[go: up one dir, main page]

JP2005281084A - Sintered compact and manufacturing method therefor - Google Patents

Sintered compact and manufacturing method therefor Download PDF

Info

Publication number
JP2005281084A
JP2005281084A JP2004099185A JP2004099185A JP2005281084A JP 2005281084 A JP2005281084 A JP 2005281084A JP 2004099185 A JP2004099185 A JP 2004099185A JP 2004099185 A JP2004099185 A JP 2004099185A JP 2005281084 A JP2005281084 A JP 2005281084A
Authority
JP
Japan
Prior art keywords
titanium
sintered body
hard phase
silicon
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004099185A
Other languages
Japanese (ja)
Inventor
Masaki Kobayashi
小林正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2004099185A priority Critical patent/JP2005281084A/en
Publication of JP2005281084A publication Critical patent/JP2005281084A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered compact excellent in hardness, strengths, and toughness, and capable of non-pressurized sintering at a low temperature, in regard to a Ti/Si/C base sintered compact which is used as a cutting tool, an abrasion resistant tool, a sliding part, or the like. <P>SOLUTION: The sintered compact which is a sintered compact containing a first hard phase of a titanium containing compound and a second hard phase of a titanium/silicon compound, satisfies both 0.20≤Si/(Ti+Si)≤0.30 wherein Si/(Ti+Si) is the atomic ratio of the titanium element to the total of the titanium element and the silicon element in the sintered compact, and 0.30≤C/(Ti+Si)≤0.55 wherein C/(Ti+Si) is the atomic ratio of the carbon element to the total of the titanium element and the silicon element in the sintered compact, is excellent in hardness, strengths, and toughness, and capable of non-pressurized sintering. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、切削工具,耐摩耗用工具,しゅう動部品などに使用される硬質焼結材に関し、特に高温あるいは腐食性環境下で耐摩耗性を必要とする用途に最適な焼結体に関するものである。 The present invention relates to a hard sintered material used for cutting tools, wear-resistant tools, sliding parts, and the like, and more particularly to a sintered body optimal for applications requiring wear resistance in a high temperature or corrosive environment. It is.

炭化チタンは、高硬度で鋼との親和性が低いため、TiC系サ−メット、超硬合金やアルミナ系セラミックスの添加成分あるいは硬質皮膜として切削工具や耐摩耗工具に多用されている。しかし、炭化チタンのみからなる焼結体は、難焼結性であり、かつ強度、靱性、耐酸化性などに劣るため、実用には至っていない。その解決策の1つとして、ケイ素を添加する方法が種々提案されている Since titanium carbide has high hardness and low affinity with steel, it is frequently used for cutting tools and wear-resistant tools as additive components or hard coatings of TiC-based cermets, cemented carbides and alumina-based ceramics. However, a sintered body made only of titanium carbide is difficult to sinter and inferior in strength, toughness, oxidation resistance, etc., and has not been put into practical use. As one of the solutions, various methods for adding silicon have been proposed.

炭化チタンを含む焼結体に関し、チタンのホウ化物,炭化物,窒化物,炭窒化物の少なくとも1種類を主成分とし、4,5,6族Bおよび鉄族ケイ化物の少なくとも1種類を0.1〜50重量%含むチタン系セラミックス焼結体がある(例えば、特許文献1参照。)。このチタン系セラミックス焼結体は、焼結性を改善するために低温で液相を生じるケイ化物を添加したものではあるが、炭化チタンにチタンケイ化物を添加した場合には、多量の炭化ケイ素を生じ、かつ1650〜1800℃の高温焼結によってチタンケイ化物が粗大化するために、強度と靱性が不十分であるという問題がある。 Concerning a sintered body containing titanium carbide, the main component is at least one of boride, carbide, nitride, and carbonitride of titanium, and at least one of group 4, 5, 6 B and iron group silicide is 0. There is a titanium-based ceramic sintered body containing 1 to 50% by weight (for example, see Patent Document 1). This titanium-based ceramic sintered body has a silicide that generates a liquid phase at a low temperature to improve sinterability. However, when titanium silicide is added to titanium carbide, a large amount of silicon carbide is added. There arises a problem that the strength and toughness are insufficient because the titanium silicide is coarsened by high temperature sintering at 1650-1800 ° C.

また、炭化チタン粉末と有機ケイ素ポリマ−との混合物の焼結によって得られ、2〜10重量%の炭化ケイ素と2重量%以下の遊離炭素からなる炭化チタン焼結体がある(例えば、特許文献2。)。本公報記載の炭化チタン焼結体は、有機ケイ素ポリマ−から生じる微細な炭化ケイ素によって焼結性を改善したものではあるが、強度と靱性が低くて高温焼結を要するという問題がある。 Further, there is a titanium carbide sintered body obtained by sintering a mixture of titanium carbide powder and an organosilicon polymer, and comprising 2 to 10% by weight of silicon carbide and 2% by weight or less of free carbon (for example, patent document). 2.). Although the titanium carbide sintered body described in this publication has improved sinterability by fine silicon carbide generated from an organosilicon polymer, there is a problem that high strength sintering is required due to low strength and toughness.

さらに、結晶粒径が10μm以下であり、炭化チタン(TiC)含有量が8wt%以下であることを特徴とするチタンシリコンカーバイド焼結体がある(例えば、特許文献3参照。)。炭化チタン(TiC)含有量が7wt%以下であることを特徴とするチタンシリコンカーバイド(Ti3SiC2)金属性セラミック焼結体がある(例えば、特許文献4参照。)。これらのチタンシリコンカーバイド焼結体は、チタンと、ケイ素あるいは炭化ケイ素と、炭化チタンとの混合粉末をカーボンモールドに挿入してパルス通電加圧焼結し、反応合成によって高純度のTi3SiC2焼結体を得ようとするものではあるが、製造が困難な上に複雑形状に対応できないため、高価になるという問題がある。 Furthermore, there is a titanium silicon carbide sintered body characterized by having a crystal grain size of 10 μm or less and a titanium carbide (TiC) content of 8 wt% or less (see, for example, Patent Document 3). There is a titanium silicon carbide (Ti 3 SiC 2 ) metallic ceramic sintered body having a titanium carbide (TiC) content of 7 wt% or less (see, for example, Patent Document 4). These titanium silicon carbide sintered bodies are obtained by inserting a mixed powder of titanium, silicon or silicon carbide, and titanium carbide into a carbon mold and performing pulsed current pressure sintering, and high purity Ti 3 SiC 2 by reaction synthesis. Although it is going to obtain a sintered compact, since manufacture is difficult and it cannot respond to a complicated shape, there exists a problem that it becomes expensive.

特開平05−139834号公報Japanese Laid-Open Patent Publication No. 05-139834 特開平08−40772号公報Japanese Patent Laid-Open No. 08-40772 特開2003−2745号公報JP 2003-2745 A 特開2003−20279号公報JP 2003-20279 A

本発明は、上述のような問題点を解決したもので、具体的には、チタンと炭素とケイ素との割合を所定範囲に限定し、かつ原料粉末を選定することによって、低温での無加圧焼結を可能とし、かつ硬さと強度・靱性に優れた焼結体の提供を目的とする。 The present invention solves the above-described problems. Specifically, the ratio of titanium, carbon, and silicon is limited to a predetermined range, and a raw material powder is selected so that no additive is applied at a low temperature. An object is to provide a sintered body that enables pressure sintering and has excellent hardness, strength, and toughness.

本発明者は、炭化チタンとチタンケイ素化合物とを含有する焼結体の更なる焼結性の改善と強度・靱性の向上について検討していたところ、原料粉末として結合炭素量の低い炭化チタン(TiC1-X)とケイ素との混合粉末を用いれば、低温で液相を生じるために緻密化が容易となること、低温焼結できるために焼結体の組織が均一・微細となること、また成分組成を原子比率でTi:Si:C=3:1:1〜2の範囲近傍にすれば、硬さと強度・靱性がさらに向上するという知見を得て、本発明を完成するに至ったものである。 The present inventor has been studying further improvement of sinterability and improvement of strength and toughness of a sintered body containing titanium carbide and a titanium silicon compound. As a raw material powder, titanium carbide having a low bonded carbon content ( If a mixed powder of TiC 1-X ) and silicon is used, a liquid phase is generated at a low temperature, so that densification is easy, and low-temperature sintering makes the structure of the sintered body uniform and fine, In addition, when the component composition is in the vicinity of Ti: Si: C = 3: 1: 1 to 2 in atomic ratio, the knowledge that hardness, strength and toughness are further improved has been obtained, and the present invention has been completed. Is.

すなわち、本発明の焼結体は、チタン含有化合物の第1硬質相と、チタンケイ素化合物の第2硬質相とを含む焼結体において、該焼結体に含まれるチタン元素とケイ素元素の合計に対するケイ素元素の原子比(Si/(Ti+Si))は、0.20≦Si/(Ti+Si)≦0.30を満足し、該焼結体に含まれるチタン元素とケイ素元素の合計に対する炭素元素の原子比(C/(Ti+Si))は、0.30≦C/(Ti+Si)≦0.55を満足するものである。 That is, the sintered body of the present invention is a sintered body including a first hard phase of a titanium-containing compound and a second hard phase of a titanium silicon compound, and is a total of titanium element and silicon element contained in the sintered body. The atomic ratio of silicon element to (Si / (Ti + Si)) satisfies 0.20 ≦ Si / (Ti + Si) ≦ 0.30, and the carbon element to the total of titanium element and silicon element contained in the sintered body The atomic ratio (C / (Ti + Si)) satisfies 0.30 ≦ C / (Ti + Si) ≦ 0.55.

本発明のチタン含有化合物の第1硬質相と、チタンケイ素化合物の第2硬質相とを含む焼結体とは、第1硬質相と第2硬質相とを80体積%以上含有し、残りが、チタンを除く周期律表4a,5a,6a族元素,Al,Siの炭化物、窒化物、酸化物およびこれらの相互固溶体の中の少なくとも1種からなる焼結体をいう。 The sintered body containing the first hard phase of the titanium-containing compound of the present invention and the second hard phase of the titanium silicon compound contains 80% by volume or more of the first hard phase and the second hard phase, and the rest is In addition, it refers to a sintered body composed of at least one of the group 4a, 5a and 6a elements of the periodic table excluding titanium, carbides, nitrides and oxides of Al and Si, and their mutual solid solutions.

本発明の焼結体におけるチタン原子とケイ素原子の合計に対するケイ素原子の原子比:Si/(Ti+Si)は、0.20未満では焼結助剤となるケイ素化合物量が少ないために、焼結性が劣化して巣孔を生じ、また高温焼結しても粗粒となって硬さと強度がする。逆に0.30を超えて大きくなると相対的に炭化チタン量が減少するために硬さが低下し、またケイ素化合物が粗大化して強度も低下する。一方、チタン原子とケイ素原子の合計に対する炭素原子の原子比:C/(Ti+Si)は、0.30未満では炭化チタン中の結合炭素量が減少するために硬さが低下し、逆に0.55を超えて大きくなると、炭化ケイ素を多量に生じるために強度と靱性が劣化する。 In the sintered body of the present invention, the atomic ratio of silicon atoms to the total of titanium atoms and silicon atoms: Si / (Ti + Si) is less than 0.20, since the amount of silicon compound serving as a sintering aid is small, the sinterability Deteriorates to form burrows, and even after high temperature sintering, coarse grains become hard and strong. On the other hand, when it exceeds 0.30, the amount of titanium carbide is relatively reduced, so that the hardness is lowered, and the silicon compound is coarsened and the strength is also lowered. On the other hand, if the atomic ratio of carbon atoms to the total of titanium atoms and silicon atoms: C / (Ti + Si) is less than 0.30, the amount of bonded carbon in titanium carbide decreases, so that the hardness decreases. If it exceeds 55, a large amount of silicon carbide is produced, so that strength and toughness deteriorate.

本発明の焼結体におけるチタン含有化合物の第1硬質相は、チタンの炭化物、炭窒化物、チタンを除く周期律表4a,5a,6a族元素とチタンとの複合炭化物、複合炭窒化物の中の少なくとも1種からなる。第1硬質相に含まれる炭化チタンは、B1型の立方晶構造であって非化学量論組成を持つもので、具体的には炭化チタンをTiC1-Xと表した場合に0.6≦x≦0.8の範囲にあり、結合炭素量の低い炭化チタンである。焼結体に周期律表4a,5a族元素の窒化物が添加・含有された場合には、炭化チタンに周期律表4a,5a族元素の窒化物が全面あるいは部分固溶して複合炭窒化物を形成する。 The first hard phase of the titanium-containing compound in the sintered body of the present invention is composed of titanium carbide, carbonitride, composite carbide of periodic table 4a, 5a, 6a elements excluding titanium and titanium, and composite carbonitride. It consists of at least one of them. Titanium carbide contained in the first hard phase has a B1 type cubic crystal structure and a non-stoichiometric composition. Specifically, when titanium carbide is expressed as TiC 1-X , 0.6 ≦ Titanium carbide is in the range of x ≦ 0.8 and has a low amount of bonded carbon. When nitrides of Group 4a and 5a elements in the periodic table are added to and contained in the sintered body, nitrides of Group 4a and 5a elements of the Periodic Table 4a and 5a elements are dissolved in the entire surface or partially in composite carbide nitriding. Form things.

また、本発明におけるチタンケイ素化合物の第2硬質相は、チタン元素とケイ素元素とを含む金属間化合物、炭化物、窒化物、炭窒化物の中の少なくとも1種からなる。具体的には、Ti3SiC2などのチタンケイ素炭化物、TiSi2,Ti5Si3,TiSi,Ti3Si4,Ti3Siなどのチタンケイ素金属間化合物などを挙げることができる。これらの中でも、TiSi2,Ti5Si3,Ti3SiC2の中の少なくとも1種であると、焼結体の機械的特性が良好となるので好ましい。例えば、TiSi2は硬さと強度を、Ti5Si3は靱性を、Ti3SiC2は強度と靱性を向上させる。 Further, the second hard phase of the titanium silicon compound in the present invention is composed of at least one of an intermetallic compound containing a titanium element and a silicon element, carbide, nitride, and carbonitride. Specific examples include titanium silicon carbide such as Ti 3 SiC 2 and titanium silicon intermetallic compounds such as TiSi 2 , Ti 5 Si 3 , TiSi, Ti 3 Si 4 , and Ti 3 Si. Of these, if it is TiSi 2, Ti 5 Si 3, Ti 3 at least one among SiC 2, the mechanical properties of the sintered body is improved preferably. For example, TiSi 2 improves hardness and strength, Ti 5 Si 3 improves toughness, and Ti 3 SiC 2 improves strength and toughness.

本発明の焼結体は、焼結体全体に対して0.1〜5重量%のアルミニウム元素を含有すると、焼結体の機械的特性が改善されるので好ましい。金属アルミニウムを添加すると、Al−Siの共晶液相を生じるために焼結性が改善されて微細組織の焼結体が得られると共に、Ti3SiC2の生成量が増大するために、強度と靱性が向上する。しかし、アルミニウム元素が5重量%を超えて多く含有されると、Ti3SiC2が粗大化する同時に、脆弱なAl2Ti42相を生じるために強度と靱性が著しく低下する。逆に0.1重量%未満では、アルミニウム元素を含有する効果が得られない。添加したアルミニウム元素は、チタンケイ素化合物に固溶すると推察されるが、一部は酸化アルミニウムの微細粒子となって焼結体中に分散する。 The sintered body of the present invention preferably contains 0.1 to 5% by weight of aluminum element with respect to the entire sintered body because the mechanical properties of the sintered body are improved. When metallic aluminum is added, an eutectic liquid phase of Al—Si is formed, so that the sinterability is improved and a sintered body with a fine structure is obtained, and the amount of Ti 3 SiC 2 is increased, so that strength is increased. And toughness is improved. However, if the aluminum element is contained in a large amount exceeding 5% by weight, the Ti 3 SiC 2 is coarsened, and at the same time, the brittle Al 2 Ti 4 C 2 phase is generated, so that the strength and toughness are remarkably lowered. Conversely, if it is less than 0.1% by weight, the effect of containing an aluminum element cannot be obtained. The added aluminum element is presumed to be a solid solution in the titanium silicon compound, but a part of the aluminum element becomes fine particles of aluminum oxide and is dispersed in the sintered body.

本発明の焼結体は、第1硬質相:35〜85体積%と、第2硬質相:残部とで構成されるか、あるいは第1硬質相:35〜85体積%と、酸化アルミニウムおよび/または炭化ケイ素からなる第3硬質相:0.1〜5体積%と、第2硬質相:残部とで構成される焼結体であると製造が容易で機械的特性のバランスが良いので好ましい。本発明の組成範囲内で、例えばチタンケイ素化合物量(Ti3SiC2)を80体積%とすることも可能であるが、相対的に炭化チタン量が減少するために、硬さの低下が著しい。特に第3硬質相として含まれる炭化ケイ素は、急激な靱性の低下を引き起こすので、焼結体全体に対して2体積%以下が好ましい。 The sintered body of the present invention comprises a first hard phase: 35 to 85% by volume and a second hard phase: the remainder, or a first hard phase: 35 to 85% by volume, aluminum oxide and / or Alternatively, a sintered body composed of a third hard phase composed of silicon carbide: 0.1 to 5% by volume and a second hard phase: the balance is preferable because it is easy to manufacture and has a good balance of mechanical properties. Within the composition range of the present invention, for example, the amount of titanium silicon compound (Ti 3 SiC 2 ) can be 80% by volume. However, since the amount of titanium carbide is relatively reduced, the hardness is significantly reduced. . In particular, silicon carbide contained as the third hard phase causes a rapid decrease in toughness, so that it is preferably 2% by volume or less based on the entire sintered body.

また、各硬質相の平均粒子径は、第1硬質相が3μm以下、かつ第2硬質相が5μm以下であると、焼結体の硬さと強度が高いので好ましい。しかし、第1硬質相、第2硬質相とも0.1μm未満とすることは技術的に難しいため、第1硬質相の平均粒子径は0.1〜3μm、第2硬質相の平均粒子径は0.1〜5μmが好ましい。微細組織とするためには、原料粉末を微粒にし、かつ低温で焼結する必要がある。 The average particle diameter of each hard phase is preferably 3 μm or less for the first hard phase and 5 μm or less for the second hard phase because the sintered body has high hardness and strength. However, since it is technically difficult to make both the first hard phase and the second hard phase less than 0.1 μm, the average particle diameter of the first hard phase is 0.1 to 3 μm, and the average particle diameter of the second hard phase is 0.1-5 micrometers is preferable. In order to obtain a fine structure, the raw material powder needs to be made into fine particles and sintered at a low temperature.

本発明の製造方法は、TiC1-x(0.5<x<0.9、1−xはチタン元素に対する炭素の原子比を示す。)と表される炭化チタンとケイ素とを含む混合物を得る混合工程と、得られた混合物を加圧成形する成形工程と、成形した混合物を1300〜1500℃の真空中で焼結する焼結工程とを含む。なお、混合工程において、混合物は、結合炭素量の低い炭化チタン、ケイ素以外に、周期律表4a,5a族元素の窒化物の中の少なくとも1種および/または金属アルミニウムを含んでも良い。 The production method of the present invention comprises a mixture containing titanium carbide and silicon represented by TiC 1-x (0.5 <x <0.9, 1-x represents an atomic ratio of carbon to titanium element). A mixing step to obtain, a forming step for pressure-molding the obtained mixture, and a sintering step for sintering the formed mixture in a vacuum of 1300 to 1500 ° C. In the mixing step, the mixture may include at least one of nitrides of Group 4a and 5a elements of the periodic table and / or metal aluminum in addition to titanium carbide and silicon having a low bonded carbon content.

本発明の焼結体の製造方法は、焼結工程において無加圧焼結するもので、機械的特性に優れた緻密で微細組織を有する焼結体が容易に得られる。 The method for producing a sintered body according to the present invention involves pressureless sintering in the sintering step, and a sintered body having a fine and fine structure excellent in mechanical properties can be easily obtained.

本発明の製造方法において、ケイ素はTiC1-Xと反応してTi−Siの低温液相(Si−TiSi2系で1330℃、Ti−Ti5Si3系で1330℃)を生じながら微細な炭化チタンとTiSi2,Ti5Si3,Ti3SiC2などのチタンケイ素化合物を生成するため、焼結性が向上すると共に、微細で高強度な焼結体が得られる。ここで、TiC1-Xの替わりにTiCとTiH2(あるいはTi)、ケイ素の替わりにSiCを用いても同様の結果となるが、TiH2(あるいはTi)の配合量を少なくした方が良い。TiH2添加量が多いと、水素の解離反応やSiCとの反応熱によって焼結体に亀裂を生じるからである。 In the production method of the present invention, silicon reacts with TiC 1-X to produce a Ti—Si low-temperature liquid phase (1330 ° C. in the Si—TiSi 2 system and 1330 ° C. in the Ti—Ti 5 Si 3 system) while being fine. Since titanium carbide and titanium silicon compounds such as TiSi 2 , Ti 5 Si 3 , and Ti 3 SiC 2 are generated, the sinterability is improved and a fine and high-strength sintered body is obtained. Here, the same result can be obtained by using TiC and TiH 2 (or Ti) instead of TiC 1 -X , and SiC instead of silicon, but it is better to reduce the amount of TiH 2 (or Ti). . This is because if the amount of TiH 2 added is large, cracks are generated in the sintered body due to the dissociation reaction of hydrogen and the reaction heat with SiC.

本発明の製造方法における焼結雰囲気は、100Pa以下の真空中で加熱・保持し、原料粉末中に含まれる酸素を十分に除去する必要がある。炭化チタン中に固溶した酸素やチタンケイ素化合物中に分散した酸化物(SiO2)は、焼結体の靱性を著しく低下させるからである。焼結温度は、1300〜1500℃の範囲が望ましく、1300℃未満では焼結不足の巣孔を生じ、逆に1500℃を超えて高くなるとチタンケイ素化合物が極端に粗大となるために、いずれも硬さと強度が低下する。ここで、焼結性が不十分な組成や硬さと強度を更に改善したい場合には、HIP(熱間静水圧)処理を施すと良い。 The sintering atmosphere in the production method of the present invention must be heated and held in a vacuum of 100 Pa or less to sufficiently remove oxygen contained in the raw material powder. This is because oxygen dissolved in titanium carbide or oxide (SiO 2 ) dispersed in a titanium silicon compound significantly reduces the toughness of the sintered body. The sintering temperature is preferably in the range of 1300 to 1500 ° C. If the sintering temperature is less than 1300 ° C., the under-sintered pores are produced. Conversely, if the temperature exceeds 1500 ° C., the titanium silicon compound becomes extremely coarse. Hardness and strength are reduced. Here, when it is desired to further improve the composition, hardness and strength with insufficient sinterability, it is preferable to perform HIP (hot isostatic pressure) treatment.

本発明の焼結体は、結合炭素量の低い炭化チタン(TiC1-X)とケイ素とから生じる低温液相が焼結性を改善する作用をし、焼結反応により生じた微細な炭化チタンが硬さを、チタンケイ素化合物が強度と靱性を向上させる作用をし、限定されたチタンとケイ素と炭素の組成範囲がこれらの特性をさらに向上させる作用をしているものである。 The sintered body of the present invention is a fine titanium carbide produced by a sintering reaction in which a low-temperature liquid phase generated from titanium carbide (TiC 1-X ) and silicon having a low bonded carbon content improves the sinterability. Has a function of improving hardness, a titanium silicon compound has an effect of improving strength and toughness, and a limited composition range of titanium, silicon and carbon has an effect of further improving these characteristics.

本発明の焼結体は、硬さ、強度、靱性が高く、無加圧焼結が可能である。切削工具、耐摩耗用工具、しゅう動部品などに使用すると優れた性能を発揮する。 The sintered body of the present invention has high hardness, strength, and toughness, and can be sintered without pressure. Excellent performance when used for cutting tools, wear-resistant tools, sliding parts, etc.

市販されている平均粒径1.2μmのTiC0.7(炭素量が15.0重量%),平均粒径1.5μmのTiC,平均粒径5μmのTiH2,平均粒径1.2μmのTi(C0.50.5),平均粒径10μmのSi,平均粒径0.5μmのSiC,平均粒径3.5μmのTiSi2,平均粒径1.5μmのAl(扁平なスタンプ粉),平均粒径1.2μmのTiN,平均粒径2.1μmのVN,平均粒径1.2μmのTaNおよび平均粒径0.2μmのZrO2(3モル%のY23を含有)の各粉末を表1に示した組成に配合し、エチルアルコ−ルの溶媒、ウレタン内張りのポット、アルミナ製の粉砕用ボ−ルを用いて48時間の湿式混合を行った後、乾燥しながら4.0重量%のパラフィンワックスを添加して混合粉末を得た。これらの混合粉末を金型に充填し、198MPaの圧力でもって5.5ラ17ラ43mmの圧粉成形体を作製し、窒化ホウ素製のセッタ−上に設置して50Paの真空中で加熱し、400℃で1時間の脱ワックス処理を行った後、表2に併記した温度で1時間保持して焼結した。さらに、一部の焼結体を除いて、表2に併記した温度で1時間のHIP処理(100MPaのAr中)を施すことによって、本発明品1〜12および比較品1〜9の焼結体を得た。 TiC 0.7 having an average particle diameter of 1.2 μm (carbon content is 15.0 wt%), TiC having an average particle diameter of 1.5 μm, TiH 2 having an average particle diameter of 5 μm, Ti having an average particle diameter of 1.2 μm ( C 0.5 N 0.5 ), Si with an average particle size of 10 μm, SiC with an average particle size of 0.5 μm, TiSi 2 with an average particle size of 3.5 μm, Al (flat stamp powder) with an average particle size of 1.5 μm, average particle size Each powder of 1.2 μm TiN, VN having an average particle diameter of 2.1 μm, TaN having an average particle diameter of 1.2 μm and ZrO 2 having an average particle diameter of 0.2 μm (containing 3 mol% Y 2 O 3 ) is shown. 1. After blending for 48 hours using ethyl alcohol solvent, urethane lining pot, alumina grinding ball, and blending into the composition shown in No. 1, 4.0% by weight while drying. Paraffin wax was added to obtain a mixed powder. These mixed powders are filled into a mold, and a 5.5 to 17 43 mm compact is produced with a pressure of 198 MPa, placed on a boron nitride setter and heated in a vacuum of 50 Pa. After dewaxing at 400 ° C. for 1 hour, sintering was carried out at the temperature shown in Table 2 for 1 hour. Furthermore, except for some sintered bodies, the HIP treatment (in 100 MPa of Ar) for 1 hour at the temperature shown in Table 2 was performed to sinter the inventive products 1-12 and comparative products 1-9. Got the body.

Figure 2005281084
Figure 2005281084

こうして得た各焼結体について、#400のダイヤモンド砥石で研削加工して3.0ラ4.0ラ35.0mmのJIS試験片とした後、曲げ強度を測定した。また、JIS試験片の各1本の1面について、1μmのダイヤモンドペ−ストでラップ加工した後、ビッカ−ス圧子を用いた試験荷重:196Nでの硬さ(HV)と破壊靱性値(K1C)を測定した。これらの結果を表2に示す。 Each sintered body thus obtained was ground with a # 400 diamond grindstone to obtain a JIS test piece of 3.0 × 4.0 × 35.0 mm, and then the bending strength was measured. Moreover, after lapping one surface of each JIS test piece with a 1 μm diamond paste, test load using a Vickers indenter: hardness (HV) at 196 N and fracture toughness value (K1C ) Was measured. These results are shown in Table 2.

Figure 2005281084
Figure 2005281084

次に、ラップ加工したJIS試験片について、X線回折を行って構成成分を同定した。そして、電界放射型分析電子顕微鏡による元素マッピングで構成成分の各相を確認した後、光学顕微鏡を用いて組織写真(1,500倍)を撮り、画像処理装置によって構成成分の含有量と平均粒子径を求めた。その結果を表3に示す。尚、光学顕微鏡で観察すると、TiCは灰色、TiSi2,Ti5Si3,Ti3SiC2などのチタンケイ素化合物は白色、SiC,Al23,ZrO2などの第3硬質相は黒色に見える。 Next, the JIS-processed JIS test piece was subjected to X-ray diffraction to identify the constituent components. Then, after confirming each phase of the constituent component by elemental mapping with a field emission analytical electron microscope, a structure photograph (1,500 times) is taken using an optical microscope, and the content of the constituent component and the average particle are measured by an image processing apparatus. The diameter was determined. The results are shown in Table 3. When observed with an optical microscope, TiC is gray, titanium silicon compounds such as TiSi 2 , Ti 5 Si 3 and Ti 3 SiC 2 are white, and the third hard phase such as SiC, Al 2 O 3 and ZrO 2 is black. appear.

Figure 2005281084
Figure 2005281084

さらに、上記の分析電子顕微鏡でTiとSiの含有量を求めた後、試験片を超硬製乳鉢中で粉砕して#100篩の通過粉とし、炭素分析装置を用いてCの含有量も求めた。これらの分析結果から、Si/(Ti+Si)の原子比とC/(Ti+Si)の原子比を算出した。以上の結果を表4に示す。 Furthermore, after calculating | requiring content of Ti and Si with said analytical electron microscope, a test piece is grind | pulverized in a cemented carbide mortar to make a passing powder of # 100 sieve, and the content of C is also measured using a carbon analyzer. Asked. From these analysis results, the atomic ratio of Si / (Ti + Si) and the atomic ratio of C / (Ti + Si) were calculated. The results are shown in Table 4.

Figure 2005281084
Figure 2005281084

Claims (7)

チタン含有化合物の第1硬質相と、チタンケイ素化合物の第2硬質相とを含む焼結体において、該焼結体に含まれるチタン元素とケイ素元素の合計に対するケイ素元素の原子比(Si/(Ti+Si))は、0.20≦Si/(Ti+Si)≦0.30を満足し、該焼結体に含まれるチタン元素とケイ素元素の合計に対する炭素元素の原子比(C/(Ti+Si))は、0.30≦C/(Ti+Si)≦0.55を満足する焼結体。 In a sintered body including the first hard phase of the titanium-containing compound and the second hard phase of the titanium-silicon compound, the atomic ratio of silicon element to the total of titanium element and silicon element contained in the sintered body (Si / ( Ti + Si)) satisfies 0.20 ≦ Si / (Ti + Si) ≦ 0.30, and the atomic ratio of carbon element to the total of titanium element and silicon element contained in the sintered body (C / (Ti + Si)) is , 0.30 ≦ C / (Ti + Si) ≦ 0.55. 上記第2硬質相は、TiSi2,Ti5Si3,Ti3SiC2の中の少なくとも1種である請求項1に記載の焼結体。 The second hard phase, TiSi 2, Ti 5 Si 3 , Ti 3 sintered body of claim 1 is at least one in the SiC 2. 上記焼結体は、焼結体全体に対して0.1〜5重量%のアルミニウム元素を含有する請求項1または2に記載の焼結体。 The said sintered compact is a sintered compact of Claim 1 or 2 containing 0.1 to 5 weight% of aluminum elements with respect to the whole sintered compact. 上記焼結体は、第1硬質相:35〜85体積%と、第2硬質相:残部とで構成される請求項1〜3のいずれか1項に記載の焼結体。 The said sintered compact is a sintered compact of any one of Claims 1-3 comprised by 1st hard phase: 35-85 volume% and 2nd hard phase: remainder. 上記焼結体は、第1硬質相:35〜85体積%と、酸化アルミニウムおよび/または炭化ケイ素からなる第3硬質相:0.1〜5体積%と、第2硬質相:残部とで構成される請求項1〜3のいずれか1項に記載の焼結体。 The sintered body is composed of a first hard phase: 35 to 85% by volume, a third hard phase composed of aluminum oxide and / or silicon carbide: 0.1 to 5% by volume, and a second hard phase: the balance. The sintered body according to any one of claims 1 to 3. 上記焼結体は、第1硬質相の平均粒子径が0.1〜3μm、第2硬質相の平均粒子径が0.1〜5μmである請求項1〜5のいずれか1項に記載の焼結体。 6. The sintered body according to claim 1, wherein the sintered body has an average particle diameter of the first hard phase of 0.1 to 3 μm and an average particle diameter of the second hard phase of 0.1 to 5 μm. Sintered body. TiC1-x(0.5<x<0.9、1−xはチタン元素に対する炭素の原子比を示す。)と表される炭化チタンとケイ素とを含む混合物を得る混合工程と、得られた混合物を加圧成形する成形工程と、成形した混合物を1300〜1500℃の真空中で焼結する焼結工程とを含む焼結体の製造方法。
A mixing step of obtaining a mixture containing titanium carbide and silicon represented by TiC 1-x (0.5 <x <0.9, 1-x represents an atomic ratio of carbon to titanium element), and A method for producing a sintered body, comprising: a molding step of pressure-molding the obtained mixture, and a sintering step of sintering the molded mixture in a vacuum of 1300 to 1500 ° C.
JP2004099185A 2004-03-30 2004-03-30 Sintered compact and manufacturing method therefor Withdrawn JP2005281084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099185A JP2005281084A (en) 2004-03-30 2004-03-30 Sintered compact and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099185A JP2005281084A (en) 2004-03-30 2004-03-30 Sintered compact and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005281084A true JP2005281084A (en) 2005-10-13

Family

ID=35179868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099185A Withdrawn JP2005281084A (en) 2004-03-30 2004-03-30 Sintered compact and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005281084A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261881A (en) * 2006-03-29 2007-10-11 Akita Prefecture Tib2 base ti-si-c-based composite ceramic and method of manufacturing sintered compact thereof
JP2008162875A (en) * 2007-01-04 2008-07-17 National Institute Of Advanced Industrial & Technology High-strength titanium silicon carbide based composite material and method for producing the same
JP2009107909A (en) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology Method for producing fine grain titanium silicon carbide ceramics
JP2009526725A (en) * 2006-02-17 2009-07-23 ニューキャッスル イノベイション リミテッド Crystalline ternary ceramic precursor
JP2009538814A (en) * 2006-05-30 2009-11-12 コミツサリア タ レネルジー アトミーク Phase powder and method for producing the phase powder
CN101386537B (en) * 2008-10-24 2012-09-19 哈尔滨工业大学 Manufacturing method of ceramic commutator material
JP2013067679A (en) * 2011-09-20 2013-04-18 Akebono Brake Ind Co Ltd Friction material
JP2014198662A (en) * 2013-03-15 2014-10-23 日本碍子株式会社 Dense composite material, its manufacturing method and component for semiconductor manufacturing apparatus
JP2014208567A (en) * 2013-03-25 2014-11-06 日本碍子株式会社 Dense composite material, production method therefor, joined body, and member for semiconductor-manufacturing equipment
CN111825434A (en) * 2020-06-05 2020-10-27 长兴云峰炉料有限公司 Environment-friendly Al2O3-SiC-Ti3SiC2Castable and preparation method thereof
CN112876265A (en) * 2021-02-09 2021-06-01 马鞍山利尔开元新材料有限公司 Titanium-silicon-carbon metal composite converter slag-stopping sliding plate brick and preparation method thereof
CN113264775A (en) * 2020-01-29 2021-08-17 日本碍子株式会社 Dense composite material, method for producing same, joined body, and member for semiconductor manufacturing apparatus
CN114277276A (en) * 2021-12-24 2022-04-05 东莞理工学院 Ti5Si3Preparation method of titanium-tantalum-based composite material reinforced by TiC particles and adjustable thermal expansion coefficient

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061811A (en) * 2006-02-17 2015-04-02 ニューキャッスル イノベイション リミテッド Crystalline ternary ceramic precursor
JP2009526725A (en) * 2006-02-17 2009-07-23 ニューキャッスル イノベイション リミテッド Crystalline ternary ceramic precursor
JP2007261881A (en) * 2006-03-29 2007-10-11 Akita Prefecture Tib2 base ti-si-c-based composite ceramic and method of manufacturing sintered compact thereof
JP2009538814A (en) * 2006-05-30 2009-11-12 コミツサリア タ レネルジー アトミーク Phase powder and method for producing the phase powder
JP2008162875A (en) * 2007-01-04 2008-07-17 National Institute Of Advanced Industrial & Technology High-strength titanium silicon carbide based composite material and method for producing the same
JP2009107909A (en) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology Method for producing fine grain titanium silicon carbide ceramics
CN101386537B (en) * 2008-10-24 2012-09-19 哈尔滨工业大学 Manufacturing method of ceramic commutator material
JP2013067679A (en) * 2011-09-20 2013-04-18 Akebono Brake Ind Co Ltd Friction material
JP2014198662A (en) * 2013-03-15 2014-10-23 日本碍子株式会社 Dense composite material, its manufacturing method and component for semiconductor manufacturing apparatus
JP2014208567A (en) * 2013-03-25 2014-11-06 日本碍子株式会社 Dense composite material, production method therefor, joined body, and member for semiconductor-manufacturing equipment
CN113264775A (en) * 2020-01-29 2021-08-17 日本碍子株式会社 Dense composite material, method for producing same, joined body, and member for semiconductor manufacturing apparatus
CN111825434A (en) * 2020-06-05 2020-10-27 长兴云峰炉料有限公司 Environment-friendly Al2O3-SiC-Ti3SiC2Castable and preparation method thereof
CN112876265A (en) * 2021-02-09 2021-06-01 马鞍山利尔开元新材料有限公司 Titanium-silicon-carbon metal composite converter slag-stopping sliding plate brick and preparation method thereof
CN114277276A (en) * 2021-12-24 2022-04-05 东莞理工学院 Ti5Si3Preparation method of titanium-tantalum-based composite material reinforced by TiC particles and adjustable thermal expansion coefficient

Similar Documents

Publication Publication Date Title
US7501081B2 (en) Nanostructured titanium monoboride monolithic material and associated methods
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP6048522B2 (en) Sintered body and cutting tool
JP4830571B2 (en) cBN super high pressure sintered body
KR0127871B1 (en) Silicon nitride-based siuters
JP6615108B2 (en) High temperature oxidation resistant rare metal-free hard sintered body and method for producing the same
JP2010235351A (en) Alumina-based ceramic sintered compact, cutting insert and cutting tool
JP3607945B2 (en) Reactive synthesis of high-strength zirconium boride-silicon carbide composites
EP2760807B1 (en) Composite silicon nitride body
JP2006111947A (en) Ultra-fine particle of cermet
JP2009209022A (en) WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JP2000218411A (en) Cubic boron nitride sintered cutting tool
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JPH069264A (en) Wc-al2o3 sintered composite compact
JP2015086116A (en) Silicon nitride sintered body and abrasion resistant member
JP3051603B2 (en) Titanium compound sintered body
JP4292255B2 (en) α-sialon sintered body and method for producing the same
JP3628601B2 (en) WC-WB, WC-W2B or WC-WB-W2B composite having high hardness and high Young&#39;s modulus characteristics and method for producing the same
JP4004024B2 (en) Titanium carbide based ceramic tool and manufacturing method thereof
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool
JP2019077930A (en) Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material
JP6304615B1 (en) tool
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP2003113438A (en) Die made from sintered hard metal alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605