° C. A low yield ratio cannot be realized stably over the entire length.
本発明は、鋼管製造の際や部品組み立ての際に用いられる抵抗溶接部の劣化の原因になり、また特に大入熱アーク溶接の際に溶接部靭性劣化の原因となるSiの含有量を低減した組成系により全長にわたり安定して低降伏比を有する高強度熱延鋼帯を製造する手段を提案することを目的とする。 The present invention reduces the content of Si, which causes deterioration of resistance welds used during steel pipe manufacturing and parts assembly, and also causes weld joint toughness deterioration particularly during high heat input arc welding. An object of the present invention is to propose a means for producing a high-strength hot-rolled steel strip having a low yield ratio stably over the entire length by the composition system.
本発明者は、Si含有量を低減した組成系にあっても、熱延仕上時に十分な熱延歪を有する鋼を急速冷却すると、鋼のフェライト変態ノーズが高温・短時間側に移行すること、およびそのノーズ近傍の温度に短時間保持してフェライト変態を完了させ、その後急冷して第2相を析出させれば、所定の特性を有する低降伏比を有する高強度熱延鋼帯を製造することができることを見出した。 Even when the present inventors are in a composition system with a reduced Si content, when steel having sufficient hot rolling strain is rapidly cooled during hot rolling, the ferrite transformation nose of the steel shifts to a high temperature / short time side. , And the temperature near the nose for a short time to complete the ferrite transformation, followed by rapid cooling to precipitate the second phase, thereby producing a high-strength hot-rolled steel strip having a low yield ratio with predetermined characteristics Found that you can.
本発明の低降伏比高強度熱延鋼板の製造方法は、質量比で、C:0.03〜0.12%、Si:0.4%以下、Mn:0.2〜2。0%、P:0.02%以下、s:0.01%以下、Al:0.1%以下、Nb:0.01〜0.1%を含有し、残部不可避的不純物を除きFeよりなる鋼スラブにスラブ加熱、粗圧延、仕上圧延を行なった後コイルに巻き取る一連の熱延工程を行なうにあたり、仕上圧延を被圧延材の表面温度が920℃から(Ar3−30)℃に至る間の累積圧下率が50%以上となるように施し、該仕上圧延後、断面平均温度700±30℃まで80℃/s以上の冷却速度で1次冷却し、該1次冷却の後、0.5℃/s以上5℃/sの速度で6s以上15s以下の時間に亘って冷却するフェライト析出処理を行ない、該フェライト変態処理の後、450℃以下まで10℃/s以上の冷却速度で2次冷却し、ついで250℃〜450℃の間でコイルに巻き取ることからなる。 The manufacturing method of the low yield ratio high-strength hot-rolled steel sheet of the present invention is, by mass ratio, C: 0.03 to 0.12%, Si: 0.4% or less, Mn: 0.2 to 2.0%, A steel slab containing P: 0.02% or less, s: 0.01% or less, Al: 0.1% or less, Nb: 0.01 to 0.1%, and the remainder made of Fe except for inevitable impurities. slab heating, rough rolling, when a series of hot rolling step of winding the coil after performing finish rolling, the accumulated between leading the finish rolling to a surface temperature of the rolled material from 920 ℃ (Ar 3 -30) ℃ After the finish rolling, primary reduction is performed at a cooling rate of 80 ° C./s or more to a cross-sectional average temperature of 700 ± 30 ° C., and after the primary cooling, 0.5 ° C. The ferrite precipitation treatment is performed by cooling at a rate of 5 s / s to 5s / s over a period of 6s to 15s. After the light transformation treatment, the secondary cooling is performed at a cooling rate of 10 ° C./s or higher to 450 ° C. or lower, and then wound on a coil between 250 ° C. and 450 ° C.
上記低降伏比高強度熱延鋼板の製造方法においては、出発素材であるスラブにはさらにTi:0.005〜0.1%及びZr:0.02%以下のいずれか一方又は双方を含有させることができる。また、出発素材スラブにはさらにV:0.1%以下、Mo:0.3%以下およびCr:0.2%以下から選んだ1種又は2種以上を含有させること及びさらにCa:0.005%以下及びREM:0.005%以下から選んだ1種又は2種を含有させることができる。 In the manufacturing method of the low yield ratio high strength hot-rolled steel sheet, the slab as the starting material further contains one or both of Ti: 0.005 to 0.1% and Zr: 0.02% or less. be able to. Further, the starting material slab further contains one or more selected from V: 0.1% or less, Mo: 0.3% or less, and Cr: 0.2% or less, and further, Ca: 0.00%. One or two selected from 005% or less and REM: 0.005% or less can be contained.
なお、本発明において「降伏比」とは、0.5%オンセット耐力(ASTM A370:0.5% Extension Under loadによる)をいい、「低降伏比を有する」とは前記「降伏比」の「引張り強さ」に対する比(%)をいい、「高強度鋼帯」とは「引張り強さ」490MPa以上の鋼帯をいう。他の述語の定義・意義は明細書の説明中で明確にされている。 In the present invention, “yield ratio” means 0.5% onset strength (according to ASTM A370: 0.5% Extension Under load), and “having a low yield ratio” means “tensile strength” of the above “yield ratio”. The ratio (%) to the “strength” is referred to, and the “high-strength steel strip” refers to a steel strip having a “tensile strength” of 490 MPa or more. The definition and significance of other predicates are clarified in the description of the specification.
本発明の効果により、Siなどのフェライト形成元素を低減した組成系の鋼を用いて、コイル全長にわたり安定して低降伏比を有する高強度熱延鋼帯を製造することができる。それにより、地震などの災害に耐え得る構造物、ラインパイプなどを安定して製造し得るようになる。 The effect of the present invention makes it possible to produce a high-strength hot-rolled steel strip having a low yield ratio stably over the entire length of the coil, using a steel having a composition with reduced ferrite-forming elements such as Si. As a result, it is possible to stably manufacture structures and line pipes that can withstand disasters such as earthquakes.
本発明を実施するための出発素材は以下に示す成分(いずれも質量比である)を有するスラブである。 The starting material for carrying out the present invention is a slab having the following components (all are in mass ratio).
C:0.03〜0.12%
Cはγ−α変態中にγ相に拡散移動してγ相の焼入性を高める元素であり、変態強化による高強度化および降伏棚の消失による降伏比の低下に寄与する。したがって、0.03%以上含有させる。C含有量を増大すれば降伏比は小さくなるが、アーク溶接時のHAZ特性を劣化させるため、含有量の上限を0.12%とする。
C: 0.03-0.12%
C is an element that diffuses and moves to the γ phase during the γ-α transformation to enhance the hardenability of the γ phase, and contributes to an increase in strength by strengthening the transformation and a decrease in yield ratio due to the disappearance of the yield shelf. Therefore, 0.03% or more is contained. If the C content is increased, the yield ratio is decreased, but the HAZ characteristics during arc welding are deteriorated, so the upper limit of the content is set to 0.12%.
Si:0.4%以下
Siはフェライト変態を促進する元素であるが、抵抗溶接時にSiの酸化物を形成し、抵抗溶接部の品質を大幅に劣化させる。また、Si含有量が多いと、アーク溶接時に熱影響部に粗大な上部ベイナイトが生成して靭性が劣化する。そのため本発明ではSiの含有量を0.4%以下に制限する。
Si: 0.4% or less Si is an element that promotes ferrite transformation, but forms an oxide of Si during resistance welding, and greatly deteriorates the quality of the resistance weld. Moreover, when there is much Si content, a coarse upper bainite will produce | generate in a heat affected zone at the time of arc welding, and toughness will deteriorate. Therefore, in the present invention, the Si content is limited to 0.4% or less.
Mn:0.2〜2.0%
Mnは焼入性を向上させ、それによって鋼帯の強度を上昇させ、また、Sの粒界偏析を防止してスラブ割れを抑制する効果を奏する元素であり、0.2%以上含有させる。しかし、2%を超えて含有させると、Ar3変態点の低下が大きく軟質なフェライト相の析出が抑制され、降伏点が上昇して低降伏比が得られなくなる。
Mn: 0.2 to 2.0%
Mn is an element that improves the hardenability, thereby increasing the strength of the steel strip, and prevents the segregation of grain boundaries in S to suppress slab cracking, and is contained in an amount of 0.2% or more. However, if the content exceeds 2%, the Ar 3 transformation point is greatly lowered and the precipitation of the soft ferrite phase is suppressed, the yield point rises and a low yield ratio cannot be obtained.
P:0.02%以下、S:0.01%以下
Pは鋼中に不純物として不可避的に含まれる元素であり、フェライト変態を促進する効果があるが、含有量が過剰になると溶接性が劣化するため0.02%以下とする。また、SもPと同様に鋼中に不純物として不可避的に含まれる元素であるが、含有量(残留量)が0.01%以上になるとスラブ割れの原因や熱延鋼板のセパレーション発生原因となる。
P: 0.02% or less, S: 0.01% or less P is an element inevitably contained as an impurity in steel, and has the effect of promoting ferrite transformation. However, if the content is excessive, weldability deteriorates. Therefore, it is made 0.02% or less. S, like P, is an element that is inevitably contained as an impurity in steel. However, if the content (residual amount) is 0.01% or more, it may cause slab cracking or cause separation of hot-rolled steel sheets. Become.
Al:0.1%以下
Alは鋼の脱酸剤としての効果があるため、残留含有量を0.01%以上とするのが望ましい。しかし、0.1%を超えると抵抗溶接部の品質を著しく劣化させるので、その含有量の上限は0.1%とする。
Al: 0.1% or less Since Al has an effect as a deoxidizer for steel, the residual content is desirably 0.01% or more. However, if it exceeds 0.1%, the quality of the resistance welded portion is remarkably deteriorated, so the upper limit of its content is made 0.1%.
N:0.006%以下
Nが鋼中のN固溶量が過大であると、降伏点が著しく上昇し、降伏比を小さくすることができなくなる。また、多量のNとTiが共存すると、粗大なTi窒化物の形成により鋼の破壊靭性を低下させる。これらの理由によりN含有量は0.006%以下とすべきである。
N: 0.006% or less If N is excessively dissolved in steel, the yield point rises remarkably and the yield ratio cannot be reduced. Further, when a large amount of N and Ti coexist, the fracture toughness of the steel is lowered due to the formation of coarse Ti nitride. For these reasons, the N content should be 0.006% or less.
Nb:0.01〜0.1%
Nbは炭窒化物として微細析出することにより、溶接性を損なうことなく熱延鋼帯の強度を上昇させる効果がある。この高強度化のために必要なNb量は0.01%以上、好ましくは0.02%以上である。しかし、過剰な添加は仕上圧延中の圧延荷重が増大して圧延に支障をきたすため含有量の上限を0.1%とする。なお、Nbは降伏点を上昇させる元素であるが、本発明にしたがう加工熱処理を行なうことにより、α−γ二相分離およびα相析出後のγ相の焼入れにより可動転位を導入することにより降伏棚を焼失させて降伏比の低い高強度熱延鋼板を得ることができる。
Nb: 0.01 to 0.1%
Nb has the effect of increasing the strength of the hot-rolled steel strip without impairing weldability by being finely precipitated as carbonitride. The amount of Nb necessary for increasing the strength is 0.01% or more, preferably 0.02% or more. However, excessive addition increases the rolling load during finish rolling and hinders rolling, so the upper limit of the content is made 0.1%. Nb is an element that raises the yield point. However, by performing a heat treatment according to the present invention, Nb is yielded by introducing mobile dislocations by α-γ two-phase separation and γ-phase quenching after α-phase precipitation. A high strength hot-rolled steel sheet with a low yield ratio can be obtained by burning out the shelf.
Ti:0.005〜0.1%、Zr:0.02%以下
Tiは本発明のための必須の添加元素ではないが、Nを固定して降伏点を下げる効果があり、微量の含有は炭化物の微細析出により鋼を高強度化する効果がある。そのため、0.005%以上含有させることが望ましい。しかし、その含有量が0.1%を超えると炭化物の析出強化により降伏点が著しく上昇するため、上限を0.1%とする。ZrもTiと同様にNを固定する効果があるが、含有量が0.02%を超えても効果が飽和する。
Ti: 0.005 to 0.1%, Zr: 0.02% or less Ti is not an essential additive element for the present invention, but has the effect of fixing N and lowering the yield point. There is an effect of increasing the strength of steel by fine precipitation of carbides. Therefore, it is desirable to contain 0.005% or more. However, if the content exceeds 0.1%, the yield point increases remarkably due to precipitation strengthening of carbides, so the upper limit is made 0.1%. Zr also has the effect of fixing N as with Ti, but the effect is saturated even if the content exceeds 0.02%.
V:0.1%以下、Mo:0.3%以下、Cr:0.2%以下、Cu:0.4%以下、Ni:0.4%以下およびCr:0.2%以下
Vはγ相の焼入性を上昇させるとともに、炭窒化物を形成して鋼を高強度化する効果があるが、含有量が0.1%を超えると溶接性を劣化させる。Moはγ相の焼き入れ性を向上させて降伏点を下げる効果があるが、0.3%を超えるとγ−α変態を阻害して充分な量のフェライトが析出しなくなるため0.3%を上限として含有させることができる。Cu及びNiはγ相の焼き入れ性を向上させて鋼を高強度化する効果があるが、0.4%を超えると溶接性が劣化するため上限を0.4%として含有させることができる。Crはγ−α変態時にパーライト変態を遅らせてγ相の焼入性を確保する効果があるが、0.2%を超えると抵抗溶接時に溶接欠陥が生じやすくなるため、上限を0.2%として含有させることができる。
V: 0.1% or less, Mo: 0.3% or less, Cr: 0.2% or less, Cu: 0.4% or less, Ni: 0.4% or less, and Cr: 0.2% or less V is γ While improving the hardenability of the phase and forming carbonitrides to increase the strength of the steel, the weldability deteriorates when the content exceeds 0.1%. Mo has the effect of improving the hardenability of the γ phase and lowering the yield point, but if it exceeds 0.3%, the γ-α transformation is inhibited and a sufficient amount of ferrite does not precipitate, so 0.3% Can be contained as an upper limit. Cu and Ni have the effect of improving the hardenability of the γ phase and increasing the strength of the steel. However, if it exceeds 0.4%, the weldability deteriorates, so the upper limit can be made 0.4%. . Cr has the effect of delaying the pearlite transformation during the γ-α transformation to ensure the hardenability of the γ phase, but if it exceeds 0.2%, weld defects are likely to occur during resistance welding, so the upper limit is 0.2%. Can be included.
Ca及びREM:それぞれ0.005%以下
これらはいずれも鋼中に粗大なMnSが形成されるのを防止する効果があり、セパレーションの低減効果があるので必要に応じて含有させることができる。しかし、多量に残留すると鋼の清浄性を劣化させるので、いずれも残留量の上限を各々0.005%とする。
Ca and REM: each 0.005% or less These both have the effect of preventing the formation of coarse MnS in the steel, and have the effect of reducing separation, so that they can be contained as required. However, since the cleanliness of steel deteriorates when it remains in a large amount, the upper limit of the residual amount is set to 0.005% in each case.
上記の組成を有するスラブは、スラブ加熱、粗圧延を経て仕上圧延に付される。スラブ加熱および粗圧延の条件は、通常の低炭素鋼について採用される条件とすればよい。 The slab having the above composition is subjected to finish rolling through slab heating and rough rolling. The conditions for slab heating and rough rolling may be those adopted for ordinary low carbon steel.
仕上圧延も表面温度が920℃に達するまでは通常の低炭素鋼について採用される条件とすればよい。しかし、表面温度が920℃に達した後は(Ar3−30)℃に至る間に累積圧下率が50%以上となるように圧下率を制御する。このような熱間圧延時の歪が完全には回復しない温度域での低温圧下により鋼中に歪みが蓄積され続く急冷処理と相俟ってフェライト変態が促進される。なお、圧延中の温度測定は鋼板の表面を赤外線放射温度計にて測定することが一般的であるため、鋼板表面の温度とする。 The finish rolling may be performed under the conditions adopted for ordinary low carbon steel until the surface temperature reaches 920 ° C. However, after the surface temperature reached 920 ° C. controls the reduction ratio as the cumulative rolling reduction is 50% or more while leading to (Ar 3 -30) ℃. The ferrite transformation is promoted in combination with the rapid cooling treatment in which the strain is accumulated in the steel due to the low temperature reduction in a temperature range in which the strain during the hot rolling is not completely recovered. In addition, since it is common to measure the surface of a steel plate with the infrared radiation thermometer, the temperature measurement during rolling is made into the temperature of the steel plate surface.
上記の低温圧下を伴う仕上圧延に続いて1次冷却が行なわれる。この1次冷却は仕上圧延後の鋼板を断面平均温度(700±30)℃までの間を冷却速度が80℃/s以上となる条件で急冷するものである。1次冷却を上記の条件で行なうことにより、フェライト変態ノーズを高温短時間側に誘導し、Si含有量の低い成分系の鋼であってもフェライトを短時間で析出させることができるようになる。 Subsequent to the finish rolling with the above-described low temperature reduction, primary cooling is performed. In this primary cooling, the steel sheet after finish rolling is rapidly cooled to a cross-sectional average temperature (700 ± 30) ° C. under the condition that the cooling rate is 80 ° C./s or more. By performing the primary cooling under the above-described conditions, the ferrite transformation nose is induced to the high temperature and short time side, and it becomes possible to precipitate the ferrite in a short time even in the case of a component steel having a low Si content. .
図1は、表1に示す組成(質量%、Ar3:760℃)の鋼片を1250℃に加熱した後830℃で圧下率30%相当の加工し、20℃及び200℃/sの速度で所定温度まで一次冷却を行ない、その温度で所定時間保持したときのフェライト変態開始位置を示す恒温変態線図である。ここに示すように、1次冷却速度が200℃/sのときはフェライト変態ノーズが高温かつ短時間側に移動している。 FIG. 1 shows that a steel slab having the composition shown in Table 1 (mass%, Ar 3 : 760 ° C.) was heated to 1250 ° C. and then processed at 830 ° C. corresponding to a reduction rate of 30%, at a rate of 20 ° C. and 200 ° C./s. 2 is a constant temperature transformation diagram showing a ferrite transformation start position when primary cooling is performed to a predetermined temperature and the temperature is held for a predetermined time. As shown here, when the primary cooling rate is 200 ° C./s, the ferrite transformation nose moves to the high temperature and short time side.
本発明では、このようにフェライト変態ノーズを高温かつ短時間側に誘導し、該ノーズ近傍の温度で保持してフェライト変態を短時間で完了させるものであり、それにより軟質なフェライト相を得るものである。このような効果が得られる1次冷却速度は80℃/s以上、好ましくは100℃/s以上である。 In the present invention, the ferrite transformation nose is induced to a high temperature and a short time in this way, and held at a temperature near the nose to complete the ferrite transformation in a short time, thereby obtaining a soft ferrite phase. It is. The primary cooling rate at which such an effect is obtained is 80 ° C./s or more, preferably 100 ° C./s or more.
このようにして、低温圧下を伴う仕上圧延及び仕上圧延後の急冷処理を受けてフェライト変態ノーズが高温かつ短時間側に移動した熱延材は、上記フェライト変態ノーズ近傍の温度に保持される。具体的には、上記1次冷却を(700±30)℃の範囲で停止し、その後、0.5℃/s以上5℃/s以下の冷却速度で6s以上15s以下の時間に亘って冷却するフェライト析出処理を行なうのである。 In this way, the hot rolled material in which the ferrite transformation nose has moved to the high temperature and short time side after finishing rolling with low temperature reduction and the rapid cooling treatment after finishing rolling is maintained at a temperature in the vicinity of the ferrite transformation nose. Specifically, the primary cooling is stopped in the range of (700 ± 30) ° C., and then cooled over a period of 6 s to 15 s at a cooling rate of 0.5 ° C./s to 5 ° C./s. The ferrite precipitation treatment is performed.
1次冷却停止温度が(700±30)℃の範囲で本発明の効果が顕著に得られる。この1次冷却停止温度が低い場合には低温変態相であるベイニティックフェライトもしくはベイナイトが生成して鋼板の降伏点が上昇して延性が低下する。逆に1次冷却停止温度が高いと、生成したフェライトが粗大化して鋼板の靭性および強度が低下する。 The effect of the present invention is remarkably obtained when the primary cooling stop temperature is in the range of (700 ± 30) ° C. When the primary cooling stop temperature is low, bainitic ferrite or bainite, which is a low-temperature transformation phase, is generated, the yield point of the steel sheet is increased, and the ductility is lowered. Conversely, when the primary cooling stop temperature is high, the generated ferrite becomes coarse and the toughness and strength of the steel sheet decrease.
1次冷却停止後の保持温度は、先に図1に基づいて説明したように、フェライト変態ノーズ付近の温度であり、前述の低温圧下を伴う仕上圧延及びそれに続く1次冷却を行なうことにより、1次冷却停止後にフェライト変態が顕著に進行する。この条件は、成分系、仕上圧延条件及び仕上圧延後の急冷処理条件等の影響を受けるので、先に示した実験を行なって求めるのがよいが、0.5℃/s以上5℃/s以下の速度で6s以上15s以下の時間に亘って冷却することによって目的を達しうる。 The holding temperature after stopping the primary cooling is the temperature in the vicinity of the ferrite transformation nose as described above with reference to FIG. 1, and by performing the finish rolling with the above-mentioned low-temperature reduction and the subsequent primary cooling, The ferrite transformation proceeds significantly after the primary cooling is stopped. This condition is affected by the component system, finish rolling conditions, quenching conditions after finish rolling, and the like, and is preferably obtained by performing the above-described experiment, but is 0.5 ° C./s or more and 5 ° C./s. The object can be achieved by cooling at a speed of 6 s to 15 s at the following speed.
このフェライト析出処理の際、冷却速度を0.5℃/s以上とするのは、冷却速度が0.5℃/s未満であると、鋼板の圧延終了から巻き取りまでの間に冷却を遅滞させるための手段、たとえば加熱処理手段あるいはコイル形状に巻き取る手段などが必要となり著しく生産性を阻害するためであり、一方、5℃/s以下とするのは、5℃/s超ではフェライト析出処理中に鋼板の温度が低下しすぎてフェライトの析出が十分進行しないためである。このような目的を達する冷却は、熱延鋼板の空冷による冷却速度は通常0.5℃/s〜5℃/sであるのでこれによればよい。 In this ferrite precipitation treatment, the cooling rate is set to 0.5 ° C./s or more. If the cooling rate is less than 0.5 ° C./s, the cooling is delayed between the end of rolling of the steel sheet and the winding. For example, a heat treatment means or a means for winding in a coil shape is required, which significantly impedes productivity. On the other hand, the reason why the temperature is 5 ° C./s or less is that ferrite precipitation occurs above 5 ° C./s. This is because the temperature of the steel sheet is excessively lowered during the treatment and the precipitation of ferrite does not proceed sufficiently. The cooling that achieves such a purpose can be performed because the cooling rate of the hot-rolled steel sheet by air cooling is usually 0.5 ° C./s to 5 ° C./s.
上記フェライト析出処理の際の経過時間を6s以上15s以下とするのは、6s未満では効果が小さく、15sを超えるとパーライトが析出し始めて降伏比を低下させる効果が得られなくなるためである。 The reason why the elapsed time during the ferrite precipitation treatment is 6 s or more and 15 s or less is that the effect is small if it is less than 6 s, and if it exceeds 15 s, pearlite starts to precipitate and the effect of lowering the yield ratio cannot be obtained.
なお、上記1次冷却速度、冷却停止温度は、冷却過程において鋼帯の厚さ方向に亘る温度差が生ずることを考慮して、鋼帯の断面平均温度によるものとする。すなわち、熱延鋼板の製造工程においては、鋼板温度は赤外線温度計などを用いて表面温度により測定するのが一般的であるが、本発明においては1次冷却速度が高速であるため、冷却直後は表面が内部より大きく温度低下しており、表面温度によったのでは鋼板内部の組織を制御する基準となし得ないため、鋼帯の断面平均温度を用いるのである。 The primary cooling rate and the cooling stop temperature are based on the average cross-sectional temperature of the steel strip in consideration of a temperature difference in the thickness direction of the steel strip in the cooling process. That is, in the production process of a hot-rolled steel sheet, the steel sheet temperature is generally measured by the surface temperature using an infrared thermometer or the like, but in the present invention, the primary cooling rate is high, so Since the temperature of the surface is greatly lower than the inside, and depending on the surface temperature, it cannot be used as a standard for controlling the structure inside the steel sheet, so the cross-sectional average temperature of the steel strip is used.
この鋼帯の断面平均温度とは板厚方向各位置での温度を積分平均したものである。板厚方向の温度変動が小さければ表面温度で代表できるが、たとえば水冷直後では板厚方向で温度が大きく変化し、表面温度では代表できない。その場合は直接測定及び計算によって求める。鋼帯の断面平均温度を求める方法に関しては特に規定しないが、例えば以下のような方法によって求めることができる。まず、仕上圧延後の鋼板の空冷時の断面平均冷却速度Vを予め実験的に測定しておく。次に1次冷却後、内部からの復熱が終了して鋼板温度が板厚方向に均一になった時点の表面温度Tを測定し、このTに空冷時の断面平均冷却速度と空冷時間より求めた空冷時の断面平均温度低下分を加算して1次冷却終了時の断面平均温度とする。すなわち、
1次冷却終了温度=T+V×t
とする。ここに、tは冷却終了から温度測定時点までの時間であり、通常5秒以上あれば足りる。
The cross-sectional average temperature of the steel strip is an integral average of the temperatures at each position in the plate thickness direction. If the temperature variation in the plate thickness direction is small, it can be represented by the surface temperature. However, for example, immediately after water cooling, the temperature changes greatly in the plate thickness direction and cannot be represented by the surface temperature. In that case, it is determined by direct measurement and calculation. The method for obtaining the cross-sectional average temperature of the steel strip is not particularly specified, but can be obtained by the following method, for example. First, the cross-sectional average cooling rate V during air cooling of the steel sheet after finish rolling is experimentally measured in advance. Next, after the primary cooling, the surface temperature T when the recuperation from the inside is finished and the steel plate temperature becomes uniform in the plate thickness direction is measured, and this T is calculated from the average cross-sectional cooling rate and the air cooling time at the time of air cooling. The calculated average cross-sectional temperature drop during air cooling is added to obtain the average cross-sectional temperature at the end of primary cooling. That is,
Primary cooling end temperature = T + V × t
And Here, t is the time from the end of cooling to the time of temperature measurement, usually 5 seconds or more is sufficient.
上記のようにしてフェライト相が生成した鋼は、次いで10℃/s以上の冷却速度で450度以下まで冷却する2次冷却に付され、残留しているγ相をベイナイトもしくはマルテンサイトに変態させる。これにより、フェライト相中に変態第2相である硬質相が分散した組織となり、降伏棚が消滅する。この2次冷却の停止温度が450℃を超えるとベイナイトまたはマルテンサイトへの変態が十分に進行しない。また、2次冷却速度が小さい場合も同様である。したがって、2次冷却条件は上記のように10℃/s以上の冷却速度で450度以下まで冷却するものとする。 The steel in which the ferrite phase is generated as described above is then subjected to secondary cooling that is cooled to 450 ° C. or less at a cooling rate of 10 ° C./s or more to transform the remaining γ phase into bainite or martensite. . Thereby, it becomes a structure in which the hard phase as the transformation second phase is dispersed in the ferrite phase, and the yield shelf disappears. If the secondary cooling stop temperature exceeds 450 ° C., the transformation to bainite or martensite does not proceed sufficiently. The same applies when the secondary cooling rate is low. Accordingly, the secondary cooling condition is that cooling is performed to 450 ° C. or less at a cooling rate of 10 ° C./s or more as described above.
2次冷却された鋼帯は250〜450℃で巻き取られる。巻き取り温度の上限は2次冷却停止温度の上限温度450℃によって制限され、下限温度は焼き入れ歪等による鋼板形状の悪化やコイル強度の上昇による熱延鋼帯の巻き取り困難性等を考慮して250℃以上と定められる。 The secondary cooled steel strip is wound up at 250 to 450 ° C. The upper limit of the coiling temperature is limited by the upper limit temperature of 450 ° C for the secondary cooling stop temperature, and the lower limit temperature takes into account the deterioration of the steel sheet shape due to quenching distortion, etc. Therefore, it is set to 250 ° C. or higher.
表2に示す化学組成を有する鋼のスラブを準備し、1200〜1250℃にスラブ加熱後、粗圧延、仕上圧延を行ない、最終板厚2.6〜12.7mmの熱延鋼板コイルとした。仕上圧延の際の920℃から(Ar3−30)℃間の累積圧下率、仕上圧延温度、1次冷却速度、1次冷却停止温度、フェライト析出処理保持時間、2次冷却速度、2次冷却停止温度、巻取り温度は表3、表4に示す。得られた製品から試験片を採取し製品の特性値を調査した。製品の特性値は表5に示す。このとき1次冷却終了後のフェライト析出処理は空冷であり、その冷却速度は1.2〜4℃/sであった。 A steel slab having the chemical composition shown in Table 2 was prepared, and after slab heating to 1200 to 1250 ° C., rough rolling and finish rolling were performed to obtain a hot rolled steel sheet coil having a final plate thickness of 2.6 to 12.7 mm. Cumulative rolling reduction between 920 ° C. and (Ar 3 -30) ° C. during finish rolling, finish rolling temperature, primary cooling rate, primary cooling stop temperature, ferrite precipitation treatment holding time, secondary cooling rate, secondary cooling The stop temperature and winding temperature are shown in Tables 3 and 4. A test piece was collected from the obtained product and the characteristic value of the product was investigated. The characteristic values of the products are shown in Table 5. At this time, the ferrite precipitation treatment after the end of the primary cooling was air cooling, and the cooling rate was 1.2 to 4 ° C./s.
上記結果から、本発明に定める鋼組成を有する鋼符号A〜D及びI〜Jの鋼においては、熱延条件(920℃以下の累積圧下率、仕上温度)及びその後の冷却条件(1次冷却速度及び2次冷却停止温度)を適正に保つことにより降伏比を十分低くすることができることが分かる。これに対し、本発明に定める鋼組成を有する鋼符号A〜D及びI〜Jの鋼であっても、熱延条件及びその後の冷却条件が本発明に定めるものを満足しない場合はいずれも降伏比を十分低くすることができなかった。また、本発明に定める鋼組成を満足しない鋼符号E(Mn含有量が高い)、鋼符号F(C含有量が高い)、鋼符号G(N含有量が高い)、鋼符号H(Mo含有量が高い)ものは、本発明の熱延条件及びその後の冷却条件が本発明に定めるものを満足しても降伏比が低下しなかった。 From the above results, in the steels A to D and I to J having the steel compositions defined in the present invention, hot rolling conditions (cumulative rolling reduction at 920 ° C. or less, finishing temperature) and subsequent cooling conditions (primary cooling) It can be seen that the yield ratio can be sufficiently lowered by keeping the speed and the secondary cooling stop temperature appropriately. On the other hand, even in the case of steels A to D and I to J having the steel composition defined in the present invention, if the hot rolling conditions and the subsequent cooling conditions do not satisfy the ones defined in the present invention, they yield. The ratio could not be lowered sufficiently. In addition, steel code E (high Mn content), steel code F (high C content), steel code G (high N content), steel code H (Mo content) not satisfying the steel composition defined in the present invention The yield ratio did not decrease even when the hot rolling conditions of the present invention and the subsequent cooling conditions satisfied those defined in the present invention.
表2に記載の鋼符号Aの組成を有する鋼を表6に示した条件により熱延鋼板を製造し、得られた熱延コイルのコイル内材質平均およびばらつきを調査した。コイル長手方向の先頭部(LE)、中央部(M)および尾端部(TE)の3箇所についてコイル幅方向1/2幅、1/4幅位置の2箇所合計6箇所からサンプリングした。結果は表7に示す。本発明の条件にしたがい処理された試材27と冷却速度が遅い試材28を対比すると、前者が後者に比べてYPのばらつきが少なく、降伏比YRも低くなっている。 Hot rolled steel sheets were produced from the steel having the composition of steel code A shown in Table 2 under the conditions shown in Table 6, and the average coil material average and variation of the obtained hot rolled coils were investigated. Sampling was performed from a total of six locations, ie, a ½ width in the coil width direction and a ¼ width position at three locations of the head portion (LE), the center portion (M), and the tail end portion (TE) in the coil longitudinal direction. The results are shown in Table 7. When comparing the sample 27 processed in accordance with the conditions of the present invention and the sample 28 having a low cooling rate, the former has less variation in YP than the latter, and the yield ratio YR is also low.
Claims (4)
仕上圧延を被圧延材の表面温度が920℃から(Ar3−30)℃間の累積圧下率が50%以上となるように施し、
該仕上圧延後、断面平均温度(700±30)℃まで80℃/s以上の冷却速度で1次冷却し、
該1次冷却の後、0.5℃/s以上5℃/s以下の速度で6s以上15s以下の時間に亘って冷却するフェライト析出処理を行い、
該フェライト析出処理の後、450℃以下まで10℃/s以上の冷却速度で2次冷却し、
ついで250℃以上450℃以下の間でコイルに巻き取ることを特徴とする低降伏比高強度熱延鋼板の製造方法。 In mass ratio, C: 0.03-0.12%, Si: 0.4% or less, Mn: 0.2-2.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.1% or less, Nb: 0.01-0.1% is contained, and the steel slab made of Fe is subjected to slab heating, rough rolling, and finish rolling except for the inevitable impurities, and then wound on a coil. In performing a series of hot rolling processes,
Subjected to finish rolling so that the surface temperature of the rolled material from 920 ℃ (Ar 3 -30) cumulative rolling reduction between ° C. is 50% or more,
After the finish rolling, primary cooling is performed at a cooling rate of 80 ° C./s or higher to an average cross-sectional temperature (700 ± 30) ° C.
After the primary cooling, a ferrite precipitation treatment is performed by cooling at a rate of 0.5 ° C./s or more and 5 ° C./s or less over a period of 6 s or more and 15 s or less,
After the ferrite precipitation treatment, secondary cooling is performed at a cooling rate of 10 ° C./s or higher to 450 ° C. or lower,
Next, a method for producing a hot rolled steel sheet having a low yield ratio and a high strength, wherein the coil is wound between 250 ° C. and 450 ° C.
The method for producing a low yield ratio high strength hot-rolled steel sheet according to claim 1, 2 or 3, wherein the slab further contains one or two kinds selected from Ca: 0.005% or less and REM: 0.005% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004097072A JP4617692B2 (en) | 2004-03-29 | 2004-03-29 | A method for producing a high-strength hot-rolled steel strip with a low yield ratio. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004097072A JP4617692B2 (en) | 2004-03-29 | 2004-03-29 | A method for producing a high-strength hot-rolled steel strip with a low yield ratio. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005281764A true JP2005281764A (en) | 2005-10-13 |
JP4617692B2 JP4617692B2 (en) | 2011-01-26 |
Family
ID=35180484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004097072A Expired - Lifetime JP4617692B2 (en) | 2004-03-29 | 2004-03-29 | A method for producing a high-strength hot-rolled steel strip with a low yield ratio. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4617692B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010174343A (en) * | 2009-01-30 | 2010-08-12 | Jfe Steel Corp | Method for producing thick and high tension hot-rolled steel plate excellent in low temperature toughness |
JP2012139719A (en) * | 2011-01-04 | 2012-07-26 | Kobe Steel Ltd | Rolling method of high-strength steel sheet |
CN108570600A (en) * | 2018-05-22 | 2018-09-25 | 湖南华菱湘潭钢铁有限公司 | A kind of production method of big wall thickness X80 pipe line steels |
JP2022106590A (en) * | 2021-01-07 | 2022-07-20 | Jfeスチール株式会社 | Electroseamed steel pipe, and production method of electroseamed steel pipe |
CN116623087A (en) * | 2023-05-26 | 2023-08-22 | 鞍钢股份有限公司 | Steel for producing thick 240MPa high-toughness tubular pile from thin blank and production method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04276024A (en) * | 1991-02-28 | 1992-10-01 | Nkk Corp | Manufacture of high strength hot rolled steel sheet excellent in stretch-flanging property |
JPH08337816A (en) * | 1995-06-08 | 1996-12-24 | Sumitomo Metal Ind Ltd | Method of manufacturing low yield specific hot rolled steel sheet for line pipe |
JP2001207220A (en) * | 2000-01-26 | 2001-07-31 | Kawasaki Steel Corp | Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability |
-
2004
- 2004-03-29 JP JP2004097072A patent/JP4617692B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04276024A (en) * | 1991-02-28 | 1992-10-01 | Nkk Corp | Manufacture of high strength hot rolled steel sheet excellent in stretch-flanging property |
JPH08337816A (en) * | 1995-06-08 | 1996-12-24 | Sumitomo Metal Ind Ltd | Method of manufacturing low yield specific hot rolled steel sheet for line pipe |
JP2001207220A (en) * | 2000-01-26 | 2001-07-31 | Kawasaki Steel Corp | Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010174343A (en) * | 2009-01-30 | 2010-08-12 | Jfe Steel Corp | Method for producing thick and high tension hot-rolled steel plate excellent in low temperature toughness |
JP2012139719A (en) * | 2011-01-04 | 2012-07-26 | Kobe Steel Ltd | Rolling method of high-strength steel sheet |
CN108570600A (en) * | 2018-05-22 | 2018-09-25 | 湖南华菱湘潭钢铁有限公司 | A kind of production method of big wall thickness X80 pipe line steels |
CN108570600B (en) * | 2018-05-22 | 2020-04-28 | 湖南华菱湘潭钢铁有限公司 | Production method of X80 pipeline steel with large wall thickness |
JP2022106590A (en) * | 2021-01-07 | 2022-07-20 | Jfeスチール株式会社 | Electroseamed steel pipe, and production method of electroseamed steel pipe |
JP7388371B2 (en) | 2021-01-07 | 2023-11-29 | Jfeスチール株式会社 | ERW steel pipe and method for manufacturing ERW steel pipe |
CN116623087A (en) * | 2023-05-26 | 2023-08-22 | 鞍钢股份有限公司 | Steel for producing thick 240MPa high-toughness tubular pile from thin blank and production method |
Also Published As
Publication number | Publication date |
---|---|
JP4617692B2 (en) | 2011-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101965414B (en) | High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both | |
JP5195469B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
US11214847B2 (en) | High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP5644982B1 (en) | ERW welded steel pipe | |
JP5499734B2 (en) | Ultra-thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
WO2013011791A1 (en) | Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same | |
JP5151233B2 (en) | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same | |
JP2010196164A (en) | Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor | |
JP5553093B2 (en) | Thick high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
JP6519024B2 (en) | Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness | |
JP6160574B2 (en) | High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same | |
JP2020509181A (en) | Sour-resistant thick steel plate excellent in low-temperature toughness and post-heat treatment characteristics and method for producing the same | |
JP4375087B2 (en) | High strength and high toughness hot-rolled steel strip with excellent material homogeneity and manufacturing method thereof | |
JP5401863B2 (en) | Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness | |
JP2015190026A (en) | Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor | |
JP6682988B2 (en) | High-tensile steel plate with excellent ductility and method of manufacturing the same | |
CN116234644A (en) | Electric resistance welded steel pipe and manufacturing method thereof | |
JP2007177326A (en) | High tensile strength thin steel sheet having low yield ratio and its production method | |
JP2007177325A (en) | High tensile strength thick steel plate having low yield ratio and its production method | |
JP5347540B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP2007138289A (en) | Thick high strength hot rolled steel plate and its production method | |
JP5157387B2 (en) | Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability | |
JP4617692B2 (en) | A method for producing a high-strength hot-rolled steel strip with a low yield ratio. | |
JP2002294391A (en) | Steel for building structure and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100714 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4617692 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |