JP2005281063A - High purity spherical alumina powder, method for manufacturing the same and composition - Google Patents
High purity spherical alumina powder, method for manufacturing the same and composition Download PDFInfo
- Publication number
- JP2005281063A JP2005281063A JP2004097753A JP2004097753A JP2005281063A JP 2005281063 A JP2005281063 A JP 2005281063A JP 2004097753 A JP2004097753 A JP 2004097753A JP 2004097753 A JP2004097753 A JP 2004097753A JP 2005281063 A JP2005281063 A JP 2005281063A
- Authority
- JP
- Japan
- Prior art keywords
- alumina powder
- spherical alumina
- purity spherical
- composition
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 66
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 239000000203 mixture Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000012535 impurity Substances 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 28
- 238000005406 washing Methods 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims abstract description 14
- 239000011347 resin Substances 0.000 claims abstract description 14
- 229920001971 elastomer Polymers 0.000 claims abstract description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 14
- 239000003456 ion exchange resin Substances 0.000 claims description 10
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 10
- 239000011734 sodium Substances 0.000 description 34
- 239000003729 cation exchange resin Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229920001429 chelating resin Polymers 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- -1 for example Polymers 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920000800 acrylic rubber Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】耐湿信頼性を更に改善できる高純度球状アルミナ粉末、その製造方法及びそれを用いた組成物を提供する。
【解決手段】Na+量が30ppm以下、イオン性不純物の合計量が50ppm以下であることを特徴とする高純度球状アルミナ粉末。球形度が0.90以上の粒子含有率が90質量%以上のアルミナ粉末原料を、Na+、K+、NH4 +、Mg2+、Ca2+を実質的に含まないpH=3〜7の水で洗浄することを特徴とする高純度球状アルミナ粉末の製造方法。本発明の高純度球状アルミナ粉末をゴム及び樹脂の少なくとも一方に含有させてなることを特徴とする組成物。
【選択図】 なしA high-purity spherical alumina powder that can further improve moisture resistance reliability, a method for producing the same, and a composition using the same.
A high-purity spherical alumina powder characterized in that the Na + amount is 30 ppm or less and the total amount of ionic impurities is 50 ppm or less. An alumina powder raw material having a sphericity of 0.90 or more and a particle content of 90% by mass or more is water having a pH of 3 to 7 substantially free of Na + , K + , NH 4 + , Mg 2+ and Ca 2+. A method for producing a high-purity spherical alumina powder characterized by washing with A composition comprising the high-purity spherical alumina powder of the present invention contained in at least one of rubber and resin.
[Selection figure] None
Description
本発明は、高純度球状アルミナ粉末、その製造方法及び組成物に関する。 The present invention relates to a high-purity spherical alumina powder, a method for producing the same, and a composition.
近年、ICの高機能化及び高速化の進展に伴い、その発熱量は増大傾向にあり、半導体封止材用等のゴム及び樹脂の少なくとも一方の組成物(以下、単に「組成物」ともいう。)に対しても高熱放散性の要求が高まっている。組成物の放熱性を高めるためには、熱伝導性が高いアルミナ粉末を充填することが検討されている。しかし、一般的なアルミナ粉末はその表面に存在するNa+成分が多く、大気中の水と反応してしまうので組成物の成型物は、湿信頼性が著しく損なわれた。ここで、耐湿信頼性とは、例えば70℃の高温かつ湿度80RH%の条件下においても断線と半導体封止材のクラック不良を起こさないことをいう。 In recent years, with the progress of higher functionality and higher speed of IC, the amount of heat generation has been increasing, and at least one composition of rubber and resin for semiconductor sealing materials (hereinafter also simply referred to as “composition”). The demand for high heat dissipation is also increasing. In order to improve the heat dissipation of the composition, it has been studied to fill alumina powder having high thermal conductivity. However, since general alumina powder has a large amount of Na + component present on its surface and reacts with water in the atmosphere, the molded product of the composition has been significantly impaired in moisture reliability. Here, the moisture resistance reliability means that disconnection and crack failure of the semiconductor sealing material do not occur even under a high temperature of 70 ° C. and a humidity of 80 RH%, for example.
たとえば、特許文献1には、95℃×24時間で測定されたNa+量が10ppm以下であるアルミナ粉末が記載されているが、95℃×100時間では50ppm程度となり、しかもイオン性不純物(Na+、K+、NH4 +、Mg2+、Ca2+、F−、Cl−、NO2 −、SO4 2−、NO3 −、PO4 −)の合計量(以下、単に「イオン性不純物の合計量」ともいう。)も60ppm程度と多くあったので、耐湿信頼性が十分ではなかった。 For example, Patent Document 1 describes an alumina powder having an Na + amount measured at 95 ° C. × 24 hours of 10 ppm or less. However, it becomes about 50 ppm at 95 ° C. × 100 hours, and ionic impurities (Na + , K + , NH 4 + , Mg 2+ , Ca 2+ , F − , Cl − , NO 2 − , SO 4 2− , NO 3 − , PO 4 − ) (hereinafter simply referred to as “ionic impurities”). The total amount is also about 60 ppm, so the moisture resistance reliability was not sufficient.
また、特許文献2には、アルミナ質原料とハロゲン化合物等との混合物を加熱処理することによって、丸みがあり、Na+成分が比較的少ないアルミナ粉末を製造できることが記載されているが、この製造方法ではハロゲン化合物等に由来する不純物がアルミナ粉末に残留する問題がある。
本発明の目的は、耐湿信頼性を更に改善できる高純度球状アルミナ粉末、その製造方法及びそれを用いた組成物を提供することである。 An object of the present invention is to provide a high-purity spherical alumina powder that can further improve moisture resistance reliability, a method for producing the same, and a composition using the same.
すなわち、本発明は、本明細書に記載した方法で測定されたNa+量が30ppm以下、イオン性不純物の合計量が50ppm以下であることを特徴とする高純度球状アルミナ粉末である。また、本発明は、平均球形度が0.95以上、本明細書に記載した方法で測定されたNa+量が15ppm以下、イオン性不純物の合計量が30ppm以下であることを特徴とする高純度球状アルミナ粉末である。 That is, the present invention is a high-purity spherical alumina powder characterized in that the Na + amount measured by the method described herein is 30 ppm or less and the total amount of ionic impurities is 50 ppm or less. The present invention is also characterized in that the average sphericity is 0.95 or more, the Na + amount measured by the method described herein is 15 ppm or less, and the total amount of ionic impurities is 30 ppm or less. It is a pure spherical alumina powder.
また、本発明は、球形度が0.90以上の粒子含有率が90質量%以上のアルミナ粉末原料を、Na+、K+、NH4 +、Mg2+、Ca2+を実質的に含まないpH=3〜7の水で洗浄することを特徴とする高純度球状アルミナ粉末の製造方法である。この場合において、水洗をイオン交換樹脂の存在下で行うことが好ましい。 Further, the present invention provides an alumina powder raw material having a sphericity of 0.90 or more and a particle content of 90% by mass or more, which is substantially free of Na + , K + , NH 4 + , Mg 2+ , and Ca 2+. = Washing with water of 3 to 7 is a method for producing a high purity spherical alumina powder. In this case, washing with water is preferably performed in the presence of an ion exchange resin.
さらに、本発明は、上記いずれかの高純度球状アルミナ粉末をゴム及び樹脂の少なくとも一方に含有させてなることを特徴とする組成物である。 Furthermore, the present invention is a composition comprising any one of the above high purity spherical alumina powders in at least one of rubber and resin.
本発明によれば、Na+量が30ppm以下、イオン性不純物の合計量が50ppm以下の高純度球状アルミナ粉末とその製造方法が提供される。また、本発明の組成物は、耐湿信頼性が更に改善されたものとなる。 According to the present invention, a high-purity spherical alumina powder having a Na + amount of 30 ppm or less and a total amount of ionic impurities of 50 ppm or less and a method for producing the same are provided. Moreover, the moisture resistance reliability of the composition of the present invention is further improved.
本発明において、Na+量及びイオン性不純物の合計量は、95℃×100時間、超純水で抽出される値である、と定義される。以下、これについて更に説明する。 In the present invention, the total amount of Na + and ionic impurities is defined as a value extracted with ultrapure water at 95 ° C. for 100 hours. This will be further described below.
特許文献1記載の測定法におけるイオン性不純物の抽出条件は、常温〜100℃×24時間以下であるので、アルミナ粒子表面に存在するNa+成分の全てを抽出することができても、粒子内部に存在するNa+の抽出は不十分であったので、精度のよい分析法であるとはいえなかった。また、通常、アルミナ粒子にはその粒子表面よりも粒子内部の方により多くのNa+成分が存在しているので、従来の測定法で所望値を満たしている粉末であっても、組成物を製造した直後では問題がなくても、時間経過とともにNa+成分が滲みだし、耐湿信頼性が低下した。 Since the extraction conditions of the ionic impurities in the measurement method described in Patent Document 1 are from room temperature to 100 ° C. × 24 hours or less, even if all of the Na + components present on the surface of the alumina particles can be extracted, Since the extraction of Na + present in the sample was insufficient, it could not be said to be an accurate analysis method. In addition, since alumina particles usually have more Na + component in the interior of the particle than on the surface of the particle, even if the powder satisfies the desired value by the conventional measurement method, Even if there was no problem immediately after production, the Na + component began to ooze out over time, and the moisture resistance reliability decreased.
そこで、より正確なイオン性不純物の含有量を把握する必要が生じ、本発明が採用した抽出条件は、95℃×100時間の超純水による抽出である。一例を示すと、合成樹脂製容器に試料W(g)を測り取り、試料の約6倍の20℃超純水(温度25℃の比抵抗が17MΩ・cm)を加え、温度20℃に保たれた部屋で、160rpm×20分攪拌し(例えば井内盛栄堂社製商品名「シェイカーSR−1」)、温度95℃に保たれた電気乾燥機(例えばヤマト科学社製商品名「DS−44」)内で100時間静置してから、温度20℃に保たれた部屋に取り出して30分間放冷した後、セルローズフィルターを用いて濾過し、その濾液をイオンクロマトグラフ(例えば日本DIONEX製商品名「DX−100」、「DX−320J」)で分析し、各イオン性不純物に固有なピーク高さから、濾液の各イオン性不純物量A(μg/ml)を測定する。 Therefore, it becomes necessary to grasp the more accurate content of ionic impurities, and the extraction condition adopted by the present invention is extraction with ultrapure water at 95 ° C. × 100 hours. As an example, sample W (g) is measured in a synthetic resin container, and 20 ° C ultrapure water (specific resistance at 25 ° C is 17 MΩ · cm), about 6 times that of the sample, is added and kept at 20 ° C. An electric dryer (for example, trade name “DS-44, manufactured by Yamato Kagaku Co., Ltd.” manufactured by Yamato Kagaku Co., Ltd.) stirred at 160 rpm × 20 minutes in a drip room (for example, trade name “Shaker SR-1” manufactured by Inoue Seieido) )), Left in a room kept at a temperature of 20 ° C., allowed to cool for 30 minutes, filtered using a cellulose filter, and the filtrate was ion chromatograph (for example, a product manufactured by DIONEX, Japan) Name “DX-100”, “DX-320J”), and the amount of each ionic impurity A (μg / ml) in the filtrate is measured from the peak height unique to each ionic impurity.
密度d(g/cm3)の濾液の各イオン性不純物量X(ppm)は、式、X=A×(100−W/d)/W、で算出することができるので、Na+、K+、NH4 +、Mg2+、Ca2+、F−、Cl−、NO2 −、SO4 2−、NO3 −、PO4 −の各イオンについて算出し、それらを合計すれば本発明のイオン性不純物の合計量となる。 Since each ionic impurity amount X (ppm) of the filtrate of density d (g / cm 3 ) can be calculated by the formula, X = A × (100−W / d) / W, Na + , K + , NH 4 + , Mg 2+ , Ca 2+ , F − , Cl − , NO 2 − , SO 4 2− , NO 3 − , PO 4 − The total amount of ionic impurities.
本発明の高純度球状アルミナ粉末は、上記方法で測定されたNa+量が30ppm以下で、イオン性不純物の合計量が50ppm以下である。これらの不純物は少ないほど好ましいが、後記する本発明の製造方法によれば、Na+量が15ppm以下、イオン性不純物の合計量が30ppm以下のアルミナ粉末をも製造することができる。Na+量とイオン性不純物の合計量が上記値よりも多くなると、組成物の大幅な耐湿信頼性の向上はない。 The high purity spherical alumina powder of the present invention has a Na + amount measured by the above method of 30 ppm or less and a total amount of ionic impurities of 50 ppm or less. Although these impurities are preferably as small as possible, according to the production method of the present invention described later, an alumina powder having a Na + amount of 15 ppm or less and a total amount of ionic impurities of 30 ppm or less can also be produced. When the total amount of Na + and ionic impurities is larger than the above value, there is no significant improvement in moisture resistance reliability of the composition.
本発明の高純度球状アルミナ粉末は、平均球形度が0.85以上、特に0.95以上であることが好ましい。平均球形度が0.85よりも著しく小さいと、組成物が高粘度となるので組成物中のアルミナ粉末の含有量を高めることができなくなる。 The high purity spherical alumina powder of the present invention preferably has an average sphericity of 0.85 or more, particularly 0.95 or more. If the average sphericity is remarkably smaller than 0.85, the composition becomes highly viscous, so the content of alumina powder in the composition cannot be increased.
本発明において、平均球形度は次のようにして測定される。粉末のSEM写真から粒子の投影面積(A)と周囲長(PM)を測定し、周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/Bとして表される。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、この粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出される。100個の粒子について球形度を測定し、その平均値でもって粉末の平均球形度とする。 In the present invention, the average sphericity is measured as follows. When the projected area (A) and perimeter (PM) of a particle are measured from an SEM photograph of the powder, and the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle is A / B Represented as: Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 . The sphericity is calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity is measured for 100 particles, and the average value is taken as the average sphericity of the powder.
本発明の高純度球状アルミナ粉末は、平均球形度が小さいものほど、その表面に存在するNa+量が多くなる。これは、平均球形度が小さいほど比表面積が大きくなり、表面に存在するNa+成分、例えばNa2O、NaCl等の付着量が多くなるからである。そこで、本発明の高純度球状アルミナ粉末にあっては、比表面積が小さい程好適となるが、比表面積は平均粒子径と同様に使用目的に応じて決定される特性であるので、それを一概には決められない。例示をすれば、比表面積が0.01〜20m2/g、平均粒子径が0.01〜500μmである。 In the high-purity spherical alumina powder of the present invention, the smaller the average sphericity, the greater the amount of Na + present on the surface. This is because the smaller the average sphericity is, the larger the specific surface area is, and the more the amount of Na + components, such as Na 2 O and NaCl, present on the surface increases. Therefore, in the high purity spherical alumina powder of the present invention, the smaller the specific surface area, the better. However, since the specific surface area is a characteristic determined according to the purpose of use as well as the average particle diameter, Cannot be decided. For example, the specific surface area is 0.01 to 20 m 2 / g, and the average particle size is 0.01 to 500 μm.
また、粒子一個の凹凸が多くなるほど、内部に存在するNa+成分が滲みだしてくるので、粒子の表面はより平滑であることが好ましい。この粒子の平滑性は、用途による制約はあまり受けないので、その適正値を示すことができる。本発明では、粒子の平滑性を示す指標として、球形度が0.90以上の粒子含有率、という概念を導入し、その値で90質量%以上であることが好ましい。球形度が0.90以上の粒子含有率は、上記方法に従い、500個の粒子について球形度を測定することによって求めることができる。 Moreover, since the Na + component existing inside oozes as the unevenness of one particle increases, the surface of the particle is preferably smoother. Since the smoothness of the particles is not so limited by the application, it can show an appropriate value. In the present invention, as an index indicating the smoothness of the particles, a concept that the sphericity is a particle content of 0.90 or more is introduced, and the value is preferably 90% by mass or more. The content of particles having a sphericity of 0.90 or more can be determined by measuring the sphericity of 500 particles according to the above method.
本発明の高純度球状アルミナ粉末は、例えば以下に説明する本発明の高純度球状アルミナ粉末の製造方法によって製造することができる。 The high purity spherical alumina powder of the present invention can be produced, for example, by the production method of the high purity spherical alumina powder of the present invention described below.
本発明の製造方法にあっては、後の水洗工程においてNa+等の滲みだしをできるだけ抑え本発明の効果を発現させやすくするために、球形度が0.90以上の粒子含有率が90質量%以上の表面が平滑なアルミナ粉末原料を用いることが好ましい。アルミナ粉末原料のNa+等のイオン性不純物含有量はできるだけ少ない方がよいが、本発明の製造方法によれば、Na+成分をNa2O量として1.0質量%含有するものであっても、Na+量を30ppm以下にまで下げることができる。 In the production method of the present invention, the content of particles having a sphericity of 0.90 or more is 90% by mass in order to suppress the bleeding of Na + and the like as much as possible in the subsequent water washing step so that the effects of the present invention can be easily expressed. It is preferable to use an alumina powder raw material having a smooth surface of at least%. The content of ionic impurities such as Na + in the alumina powder raw material is preferably as low as possible. However, according to the production method of the present invention, the Na + component is contained in an amount of Na 2 O of 1.0% by mass. In addition, the amount of Na + can be lowered to 30 ppm or less.
本発明で用いられるアルミナ粉末原料は、アルミナ粉末を出発原料とする溶射技術(例えば「製綱窯炉に対する溶射補集技術について」製鉄研究1982第310号」によって容易に製造することができる。この方法において、球形度が0.90以上の粒子含有率が90質量%以上であるアルミナ粉末原料を製造するには、溶射条件を例えばLPG等で形成した火炎の高温域(約2000℃以上)をできる限り大きく形成させ、分散したアルミナ粉末を投入すればよい。イオン性不純物の含有量を少なくするためには、出発原料をあらかじめ水洗処理しておけばよい。 The alumina powder raw material used in the present invention can be easily produced by a thermal spraying technique using alumina powder as a starting material (for example, “Regarding a thermal spraying collection technique for a steelmaking furnace” Iron Research 1982 No. 310). In the method, in order to produce an alumina powder raw material having a sphericity of 0.90 or more and a particle content of 90% by mass or more, a high temperature range (about 2000 ° C. or more) of a flame formed of LPG or the like is used as a thermal spraying condition. In order to reduce the content of ionic impurities, the starting material may be washed with water in advance.
本発明の製造方法は、上記アルミナ粉末原料を、Na+、K+、NH4 +、Mg2+、Ca2+を実質的に含まないpH=3〜7の水で洗浄するものである。ここで、実質的に含まない水とは、イオンクロマトグラフによる測定法によってこれらのイオン性成分が未検出であることをいう。 In the production method of the present invention, the alumina powder raw material is washed with water having a pH of 3 to 7 substantially not containing Na + , K + , NH 4 + , Mg 2+ and Ca 2+ . Here, substantially free water means that these ionic components have not been detected by a measurement method using ion chromatography.
洗浄水のpHが3未満では、pH調節に用いた酸成分が最終製品に残留する恐れがあり、pHが7をこえると、Na+成分以外のイオン性不純物は低下できるが、Na+成分の純化は不十分となる。pH調節に用いる酸としては、例えば塩酸、酢酸、硫酸等をあげることができる。また、Na+、K+、NH4 +、Mg2+、Ca2+を実質的に含まれていない水で洗浄する理由は、これらイオン性不純物が洗浄水中に含まれていると、純化機能が大幅に低下するからである。 If the pH of the wash water is less than 3, the acid component used for pH adjustment may remain in the final product. If the pH exceeds 7, the ionic impurities other than the Na + component can be reduced, but the Na + component Purification will be insufficient. Examples of the acid used for pH adjustment include hydrochloric acid, acetic acid, sulfuric acid and the like. In addition, the reason for washing with water substantially free of Na + , K + , NH 4 + , Mg 2+ , and Ca 2+ is that the purification function is greatly improved when these ionic impurities are contained in the washing water. It is because it falls to.
アルミナ粉末原料の水洗は、例えばそのスラリーを調製して行うことができる。この場合、洗浄水を30〜100℃に加温する、アルミナ粉末原料が沈降しないように攪拌する等は好ましいことであり、更には超音波等を使用すれば、イオン性不純物を強制的に溶解させることができるので、より純化効率が高まる。 The alumina powder raw material can be washed with water by, for example, preparing a slurry thereof. In this case, it is preferable to heat the washing water to 30 to 100 ° C., to stir the alumina powder raw material so as not to settle, and to further dissolve ionic impurities by using ultrasonic waves or the like. Therefore, the purification efficiency is further increased.
また、水洗による純化効率を一段と高めるため、イオン交換樹脂の存在下で水洗することがより好ましい。イオン交換樹脂の使用方法としては、アルミナ粉末原料と洗浄水を混合する際に混合する方法、アルミナ粉末原料及び洗浄水の少なくとも一方に混合しておく方法、等のいずれであってよい。水洗後のイオン交換樹脂の分離は、洗浄水とアルミナ粉末を分離・脱水する前にフィルター等によって行うか、又は洗浄水とアルミナ粉末を分離してからフルイ等によってアルミナ粉末とイオン交換樹脂を分離する、等によって行われる。また、イオン交換樹脂との分離工程を省くため、イオン交換樹脂の粒径よりも目開きが小さな容器にイオン交換樹脂を詰めておき、これを洗浄水とアルミナ粉末原料のスラリー中に投入することもできる。 Moreover, in order to improve the purification efficiency by water washing further, it is more preferable to wash with water in the presence of an ion exchange resin. The method of using the ion exchange resin may be any of a method of mixing when mixing the alumina powder raw material and the washing water, a method of mixing with at least one of the alumina powder raw material and the washing water, and the like. Separation of the ion exchange resin after washing with water is performed with a filter or the like before separating and dewatering the washing water and alumina powder, or after separating the washing water and alumina powder, the alumina powder and ion exchange resin are separated with a sieve or the like. To be done. In addition, in order to omit the separation process from the ion exchange resin, the ion exchange resin is packed in a container whose opening is smaller than the particle size of the ion exchange resin, and this is put into a slurry of washing water and alumina powder raw material. You can also.
本発明で用いられるイオン交換樹脂は、例えばアンバーライトMB−1、アンバーライトEG−4(ローム・アンド・ハース・ジャパン株式会社製商品名)等の陽イオン・陰イオン交換樹脂、例えばアンバーライトIR120B H、アンバーライトJET1024 H、アンバーライトJET1020 H((ローム・アンド・ハース・ジャパン株式会社製商品名)等の陽イオン交換樹脂のいずれであってもよいが、陽イオン交換樹脂が好ましい。イオン交換樹脂の使用量は、アルミナ粉末原料100質量部に対し50質量部以下とすることが好ましい。 The ion exchange resin used in the present invention is, for example, a cation / anion exchange resin such as Amberlite MB-1 or Amberlite EG-4 (trade name, manufactured by Rohm and Haas Japan), for example, Amberlite IR120B. Any of cation exchange resins such as H, Amberlite JET1024 H, Amberlite JET1020 H (trade name, manufactured by Rohm and Haas Japan Ltd.) may be used, but a cation exchange resin is preferred. The amount of resin used is preferably 50 parts by mass or less with respect to 100 parts by mass of the alumina powder raw material.
洗浄水とアルミナ粉末を分離するには、アルミナ粉末を沈降させて上澄みをスキーミングする方法、例えばフィルタープレス、遠心分離機、液体サイクロン、湿式篩、ベルトフィルター等の脱水装置を用いる方法等が採用される。洗浄水に溶解しているNa+等のイオン性不純物を極力少なくすることの配慮から、分離後のケーキの含水率が50%以下、特に30%以下になるまで脱水しておくことが好ましい。その後、乾燥する。乾燥装置としては、例えば棚乾燥式タイプ、スプレードライヤー、振動流動乾燥機等が用いられ、乾燥条件の一例を示せば、棚乾燥式タイプであれば130〜170℃×24〜60時間である。 In order to separate the washing water from the alumina powder, a method of skimming the supernatant by precipitating the alumina powder, such as a method using a dewatering device such as a filter press, a centrifuge, a liquid cyclone, a wet sieve, or a belt filter, is adopted. Is done. In consideration of minimizing ionic impurities such as Na + dissolved in the washing water, it is preferable to dehydrate until the water content of the cake after separation is 50% or less, particularly 30% or less. Then, it is dried. As a drying device, for example, a shelf drying type, a spray dryer, a vibration fluidized dryer, or the like is used. If an example of drying conditions is shown, the shelf drying type is 130 to 170 ° C. × 24 to 60 hours.
本発明の組成物は、ゴム及び樹脂の少なくとも一方に本発明の高純度球状アルミナ粉末が混合されたものである。配合の一例を示せば、ゴム及び樹脂の少なくとも一方100体積部に対し、高純度球状アルミナ粉末20〜600体積部である。 The composition of the present invention is obtained by mixing the high-purity spherical alumina powder of the present invention with at least one of rubber and resin. If an example of a mixing | blending is shown, it will be 20-600 volume parts of high purity spherical alumina powder with respect to 100 volume parts of at least one of rubber | gum and resin.
ゴムとしては、例えばシリコーンゴム、ウレタンゴム、アクリルゴム、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、エチレン酢酸ビニル共重合体等を用いることができる。また、樹脂としては、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂等を用いることができる。 As the rubber, for example, silicone rubber, urethane rubber, acrylic rubber, butyl rubber, ethylene propylene rubber, urethane rubber, ethylene vinyl acetate copolymer and the like can be used. Examples of the resin include epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide, and polyetherimide, polyester such as polybutylene terephthalate and polyethylene terephthalate, and polyphenylene ether. , Polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) Resin or the like can be used.
実施例1〜5 比較例1〜4
アルミナ粉末を、LPGと酸素ガスによって形成された高温火炎中に投入し球状化処理を行った。LPGの流量10〜30Nm3/Hr、輸送風量5〜20Nm3/Hr、供給量10〜200kg/Hrの範囲内の調節によって、表1に示す粒子特性と、Na+量、イオン性不純物量を有するアルミナ粉末原料を種々製造した。
Examples 1-5 Comparative Examples 1-4
The alumina powder was put into a high-temperature flame formed by LPG and oxygen gas, and spheroidizing was performed. By adjusting the flow rate of LPG within the range of 10 to 30 Nm 3 / Hr, transport air volume of 5 to 20 Nm 3 / Hr, and supply amount of 10 to 200 kg / Hr, the particle characteristics shown in Table 1, the amount of Na + and the amount of ionic impurities are adjusted. Various alumina powder raw materials were produced.
得られた各アルミナ粉末原料と、Na+、K+、NH4 +、Mg2+、Ca2+を実質的に含まないpH=7の水(洗浄水)とを混合して、固形分濃度が40質量%のスラリーを調製し、1時間攪拌した後、フィルタープレスを用いて脱水処理を行った。ケーキの含水率は全て20質量%以下であった。このケーキを棚乾燥機にて150℃×48時間乾燥し高純度球状アルミナ粉末を製造した。 Each alumina powder raw material obtained was mixed with water (washing water) having pH = 7 substantially free of Na + , K + , NH 4 + , Mg 2+ and Ca 2+ , and the solid content concentration was 40 A mass% slurry was prepared and stirred for 1 hour, and then dehydrated using a filter press. All the moisture content of the cake was 20 mass% or less. This cake was dried with a shelf dryer at 150 ° C. for 48 hours to produce a high purity spherical alumina powder.
得られた高純度球状アルミナ粉末について、平均球形度、Na+量、イオン性不純物の合計量及び粒子の平滑性(球形度が0.90以上の粒子含有率)を測定した。さらに、表2に示される配合物30体積部と高純度球状アルミナ粉末70体積部を混合してエポキシ樹脂組成物を調整し、その耐湿信頼性を以下に従い評価した。それらの結果を表3に示す。 The obtained high-purity spherical alumina powder was measured for average sphericity, Na + amount, total amount of ionic impurities, and particle smoothness (particle content with a sphericity of 0.90 or more). Furthermore, 30 parts by volume of the formulation shown in Table 2 and 70 parts by volume of high-purity spherical alumina powder were mixed to prepare an epoxy resin composition, and the moisture resistance reliability was evaluated as follows. The results are shown in Table 3.
耐湿信頼性
アルミニウム配線を有する16ピンモニターICをトランスファー成形し、硬化後260℃のハンダ浴に10秒間浸漬した後、140℃、3気圧の水蒸気中で30V印加して、アルミニウム配線のオープン不良(断線)、リーク不良(アルミニウム線間の漏れ電流値が10nA以上になった場合)、及び成形樹脂のクラック不良(樹脂のひび割れ)をモニタリングし、これらの不良試料の合計が、試料全体個数(20個)の50%(10個)になるまでの時間を求めた。
A 16-pin monitor IC with moisture-reliable aluminum wiring is transfer molded, and after curing, immersed in a solder bath at 260 ° C. for 10 seconds and then applied with 30 V in water vapor at 140 ° C. and 3 atm. Disconnection), leakage failure (when the leakage current between aluminum wires is 10 nA or more), and molding resin crack failure (resin cracking), and the total of these defective samples is the total number of samples (20 The time required to reach 50% (10 pieces) was obtained.
実施例6 比較例5、6
アルミナ粉末原料Cを用いた実施例3において、洗浄水を塩酸でpH=3に調整したこと(実施例6)、pH=1に調整したこと(比較例5)、洗浄水を水酸化ナトリウムでpH=9に調整し、Na+イオンを実質的に含んだ洗浄水用いたこと(比較例6)、以外は同様にして行った。
Example 6 Comparative Examples 5 and 6
In Example 3 using the alumina powder raw material C, the washing water was adjusted to pH = 3 with hydrochloric acid (Example 6), the pH was adjusted to 1 (Comparative Example 5), and the washing water was sodium hydroxide. The same procedure was carried out except that the pH was adjusted to 9 and wash water substantially containing Na + ions was used (Comparative Example 6).
実施例7
洗浄水に粒径450μmの陽イオン交換樹脂(ローム・アンド・ハース・ジャパン株式会社製商品名「IR120B H」)をアルミナ粉末原料100質量部に対し、30質量部混合し、ケーキ乾燥後に200μmの篩にて陽イオン交換樹脂を除去したこと以外は、実施例3と同様にして行った。
Example 7
30 parts by mass of a cation exchange resin having a particle diameter of 450 μm (trade name “IR120B H” manufactured by Rohm and Haas Japan Co., Ltd.) with 100 parts by mass of the alumina powder raw material was mixed in the washing water, and after drying the cake, 200 μm It carried out like Example 3 except having removed the cation exchange resin with the sieve.
実施例8
陽イオン交換樹脂の代わりに、粒径300〜850μmの陽イオン・陰イオン混合交換樹脂(ローム・アンド・ハース・ジャパン株式会社製商品名「EG−4」)を用いたこと以外は、実施例7と同様にして行った。
Example 8
Example except that a cation / anion mixed exchange resin having a particle size of 300 to 850 μm (trade name “EG-4” manufactured by Rohm and Haas Japan KK) was used instead of the cation exchange resin. This was carried out in the same manner as in 7.
表1〜3から明らかなように、本発明は比較例に比べて、より高度な高純度球状アルミナ粉末となり、それを用いて調整された組成物の耐湿信頼性が著しく向上した。 As is apparent from Tables 1 to 3, the present invention was more highly purified spherical alumina powder than the comparative example, and the moisture resistance reliability of the composition prepared using the powder was remarkably improved.
本発明の高純度球状アルミナ粉末は、組成物の充填材として好適に使用される。また、本発明の組成物は、自動車、携帯電子機器、家庭用電化製品等のモールディングコンパウンドや、更には放熱シート等として使用される。 The high purity spherical alumina powder of the present invention is suitably used as a filler for the composition. The composition of the present invention is used as a molding compound for automobiles, portable electronic devices, household appliances, and the like, and further as a heat dissipation sheet.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004097753A JP4214074B2 (en) | 2004-03-30 | 2004-03-30 | Method for producing high purity spherical alumina powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004097753A JP4214074B2 (en) | 2004-03-30 | 2004-03-30 | Method for producing high purity spherical alumina powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005281063A true JP2005281063A (en) | 2005-10-13 |
JP4214074B2 JP4214074B2 (en) | 2009-01-28 |
Family
ID=35179848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004097753A Expired - Lifetime JP4214074B2 (en) | 2004-03-30 | 2004-03-30 | Method for producing high purity spherical alumina powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4214074B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053536A1 (en) * | 2006-10-31 | 2008-05-08 | Denki Kagaku Kogyo Kabushiki Kaisha | Alumina powder, process for producing the same, and use thereof |
WO2009017170A1 (en) * | 2007-07-31 | 2009-02-05 | Denki Kagaku Kogyo Kabushiki Kaisha | Alumina powder, process for producing the same, and composition containing the same |
WO2009133904A1 (en) | 2008-04-30 | 2009-11-05 | 電気化学工業株式会社 | Alumina powder, process for production of the same, and resin compositions containing the same |
JP2010126385A (en) * | 2008-11-26 | 2010-06-10 | Denki Kagaku Kogyo Kk | Spherical alumina powder and method for producing the same |
WO2010073457A1 (en) * | 2008-12-22 | 2010-07-01 | 電気化学工業株式会社 | Powder, method for producing same, and resin composition containing same |
JP2012087005A (en) * | 2010-10-19 | 2012-05-10 | Asahi Kagaku Kogyo Co Ltd | Method for manufacturing high-purity sodium aluminate, and high-purity sodium aluminate |
JP2013122029A (en) * | 2011-12-12 | 2013-06-20 | Sumitomo Bakelite Co Ltd | Filler, composition for forming insulating layer, film for forming insulating layer, and substrate |
CN103693665A (en) * | 2012-12-28 | 2014-04-02 | 中国神华能源股份有限公司 | Method for preparing high-purity aluminum oxide from fly ash |
KR101522806B1 (en) * | 2011-07-14 | 2015-05-26 | 가부시끼가이샤 도시바 | Ceramic circuit board |
US20220411589A1 (en) * | 2019-11-15 | 2022-12-29 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive addition curing silicone composition and method for producing same |
KR20230075556A (en) * | 2021-11-23 | 2023-05-31 | 주식회사 대한세라믹스 | Manufacturing method of spherical aluminium oxide powder |
US20230212396A1 (en) * | 2020-05-26 | 2023-07-06 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive addition-curable silicone composition and method for producing the same |
US20230242766A1 (en) * | 2020-08-06 | 2023-08-03 | Shin-Etsu Chemical Co., Ltd. | Thermally-conductive two-part addition-curable silicone composition and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102529239B1 (en) | 2021-05-26 | 2023-05-08 | 주식회사 케이씨씨 | Spherical fine particulate material for heat dissipation, and preparing method thereof |
-
2004
- 2004-03-30 JP JP2004097753A patent/JP4214074B2/en not_active Expired - Lifetime
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8354091B2 (en) | 2006-10-31 | 2013-01-15 | Denki Kagaku Kogyo Kabushiki Kaisha | Alumina powder and method for preparing the same as well as use thereof |
JP5227801B2 (en) * | 2006-10-31 | 2013-07-03 | 電気化学工業株式会社 | Alumina powder, production method thereof, and use thereof |
WO2008053536A1 (en) * | 2006-10-31 | 2008-05-08 | Denki Kagaku Kogyo Kabushiki Kaisha | Alumina powder, process for producing the same, and use thereof |
JP5336374B2 (en) * | 2007-07-31 | 2013-11-06 | 電気化学工業株式会社 | Method for producing alumina powder |
WO2009017170A1 (en) * | 2007-07-31 | 2009-02-05 | Denki Kagaku Kogyo Kabushiki Kaisha | Alumina powder, process for producing the same, and composition containing the same |
WO2009133904A1 (en) | 2008-04-30 | 2009-11-05 | 電気化学工業株式会社 | Alumina powder, process for production of the same, and resin compositions containing the same |
JP2014240351A (en) * | 2008-04-30 | 2014-12-25 | 電気化学工業株式会社 | Alumina powder, method for manufacturing the same, and resin composition using the same |
KR101505237B1 (en) | 2008-04-30 | 2015-03-23 | 덴키 가가쿠 고교 가부시기가이샤 | Alumina powder, process for production of the same, and resin compositions containing the same |
CN102007073B (en) * | 2008-04-30 | 2014-10-08 | 电气化学工业株式会社 | Alumina powder, process for production of the same, and resin compositions containing the same |
JP2010126385A (en) * | 2008-11-26 | 2010-06-10 | Denki Kagaku Kogyo Kk | Spherical alumina powder and method for producing the same |
WO2010073457A1 (en) * | 2008-12-22 | 2010-07-01 | 電気化学工業株式会社 | Powder, method for producing same, and resin composition containing same |
JP5555639B2 (en) * | 2008-12-22 | 2014-07-23 | 電気化学工業株式会社 | Powder, method for producing the same, and resin composition containing the powder |
JP2012087005A (en) * | 2010-10-19 | 2012-05-10 | Asahi Kagaku Kogyo Co Ltd | Method for manufacturing high-purity sodium aluminate, and high-purity sodium aluminate |
KR101522806B1 (en) * | 2011-07-14 | 2015-05-26 | 가부시끼가이샤 도시바 | Ceramic circuit board |
JP2013122029A (en) * | 2011-12-12 | 2013-06-20 | Sumitomo Bakelite Co Ltd | Filler, composition for forming insulating layer, film for forming insulating layer, and substrate |
CN103693665A (en) * | 2012-12-28 | 2014-04-02 | 中国神华能源股份有限公司 | Method for preparing high-purity aluminum oxide from fly ash |
US20220411589A1 (en) * | 2019-11-15 | 2022-12-29 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive addition curing silicone composition and method for producing same |
US20230212396A1 (en) * | 2020-05-26 | 2023-07-06 | Shin-Etsu Chemical Co., Ltd. | Thermally conductive addition-curable silicone composition and method for producing the same |
US20230242766A1 (en) * | 2020-08-06 | 2023-08-03 | Shin-Etsu Chemical Co., Ltd. | Thermally-conductive two-part addition-curable silicone composition and method for producing the same |
KR20230075556A (en) * | 2021-11-23 | 2023-05-31 | 주식회사 대한세라믹스 | Manufacturing method of spherical aluminium oxide powder |
KR102625963B1 (en) | 2021-11-23 | 2024-01-17 | 주식회사 대한세라믹스 | Manufacturing method of spherical aluminium oxide powder |
Also Published As
Publication number | Publication date |
---|---|
JP4214074B2 (en) | 2009-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4214074B2 (en) | Method for producing high purity spherical alumina powder | |
KR101369121B1 (en) | Magnesium hydroxide powder and method for producing the same | |
JP2015013787A (en) | Silica-coated inorganic oxide particle, method for producing the same, and resin composition | |
CN101472840A (en) | Ceramic powder and use thereof | |
US9233853B2 (en) | Method for producing silica particles | |
JP6238440B2 (en) | Silica-coated metal nitride particles and method for producing the same | |
US9856146B2 (en) | Magnesium oxide particles, magnesium oxide particle production method, resin composition and molded body using such resin composition, and adhesive or grease | |
KR101952993B1 (en) | Process for producing heat-resistant aluminum hydroxide | |
CN116143134B (en) | Preparation method of silicon micropowder for integrated circuit packaging | |
JP2016190769A (en) | Method for producing silica particle | |
CN101563291B (en) | Amorphous silica powder, method for producing same, and sealing material for semiconductor | |
KR102578962B1 (en) | Amorphous silica powder and its production method and uses | |
JP5336374B2 (en) | Method for producing alumina powder | |
JP6329776B2 (en) | Sealing material for mold underfill | |
CN109200999B (en) | Preparation method of ion adsorption column applied to polyimide purification | |
KR101442034B1 (en) | Siliceous powder, process for production of the same, and use thereof | |
CN108408750B (en) | Production method of heat-resistant aluminum hydroxide | |
JP3965536B2 (en) | Method for producing fine spherical silica for insulating material | |
JP2007211252A (en) | Semiconductor encapsulating epoxy resin composition using fly ash powder and semiconductor device using the same | |
JP5521505B2 (en) | Method for producing fine aluminum hydroxide | |
JP3985028B2 (en) | Production method of fly ash powder | |
CN109603761B (en) | A kind of preparation method of ZnO@CTAB composite material and its application | |
CN116670214A (en) | Hexagonal boron nitride powder | |
TW202313457A (en) | A hexagonal boron nitride powder | |
JP2015193493A (en) | High specific gravity alumina and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080430 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081031 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4214074 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |