[go: up one dir, main page]

JP2005279617A - Hydrophobic organic compound collector, method for producing the same, and method for removing hydrophobic organic compound - Google Patents

Hydrophobic organic compound collector, method for producing the same, and method for removing hydrophobic organic compound Download PDF

Info

Publication number
JP2005279617A
JP2005279617A JP2004102359A JP2004102359A JP2005279617A JP 2005279617 A JP2005279617 A JP 2005279617A JP 2004102359 A JP2004102359 A JP 2004102359A JP 2004102359 A JP2004102359 A JP 2004102359A JP 2005279617 A JP2005279617 A JP 2005279617A
Authority
JP
Japan
Prior art keywords
organic compound
hydrophobic organic
hydrophobic
hydrophilic
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004102359A
Other languages
Japanese (ja)
Inventor
Hiroyasu Masunaga
啓康 増永
Kanako Sasaki
香那子 佐々木
Isamu Akiba
勇 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2004102359A priority Critical patent/JP2005279617A/en
Publication of JP2005279617A publication Critical patent/JP2005279617A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

【課題】本発明は、水性溶液中の疎水性有機化合物を簡単な操作で疎水性相互作用によって捕捉でき、水性溶液中の疎水性有機化合物の濃度を減少させることができ、また再生が可能で繰り返し使用性に優れるとともに、疎水性有機化合物の回収処理,分析等の前処理,分析等における処理効率を飛躍的に高めることができ、さらにカラムに充填したり多孔質膜や多孔質体等のフィルタに担持させて固定相として用いることができ使用性に優れる疎水性有機化合物捕集材を提供することを目的とする。
【解決手段】本発明は、疎水性高分子鎖が末端に結合した親水性化合物と、前記親水性化合物と架橋結合し橋かけ重合体を形成した親水性不飽和単量体と、を備える。
【選択図】 図1
The present invention can capture a hydrophobic organic compound in an aqueous solution by hydrophobic interaction with a simple operation, reduce the concentration of the hydrophobic organic compound in an aqueous solution, and can be regenerated. It is excellent in repetitive use, and it can dramatically improve the processing efficiency in the pretreatment and analysis of hydrophobic organic compounds, and can be packed in columns, porous membranes, porous bodies, etc. An object of the present invention is to provide a hydrophobic organic compound trapping material which can be supported on a filter and used as a stationary phase and has excellent usability.
The present invention comprises a hydrophilic compound having a hydrophobic polymer chain bonded to a terminal, and a hydrophilic unsaturated monomer that is crosslinked with the hydrophilic compound to form a crosslinked polymer.
[Selection] Figure 1

Description

本発明は、水性溶液中の内分泌撹乱物質等の疎水性有機化合物を水性溶液より除去することができる疎水性有機化合物捕集材及びその製造方法並びに疎水性有機化合物の除去方法に関するものである。   The present invention relates to a hydrophobic organic compound trapping material capable of removing a hydrophobic organic compound such as an endocrine disrupting substance in an aqueous solution from an aqueous solution, a method for producing the same, and a method for removing the hydrophobic organic compound.

従来より、自然環境中の有機化合物は環境汚染の原因として、最近では、生態系に影響を与える外因性内分泌撹乱物質として関心を集めている。そのため、このような有機化合物を水性溶液から除去する技術は重要である。また、このような有機化合物は、自然環境において水性溶液中に微量に溶解又は分散して存在することが多いため、その存在量の把握や分析のために、水性溶液中の有機化合物を捕集し、簡易的かつ効率的に濃縮する技術は、医薬や農薬等の新薬開発の有用な有機化合物の取得のみならず諸科学の発展に不可欠な技術である。   Conventionally, organic compounds in the natural environment have attracted attention as a cause of environmental pollution, and as an exogenous endocrine disrupting substance that affects the ecosystem. Therefore, a technique for removing such an organic compound from an aqueous solution is important. In addition, such organic compounds are often dissolved or dispersed in a small amount in an aqueous solution in the natural environment, so that the organic compounds in the aqueous solution are collected for the purpose of grasping and analyzing the abundance. However, simple and efficient concentration techniques are indispensable not only for acquiring useful organic compounds for developing new drugs such as pharmaceuticals and agricultural chemicals but also for the development of various sciences.

水性溶液に溶解又は分散した有機化合物を捕集し除去し濃縮する方法として、従来より、(非特許文献1)に記載の液・液抽出が用いられてきた。
また、活性炭等の固体吸着剤を用いる方法として、(特許文献1)に「多項制無機質酸化物マトリックスが満たされアクリル酸塩、メタクリル酸塩等で形成された疎水性ポリマーネットワークに生物学的液体を接触させる汚染物質を除去するための方法」や(特許文献2)に「疎水性部分と目標とする有機化合物に選択的な親和性を示す極性部分とを備えた固体の多価両親媒性のポリマーを用いた有機化合物の除去方法」や(非特許文献2)、(非特許文献3)および(非特許文献4)に表面を疎水化した樹脂および微粒子あるいは膜浸透による方法が開示されている。
化学大辞典、株式会社東京化学同人発行、第1版、第241頁 Macromolecules 35巻, 8243頁、2002年 Chemical Communications, 903頁、2000年 Macromolecules、 36巻、9430頁、2002年 特表平9−512204号公報 特開平6−170189号公報
As a method for collecting, removing and concentrating an organic compound dissolved or dispersed in an aqueous solution, the liquid / liquid extraction described in (Non-Patent Document 1) has been conventionally used.
In addition, as a method using a solid adsorbent such as activated carbon, (Patent Document 1) states that “a biological liquid is added to a hydrophobic polymer network filled with a polymineral inorganic oxide matrix and formed of acrylate, methacrylate, etc. Solid state polyvalent amphiphile having a hydrophobic part and a polar part having a selective affinity for a target organic compound in "Method for removing contaminants that contact with water" or (Patent Document 2) Method of removing organic compound using polymer of "and (Non-patent document 2), (Non-patent document 3) and (Non-patent document 4) disclose a method in which the surface is hydrophobized and fine particles or membrane permeation. Yes.
Chemical Dictionary, Tokyo Chemical Co., Ltd., 1st edition, page 241 Macromolecules 35, 8243, 2002 Chemical Communications, 903, 2000 Macromolecules, 36, 9430, 2002 JP-T 9-512204 JP-A-6-170189

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(非特許文献1)に記載の液・液抽出は確立された有用な技術であるが、水性溶液に低濃度で存在する有機化合物の抽出では、非常に多量の有機溶媒と多段階の抽出操作を要する。多量の有機溶媒中に溶解する目的の有機化合物を濃縮するためにはさらに多量のエネルギーを要する。このため、操作の簡便性、迅速性および省エネルギー性に欠けるという課題を有していた。
(2)(特許文献1)と(特許文献2)に開示の技術は、有機化合物が強固に吸着するために、目的とする有機化合物の濃縮液を取り出すためには多量の熱エネルギーを必要とする。このため、熱的に不安定な有機化合物に用いることができない点および省エネルギー性に欠ける点に課題を有していた。また、有害物質が吸着した2次廃棄物が多量に産出されるという課題を有していた。
(3)(非特許文献2)と(非特許文献3)に記載の技術は、有用な方法であるが、吸着量が低いという課題を有していた。
(4)(非特許文献4)に記載の技術は、有用な方法であるが、揮発性の疎水性有機化合物に限られるという課題を有していた。
However, the above conventional techniques have the following problems.
(1) The liquid / liquid extraction described in (Non-Patent Document 1) is an established and useful technique. However, in the extraction of organic compounds present in an aqueous solution at a low concentration, a very large amount of organic solvent and multiple stages are used. Extraction operation is required. In order to concentrate the target organic compound dissolved in a large amount of organic solvent, a larger amount of energy is required. For this reason, there existed the subject that the simplicity of operation, quickness, and energy saving lacked.
(2) The techniques disclosed in (Patent Document 1) and (Patent Document 2) require a large amount of heat energy to take out the concentrated solution of the target organic compound because the organic compound is firmly adsorbed. To do. For this reason, there are problems in that it cannot be used for a thermally unstable organic compound and lacks energy saving. In addition, there is a problem that a large amount of secondary waste adsorbed with harmful substances is produced.
(3) The techniques described in (Non-patent document 2) and (Non-patent document 3) are useful methods, but have a problem that the amount of adsorption is low.
(4) The technique described in (Non-Patent Document 4) is a useful method, but has a problem that it is limited to a volatile hydrophobic organic compound.

本発明は上記従来の課題を解決するもので、水性溶液中の疎水性有機化合物を簡単な操作で疎水性相互作用によって捕捉でき、水性溶液中の疎水性有機化合物の濃度を減少させることができ、また再生が可能で繰り返し使用性に優れるとともに、疎水性有機化合物の回収処理,分析等の前処理,分析等における処理効率を飛躍的に高めることができ、さらにカラムに充填したり多孔質膜や多孔質体等のフィルタに担持させて固定相として用いることができ使用性に優れる疎水性有機化合物捕集材を提供することを目的とする。
また、本発明は、ミセル構造を橋かけ重合体内に分散させ保持させることができ、簡単な操作で水性溶液中の疎水性有機化合物の捕集効率に優れた疎水性有機化合物捕集材を低原価で量産性に優れる疎水性有機化合物捕集材の製造方法を提供することを目的とする。
また、本発明は、水性溶液と接触させるだけで水性溶液中の有機化合物の内、疎水性有機化合物を簡単な操作で選択的に捕集させることができ、水性溶液中の疎水性有機化合物の濃度を減少させることができ除去効率に優れる疎水性有機化合物の除去方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and can capture a hydrophobic organic compound in an aqueous solution by hydrophobic interaction with a simple operation, and can reduce the concentration of the hydrophobic organic compound in the aqueous solution. In addition, it is reproducible and excellent in repetitive use, and it can dramatically increase the processing efficiency in the pretreatment and analysis of hydrophobic organic compounds, and can be packed into a column or porous membrane. Another object of the present invention is to provide a hydrophobic organic compound trapping material that can be supported on a filter such as a porous material and used as a stationary phase and has excellent usability.
In addition, the present invention is able to disperse and hold the micelle structure in the crosslinked polymer, and to reduce the hydrophobic organic compound collecting material excellent in the collection efficiency of the hydrophobic organic compound in the aqueous solution by a simple operation. It aims at providing the manufacturing method of the hydrophobic organic compound collection material which is excellent in mass productivity at low cost.
In addition, the present invention can selectively collect a hydrophobic organic compound among organic compounds in an aqueous solution simply by contacting the aqueous solution with a simple operation. It is an object of the present invention to provide a method for removing a hydrophobic organic compound that can reduce the concentration and has excellent removal efficiency.

上記従来の課題を解決するために本発明の疎水性有機化合物捕集材及びその製造方法並びに疎水性有機化合物の除去方法は、以下の構成を有している。
本発明の請求項1に記載の疎水性有機化合物捕集材は、疎水性高分子鎖が末端に結合した親水性化合物と、前記親水性化合物と架橋結合し橋かけ重合体を形成した親水性不飽和単量体と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)親水性化合物と親水性不飽和単量体とが架橋結合した橋かけ重合体は三次元的な網目構造を有しており、網目構造内の親水性化合物の末端には疎水性高分子鎖が結合しているので、親水性化合物は水性溶液中で疎水性高分子鎖を内側に向けて配向することによってミセル構造を構成し、数ナノメートルの大きさの疎水場(以下、疎水性ナノドメインという)を形成する。水性溶液中に溶解又は分散している疎水性有機化合物は、疎水性相互作用によって疎水性ナノドメイン内に捕捉されるので、水性溶液中の疎水性有機化合物の濃度を減少させることができる。
(2)疎水性ナノドメインに捕捉された疎水性有機化合物は疎水性有機化合物と親和性の高い抽出剤と接触させることにより容易に抽出できるので、疎水性有機化合物捕集材は再生が可能で繰り返し使用性に優れるとともに、抽出剤中の疎水性有機化合物の濃度を水性溶液中の疎水性有機化合物の濃度と比較して飛躍的に高め、疎水性有機化合物を抽出剤中に濃縮させることができ、疎水性有機化合物の回収処理,分析等の前処理,分析等における処理効率を飛躍的に高めることができる。
(3)親水性化合物と親水性不飽和単量体とが架橋結合し三次元的な網目構造を有しているので、カラムに充填したり多孔質膜や多孔質体等のフィルタに担持させて固定相として用いることができる。
In order to solve the above-mentioned conventional problems, the hydrophobic organic compound trapping material, the production method thereof, and the removal method of the hydrophobic organic compound of the present invention have the following configurations.
The hydrophobic organic compound scavenger according to claim 1 of the present invention comprises a hydrophilic compound in which a hydrophobic polymer chain is bonded to a terminal, and a hydrophilic compound in which a crosslinked polymer is formed by crosslinking with the hydrophilic compound. And an unsaturated monomer.
With this configuration, the following effects can be obtained.
(1) A crosslinked polymer in which a hydrophilic compound and a hydrophilic unsaturated monomer are cross-linked has a three-dimensional network structure, and a hydrophobic compound is present at the end of the hydrophilic compound in the network structure. Since the molecular chains are bonded, the hydrophilic compound forms a micelle structure by orienting the hydrophobic polymer chain inward in an aqueous solution, and a hydrophobic field (hereinafter referred to as hydrophobic field) with a size of several nanometers. A nano-domain). Since the hydrophobic organic compound dissolved or dispersed in the aqueous solution is trapped in the hydrophobic nanodomain by the hydrophobic interaction, the concentration of the hydrophobic organic compound in the aqueous solution can be reduced.
(2) Hydrophobic organic compounds trapped in hydrophobic nanodomains can be easily extracted by bringing them into contact with an extractant that has a high affinity for hydrophobic organic compounds. It is excellent in repeated use, and the concentration of the hydrophobic organic compound in the extractant can be dramatically increased compared to the concentration of the hydrophobic organic compound in the aqueous solution to concentrate the hydrophobic organic compound in the extractant. In addition, it is possible to dramatically increase the processing efficiency of the hydrophobic organic compound recovery process, pretreatment such as analysis, and analysis.
(3) Since the hydrophilic compound and the hydrophilic unsaturated monomer are cross-linked and have a three-dimensional network structure, they are packed in a column or supported on a filter such as a porous membrane or a porous body. And can be used as a stationary phase.

ここで、疎水性高分子鎖としては、少なくとも1個以上のC〜C25のアルキル基又はアルケニル基、好ましくはC〜C20のアルキル基又はアルケニル基を有するものが用いられ、例えば、ステアリル基、2−エチルデシル基等が用いられる。
なお、アルキル基又はアルケニル基の炭素数が8より少なくなるにつれ疎水性有機化合物との相互作用が小さく結合が弱くなり疎水性有機化合物の捕捉能が低下する傾向がみられ、20より多くなるにつれ疎水性が強く均一に分散し難くなる傾向がみられる。特に、6より少なくなるか25より多くなると、これらの傾向が著しくなるため、いずれも好ましくない。
Here, as the hydrophobic polymer chain, one having at least one C 6 to C 25 alkyl group or alkenyl group, preferably C 8 to C 20 alkyl group or alkenyl group is used. Stearyl group, 2-ethyldecyl group and the like are used.
As the number of carbon atoms of the alkyl group or alkenyl group is less than 8, the interaction with the hydrophobic organic compound is small and the bond is weakened, and the trapping ability of the hydrophobic organic compound tends to be lowered. There is a tendency that it is difficult to disperse uniformly with strong hydrophobicity. In particular, when the number is less than 6 or more than 25, these tendencies become remarkable, so that neither is preferable.

親水性化合物としては、疎水性高分子鎖が結合した他方の末端にビニル基等の炭素−炭素二重結合を有する原子団を備えた線状高分子であれば、公知のものやその変性物等を特に制限なく用いることができる。例えば、一方の末端にヒドロキシル基を有するポリエチレングリコールモノステアレートをアクリル酸クロリドとエステル化したもの等が好適に使用される。親水性化合物は、単独で使用しても良いし、2種以上を併用しても良い。   As the hydrophilic compound, a known compound or a modified product thereof may be used as long as it is a linear polymer having an atomic group having a carbon-carbon double bond such as a vinyl group at the other end to which a hydrophobic polymer chain is bonded. Etc. can be used without particular limitation. For example, those obtained by esterifying polyethylene glycol monostearate having a hydroxyl group at one end with acrylic acid chloride are preferably used. A hydrophilic compound may be used independently and may use 2 or more types together.

親水性不飽和単量体としては、重合によって親水性重合体が得られる単量体であれば特に制限なく用いることができ、例えば、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、β−アクリロイルオキシプロピオン酸、フマール酸、クロトン酸、イタコン酸、ビニルスルホン酸、スチレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸、スルホエトキシポリエチレングリコールモノ(メタ)アクリレート等の酸基含有の親水性不飽和単量体及びその塩;アクリルアミド、メタアクリルアミド、N−エチル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシルプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ビニルピリジン、N−ビニルピロリドン、N−アクリロイルピペリジン、N−アクリロイルピロリジン等のノニオン性の親水性不飽和単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド及びその四級塩等のカチオン性の親水性不飽和単量体等の内の1種若しくは2種以上が用いられる。
また、メチル(メタ)アクリレート、エチル(メタ)アクリレート、酢酸ビニル等のように重合後の官能基の加水分解によって親水性重合体を形成する親水性不飽和単量体を用いることもできる。
なお、親水性不飽和単量体に、所定量の疎水性不飽和単量体を加えてもよい。このような疎水性不飽和単量体としては、スチレン、塩化ビニル、ブタジエン、イソブテン、エチレン、プロピレン、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート等を挙げることができる。これらの疎水性不飽和単量体は、親水性不飽和単量体と疎水性不飽和単量体の総量に対して0〜20モル%好ましくは0〜10モル%の範囲で使用することができる。
疎水性不飽和単量体の含有量が、親水性不飽和単量体と疎水性不飽和単量体の総量に対して10モル%より多くなるにつれ疎水性が強くなり水により十分な膨潤が得られ難くなる傾向がみられ、20モル%より多くなるとこの傾向が著しいので好ましくない。
The hydrophilic unsaturated monomer can be used without particular limitation as long as it is a monomer capable of obtaining a hydrophilic polymer by polymerization. For example, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, β- Acryloyloxypropionic acid, fumaric acid, crotonic acid, itaconic acid, vinylsulfonic acid, styrenesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meta ) Hydrophilic unsaturated monomers containing acid groups such as acryloylpropane sulfonic acid and sulfoethoxypolyethylene glycol mono (meth) acrylate and salts thereof; acrylamide, methacrylamide, N-ethyl (meth) acrylamide, Nn-propyl (Meth) acrylamide, N-isopropyl (meth) acryl Amide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxylpropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol mono (meth) acrylate, vinylpyridine, N Nonionic hydrophilic unsaturated monomers such as vinylpyrrolidone, N-acryloylpiperidine, and N-acryloylpyrrolidine; N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N , N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide and cationic hydrophilic unsaturated monomers such as quaternary salts thereof, or one or more of them Used.
In addition, a hydrophilic unsaturated monomer that forms a hydrophilic polymer by hydrolysis of a functional group after polymerization, such as methyl (meth) acrylate, ethyl (meth) acrylate, and vinyl acetate, can also be used.
A predetermined amount of hydrophobic unsaturated monomer may be added to the hydrophilic unsaturated monomer. Examples of such hydrophobic unsaturated monomers include styrene, vinyl chloride, butadiene, isobutene, ethylene, propylene, stearyl (meth) acrylate, lauryl (meth) acrylate, and the like. These hydrophobic unsaturated monomers may be used in the range of 0 to 20 mol%, preferably 0 to 10 mol%, based on the total amount of the hydrophilic unsaturated monomer and the hydrophobic unsaturated monomer. it can.
As the content of the hydrophobic unsaturated monomer exceeds 10 mol% with respect to the total amount of the hydrophilic unsaturated monomer and the hydrophobic unsaturated monomer, the hydrophobicity becomes stronger and sufficient swelling is caused by water. There is a tendency that it is difficult to obtain, and if it exceeds 20 mol%, this tendency is remarkable, which is not preferable.

なお、疎水性有機化合物捕集材に捕集可能な疎水性有機化合物としては、フェノール,ニトロフェノール,アルキル化フェノール,ビスフェノールA等のフェノール及びフェノール誘導体、ベンゼン,トルエン,キシレン等の芳香族炭化水素化合物、カルボン酸等の有機酸、ケトン,アルデヒド,エステル,有機アミン,芳香族アミン,アセトニトリル,ベンゾニトリル等のニトリル化合物、クロロホルム,ジクロロエタン,エストラジオール−17−グルクロリド,エストラジオール−3−グルクロリド等の内分泌撹乱物質等が用いられる。   Hydrophobic organic compounds that can be collected in the hydrophobic organic compound collector include phenols and phenol derivatives such as phenol, nitrophenol, alkylated phenol, and bisphenol A, and aromatic hydrocarbons such as benzene, toluene, and xylene. Compounds, organic acids such as carboxylic acids, ketones, aldehydes, esters, organic amines, aromatic amines, nitrile compounds such as acetonitrile, benzonitrile, endocrine disruptors such as chloroform, dichloroethane, estradiol-17-glucylide, estradiol-3-glucuride Substances are used.

本発明の請求項2に記載の発明は、請求項1に記載の疎水性有機化合物捕集材であって、前記橋かけ重合体の架橋度が、0.01〜5%好ましくは0.01〜3%である構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)橋かけ重合体の架橋度が0.01〜5%なので、橋かけ重合体は水性溶液に浸されて膨潤し水性ゲルとなるので、形状保持性を有し移動相としての水性溶液を通過させ疎水性有機化合物を捕捉する固定相として用いることができる。
The invention according to claim 2 of the present invention is the hydrophobic organic compound collector according to claim 1, wherein the crosslinking polymer has a crosslinking degree of 0.01 to 5%, preferably 0.01. It has a composition of ~ 3%.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Since the crosslinking polymer has a cross-linking degree of 0.01 to 5%, the crosslinked polymer is immersed in an aqueous solution to swell and become an aqueous gel. And can be used as a stationary phase that captures hydrophobic organic compounds.

ここで、親水性化合物と架橋結合した親水性不飽和単量体の架橋度が、0.01%より小さくなるにつれ移動相が通過するときに移動相とともに流出し易く形状保持性が乏しくなる傾向がみられるため好ましくない。架橋度が3%より大きくなるにつれ粘度が上昇し移動相が通過するときに大きな圧損が生じる傾向がみられ、特に5%より大きくなると、この傾向が著しいため好ましくない。   Here, as the degree of cross-linking of the hydrophilic unsaturated monomer cross-linked with the hydrophilic compound becomes smaller than 0.01%, it tends to flow out with the mobile phase when the mobile phase passes, and the shape retention tends to be poor. Since this is seen, it is not preferable. As the degree of cross-linking exceeds 3%, the viscosity increases, and a large pressure loss tends to occur when the mobile phase passes. Particularly, when the degree of cross-linking exceeds 5%, this tendency is remarkable, which is not preferable.

本発明の請求項3に記載の発明は、請求項1又は2に記載の疎水性有機化合物捕集材であって、前記疎水性高分子鎖が、前記親水性化合物及び前記親水性不飽和単量体の全量の10〜70重量%好ましくは20〜50重量%を占める構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)疎水性高分子鎖が、親水性化合物及び親水性不飽和単量体の全量の10〜70重量%を占めるので、所定量の疎水性ナノドメインを有し、橋かけ重合体における疎水性有機化合物との親和性と水性溶液との親和性とを両立させることができ、疎水性有機化合物の捕集効率が高く、かつ短時間で捕集し再溶出を防止できる。
Invention of Claim 3 of this invention is a hydrophobic organic compound collection material of Claim 1 or 2, Comprising: The said hydrophobic polymer chain is the said hydrophilic compound and the said hydrophilic unsaturated single substance. It has a constitution that occupies 10 to 70% by weight, preferably 20 to 50% by weight of the total amount of the monomer.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Since the hydrophobic polymer chain occupies 10 to 70% by weight of the total amount of the hydrophilic compound and the hydrophilic unsaturated monomer, the hydrophobic polymer chain has a predetermined amount of hydrophobic nanodomains and is hydrophobic in the crosslinked polymer. The compatibility with the hydrophobic organic compound and the affinity with the aqueous solution can be compatible, and the collection efficiency of the hydrophobic organic compound is high, and it can be collected in a short time to prevent re-elution.

ここで、疎水性高分子鎖が、親水性化合物及び親水性不飽和単量体の全量の20重量%より少なくなるにつれ、疎水性有機化合物との親和性が乏しく疎水性有機化合物の捕集効率が低下する傾向がみられ、50重量%より多くなるにつれ、疎水性が強くなり均一に分散し難くなる傾向がみられる。特に、10重量%より少なくなるか70重量%より多くなると、これらの傾向が著しくなるため、いずれも好ましくない。   Here, as the hydrophobic polymer chain becomes less than 20% by weight of the total amount of the hydrophilic compound and the hydrophilic unsaturated monomer, the affinity for the hydrophobic organic compound is poor and the collection efficiency of the hydrophobic organic compound is low. There is a tendency to decrease, and as it exceeds 50% by weight, there is a tendency that the hydrophobicity becomes stronger and it becomes difficult to uniformly disperse. In particular, if the amount is less than 10% by weight or more than 70% by weight, these tendencies become remarkable, so that neither is preferable.

本発明の請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載の疎水性有機化合物捕集材であって、前記疎水性高分子鎖が、前記親水性化合物の10〜70重量%好ましくは20〜50重量%を占める構成を有している。
この構成により、請求項1乃至3の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)疎水性高分子鎖が、親水性化合物の10〜70重量%好ましくは20〜50重量%を占めるので、親水性化合物は水性溶液中でミセルを形成し、疎水性有機化合物を捕捉する所定量の疎水性ナノドメインを形成することができ、橋かけ重合体における疎水性有機化合物との親和性と水性溶液との親和性とを両立させることができ、疎水性有機化合物の捕集効率が高く、かつ短時間で捕集し再溶出を防止できる。
Invention of Claim 4 of this invention is a hydrophobic organic compound collection material of any one of Claim 1 thru | or 3, Comprising: The said hydrophobic polymer chain is 10 of the said hydrophilic compound. It has a constitution occupying ˜70 wt%, preferably 20˜50 wt%.
According to this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action is obtained.
(1) Since the hydrophobic polymer chain accounts for 10 to 70% by weight, preferably 20 to 50% by weight, of the hydrophilic compound, the hydrophilic compound forms micelles in the aqueous solution and traps the hydrophobic organic compound. A certain amount of hydrophobic nanodomains can be formed, and both the affinity of the crosslinked polymer with the hydrophobic organic compound and the affinity with the aqueous solution can be compatible, and the collection efficiency of the hydrophobic organic compound And can be collected in a short time to prevent re-elution.

ここで、疎水性高分子鎖が占める割合が、親水性化合物の20重量%より少なくなるにつれ疎水性高分子鎖の量が少なくミセル形成能が低下し水性溶液からの疎水性有機化合物の捕集能が低下する傾向がみられ、50重量%より多くなるにつれ疎水性が強く均一に分散し難くなる傾向がみられる。特に、10重量%より少なくなるか70重量%より多くなると、これらの傾向が著しくなるので、いずれも好ましくない。   Here, as the proportion of the hydrophobic polymer chain is less than 20% by weight of the hydrophilic compound, the amount of the hydrophobic polymer chain is small and the micelle forming ability is lowered, so that the hydrophobic organic compound is collected from the aqueous solution. There is a tendency for performance to decrease, and as it exceeds 50% by weight, there is a tendency for hydrophobicity to be strong and difficult to disperse uniformly. In particular, if the amount is less than 10% by weight or more than 70% by weight, these tendencies become remarkable, so that neither is preferable.

本発明の請求項5に記載の疎水性有機化合物捕集材の製造方法は、疎水性高分子鎖が末端に結合した臨界ミセル濃度以上の親水性化合物を水溶液中で会合させミセルを形成するミセル形成工程と、前記ミセル形成工程でミセルが形成された前記水溶液に所定量の親水性不飽和単量体を加え橋かけ重合体を形成する重合反応工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)ミセル形成工程において臨界ミセル濃度以上の親水性化合物を水溶液中で会合させ形成されたミセルを、重合反応工程において橋かけ重合体の三次元網目構造内に保持させることができるので、ミセルが形成する疎水性ナノドメインを橋かけ重合体内に分散させ保持させることができ、水性溶液中に溶解又は分散している疎水性有機化合物の捕集効率に優れた疎水性有機化合物捕集材を製造できる。
The method for producing a hydrophobic organic compound scavenger according to claim 5 of the present invention is a micelle that forms a micelle by associating a hydrophilic compound at a critical micelle concentration or higher in which a hydrophobic polymer chain is bonded to a terminal in an aqueous solution. And a polymerization reaction step in which a predetermined amount of a hydrophilic unsaturated monomer is added to the aqueous solution in which micelles are formed in the micelle formation step to form a crosslinked polymer. .
With this configuration, the following effects can be obtained.
(1) A micelle formed by associating a hydrophilic compound having a critical micelle concentration or more in an aqueous solution in the micelle formation step can be held in the three-dimensional network structure of the crosslinked polymer in the polymerization reaction step. Hydrophobic organic compound trapping material excellent in trapping efficiency of hydrophobic organic compounds dissolved or dispersed in an aqueous solution, which can be dispersed and retained in the crosslinked polymer in the hydrophobic nanodomain formed by Can be manufactured.

ここで、ミセル形成工程において用いられる水溶液は、イオン交換水等の水を反応媒体とするものが用いられる。ミセルを形成することができるのであれば、水とアルコール等の混合媒体も用いることができる。   Here, as the aqueous solution used in the micelle formation step, an aqueous solution such as ion-exchanged water is used. If micelles can be formed, a mixed medium such as water and alcohol can also be used.

重合反応工程において、橋かけ重合体は公知の方法、例えばラジカル重合法、レドックス重合法、リビングラジカル重合法、放射線又は電子線を照射する方法、光増感剤の存在下に光照射する方法等を用いることができる。なかでも、ラジカル重合法が好適に用いられる。他の単量体との共重合に対して汎用性が極めて高いためである。   In the polymerization reaction step, the crosslinked polymer is a known method such as a radical polymerization method, a redox polymerization method, a living radical polymerization method, a method of irradiating radiation or an electron beam, a method of irradiating light in the presence of a photosensitizer, etc. Can be used. Of these, the radical polymerization method is preferably used. This is because the versatility is extremely high for copolymerization with other monomers.

重合反応工程で架橋剤を用いる場合、架橋剤としては、2官能以上で水溶性不飽和単量体と親水性化合物とを共重合可能な水溶性化合物、例えば、N,N´−メチレンビスアクリルアミド、N,N´−メチレンビスメタクリルアミド等のビスアクリルアミド類;エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等の長鎖ジアクリレート類;ジビニルベンゼン等が好適に用いられる。これらは、単独で若しくは2種以上を組み合わせて用いることができる。   When a crosslinking agent is used in the polymerization reaction step, the crosslinking agent is a water-soluble compound that is bifunctional or more and capable of copolymerizing a water-soluble unsaturated monomer and a hydrophilic compound, such as N, N′-methylenebisacrylamide. Bisacrylamides such as N, N'-methylenebismethacrylamide; long-chain diacrylates such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate; divinylbenzene and the like are preferably used. These can be used alone or in combination of two or more.

ラジカル重合法における開始剤としては、水溶性のものであれば特に制限されず用いることができる。例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、tert−ブチルヒドロパーオキサイド等;亜硫酸塩,亜硫酸水素塩,硝酸第二セリウムアンモニウム等のレドックス系開始剤;2,2´−アゾビス−2−アミジノプロパン塩酸塩、2,2´−アゾビス−2,4−ジメチルバレロニトリル、4,4´−アゾビス−4−シアノバレリン酸やその塩等のアゾ化合物等を用いることができる。これらの開始剤は、単独で若しくは2種以上を組み合わせて用いることができる。
開始剤は、親水性化合物と親水性不飽和単量体の合計量に対して0.01〜10重量%好ましくは0.01〜8重量%の範囲で用いられる。開始剤の量が0.01重量%より少なくなると重合効率が極めて低下し生産性に欠けるため好ましくない。8重量%より多くなるにつれ生成される橋かけ重合体の分子量が小さくなり疎水性有機化合物捕集材としての強度が維持できなくなる傾向がみられ、特に10重量%より多くなると、この傾向が著しくなるため好ましくない。
The initiator in the radical polymerization method is not particularly limited as long as it is water-soluble and can be used. For example, ammonium persulfate, potassium persulfate, hydrogen peroxide, tert-butyl hydroperoxide and the like; redox initiators such as sulfite, hydrogen sulfite and ceric ammonium nitrate; 2,2′-azobis-2-amidino Propane hydrochloride, 2,2'-azobis-2,4-dimethylvaleronitrile, azo compounds such as 4,4'-azobis-4-cyanovaleric acid and its salts, and the like can be used. These initiators can be used alone or in combination of two or more.
The initiator is used in an amount of 0.01 to 10% by weight, preferably 0.01 to 8% by weight, based on the total amount of the hydrophilic compound and the hydrophilic unsaturated monomer. When the amount of the initiator is less than 0.01% by weight, the polymerization efficiency is extremely lowered and the productivity is insufficient. When the amount exceeds 8% by weight, the molecular weight of the cross-linked polymer produced tends to be small, and the strength as a hydrophobic organic compound trapping material tends to be maintained. Particularly, when the amount exceeds 10% by weight, this tendency is remarkable. Therefore, it is not preferable.

本発明の請求項6に記載の疎水性有機化合物の除去方法は、請求項1乃至4の内いずれか1に記載の疎水性有機化合物捕集材に疎水性有機化合物が溶解又は分散した水性溶液を接触させ、前記疎水性有機化合物捕集材に前記疎水性有機化合物を捕捉させる溶液接触工程を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)溶液接触工程を備えているので、水性溶液に溶存又は分散している有機化合物の内、疎水性有機化合物を選択的に疎水性ナノドメインに捕捉させ捕集させることができ、水性溶液中の疎水性有機化合物の濃度を減少させることができる。
The method for removing a hydrophobic organic compound according to claim 6 of the present invention is an aqueous solution in which the hydrophobic organic compound is dissolved or dispersed in the hydrophobic organic compound trapping material according to any one of claims 1 to 4. And a solution contact step of capturing the hydrophobic organic compound on the hydrophobic organic compound collecting material.
With this configuration, the following effects can be obtained.
(1) Since a solution contact step is provided, among organic compounds dissolved or dispersed in an aqueous solution, a hydrophobic organic compound can be selectively captured and collected in a hydrophobic nanodomain. The concentration of the hydrophobic organic compound therein can be reduced.

ここで、水性溶液としては、水、水とアルコールとの混合溶液等が用いられる。なお、水性溶液は無機塩等を含有していてもよい。
水性溶液として水とアルコールとの混合溶液を用いる場合は、アルコール濃度が40容量%以下の水性溶液が用いられる。アルコール濃度が40容量%より大きくなるにつれ、疎水性ナノドメインを形成する親水性化合物の会合が阻害され橋かけ重合体内に疎水性ナノドメインを維持できなくなるからである。
Here, as the aqueous solution, water, a mixed solution of water and alcohol, or the like is used. The aqueous solution may contain an inorganic salt or the like.
When a mixed solution of water and alcohol is used as the aqueous solution, an aqueous solution having an alcohol concentration of 40% by volume or less is used. This is because as the alcohol concentration becomes higher than 40% by volume, the association of the hydrophilic compounds forming the hydrophobic nanodomains is inhibited and the hydrophobic nanodomains cannot be maintained in the crosslinked polymer.

本発明の請求項7に記載の発明は、請求項6に記載の疎水性有機化合物の除去方法であって、前記溶液接触工程で前記疎水性有機化合物を捕捉した前記疎水性有機化合物捕集材を前記水性溶液から分離し抽出剤に接触させ、前記疎水性有機化合物捕集材に捕捉された前記疎水性有機化合物を前記抽出剤に溶出する抽出剤接触工程を備えた構成を有している。
この構成により、請求項6で得られる作用に加え、以下のような作用が得られる。
(1)疎水性有機化合物を捕捉した疎水性有機化合物捕集材を抽出剤に接触させるという簡易な操作で、疎水性有機化合物を疎水性有機化合物捕集材から離脱させることができるので、作業性に優れる。
(2)抽出剤接触工程を備えているので、疎水性有機化合物捕集材に捕捉された疎水性有機化合物を抽出剤に溶出させ、疎水性有機化合物捕集材を再生し繰り返し使用可能にでき省資源性に優れる。
(3)疎水性有機化合物の抽出剤への溶解度は水性溶液に比べて極めて高いので、少量の抽出剤で疎水性有機化合物捕集材内の疎水性有機化合物を溶出させることができ省資源性に優れる。このため、抽出剤中の疎水性有機化合物の濃度を水性溶液中の疎水性有機化合物の濃度と比較して飛躍的に高め、疎水性有機化合物を抽出剤中に濃縮させることができ、疎水性有機化合物の回収処理,分析等の前処理,分析等における処理効率を飛躍的に高めることができる。
Invention of Claim 7 of this invention is the removal method of the hydrophobic organic compound of Claim 6, Comprising: The said hydrophobic organic compound collection material which capture | acquired the said hydrophobic organic compound at the said solution contact process The extract is brought into contact with an extractant from the aqueous solution, and an extractant contact step for eluting the hydrophobic organic compound trapped by the hydrophobic organic compound collector into the extractant is provided. .
With this configuration, in addition to the operation obtained in the sixth aspect, the following operation can be obtained.
(1) The hydrophobic organic compound can be detached from the hydrophobic organic compound collector by a simple operation of bringing the hydrophobic organic compound collector capturing the hydrophobic organic compound into contact with the extractant. Excellent in properties.
(2) Since it has an extractant contact step, the hydrophobic organic compound trapped by the hydrophobic organic compound collector can be eluted into the extractant, and the hydrophobic organic compound collector can be regenerated and used repeatedly. Excellent resource saving.
(3) Since the solubility of the hydrophobic organic compound in the extractant is extremely higher than that of the aqueous solution, the hydrophobic organic compound in the collection material of the hydrophobic organic compound can be eluted with a small amount of the extractant, thus saving resources. Excellent. For this reason, the concentration of the hydrophobic organic compound in the extractant can be dramatically increased compared to the concentration of the hydrophobic organic compound in the aqueous solution, and the hydrophobic organic compound can be concentrated in the extractant. The processing efficiency in organic compound recovery processing, pretreatment such as analysis, and analysis can be dramatically increased.

ここで、抽出剤としては、疎水性有機化合物に対する溶解度が水性溶液に対する溶解度よりも高い溶媒が用いられ、疎水性有機化合物や水性溶液の種類にもよるが、例えば、メタノール,エタノール,ブタノール,ヘキサノール等のアルコール類、クロロホルム、クロロベンゼン、ヘキサン,オクタン,シクロヘキサン、ベンゼン,キシレン,トルエン、ジクロロエタン等を用いることができる。   Here, as the extractant, a solvent having a higher solubility in a hydrophobic organic compound than that in an aqueous solution is used. Depending on the type of the hydrophobic organic compound or the aqueous solution, for example, methanol, ethanol, butanol, hexanol Alcohols such as chloroform, chlorobenzene, hexane, octane, cyclohexane, benzene, xylene, toluene, dichloroethane and the like can be used.

以上のように、本発明の疎水性有機化合物捕集材及びその製造方法並びに疎水性有機化合物の除去方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)ミセル構造を構成し、数ナノメートルの大きさの疎水場(以下、疎水性ナノドメインという)を形成するので、水性溶液中に溶解又は分散している疎水性有機化合物は、疎水性相互作用によって疎水性ナノドメイン内に容易に捕捉され、水性溶液中の疎水性有機化合物の濃度を減少させることができる疎水性有機化合物捕集材を提供することができる。
(2)疎水性ナノドメインに捕捉された疎水性有機化合物は、疎水性有機化合物と親和性の高い抽出剤と接触させることにより容易に抽出できるので、再生が可能で繰り返し使用性に優れるとともに、抽出剤中の疎水性有機化合物の濃度を水性溶液中の疎水性有機化合物の濃度と比較して飛躍的に高め、疎水性有機化合物を抽出剤中に濃縮させることができ、疎水性有機化合物の回収処理,分析等の前処理,分析等における処理効率を飛躍的に高めることができる疎水性有機化合物捕集材を提供することができる。
(3)親水性化合物と親水性不飽和単量体とが架橋結合し三次元的な網目構造を有しているので、カラムに充填したり多孔質膜や多孔質体等のフィルタに担持させて固定相として用いることができる疎水性有機化合物捕集材を提供することができる。
As described above, according to the hydrophobic organic compound trapping material, the manufacturing method thereof, and the hydrophobic organic compound removal method of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Since the micelle structure is formed and a hydrophobic field having a size of several nanometers (hereinafter referred to as a hydrophobic nanodomain) is formed, the hydrophobic organic compound dissolved or dispersed in the aqueous solution is hydrophobic. It is possible to provide a hydrophobic organic compound trapping material that can be easily trapped in the hydrophobic nanodomain by the interaction and can reduce the concentration of the hydrophobic organic compound in the aqueous solution.
(2) The hydrophobic organic compound trapped in the hydrophobic nanodomain can be easily extracted by bringing it into contact with an extractant having a high affinity with the hydrophobic organic compound, so that it can be regenerated and is excellent in repeated use. The concentration of the hydrophobic organic compound in the extractant can be dramatically increased compared to the concentration of the hydrophobic organic compound in the aqueous solution, and the hydrophobic organic compound can be concentrated in the extractant. It is possible to provide a hydrophobic organic compound collecting material capable of dramatically improving the processing efficiency in the pretreatment such as recovery processing and analysis, and analysis.
(3) Since the hydrophilic compound and the hydrophilic unsaturated monomer are cross-linked and have a three-dimensional network structure, they are packed in a column or supported on a filter such as a porous membrane or a porous body. Thus, a hydrophobic organic compound trapping material that can be used as a stationary phase can be provided.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)橋かけ重合体の架橋度が0.01〜5%なので、橋かけ重合体は水性溶液に浸されて膨潤し水性ゲルとなるので、形状保持性を有し移動相としての水性溶液を通過させ疎水性有機化合物を捕捉する固定相として用いることができる疎水性有機化合物捕集材を提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Since the crosslinking polymer has a cross-linking degree of 0.01 to 5%, the crosslinked polymer is immersed in an aqueous solution to swell and become an aqueous gel. It is possible to provide a hydrophobic organic compound trapping material that can be used as a stationary phase that passes through and captures the hydrophobic organic compound.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)疎水性高分子鎖が、親水性化合物及び親水性不飽和単量体の全量の10〜70重量%を占めるので、所定量の疎水性ナノドメインを有し、橋かけ重合体における疎水性有機化合物との親和性と水性溶液との親和性とを両立させることができ、疎水性有機化合物の捕集効率が高く、かつ短時間で捕集し再溶出を防止できる疎水性有機化合物捕集材を提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) Since the hydrophobic polymer chain occupies 10 to 70% by weight of the total amount of the hydrophilic compound and the hydrophilic unsaturated monomer, the hydrophobic polymer chain has a predetermined amount of hydrophobic nanodomains and is hydrophobic in the crosslinked polymer. Hydrophobic organic compound capture that can achieve both compatibility with hydrophobic organic compounds and aqueous solution, has high collection efficiency of hydrophobic organic compounds, and can be collected in a short time to prevent re-elution Gathering can be provided.

請求項4に記載の発明によれば、請求項1乃至3の内いずれか1の効果に加え、
(1)疎水性高分子鎖が、親水性化合物の10〜70重量%を占めるので、親水性化合物は水性溶液中でミセルを形成し、疎水性有機化合物を捕捉する所定量の疎水性ナノドメインを形成することができ、橋かけ重合体における疎水性有機化合物との親和性と水性溶液との親和性とを両立させることができ、疎水性有機化合物の捕集効率が高く、かつ短時間で捕集し再溶出を防止できる疎水性有機化合物捕集材を提供することができる。
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3,
(1) Since the hydrophobic polymer chain accounts for 10 to 70% by weight of the hydrophilic compound, the hydrophilic compound forms micelles in an aqueous solution and captures a hydrophobic organic compound in a predetermined amount of hydrophobic nanodomain It is possible to form both the affinity of the crosslinked polymer with the hydrophobic organic compound and the affinity with the aqueous solution, the collection efficiency of the hydrophobic organic compound is high, and in a short time A hydrophobic organic compound trapping material that can be collected and prevented from re-elution can be provided.

請求項5に記載の発明によれば、
(1)ミセル形成工程において臨界ミセル濃度以上の親水性化合物を水溶液中で会合させ形成されたミセルを、重合反応工程において橋かけ重合体の三次元網目構造内に保持させることができるので、ミセルが形成する疎水性ナノドメインを橋かけ重合体内に分散させ保持させることができ、水性溶液中に溶解又は分散している疎水性有機化合物の捕集効率に優れた疎水性有機化合物捕集材を製造できる操作性に優れた疎水性有機化合物捕集材の製造方法を提供することができる。
According to the invention of claim 5,
(1) Since micelles formed by associating a hydrophilic compound having a critical micelle concentration or more in an aqueous solution in the micelle formation step can be held in the three-dimensional network structure of the crosslinked polymer in the polymerization reaction step, the micelle Hydrophobic organic compound trapping material excellent in trapping efficiency of hydrophobic organic compounds dissolved or dispersed in an aqueous solution, which can be dispersed and retained in the crosslinked polymer in the hydrophobic nanodomain formed by The manufacturing method of the hydrophobic organic compound collection material excellent in the operativity which can be manufactured can be provided.

請求項6に記載の発明によれば、
(1)溶液接触工程を備えているので、水性溶液に溶存又は分散している有機化合物の内、疎水性有機化合物を選択的に疎水性ナノドメインに捕捉させ捕集させることができ、水性溶液中の疎水性有機化合物の濃度を減少させることができる疎水性有機化合物の除去方法を提供することができる。
According to the invention of claim 6,
(1) Since a solution contact step is provided, among organic compounds dissolved or dispersed in an aqueous solution, a hydrophobic organic compound can be selectively captured and collected in a hydrophobic nanodomain. A method for removing a hydrophobic organic compound that can reduce the concentration of the hydrophobic organic compound therein can be provided.

請求項7に記載の発明によれば、請求項6の効果に加え、
(1)疎水性有機化合物を捕捉した疎水性有機化合物捕集材を抽出剤に接触させるという簡易な操作で、疎水性有機化合物を疎水性有機化合物捕集材から離脱させることができるので、作業性に優れた疎水性有機化合物の除去方法を提供することができる。
(2)抽出剤接触工程を備えているので、疎水性有機化合物捕集材に捕捉された疎水性有機化合物を抽出剤に溶出させ、疎水性有機化合物捕集材を再生し繰り返し使用可能にでき省資源性に優れた疎水性有機化合物の除去方法を提供することができる。
(3)疎水性有機化合物の抽出剤への溶解度は水性溶液に比べて極めて高いので、少量の抽出剤で疎水性有機化合物捕集材内の疎水性有機化合物を溶出させることができ省資源性に優れる。このため、抽出剤中の疎水性有機化合物の濃度を水性溶液中の疎水性有機化合物の濃度と比較して飛躍的に高め、疎水性有機化合物を抽出剤中に濃縮させることができ、疎水性有機化合物の回収処理,分析等の前処理,分析等における処理効率を飛躍的に高めることができる疎水性有機化合物の除去方法を提供することができる。
According to invention of Claim 7, in addition to the effect of Claim 6,
(1) The hydrophobic organic compound can be detached from the hydrophobic organic compound collector by a simple operation of bringing the hydrophobic organic compound collector capturing the hydrophobic organic compound into contact with the extractant. It is possible to provide a method for removing a hydrophobic organic compound having excellent properties.
(2) Since it has an extractant contact step, the hydrophobic organic compound trapped by the hydrophobic organic compound collector can be eluted into the extractant, and the hydrophobic organic compound collector can be regenerated and used repeatedly. It is possible to provide a method for removing a hydrophobic organic compound excellent in resource saving.
(3) Since the solubility of the hydrophobic organic compound in the extractant is extremely higher than that of the aqueous solution, the hydrophobic organic compound in the collection material of the hydrophobic organic compound can be eluted with a small amount of the extractant, thus saving resources. Excellent. For this reason, the concentration of the hydrophobic organic compound in the extractant can be dramatically increased compared to the concentration of the hydrophobic organic compound in the aqueous solution, and the hydrophobic organic compound can be concentrated in the extractant. It is possible to provide a method for removing a hydrophobic organic compound that can drastically increase the processing efficiency in organic compound recovery processing, pretreatment such as analysis, and analysis.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
撹拌装置付きのガラス容器内に入れた溶媒としてのN,N−ジメチルホルムアミドに、末端がヒドロキシル化された数平均分子量2000のポリエチレングリコールモノステアレート(東京化成社製)、アクリル酸クロリド(東京化成社製)、及び4−N,N−ジメチルアミノピリジンを1:1.02:1のモル比で加えた。これを、室温下、乾燥窒素気流中で24時間撹拌し、ポリエチレングリコールモノステアレートの末端がアクリレート化した親水性化合物(ポリエチレングリコールモノステアレート。以下、M1と表記する。)を得た。高分解能核磁気共鳴(JEOL社製JNM−ECP500)を用いて分析することにより、得られた親水性化合物(M1)の末端がアクリレート化していることを確認した。
製造された親水性化合物(M1)の臨界ミセル濃度以上を水に溶解し、ミセルを形成した(ミセル形成工程)。
次に、この水溶液に親水性不飽和単量体としてアクリルアミド(以下、AAMと表記する)、架橋剤としてメチレンビスアクリルアミド(以下、MBAと表記する)、開始剤として過硫酸カリウム(以下、KPSと表記する)、触媒としてテトラメチルエチレンジアミン(以下、TMEDAと表記する)の1:0.01:0.01:0.01(モル比)の混合物を、親水性化合物(M1)と親水性不飽和単量体(AAM)との比率(モル比)が1:1になるように加え、反応温度40℃で重合させ橋かけ重合体を形成し(重合反応工程)、実施例1の疎水性有機化合物捕集材を得た。得られた疎水性有機化合物捕集材におけるミセル構造は、小角X線散乱法によって、親水性化合物(M1)が水溶液中で形成したミセル構造がそのまま保持されていることを確認した。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Example 1)
N, N-dimethylformamide as a solvent placed in a glass container equipped with a stirrer, polyethylene glycol monostearate having a number average molecular weight of 2000 having a terminal hydroxylated (manufactured by Tokyo Kasei Co., Ltd.), acrylic acid chloride (Tokyo Chemical Industry) And 4-N, N-dimethylaminopyridine were added at a molar ratio of 1: 1.02: 1. This was stirred at room temperature in a dry nitrogen stream for 24 hours to obtain a hydrophilic compound (polyethylene glycol monostearate, hereinafter referred to as M1) in which the end of polyethylene glycol monostearate was acrylated. By analyzing using high resolution nuclear magnetic resonance (JNM-ECP500 manufactured by JEOL), it was confirmed that the end of the obtained hydrophilic compound (M1) was acrylated.
More than the critical micelle concentration of the produced hydrophilic compound (M1) was dissolved in water to form micelles (micelle formation step).
Next, acrylamide (hereinafter referred to as AAM) as a hydrophilic unsaturated monomer, methylenebisacrylamide (hereinafter referred to as MBA) as a crosslinking agent, and potassium persulfate (hereinafter referred to as KPS) as an initiator in this aqueous solution. 1): 0.01: 0.01: 0.01 (molar ratio) of tetramethylethylenediamine (hereinafter referred to as TMEDA) as a catalyst, hydrophilic compound (M1) and hydrophilic unsaturated The ratio of the monomer (AAM) (molar ratio) is 1: 1 so that it is polymerized at a reaction temperature of 40 ° C. to form a crosslinked polymer (polymerization reaction step). A compound collector was obtained. The micelle structure in the obtained hydrophobic organic compound trapping material was confirmed by the small-angle X-ray scattering method to retain the micelle structure formed in the aqueous solution by the hydrophilic compound (M1).

(実施例2)
親水性化合物(M1)の臨界ミセル濃度以上を水に溶解し、ミセルを形成した水溶液に親水性不飽和単量体(AAM)、架橋剤(MBA)、開始剤(KPS)、触媒(TMEDA)の1:0.01:0.01:0.01(モル比)の混合物を、親水性化合物(M1)と親水性不飽和単量体(AAM)との比率(モル比)が1:2になるように加えた以外は、実施例1と同様にして、実施例2の疎水性有機化合物捕集材を得た。得られた疎水性有機化合物捕集材におけるミセル構造は、小角X線散乱法によって、親水性化合物(M1)が水溶液中で形成したミセル構造がそのまま保持されていることを確認した。
(Example 2)
More than the critical micelle concentration of the hydrophilic compound (M1) is dissolved in water, and the hydrophilic unsaturated monomer (AAM), crosslinking agent (MBA), initiator (KPS), catalyst (TMEDA) is added to the aqueous solution in which the micelle is formed. A 1: 0.01: 0.01: 0.01 (molar ratio) mixture of the hydrophilic compound (M1) and the hydrophilic unsaturated monomer (AAM) has a ratio (molar ratio) of 1: 2. A hydrophobic organic compound trapping material of Example 2 was obtained in the same manner as Example 1 except that the addition was performed. The micelle structure in the obtained hydrophobic organic compound trapping material was confirmed by the small-angle X-ray scattering method to retain the micelle structure formed in the aqueous solution by the hydrophilic compound (M1).

(実施例3)
親水性化合物(M1)の臨界ミセル濃度以上を水に溶解し、ミセルを形成した水溶液に親水性不飽和単量体(AAM)、架橋剤(MBA)、開始剤(KPS)、触媒(TMEDA)の1:0.01:0.01:0.01(モル比)の混合物を、親水性化合物(M1)と親水性不飽和単量体(AAM)との比率(モル比)が1:5になるように加えた以外は、実施例1と同様にして、実施例2の疎水性有機化合物捕集材を得た。得られた疎水性有機化合物捕集材におけるミセル構造は、小角X線散乱法によって、親水性化合物(M1)が水溶液中で形成したミセル構造がそのまま保持されていることを確認した。
(Example 3)
More than the critical micelle concentration of the hydrophilic compound (M1) is dissolved in water, and the hydrophilic unsaturated monomer (AAM), crosslinking agent (MBA), initiator (KPS), catalyst (TMEDA) is added to the aqueous solution in which the micelle is formed. 1: 0.01: 0.01: 0.01 (molar ratio) of a mixture of the hydrophilic compound (M1) and the hydrophilic unsaturated monomer (AAM) (molar ratio) is 1: 5. A hydrophobic organic compound trapping material of Example 2 was obtained in the same manner as Example 1 except that the addition was performed. The micelle structure in the obtained hydrophobic organic compound trapping material was confirmed by the small-angle X-ray scattering method to retain the micelle structure formed in the aqueous solution by the hydrophilic compound (M1).

(比較例1)
実施例1〜3で説明した親水性化合物(M1)、親水性不飽和単量体のアクリルアミド(AAM)、架橋剤のメチレンビスアクリルアミド(MBA)を1:1:0.01の比率(モル比)で混合し、容積比が65:35のメタノール−水混合溶媒(水溶液)に溶解した。なお、容積比が65:35のメタノール−水混合溶媒では、親水性化合物(M1)はミセルを形成しないことを確認している。
この水溶液に開始剤としてのアゾビスイソブチロニトリル(以下、AIBNと表記する)を親水性不飽和単量体(AAM)に対して0.01当量加え、60℃にて重合させ、比較例1の疎水性有機化合物捕集材を得た。得られた疎水性有機化合物捕集材にミセル構造が形成されていないことを、小角X線散乱法によって確認した。
(Comparative Example 1)
The ratio (molar ratio) of the hydrophilic compound (M1) described in Examples 1 to 3, the hydrophilic unsaturated monomer acrylamide (AAM), and the cross-linking agent methylenebisacrylamide (MBA) at a ratio of 1: 1: 0.01. ) And dissolved in a methanol-water mixed solvent (aqueous solution) having a volume ratio of 65:35. It has been confirmed that the hydrophilic compound (M1) does not form micelles in a methanol-water mixed solvent with a volume ratio of 65:35.
To this aqueous solution, 0.01 equivalent of azobisisobutyronitrile (hereinafter referred to as AIBN) as an initiator was added with respect to the hydrophilic unsaturated monomer (AAM) and polymerized at 60 ° C. A hydrophobic organic compound collector 1 was obtained. It was confirmed by the small angle X-ray scattering method that the micelle structure was not formed in the obtained hydrophobic organic compound collecting material.

(比較例2)
親水性化合物(M1)、親水性不飽和単量体(AAM)、架橋剤(MBA)を1:2:0.02の比率(モル比)で混合し、容積比が65:35のメタノール−水混合溶媒(水溶液)に溶解し、この水溶液を用いて重合反応を行った以外は、比較例1と同様にして、比較例2の疎水性有機化合物捕集材を得た。得られた疎水性有機化合物捕集材にミセル構造が形成されていないことを、小角X線散乱法によって確認した。
(Comparative Example 2)
A hydrophilic compound (M1), a hydrophilic unsaturated monomer (AAM), and a cross-linking agent (MBA) are mixed at a ratio (molar ratio) of 1: 2: 0.02 and methanol having a volume ratio of 65:35 A hydrophobic organic compound trapping material of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that it was dissolved in a water mixed solvent (aqueous solution) and the polymerization reaction was performed using this aqueous solution. It was confirmed by the small angle X-ray scattering method that the micelle structure was not formed in the obtained hydrophobic organic compound collecting material.

(比較例3)
親水性化合物(M1)、親水性不飽和単量体(AAM)、架橋剤(MBA)を1:5:0.05の比率(モル比)で混合し、容積比が65:35のメタノール−水混合溶媒(水溶液)に溶解し、この水溶液を用いて重合反応を行った以外は、比較例1と同様にして、比較例3の疎水性有機化合物捕集材を得た。得られた疎水性有機化合物捕集材にミセル構造が形成されていないことを、小角X線散乱法によって確認した。
実施例1〜3、比較例1〜3の配合比(モル比)を、(表1)にまとめて示す。
(Comparative Example 3)
A hydrophilic compound (M1), a hydrophilic unsaturated monomer (AAM), and a cross-linking agent (MBA) were mixed at a ratio (molar ratio) of 1: 5: 0.05, and methanol having a volume ratio of 65:35 A hydrophobic organic compound trapping material of Comparative Example 3 was obtained in the same manner as Comparative Example 1 except that it was dissolved in a water mixed solvent (aqueous solution) and the polymerization reaction was performed using this aqueous solution. It was confirmed by the small angle X-ray scattering method that the micelle structure was not formed in the obtained hydrophobic organic compound collecting material.
The compounding ratios (molar ratios) of Examples 1 to 3 and Comparative Examples 1 to 3 are collectively shown in (Table 1).

Figure 2005279617
Figure 2005279617

(疎水性有機化合物の捕集能の評価)
以上のようにして製造された実施例1〜3、比較例1〜3の疎水性有機化合物捕集材を、各々水に浸漬し、疎水性有機化合物捕集材の乾燥重量に対して20倍の膨潤度に達した後、各々の疎水性有機化合物捕集材を長さ5cm、内径5mmのステンレス製のカラムに充填した。
製造されたカラムに、ビスフェノールA(以下、BPAと表記する)を10ppm含むBPA含有水1Lをインテリジェントポンプを用いて一定の流速で通過させ、紫外・可視吸収スペクトル(日本分光社製UV−570)を用いて、通過した処理水中のBPAの濃度を求めた。
図1は疎水性有機化合物捕集材に捕捉されたBPAの割合を疎水性有機化合物捕集材中の親水性化合物(M1)と親水性不飽和単量体(AAM)のモル比に対してプロットした図である。
(Evaluation of collection ability of hydrophobic organic compounds)
The hydrophobic organic compound collectors of Examples 1 to 3 and Comparative Examples 1 to 3 manufactured as described above were each immersed in water, and 20 times the dry weight of the hydrophobic organic compound collector. Each of the hydrophobic organic compound collectors was packed in a stainless steel column having a length of 5 cm and an inner diameter of 5 mm.
1 L of BPA-containing water containing 10 ppm of bisphenol A (hereinafter referred to as BPA) is passed through the produced column at a constant flow rate using an intelligent pump, and ultraviolet / visible absorption spectrum (UV-570 manufactured by JASCO Corporation) is passed. Was used to determine the concentration of BPA in the treated water that passed through.
FIG. 1 shows the ratio of BPA trapped in a hydrophobic organic compound collector with respect to the molar ratio of the hydrophilic compound (M1) and hydrophilic unsaturated monomer (AAM) in the hydrophobic organic compound collector. FIG.

図1によれば、実施例1〜3の疎水性有機化合物捕集材を充填したカラムにおける疎水性有機化合物捕集材に捕捉されたBPAの割合は、比較例1〜3の疎水性有機化合物捕集材を充填したカラムに比べ著しく高いことが確認された。また、実施例1、2の疎水性有機化合物捕集材を充填したカラムは、BPA含有水中のBPAを100%捕集したことがわかった。
これにより、本実施例の疎水性有機化合物捕集材は、水性溶液中の疎水性有機化合物を疎水性相互作用によって疎水性ナノドメイン内に効率良く捕捉し、水性溶液中の疎水性有機化合物の濃度を減少させることができることが明らかになった。また、所定の割合で疎水性有機化合物捕集材内に疎水性ナノドメインを保持することにより、水性溶液中の疎水性有機化合物を100%除去できることが明らかになった。
According to FIG. 1, the ratio of BPA trapped by the hydrophobic organic compound collector in the column packed with the hydrophobic organic compound collector of Examples 1 to 3 is the hydrophobic organic compound of Comparative Examples 1 to 3. It was confirmed that the column was significantly higher than the column packed with the collecting material. Moreover, it turned out that the column packed with the hydrophobic organic compound collection material of Examples 1 and 2 collected 100% of BPA in BPA-containing water.
As a result, the hydrophobic organic compound trapping material of this example efficiently captures the hydrophobic organic compound in the aqueous solution in the hydrophobic nanodomains by hydrophobic interaction, and the hydrophobic organic compound in the aqueous solution It became clear that the concentration could be reduced. In addition, it was revealed that 100% of the hydrophobic organic compound in the aqueous solution can be removed by retaining the hydrophobic nanodomains in the hydrophobic organic compound collecting material at a predetermined ratio.

次に、BPA含有水中のBPAを100%捕集した実施例1、実施例2の疎水性有機化合物捕集材を充填したカラムに、1Lの精澄水を通過させた後、処理したBPA含有水量の1/200に相当する5mLのエタノール(抽出剤)をインテリジェントポンプを用いてカラムに一定の流速で通過させ、カラム内の疎水性有機化合物捕集材に捕捉されたBPAを溶出させた(抽出剤接触工程)。抽出剤に溶出させたBPAの濃度は、紫外・可視吸収スペクトル(日本分光社製UV−570)を用いて測定した。
この測定の結果、実施例1、2の疎水性有機化合物捕集材を充填したカラムを通過させたエタノール(抽出剤)中のBPAの濃度は0.2%であった。これは、BPA含有水中のBPA濃度の200倍である。
これにより、疎水性有機化合物捕集材の疎水性ナノドメインに捕捉された疎水性有機化合物は、1/200の量の抽出剤によって抽出され、疎水性有機化合物の200倍濃縮が、1段階の処理によって達成できることが明らかになった。
Next, 1 L of clarified water was passed through the column packed with the hydrophobic organic compound trapping material of Example 1 and Example 2 in which 100% of BPA in BPA-containing water was collected. 5 mL of ethanol (extractant) equivalent to 1/200 of the sample was passed through the column at a constant flow rate using an intelligent pump to elute BPA trapped by the hydrophobic organic compound collector in the column (extraction) Agent contact step). The concentration of BPA eluted in the extractant was measured using an ultraviolet / visible absorption spectrum (UV-570 manufactured by JASCO Corporation).
As a result of this measurement, the concentration of BPA in ethanol (extractant) that passed through the column packed with the hydrophobic organic compound collector of Examples 1 and 2 was 0.2%. This is 200 times the BPA concentration in BPA-containing water.
As a result, the hydrophobic organic compound trapped in the hydrophobic nanodomain of the hydrophobic organic compound trapping material is extracted by the amount of 1/200 of the extractant, and 200-fold concentration of the hydrophobic organic compound is performed in one stage. It became clear that it could be achieved by processing.

なお、本実施例の疎水性有機化合物捕集材は、抽出剤接触工程においてエタノール(抽出剤)を用いて捕捉された疎水性有機化合物を溶出した後、再び水に膨潤させカラムに充填しても性能の低下はみられなかった。このことから、本実施例の疎水性有機化合物捕集材は、容易に再生が可能で繰り返し使用性に優れることが明らかである。   In addition, the hydrophobic organic compound trapping material of this example is obtained by eluting the hydrophobic organic compound captured using ethanol (extractant) in the extractant contact step, and then swollen in water again and packed in a column. However, no performance degradation was observed. From this, it is clear that the hydrophobic organic compound trapping material of this example can be easily regenerated and is excellent in repeated use.

本発明は、水性溶液中の内分泌撹乱物質等の疎水性有機化合物を水性溶液より除去することができる疎水性有機化合物捕集材及びその製造方法並びに疎水性有機化合物の除去方法に関し、水性溶液中の疎水性有機化合物を疎水性相互作用によって捕捉でき、水性溶液中の疎水性有機化合物の濃度を減少させることができ、また再生が可能で繰り返し使用性に優れるとともに、疎水性有機化合物の回収処理,分析等の前処理,分析等における処理効率を飛躍的に高めることができ、さらにカラムに充填したり多孔質膜や多孔質体等のフィルタに担持させて固定相として用いることができ使用性に優れる疎水性有機化合物捕集材を提供できる。
また、ミセル構造を橋かけ重合体内に分散させ保持させることができ、水性溶液中の疎水性有機化合物の捕集効率に優れた疎水性有機化合物捕集材を製造できる操作性に優れる疎水性有機化合物捕集材の製造方法を提供できる。
また、水性溶液と接触させるだけで水性溶液中の有機化合物の内、疎水性有機化合物を選択的に捕集させることができ、水性溶液中の疎水性有機化合物の濃度を減少させることができ除去効率に優れる疎水性有機化合物の除去方法を提供できる。
The present invention relates to a hydrophobic organic compound scavenger capable of removing a hydrophobic organic compound such as an endocrine disrupting substance in an aqueous solution from an aqueous solution, a method for producing the same, and a method for removing the hydrophobic organic compound. Hydrophobic organic compounds can be captured by hydrophobic interactions, the concentration of hydrophobic organic compounds in aqueous solutions can be reduced, and they can be regenerated and have excellent reusability. , Pretreatment for analysis, processing efficiency in analysis, etc. can be drastically improved. Furthermore, it can be used as a stationary phase by being packed in a column or supported on a filter such as a porous membrane or porous body. Can be provided.
In addition, the hydrophobic organic compound can be dispersed and retained in the crosslinked polymer in the crosslinked polymer, and the hydrophobic organic compound collecting material can be manufactured with excellent collection efficiency of the hydrophobic organic compound in the aqueous solution. The manufacturing method of a compound trap can be provided.
In addition, hydrophobic organic compounds can be selectively collected from the organic compounds in the aqueous solution simply by contacting with the aqueous solution, and the concentration of the hydrophobic organic compound in the aqueous solution can be reduced and removed. A method for removing a hydrophobic organic compound having excellent efficiency can be provided.

疎水性有機化合物捕集材に捕捉されたBPAの割合を疎水性有機化合物捕集材中の親水性化合物(M1)と親水性不飽和単量体(AAM)のモル比に対してプロットした図The figure which plotted the ratio of BPA capture | acquired by the hydrophobic organic compound collection material with respect to the molar ratio of the hydrophilic compound (M1) in a hydrophobic organic compound collection material and a hydrophilic unsaturated monomer (AAM).

Claims (7)

疎水性高分子鎖が末端に結合した親水性化合物と、前記親水性化合物と架橋結合し橋かけ重合体を形成した親水性不飽和単量体と、を備えていることを特徴とする疎水性有機化合物捕集材。   Hydrophobic, characterized by comprising a hydrophilic compound having a hydrophobic polymer chain bonded to a terminal, and a hydrophilic unsaturated monomer that is crosslinked with the hydrophilic compound to form a crosslinked polymer Organic compound collector. 前記橋かけ重合体の架橋度が、0.01〜5%好ましくは0.01〜3%であることを特徴とする請求項1に記載の疎水性有機化合物捕集材。   The hydrophobic organic compound trapping material according to claim 1, wherein the crosslinking polymer has a crosslinking degree of 0.01 to 5%, preferably 0.01 to 3%. 前記疎水性高分子鎖が、前記親水性化合物及び前記親水性不飽和単量体の全量の10〜70重量%好ましくは20〜50重量%を占めることを特徴とする請求項1又は2に記載の疎水性有機化合物捕集材。   The hydrophobic polymer chain occupies 10 to 70% by weight, preferably 20 to 50% by weight of the total amount of the hydrophilic compound and the hydrophilic unsaturated monomer. Hydrophobic organic compound collector. 前記疎水性高分子鎖が、前記親水性化合物の10〜70重量%好ましくは20〜50重量%を占めることを特徴とする請求項1乃至3の内いずれか1に記載の疎水性有機化合物捕集材。   The hydrophobic organic compound trap according to any one of claims 1 to 3, wherein the hydrophobic polymer chain accounts for 10 to 70% by weight, preferably 20 to 50% by weight, of the hydrophilic compound. Gathering. 疎水性高分子鎖が末端に結合した臨界ミセル濃度以上の親水性化合物を水溶液中で会合させミセルを形成するミセル形成工程と、
前記ミセル形成工程でミセルが形成された前記水溶液に所定量の親水性不飽和単量体と架橋剤とを加え橋かけ重合体を形成する重合反応工程と、
を備えていることを特徴とする疎水性有機化合物捕集材の製造方法。
A micelle formation step for forming a micelle by associating a hydrophilic compound having a critical micelle concentration or higher with a hydrophobic polymer chain bonded to a terminal in an aqueous solution;
A polymerization reaction step of forming a crosslinked polymer by adding a predetermined amount of a hydrophilic unsaturated monomer and a crosslinking agent to the aqueous solution in which micelles are formed in the micelle formation step;
The manufacturing method of the hydrophobic organic compound collection material characterized by including.
請求項1乃至4の内いずれか1に記載の疎水性有機化合物捕集材に疎水性有機化合物が溶解又は分散した水性溶液を接触させ、前記疎水性有機化合物捕集材に前記疎水性有機化合物を捕捉させる溶液接触工程を備えていることを特徴とする疎水性有機化合物の除去方法。   An aqueous solution in which a hydrophobic organic compound is dissolved or dispersed is brought into contact with the hydrophobic organic compound collector according to any one of claims 1 to 4, and the hydrophobic organic compound is collected on the hydrophobic organic compound collector. A method for removing a hydrophobic organic compound, comprising a solution contact step for trapping water. 前記溶液接触工程で前記疎水性有機化合物を捕捉した前記疎水性有機化合物捕集材を前記水性溶液から分離し抽出剤に接触させ、前記疎水性有機化合物捕集材に捕捉された前記疎水性有機化合物を前記抽出剤に溶出する抽出剤接触工程を備えていることを特徴とする請求項6に記載の疎水性有機化合物の除去方法。   The hydrophobic organic compound trapping material that has captured the hydrophobic organic compound in the solution contacting step is separated from the aqueous solution, brought into contact with an extractant, and the hydrophobic organic compound trapped by the hydrophobic organic compound trapping material The method for removing a hydrophobic organic compound according to claim 6, further comprising an extractant contact step for eluting the compound into the extractant.
JP2004102359A 2004-03-31 2004-03-31 Hydrophobic organic compound collector, method for producing the same, and method for removing hydrophobic organic compound Pending JP2005279617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102359A JP2005279617A (en) 2004-03-31 2004-03-31 Hydrophobic organic compound collector, method for producing the same, and method for removing hydrophobic organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102359A JP2005279617A (en) 2004-03-31 2004-03-31 Hydrophobic organic compound collector, method for producing the same, and method for removing hydrophobic organic compound

Publications (1)

Publication Number Publication Date
JP2005279617A true JP2005279617A (en) 2005-10-13

Family

ID=35178562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102359A Pending JP2005279617A (en) 2004-03-31 2004-03-31 Hydrophobic organic compound collector, method for producing the same, and method for removing hydrophobic organic compound

Country Status (1)

Country Link
JP (1) JP2005279617A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268351A (en) * 2006-03-30 2007-10-18 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Phenol / carboxylic acid scavenger, separation tool using the same, and method for separating phenols / carboxylic acids using the same
WO2008072047A1 (en) * 2006-12-11 2008-06-19 Li Pei Core-shell particles for waste water treatment
CN102614847A (en) * 2011-01-28 2012-08-01 中国科学院大连化学物理研究所 Amphoteric ion hydrophilic chromatographic stationary phase and preparation method thereof
CN104609636A (en) * 2015-02-11 2015-05-13 四川大学 Method for removing endocrine disruptors in water by using iron and manganese double-phase-doped graphene to activate single persulfate
CN105413663A (en) * 2016-01-07 2016-03-23 南京医科大学 Bisphenol A adsorption material and preparation method and application thereof
CN107303483A (en) * 2016-04-25 2017-10-31 武汉理工大学 Multiple organic decoration magnetic composite and preparation method thereof and application in the treatment of waste water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815924A (en) * 1981-07-21 1983-01-29 Asahi Chem Ind Co Ltd Immunological adsorbent and adsorbing apparatus
JPS6394155A (en) * 1986-10-07 1988-04-25 Hitachi Chem Co Ltd Packing material for liquid chromatography
JPH01254247A (en) * 1988-04-01 1989-10-11 Mitsubishi Kasei Corp Composite separation agent and its manufacturing method
JP2000514704A (en) * 1996-04-18 2000-11-07 ウォーターズ・インヴェストメンツ・リミテッド Water-wettable chromatography media for solid-phase extraction
JP2001019938A (en) * 1999-07-05 2001-01-23 Agency Of Ind Science & Technol Heat-sensitive gel micro-bead and its production
JP2002361081A (en) * 2001-06-08 2002-12-17 Sekisui Chem Co Ltd Hydrophobic material adsorbent
WO2004024779A2 (en) * 2002-09-13 2004-03-25 Noveon Ip Holdings Corp. Multi-purpose cationic and associative polymers and compositions containing them and their method of preparation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815924A (en) * 1981-07-21 1983-01-29 Asahi Chem Ind Co Ltd Immunological adsorbent and adsorbing apparatus
JPS6394155A (en) * 1986-10-07 1988-04-25 Hitachi Chem Co Ltd Packing material for liquid chromatography
JPH01254247A (en) * 1988-04-01 1989-10-11 Mitsubishi Kasei Corp Composite separation agent and its manufacturing method
JP2000514704A (en) * 1996-04-18 2000-11-07 ウォーターズ・インヴェストメンツ・リミテッド Water-wettable chromatography media for solid-phase extraction
JP2001019938A (en) * 1999-07-05 2001-01-23 Agency Of Ind Science & Technol Heat-sensitive gel micro-bead and its production
JP2002361081A (en) * 2001-06-08 2002-12-17 Sekisui Chem Co Ltd Hydrophobic material adsorbent
WO2004024779A2 (en) * 2002-09-13 2004-03-25 Noveon Ip Holdings Corp. Multi-purpose cationic and associative polymers and compositions containing them and their method of preparation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268351A (en) * 2006-03-30 2007-10-18 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Phenol / carboxylic acid scavenger, separation tool using the same, and method for separating phenols / carboxylic acids using the same
WO2008072047A1 (en) * 2006-12-11 2008-06-19 Li Pei Core-shell particles for waste water treatment
CN102614847A (en) * 2011-01-28 2012-08-01 中国科学院大连化学物理研究所 Amphoteric ion hydrophilic chromatographic stationary phase and preparation method thereof
CN104609636A (en) * 2015-02-11 2015-05-13 四川大学 Method for removing endocrine disruptors in water by using iron and manganese double-phase-doped graphene to activate single persulfate
CN104609636B (en) * 2015-02-11 2016-05-11 四川大学 A kind of method of utilizing ferrimanganic two-phase doped graphene to activate incretion interferent in single persulfate removal water
CN105413663A (en) * 2016-01-07 2016-03-23 南京医科大学 Bisphenol A adsorption material and preparation method and application thereof
CN105413663B (en) * 2016-01-07 2017-10-13 南京医科大学 The sorbing material and preparation method and applications of a kind of bisphenol-A
CN107303483A (en) * 2016-04-25 2017-10-31 武汉理工大学 Multiple organic decoration magnetic composite and preparation method thereof and application in the treatment of waste water

Similar Documents

Publication Publication Date Title
US8940172B2 (en) Super-macroporous polymeric microspheres and preparation method thereof
CN101747473B (en) Surface-functionalized molecularly imprinted polymer microsphere and preparation method thereof
CN103304820B (en) Preparation method of efficient polyethyleneimine modified cellulose-based heavy metal adsorbent
US6323249B1 (en) Macroporous resins having large pores but with high crush strength
EP1630193A1 (en) Graft-modified organic porous material and process for producing the same
DE102005058979A1 (en) Magnetic polymer particles
AU778045B2 (en) Process for making fluorinated polymer adsorbent particles
CN1338480A (en) Polymer absorbant and preparation thereof
EP2274091B1 (en) Composite material
BR0113541B1 (en) functionalized polymer beads, processes for preparing same and processes for separating an analyte from a solution and a mixture.
JP2010137207A (en) Mix mode-type adsorbent
Zendehdel et al. Removal of methylene blue dye from wastewater by adsorption onto semi-inpenetrating polymer network hydrogels composed of acrylamide and acrylic acid copolymer and polyvinyl alcohol
JP2005279617A (en) Hydrophobic organic compound collector, method for producing the same, and method for removing hydrophobic organic compound
US7001963B2 (en) Cobalt imprinted polymer composition for selective removal of cobalt, process for preparation thereof, and process for removal of cobalt
US6746608B2 (en) Use of adsorbent polymer particles in DNA separation
JP2005535778A (en) Production method of monodisperse gel ion exchanger
Takeuchi et al. Miniaturized molecularly imprinted continuous polymer rods
US20210220814A1 (en) Porous materials for solid phase extraction and chromatography and processes for preparation and use thereof
EP0217791A1 (en) A process for absorbing water having a ph less than four.
JPS6361618B2 (en)
CN105001371A (en) Preparation method of novel adsorption material capable of selectively removing pentadecafluorooctanoic acid from aquatic environment
KR20000047635A (en) Process for the Preparation of Monodisperse, Gelatinous Cation Exchangers
JP2007268351A (en) Phenol / carboxylic acid scavenger, separation tool using the same, and method for separating phenols / carboxylic acids using the same
WO2016153915A1 (en) Method of purifying a biological composition and article therefor
JP2587808B2 (en) Water separation retention release agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914