[go: up one dir, main page]

JP2005273004A - Low specific gravity steel plate excellent in ductility and method for producing the same - Google Patents

Low specific gravity steel plate excellent in ductility and method for producing the same Download PDF

Info

Publication number
JP2005273004A
JP2005273004A JP2004286452A JP2004286452A JP2005273004A JP 2005273004 A JP2005273004 A JP 2005273004A JP 2004286452 A JP2004286452 A JP 2004286452A JP 2004286452 A JP2004286452 A JP 2004286452A JP 2005273004 A JP2005273004 A JP 2005273004A
Authority
JP
Japan
Prior art keywords
specific gravity
ductility
less
low specific
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004286452A
Other languages
Japanese (ja)
Other versions
JP4430502B2 (en
Inventor
Nobuhiro Fujita
展弘 藤田
Masaharu Oka
正春 岡
Manabu Takahashi
学 高橋
Takehide Senuma
武秀 瀬沼
Yuichi Taniguchi
裕一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004286452A priority Critical patent/JP4430502B2/en
Publication of JP2005273004A publication Critical patent/JP2005273004A/en
Application granted granted Critical
Publication of JP4430502B2 publication Critical patent/JP4430502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

【課題】 延性に優れた低比重鋼板およびその製造方法を提供する。
【解決手段】 質量%で、C:0.0035%以下、Si:0.01〜7.0%以下、Mn:0.01〜3.0%、P:0.01%以下、S:0.05%以下、Al:2.0〜10.0%、N:0.001〜0.05%を含有し、残部がFeおよび不可避的不純物からなり、Fe−Alの規則化率が0.3以下、比重<7.50、均一伸びが20%以上であることを特徴とする延性に優れた低比重鋼板。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a low specific gravity steel plate excellent in ductility and a method for producing the same.
SOLUTION By mass%, C: 0.0035% or less, Si: 0.01 to 7.0% or less, Mn: 0.01 to 3.0%, P: 0.01% or less, S: 0 .05% or less, Al: 2.0 to 10.0%, N: 0.001 to 0.05%, the balance being made of Fe and inevitable impurities, and the Fe-Al ordering ratio being 0.00. A low specific gravity steel sheet excellent in ductility, characterized by 3 or less, specific gravity <7.50, and uniform elongation of 20% or more.
[Selection figure] None

Description

本発明は、自動車部品などに用いられる延性に優れた低比重鋼板およびその製造方法に関するものである。   The present invention relates to a low specific gravity steel plate excellent in ductility used for automobile parts and the like, and a method for producing the same.

近年、環境問題への対応のため炭酸ガス排出低減や燃費低減を目的に自動車の軽量化が望まれている。自動車の軽量化のためには鋼材の高強度化が有効な手段であるが、部材の剛性によって板厚が制限されている場合には、高強度化しても板厚を低減することができず、軽量化が困難であった。   In recent years, in order to cope with environmental problems, it has been desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emissions and reducing fuel consumption. To reduce the weight of automobiles, increasing the strength of steel is an effective means, but when the plate thickness is limited by the rigidity of the member, the plate thickness cannot be reduced even if the strength is increased. It was difficult to reduce the weight.

上記の場合に軽量化を達成する手段としては、鋼材に比べて比重の低いアルミ合金板の使用が考えられるが、アルミ合金板は高価格であることに加え、鋼材に比べて加工性が劣っていることや、鋼板との溶接が困難である等の欠点があるために、自動車部材への適用は限定されたものとなっている。   As a means to achieve weight reduction in the above case, it is conceivable to use an aluminum alloy plate having a specific gravity lower than that of steel, but in addition to being expensive, aluminum alloy plate is inferior in workability compared to steel. In addition, there are drawbacks such as difficulty in welding with steel plates, and therefore, application to automobile members is limited.

そこで、鋼板とアルミ合金板の長所を兼ね備えたものとして、鉄にアルミを多量に添加した高Al含有鋼板が考えられ、例えば、特許文献1には、C:0.002〜0.1%、Al:3〜10%と、Ni、Co、Cuの1種または2種以上を0.01〜7%、Mn5%以下、2%以下のSiおよびTiの1種または2種以上を0.1〜6%、O:0.0005〜0.04%、N:0.0002〜0.05%、残余Feおよび不可避的不純物からなる低比重の吸振合金が開示されている。   Then, as what has the merit of a steel plate and an aluminum alloy plate, the high Al content steel plate which added a large amount of aluminum to iron is considered, for example, in patent documents 1, C: 0.002-0.1%, Al: 3 to 10%, one or more of Ni, Co, and Cu is 0.01 to 7%, Mn is 5% or less, and 2% or less of one or more of Si and Ti is 0.1. A vibration-absorbing alloy having a low specific gravity composed of ˜6%, O: 0.0005 to 0.04%, N: 0.0002 to 0.05%, residual Fe and inevitable impurities is disclosed.

しかし、このような高Al含有鋼板は、(a)製造性が劣ること(特に、圧延時に割れが発生すること)、(b)延性が低いこと、などの理由から、自動車用鋼板として適用することは困難であった。   However, such a high Al content steel sheet is applied as a steel sheet for automobiles because of (a) inferior productivity (particularly, cracking occurs during rolling) and (b) low ductility. It was difficult.

また、多量のAlを含有すると、延性、熱間加工性および冷間加工性が大幅に劣化し、特許文献1に開示されているように、比較的高温長時間の焼鈍(650〜1200℃で5〜600分加熱)により鋼板を製造する必要があり、通常の薄鋼板製造プロセス、例えば、連続焼鈍などで高Al含有鋼板を製造することや、良好な強度および延性レベルを確保することは困難であった。   In addition, when a large amount of Al is contained, ductility, hot workability and cold workability are significantly deteriorated, and as disclosed in Patent Document 1, annealing at a relatively high temperature for a long time (at 650 to 1200 ° C.). It is necessary to produce a steel sheet by heating for 5 to 600 minutes, and it is difficult to produce a high Al-containing steel sheet by a normal thin steel sheet production process, for example, continuous annealing, and to ensure good strength and ductility level. Met.

高Al含有鋼板の延性を向上させる技術として、例えば、特許文献2には、Al:4〜9.5%、Ti:0.5〜2.0%、Mo:0.5〜2%、Zr:0.1〜0.8%、C:0.01〜0.5%および残余Feを含有するアルミニウム含有鉄基合金に係る技術が提案されているが、低比重に関する言及は無く、重量元素であるMoやZrが必須となっており、低比重化に考慮しているとはいえない。   As a technique for improving the ductility of a high Al-containing steel sheet, for example, in Patent Document 2, Al: 4 to 9.5%, Ti: 0.5 to 2.0%, Mo: 0.5 to 2%, Zr : 0.1 to 0.8%, C: 0.01 to 0.5%, and a technology related to an aluminum-containing iron-based alloy containing residual Fe has been proposed, but there is no mention of low specific gravity, heavy elements Mo and Zr are essential, and it cannot be said that low specific gravity is taken into consideration.

また、製造性についても、鍛造することや温間圧延を行うこととしており、いわゆる、溶解から熱間圧延、冷間圧延へと至る広く工業的に行われている製造方法、製造設備を用いた製法とは異なる。また、本発明者らの試験では大幅な延性の改善には至っていない。   In addition, for manufacturability, forging and warm rolling are carried out, so-called so-called widely industrialized manufacturing methods and manufacturing equipment from melting to hot rolling and cold rolling were used. It is different from the manufacturing method. In addition, the inventors' tests have not led to a significant improvement in ductility.

また、特許文献3には、C:0.05%以下、Si:0.1〜1%、Al:2〜8%、Y:0.01〜1%および残余Feを含有する耐酸化性の鉄合金が提案されているが、低比重に関する言及は無く、耐酸化性を向上させるために、重量元素であるYが必須となっており、低比重化に考慮しているとはいえない。   Patent Document 3 discloses oxidation resistance containing C: 0.05% or less, Si: 0.1 to 1%, Al: 2 to 8%, Y: 0.01 to 1%, and residual Fe. Although an iron alloy has been proposed, there is no mention of a low specific gravity, and in order to improve oxidation resistance, Y as a heavy element is essential, and it cannot be said that low specific gravity is taken into consideration.

また、強度や延性に関する言及は無く、本発明者らの試験では、大幅な延性の改善には至っていない。   In addition, there is no mention of strength and ductility, and in the tests of the present inventors, no significant improvement in ductility has been achieved.

以上のように、従来の技術では、延性に優れた低比重鋼板を工業規模で生産することは困難であった。   As described above, it has been difficult to produce a low specific gravity steel plate excellent in ductility on an industrial scale with the conventional technology.

特開平3−140439号公報JP-A-3-140439 特開平8−253844号公報JP-A-8-253844 米国特許第4,334,923号明細書U.S. Pat. No. 4,334,923

本発明は、上記問題点を解決しようとするものであって、低比重に加えて、普通鋼並の延性を確保した鋼板、および、その製造方法を提供することを目的とする。   The present invention is intended to solve the above problems, and an object of the present invention is to provide a steel sheet that secures ductility comparable to that of ordinary steel in addition to low specific gravity, and a method for producing the same.

本発明者らは、鉄ベースで多量のAlを含有し、成分の異なる種々の素材について、延性、熱間加工性および冷間加工性を改善するための方法について、成分組成と製造方法の両面から研究を重ねた結果、低比重化に加えて、炭素鋼並の高延性化を達成させる手法を見出した。   The inventors of the present invention have both a component composition and a manufacturing method for a method for improving ductility, hot workability and cold workability for various materials containing a large amount of Al based on iron. As a result of repeated research, we found a method to achieve high ductility comparable to carbon steel in addition to low specific gravity.

これまでに、熱間加工性および冷間加工性の劣化は粒界脆化によるものであり、Al含有量を5.0〜10.0%としたうえで、SおよびPを極低化し、さらに、極低C化により粒内に析出する炭窒化物を低減して粒界と粒内の強度差を低減し、さらに、熱延条件の適性化により、熱延時にフェライトの再結晶を促進させ細粒化することにより、粒界強度を向上でき、延性、熱間加工性および冷間加工性を大幅に改善できることを知見した。   So far, the deterioration of hot workability and cold workability is due to grain boundary embrittlement, and after making the Al content 5.0 to 10.0%, S and P are extremely reduced, In addition, carbon nitride that precipitates in the grains is reduced by extremely low C to reduce the difference in strength between the grain boundaries and the grains, and the recrystallization of ferrite is promoted during hot rolling by optimizing the hot rolling conditions. It has been found that the grain boundary strength can be improved and the ductility, hot workability, and cold workability can be greatly improved by making the particles finer.

しかしながら、Al量が高くなると、高強度・脆化の傾向を示すことも発見した。本来、固溶強化能の小さいはずのAlが高強度化・脆化の傾向を示す理由を、今回、新ためて発見した。すなわち、Fe―Alの局部的な規則化が高強度・脆化を招く一因であることを見出した。このFe―Alの局部的な規則化を極力抑制するための方法を見出した。   However, it has also been found that as the Al content increases, it tends to have high strength and embrittlement. This time, I discovered a new reason why Al, which should have a small solid solution strengthening ability, tends to have high strength and embrittlement. That is, it has been found that the local ordering of Fe—Al is one factor that causes high strength and embrittlement. The present inventors have found a method for suppressing the local ordering of Fe—Al as much as possible.

本発明はこのような知見に基づいて構成したものであり、その要旨は、
(1) 質量%で、
C :0.0035%以下、
Si:0.01〜7.0%以下、
Mn:0.01〜3.0%、
P :0.01%以下、
S :0.005%以下、
Al:2.0〜10.0%、
N :0.001〜0.05%
を含有し、残部がFeおよび不可避的不純物からなり、Fe−Alの規則化率が0.3%以下である比重<7.50、均一伸びが20%以上であることを特徴とする延性に優れた低比重鋼板。
The present invention is configured based on such knowledge, the gist of which is
(1) In mass%,
C: 0.0035% or less,
Si: 0.01 to 7.0% or less,
Mn: 0.01 to 3.0%,
P: 0.01% or less,
S: 0.005% or less,
Al: 2.0-10.0%,
N: 0.001 to 0.05%
The balance is Fe and inevitable impurities, the Fe-Al ordering ratio is 0.3% or less, the specific gravity <7.50, and the uniform elongation is 20% or more. Excellent low specific gravity steel plate.

(2) さらに、質量%で、
Ti:0.005〜0.3%、
Nb:0.005〜0.3%、
V :0.01〜0.5%
の1種または2種を含有することを特徴とする前記(1)記載の延性に優れた低比重鋼板。
(2) Furthermore, in mass%,
Ti: 0.005 to 0.3%,
Nb: 0.005-0.3%
V: 0.01 to 0.5%
The low specific gravity steel sheet excellent in ductility according to the above (1), characterized by containing one or two of the above.

(3) さらに、質量%で、
Cr:0.01〜5.0%、
Ni:0.01〜5.0%、
Mo:0.01〜3.0%、
W :0.01〜3.0%、
Cu:0.1〜3.0%
の1種または2種以上を含有することを特徴とする前記(1)または(2)記載の延性に優れた低比重鋼板。
(3) Furthermore, in mass%,
Cr: 0.01 to 5.0%,
Ni: 0.01 to 5.0%,
Mo: 0.01 to 3.0%,
W: 0.01-3.0%,
Cu: 0.1 to 3.0%
The low specific gravity steel sheet excellent in ductility as described in (1) or (2) above, comprising one or more of the above.

(4) さらに、質量%で、
B :0.0003〜0.01%を含有することを特徴とする前記(1)〜(3)のいずれかに記載の延性に優れた低比重鋼板。
(4) Furthermore, in mass%,
B: The low specific gravity steel plate excellent in ductility according to any one of (1) to (3), characterized by containing 0.0003 to 0.01%.

(5) さらに、質量%で、
Ca:0.001〜0.01%、
Mg:0.0005〜0.01%、
Zr:0.001〜0.05%、
REM:0.001〜0.05%
の1種または2種以上を含有することを特徴とする前記(1)〜(4)のいずれかに記載の延性に優れた低比重鋼板。
(5) Furthermore, in mass%,
Ca: 0.001 to 0.01%,
Mg: 0.0005 to 0.01%,
Zr: 0.001 to 0.05%,
REM: 0.001 to 0.05%
The low specific gravity steel sheet excellent in ductility according to any one of the above (1) to (4), characterized by containing one or more of the above.

(6) 質量%で、
C :0.20%以下、
Si:0.01〜0.5%以下、
Mn:0.01〜3.0%、
P :0.01%以下、
S :0.05%以下、
Al:4.0〜6.0%、
N :0.001〜0.05%
を含有し、残部がFeおよび不可避的不純物からなり、Fe−Alの規則化率が0.3以下、比重<7.50、均一伸び×引張り強度が8000MPa%以上であることを特徴とする延性に優れた低比重鋼板。
(6) In mass%,
C: 0.20% or less,
Si: 0.01 to 0.5% or less,
Mn: 0.01 to 3.0%,
P: 0.01% or less,
S: 0.05% or less,
Al: 4.0-6.0%,
N: 0.001 to 0.05%
With the balance being Fe and inevitable impurities, Fe-Al ordering ratio of 0.3 or less, specific gravity <7.50, uniform elongation x tensile strength of 8000 MPa% or more Excellent low specific gravity steel plate.

(7) 前記質量%であらわされる各成分が、
1.0<Al−(21.43×C+1.43×Mn) …(1)
を満たすことを特徴とする前記(6)記載の延性に優れた低比重鋼板。
(7) Each component represented by the mass%,
1.0 <Al- (21.43 × C + 1.43 × Mn) (1)
The low specific gravity steel sheet excellent in ductility according to the above (6), characterized in that:

(8) 前記(1)〜(7)のいずれかに記載の延性に優れた低比重鋼板を製造する方法であって、前記(1)〜(7)のいずれかに記載の成分からなる鋼スラブを1000〜1250℃の温度域に加熱し、950〜1150℃の温度域で圧下率30%以上の大圧下を少なくとも1パス以上含み、かつ、850℃以上の仕上げ圧延温度とし、巻き取りまで10℃/s以上で冷却し、550℃未満で巻き取ることを特徴とする延性に優れた低比重鋼板の製造方法。   (8) A method for producing a low specific gravity steel plate excellent in ductility according to any one of (1) to (7), wherein the steel is composed of the component according to any one of (1) to (7). The slab is heated to a temperature range of 1000 to 1250 ° C, and includes at least one pass of a large reduction with a reduction rate of 30% or more in the temperature range of 950 to 1150 ° C, and a finish rolling temperature of 850 ° C or more, until winding. A method for producing a low specific gravity steel sheet excellent in ductility, characterized by cooling at 10 ° C./s or more and winding at less than 550 ° C.

(9) 前記(1)〜(7)のいずれかに記載の延性に優れた低比重鋼板を製造する方法であって、前記(1)〜(7)のいずれかに記載の成分からなる鋼スラブを1000〜1250℃の温度域に加熱し、950〜1150℃の温度域で圧下率30%以上の大圧下を少なくとも1パス以上含み、その後、950〜1100℃の温度域に少なくとも1秒以上停留させた後、900℃以上1000℃未満の温度域で圧下率30%以上の大圧下を少なくとも1パス以上含み、かつ、650℃以上850℃未満の仕上げ圧延温度とし、巻き取りまで10℃/s以上で冷却し、600℃以上750℃以下で巻き取ることを特徴とする延性に優れた低比重鋼板の製造方法。   (9) A method for producing a low specific gravity steel sheet having excellent ductility according to any one of (1) to (7), wherein the steel is composed of the component according to any one of (1) to (7). The slab is heated to a temperature range of 1000 to 1250 ° C., and includes at least one pass of a large reduction of 30% or more in the temperature range of 950 to 1150 ° C., and then at least 1 second in the temperature range of 950 to 1100 ° C. After stopping, at least one pass of large reduction with a reduction rate of 30% or more in a temperature range of 900 ° C. or more and less than 1000 ° C. and a finish rolling temperature of 650 ° C. or more and less than 850 ° C., and winding up to 10 ° C. / The manufacturing method of the low specific gravity steel plate excellent in ductility characterized by cooling at s or more and winding up at 600 to 750 degreeC.

(10) 前記(8)または(9)記載の延性に優れた低比重鋼板の製造方法にて製造した熱延鋼板を700℃以上1100℃以下の温度域で1〜1000秒間焼鈍し、焼鈍後10℃/s以上の平均冷却速度で400℃以下の温度域まで冷却することを特徴とする延性に優れた低比重鋼板の製造方法。   (10) After annealing, a hot-rolled steel sheet produced by the method for producing a low specific gravity steel sheet having excellent ductility described in (8) or (9) is annealed for 1 to 1000 seconds in a temperature range of 700 ° C. to 1100 ° C. The manufacturing method of the low specific gravity steel plate excellent in the ductility characterized by cooling to the temperature range of 400 degrees C or less with the average cooling rate of 10 degrees C / s or more.

(11) 前記(8)または(9)記載の延性に優れた低比重鋼板の製造方法にて製造した熱延鋼板を、酸洗し、冷間圧延を行い、600℃以上1100℃以下の温度域で1〜1000秒の焼鈍し、焼鈍後10℃/s以上の平均冷却速度で400℃以下の温度域にまで冷却することを特徴とする延性に優れた低比重鋼板の製造方法。   (11) The hot-rolled steel sheet produced by the method for producing a low specific gravity steel sheet having excellent ductility described in (8) or (9) is pickled, cold-rolled, and a temperature of 600 ° C. or higher and 1100 ° C. or lower. A method for producing a low specific gravity steel sheet excellent in ductility, characterized by annealing in an area for 1 to 1000 seconds and cooling to a temperature range of 400 ° C. or lower at an average cooling rate of 10 ° C./s or higher after annealing.

本発明によれば、延性に優れた低比重鋼板が得られる。   According to this invention, the low specific gravity steel plate excellent in ductility is obtained.

以下に、本発明における各要件の意義および限定理由について具体的に説明する。まず、本発明における延性に優れた高強度低比重鋼板の成分限定理由について説明する。   Below, the meaning of each requirement in this invention and the reason for limitation are demonstrated concretely. First, the reasons for limiting the components of the high-strength low specific gravity steel sheet having excellent ductility in the present invention will be described.

なお、「%」は「質量%」を意味する。   “%” Means “% by mass”.

C:Cは強度を向上させるが靭性および延性の著しい低下を招くため、低いほど望ましく、0.0035%以下とした。一方、極低化はコスト的に不利である。経済性を考慮した延性劣化の小さい下限としては、0.0010%以上が望ましい。   C: C improves the strength but causes a significant decrease in toughness and ductility. Therefore, the lower the C, the more desirable, and 0.0035% or less. On the other hand, extremely low is disadvantageous in terms of cost. As a lower limit of small ductility deterioration in consideration of economy, 0.0010% or more is desirable.

さらには、AlおよびMnとの組み合わせにより、強度−延性バランスの劣化および鋼板の表面傷や割れ発生を抑制しつつ添加量を0.2%にまで増加させることができ、精錬時の生産性を低下させることなく、材質の確保が可能である。   Furthermore, the combination with Al and Mn can increase the addition amount to 0.2% while suppressing the deterioration of the strength-ductility balance and the occurrence of surface scratches and cracks on the steel sheet. The material can be secured without lowering.

具体的には、Al:4.0〜6.0%とすることが有効であり、さらに、Mn:0.2%超3.0%以下とすること、または、1.0<Al−(21.43×C+1.43×Mn)を満たすことが、組織制御および材質制御の上で好ましい。   Specifically, Al: 4.0 to 6.0% is effective, and Mn: more than 0.2% to 3.0% or less, or 1.0 <Al- ( 21.43 × C + 1.43 × Mn) is preferable in terms of structure control and material control.

Si:Siは固溶強化により鋼板の強度を増大させるのに有用な元素であるが、7.0%を超える過剰の添加は、熱間加工性を低下させるとともに、熱間圧延で生じるスケールの剥離性や化成処理性を著しく劣化させる。一方、極低化はコスト的に不利なため、加工性および化成処理性を劣化させないレベルとして、0.01%を下限とした。   Si: Si is an element useful for increasing the strength of a steel sheet by solid solution strengthening. However, excessive addition exceeding 7.0% decreases the hot workability and reduces the scale produced by hot rolling. The peelability and chemical conversion processability are significantly degraded. On the other hand, since extremely low is disadvantageous in terms of cost, 0.01% was made the lower limit as a level that does not deteriorate workability and chemical conversion treatment.

Mn:MnはMnSを形成して、固溶Sによる粒界脆化を抑制するために有効な元素である。0.01%未満では、その効果が発現されず、3.0%を超える過剰の添加は、靭性・延性を劣化させる。したがって、Mn含有量は0.01〜3.0%とした。   Mn: Mn is an element effective for forming MnS and suppressing grain boundary embrittlement due to S. If it is less than 0.01%, the effect is not exhibited, and an excessive addition exceeding 3.0% deteriorates toughness and ductility. Therefore, the Mn content is set to 0.01 to 3.0%.

介在物制御による靭性や延性改善の点で、S量の20倍以上、または、0.2%超3.0%以下が望ましい。また、精錬コストの観点および高強度化の観点から極低C化を避け、0.0035%超の炭素を添加する場合には、AlおよびC量と併せて、1.0<Al−(21.43×C+1.43×Mn)を満たすことが、強度−延性バランスの劣化および鋼板の表面傷や割れ発生を抑制するために有効である。   From the viewpoint of improving toughness and ductility by inclusion control, it is desirable that the amount of S be 20 times or more, or more than 0.2% and 3.0% or less. Further, in the case of avoiding extremely low C from the viewpoint of refining cost and from the viewpoint of increasing strength, and adding more than 0.0035% carbon, 1.0 <Al− (21 .43 × C + 1.43 × Mn) is effective for suppressing the deterioration of the strength-ductility balance and the occurrence of surface scratches and cracks in the steel sheet.

P:Pは粒界に偏析して粒界強度を低下させ、靱性を劣化させる不純物元素であり、可及的低レベルが望ましいが、現状精錬技術の到達可能レベルとコストを考慮して、上限を0.01%とした。   P: P is an impurity element that segregates at the grain boundary to lower the grain boundary strength and deteriorates toughness, and is preferably as low as possible. However, the upper limit is considered in consideration of the reachable level and cost of current refining technology. Was set to 0.01%.

S:Sは熱間加工性および靭性を劣化させる不純物元素であり、可及的低レベルが望ましいが、現状精錬技術の到達可能レベルとコストを考慮して、上限を0.05%とした。好ましくは0.005%である。   S: S is an impurity element that deteriorates hot workability and toughness, and is preferably as low as possible. However, the upper limit is set to 0.05% in consideration of the reachable level and cost of the current refining technology. Preferably it is 0.005%.

Al:Alは低比重化を達成するための必須の元素である。2.0%未満では低比重化の効果が少ないので、2.0%を下限とした。10.0%を超えると、金属間化合物の析出やクラスター形成が顕著となり、Fe−Alの規則化率が急激に上昇する。普通鋼並の延性確保が困難と成るため、2.0〜10.0%とした。   Al: Al is an essential element for achieving a low specific gravity. If less than 2.0%, the effect of lowering the specific gravity is small, so 2.0% was made the lower limit. If it exceeds 10.0%, precipitation of intermetallic compounds and cluster formation become prominent, and the ordering rate of Fe—Al increases rapidly. Since it becomes difficult to ensure ductility comparable to that of ordinary steel, the content is set to 2.0 to 10.0%.

また、規則化やクラスター形成を抑制し、低比重と高延性を両立させる範囲としては、7.0%以下の範囲が望ましく、さらに、普通鋼並以上の製造性および加工性を得るためには、5.0%未満とするのが望ましい。   In addition, as a range that suppresses regularization and cluster formation and achieves both low specific gravity and high ductility, a range of 7.0% or less is desirable, and in addition, in order to obtain manufacturability and workability comparable to that of ordinary steel , Less than 5.0% is desirable.

特に、精錬コストの観点および高強度化の観点から、極低C化を避け、0.0035%超の炭素を添加する場合には、4.0%以上6.0%以下、望ましくは5.0%未満とし、さらに好ましくは、MnおよびC量と併せて、1.0<Al−(21.43×C+1.43×Mn)を満たすことが、強度−延性バランスの劣化および鋼板の表面傷や割れ発生を抑制するのに有効である。   In particular, from the viewpoint of refining costs and high strength, when avoiding extremely low C and adding more than 0.0035% carbon, 4.0% or more and 6.0% or less, preferably 5. Less than 0%, and more preferably 1.0 <Al− (21.43 × C + 1.43 × Mn) in combination with the amounts of Mn and C satisfies the deterioration of the strength-ductility balance and the surface damage of the steel sheet. It is effective in suppressing the occurrence of cracks.

N:Nは延性を劣化させるため低いことが望ましい。しかし、現状精錬技術の到達可能レベルとコストを考慮して、0.001%を下限とした。   N: N is preferably low because ductility is deteriorated. However, considering the reachability level and cost of the current refining technology, the lower limit was set to 0.001%.

本発明者らは、延性低下の大きな一因がFe−Alの局部的な規則化であることを見出し、これを既定することで、普通鋼並の延性確保を図った。プレス成形では、特に、均一伸びが重要となることから、均一伸びを20%以上、または、均一伸び×引張り強度を8000MPa%以上確保することを目的とする。   The present inventors have found that a major cause of the decrease in ductility is local ordering of Fe—Al, and by establishing this, ductility as high as that of ordinary steel has been ensured. In press molding, since uniform elongation is particularly important, the object is to ensure uniform elongation of 20% or more, or uniform elongation × tensile strength of 8000 MPa% or more.

このため、規則化率については、0.3以下とすることで、高延性を確保することとした。   For this reason, about the regularization rate, it was decided to ensure high ductility by setting it as 0.3 or less.

ここで、Fe−Alの規則化とは、材料全ての構造が金属間化合物化としたときと定義する。完全な規則化だけでなく、局部的な規則化(クラスター形成)が延性劣化の一因となっていることから、この規則化率を限定・確保することで、低比重と高延性を両立させるものである。   Here, the ordering of Fe—Al is defined as when the structure of all the materials is an intermetallic compound. Not only perfect ordering but also local ordering (cluster formation) contributes to ductility deterioration. By limiting and securing this ordering rate, both low specific gravity and high ductility are achieved. Is.

また、十分に熱処理され規則化しているサンプルとランダムサンプルを作製して、X線回折におけるピーク比や電気抵抗比を求めることで、その規則化率が実験的に測定可能である。   In addition, the ordering rate can be experimentally measured by preparing a sufficiently heat-treated sample and a random sample and obtaining the peak ratio and the electric resistance ratio in X-ray diffraction.

以上が本発明の基本成分であり、通常、上記以外はFeおよび不可避的不純物からなるが、所望の強度レベルやその他の必要特性に応じて、Ti、Nb、V、Cr、Ni、Mo、W、Cu、B、Ca、Mg、Zr、REMの1種または2種以上を添加してもよい。   The above are the basic components of the present invention, which are usually composed of Fe and unavoidable impurities other than the above, but depending on the desired strength level and other necessary characteristics, Ti, Nb, V, Cr, Ni, Mo, W Cu, B, Ca, Mg, Zr, or REM may be added.

Ti:Tiは炭化物、窒化物または炭窒化物を形成して、固溶炭素および窒素量を低減するため、延性向上に寄与することに加えて、結晶粒粗大化を抑制する効果がある。0.005%未満では、それらの効果が発現されず、0.3%を超えて過剰添加すると、延性が劣化するため、Tiの含有量を0.005〜0.3%とした。   Ti: Ti forms carbides, nitrides or carbonitrides, and reduces the amount of dissolved carbon and nitrogen. Therefore, in addition to contributing to the improvement of ductility, it has the effect of suppressing grain coarsening. If it is less than 0.005%, those effects are not manifested, and if over 0.3% is added excessively, ductility deteriorates, so the Ti content was made 0.005 to 0.3%.

Nb:Ti同様、Nbは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが、0.005%未満では、その効果が発現されず、0.3%を超えて過剰添加すると、延性が劣化することに加えて、鉄に比べ重い元素のため、Nbの含有量を0.005〜0.3%とした。   Nb: Like Ti, Nb has the effect of forming fine carbonitrides and suppressing crystal grain coarsening, but if it is less than 0.005%, the effect is not manifested, and over 0.3% is added excessively. Then, in addition to deterioration of ductility, the element is heavier than iron, so the content of Nb is set to 0.005 to 0.3%.

Cr:Crは延性および靭性を向上させる有効な元素である。この効果は0.01%未満では発現されず、5%を超える過剰添加は靭性を劣化させる。したがって、Crの含有量を0.01〜5.0%とした。   Cr: Cr is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.01%, and excessive addition exceeding 5% degrades toughness. Therefore, the content of Cr is set to 0.01 to 5.0%.

Ni:Niは延性および靭性を向上させる有効な元素である。この効果は0.01%未満では発現されず、5.0%を超える過剰添加は靭性を劣化させる。したがって、Niの含有量を0.01〜5.0%とした。   Ni: Ni is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.01%, and excessive addition exceeding 5.0% degrades toughness. Therefore, the Ni content is set to 0.01 to 5.0%.

Mo:Moは延性および靭性を向上させる有効な元素である。この効果は0.01%未満では発現されず、3.0%を超える過剰添加は、靭性を劣化させることに加えて、鉄に比べ重い元素のため、Moの含有量を0.01〜3.0%とした。   Mo: Mo is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.01%, and excessive addition of more than 3.0% degrades toughness, and is a heavier element than iron, so the Mo content is reduced to 0.01-3. 0.0%.

W:Wは延性および靭性を向上させる有効な元素である。この効果は0.01%未満では発現されず、3.0%を超える過剰添加は、靭性を劣化させることに加えて、鉄に比べ重い元素のため、Moの含有量を0.01〜3.0%とした。   W: W is an effective element for improving ductility and toughness. This effect is not manifested at less than 0.01%, and excessive addition of more than 3.0% degrades toughness, and is a heavier element than iron, so the Mo content is reduced to 0.01-3. 0.0%.

Cu:Cuは延性および靭性を向上させる有効な元素である。この効果は0.1%未満では発現されず、3.0%を超える過剰添加は靭性を劣化させる。従って、Cuの含有量を0.1〜3.0%とした。   Cu: Cu is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.1%, and excessive addition exceeding 3.0% degrades toughness. Therefore, the Cu content is set to 0.1 to 3.0%.

B:Bは自ら粒界に偏析することにより、粒界結合力を向上させるとともに、PおよびSの粒界偏析を抑制し、粒界強度を高め、延性、2次加工割れ抑制、靭性向上、および、熱間加工性を向上させるのに有効な元素である。これらの効果は0.0003%未満では発現せず、0.01%を超えて過剰添加すると、粒界に粗大な析出物が生成し熱間加工性が劣化するため、Bの含有量を0.0003〜0.01%とした。また、窒化物析出抑制のためにはTiとの複合添加が望ましい。   B: B segregates at the grain boundary by itself, thereby improving the grain boundary bonding force, suppressing the grain boundary segregation of P and S, increasing the grain boundary strength, suppressing ductility, secondary work cracking, improving toughness, And it is an element effective in improving hot workability. These effects are not manifested at less than 0.0003%, and excessive addition over 0.01% produces coarse precipitates at the grain boundaries and deteriorates hot workability. .0003-0.01%. Further, in order to suppress nitride precipitation, composite addition with Ti is desirable.

Ca、Mg、Zr、REM:Ca、Mg、Zr、REMは、いずれもSによる熱間加工性や靭性の劣化を抑制する有効な元素である。この効果は、Caは0.001%未満、Mgは0.0005%未満、Zrは0.001%未満、REMは0.001%未満では発現されず、一方、Caは0.01%、Mgは0.01%、Zrは0.05%、REMは0.05%を超える過剰添加は靭性を劣化させる。   Ca, Mg, Zr, and REM: Ca, Mg, Zr, and REM are all effective elements that suppress hot workability and toughness deterioration due to S. This effect is not exhibited when Ca is less than 0.001%, Mg is less than 0.0005%, Zr is less than 0.001%, and REM is less than 0.001%, while Ca is 0.01%, Mg 0.01%, Zr 0.05%, and REM over 0.05% will deteriorate toughness.

したがって、Caの含有量を0.001〜0.01%、Mgの含有量を0.0005〜0.01%、Zrの含有量を0.001〜0.05%、REMの含有量を0.001〜0.05%とした。ここで、REMは、Rare Earth Metalの略で、Yおよびランタノイド系元素の総称である。   Therefore, the Ca content is 0.001 to 0.01%, the Mg content is 0.0005 to 0.01%, the Zr content is 0.001 to 0.05%, and the REM content is 0. 0.001 to 0.05%. Here, REM is an abbreviation for Rare Earth Metal and is a general term for Y and lanthanoid elements.

次に、特性値の限定理由について述べる。比重が7.50以上では、自動車用鋼板として通常使用されている鋼板の比重(鉄の比重7.86と同程度)と比較して軽量化効果が小さく、これまでの高強度化に伴う薄肉化以上の軽量化を図ることは難しいので、比重は7.50未満とする。   Next, the reason for limiting the characteristic value will be described. When the specific gravity is 7.50 or more, the effect of weight reduction is small compared to the specific gravity of steel plates normally used as automotive steel plates (same as the specific gravity of iron of 7.86), and the thinness accompanying the increase in strength so far Since it is difficult to reduce the weight more than that, the specific gravity should be less than 7.50.

延性は自動車用鋼板として必要な特性を考慮して、均一伸びが20%以上、または、均一伸び×引張り強度が8000MPa%以上とした。   In consideration of characteristics required for a steel sheet for automobiles, the ductility was set to a uniform elongation of 20% or more, or a uniform elongation × tensile strength of 8000 MPa% or more.

次に、製造条件の限定理由について述べる。   Next, the reasons for limiting the manufacturing conditions will be described.

本発明においては、Alの多量添加による脆弱化を防止し、かつ、自動車用など軽量化高強度鋼板としての材質確保(均一伸びが20%以上、または、均一伸び×引張り強度が8000MPa%以上)を目的としており、化学成分のみならず、特に、熱延における組織制御、すなわち、再結晶促進による局所的な規則化率の上昇の抑制が重要となる。   In the present invention, weakening due to the addition of a large amount of Al is prevented, and the material is secured as a lightweight high-strength steel sheet for automobiles (uniform elongation is 20% or more, or uniform elongation × tensile strength is 8000 MPa% or more). It is important to control not only the chemical components but also the structure control in hot rolling, that is, the suppression of local ordering rate increase due to the promotion of recrystallization.

上記化学成分からなる鋼スラブを1000〜1250℃の温度域に加熱することとした。酸化スケールの問題や結晶粒径の粗大化の観点から上限を設定し、変形抵抗の増加や熱間われ防止の観点から下限を設定した。   It decided to heat the steel slab which consists of the said chemical component to 1000-1250 degreeC temperature range. The upper limit was set from the viewpoint of the problem of oxide scale and the coarsening of the crystal grain size, and the lower limit was set from the viewpoint of increasing deformation resistance and preventing heat cracking.

また、950〜1150℃の温度域で圧下率30%以上の大圧下を少なくとも1パス以上含むことで、熱延中の再結晶を促進して、熱延板状態での延性確保や冷延時の靭性確保を図った。圧下率が低かったり圧下温度が高すぎると再結晶せず、圧下温度が低すぎると熱間割れの懸念があるので、上記の範囲に限定した。   In addition, by including at least one pass of a large reduction with a reduction ratio of 30% or more in a temperature range of 950 to 1150 ° C., recrystallization during hot rolling is promoted to ensure ductility in a hot rolled sheet state or during cold rolling. The toughness was secured. If the rolling reduction is low or the rolling temperature is too high, recrystallization does not occur, and if the rolling temperature is too low, there is a concern of hot cracking, so the range is limited to the above range.

また、仕上げ温度を850℃以上とした場合には、圧延終了後、10℃/S以上の冷却速度で冷却し、550℃未満、好ましくは500℃以下の温度域に巻き取ることで再結晶促進とクラスター形成を抑制できる。仕上げ温度の上限は特に定めないが、結晶粒の粗大化を抑制するために、950℃以下とすることが望ましい。   Further, when the finishing temperature is 850 ° C. or higher, recrystallization is promoted by cooling at a cooling rate of 10 ° C./S or more after rolling and winding in a temperature range of less than 550 ° C., preferably 500 ° C. or lower. And cluster formation can be suppressed. The upper limit of the finishing temperature is not particularly defined, but is desirably 950 ° C. or lower in order to suppress the coarsening of crystal grains.

一方、再結晶を促進させるためには仕上げ温度を低温化して、巻き取り温度を高温化することが有効である。この場合は、仕上げ温度を650℃以上850℃未満とし、圧延終了後10℃/S以上の冷却速度で冷却し、600〜750℃の温度域に巻き取ることで、巻き取り時の再結晶を促進させることができる。   On the other hand, in order to promote recrystallization, it is effective to lower the finishing temperature and raise the winding temperature. In this case, the finishing temperature is set to 650 ° C. or more and less than 850 ° C., and after completion of rolling, cooling is performed at a cooling rate of 10 ° C./S or more, and winding is performed in a temperature range of 600 to 750 ° C. Can be promoted.

熱間圧延において、十分に再結晶させて均質化し、かつクラスター形成も併せて抑制するためには、950〜1150℃の温度域で圧下率30%以上の大圧下を少なくとも1パス以上行うこととする。   In hot rolling, in order to sufficiently recrystallize and homogenize, and to suppress cluster formation together, a large reduction with a reduction ratio of 30% or more is performed at least one pass or more in a temperature range of 950 to 1150 ° C. To do.

その後、十分に再結晶させるために950〜1100℃の温度域に少なくとも1秒以上停留させる。さらには、再結晶促進と規則化率低減のため、900℃以上1000℃未満の温度域で圧下率30%以上の大圧下を少なくとも1パス以上含むこととする。   Thereafter, the film is retained in a temperature range of 950 to 1100 ° C. for at least 1 second for sufficient recrystallization. Further, in order to promote recrystallization and reduce the ordering rate, at least one pass of large reduction with a reduction rate of 30% or more is included in a temperature range of 900 ° C. or more and less than 1000 ° C.

その後、650℃以上850℃未満の仕上げ圧延温度から巻き取りまで10℃/s以上の冷却速度で冷却することが規則化率を低く抑えるためには有効である。   Thereafter, cooling from a finish rolling temperature of 650 ° C. or more to less than 850 ° C. to winding is effective at keeping the ordering rate low by cooling at a cooling rate of 10 ° C./s or more.

上述のいずれかの工程で製造した各熱延板の延性を向上させるために、再結晶や炭化物析出制御の観点から、熱延板を巻き取った後、700℃以上1100℃以下の温度で焼鈍してもよい。この時、クラスター形成を極力抑制する観点から、焼鈍時間を1秒以上1000秒以下とし、さらに、400℃以下の温度域まで10℃/S以上で冷却することとした。   In order to improve the ductility of each hot-rolled sheet manufactured in any of the above-described steps, from the viewpoint of recrystallization or carbide precipitation control, after rolling the hot-rolled sheet, annealing is performed at a temperature of 700 ° C. or higher and 1100 ° C. or lower. May be. At this time, from the viewpoint of suppressing the formation of clusters as much as possible, the annealing time was set to 1 second to 1000 seconds and further cooled to a temperature range of 400 ° C. or lower at 10 ° C./S or higher.

冷延鋼板を製造する場合には、熱延鋼板を巻き取った後、酸洗し、冷間圧延を行い、600℃以上1100℃以下の温度で焼鈍する。焼鈍温度が600℃未満では未再結晶・未回復となり十分な効果が得られず、1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されるため、冷延板の焼鈍温度は600℃以上1100℃以下の温度範囲とした。   When manufacturing a cold-rolled steel sheet, the hot-rolled steel sheet is wound, pickled, cold-rolled, and annealed at a temperature of 600 ° C. or higher and 1100 ° C. or lower. If the annealing temperature is less than 600 ° C, it will not be recrystallized / recovered and sufficient effect will not be obtained. If it exceeds 1100 ° C, the crystal grains will become coarse and grain boundary embrittlement will be promoted. The temperature range was 600 ° C to 1100 ° C.

また、クラスター防止の観点から焼鈍時間を1秒以上1000秒以下とし、さらに、400℃以下の温度域まで10℃/S以上で冷却することとした。   Further, from the viewpoint of preventing clusters, the annealing time is set to 1 second to 1000 seconds and further, cooling is performed at a temperature of 10 ° C./S or higher to a temperature range of 400 ° C. or lower.

以下、実施例により本発明の効果をさらに具体的に説明する。   Hereinafter, the effects of the present invention will be described more specifically with reference to examples.

表1に示す組成を有する鋼を、表2〜表5に示す条件で熱間圧延し、冷間圧延した後、表2〜表5に示す条件で焼鈍した。熱間圧延後および冷間圧延後に、それぞれ、熱延板および冷延板の割れ発生状況を観察した。結果を表2〜表5に併せて示す。   Steel having the composition shown in Table 1 was hot-rolled under the conditions shown in Tables 2 to 5 and cold-rolled, and then annealed under the conditions shown in Tables 2 to 5. After hot rolling and after cold rolling, the occurrence of cracks in the hot rolled sheet and the cold rolled sheet was observed, respectively. The results are shown in Tables 2 to 5.

焼鈍後の板の比重および機械的特性を評価した。比重の測定はピクノメータを用いて行った。また、規則化率は十分に熱処理され規則化しているサンプルとランダムサンプルを作製して、X線回折におけるピーク比または電気抵抗測定から求めた。   The specific gravity and mechanical properties of the plate after annealing were evaluated. The specific gravity was measured using a pycnometer. Further, the ordering rate was obtained by measuring a peak ratio in X-ray diffraction or measuring an electric resistance by preparing a sufficiently heat-treated sample and a random sample.

詳細は、文献:D. Chipman and B. E. Warren, Journal of Applied Physics vol.21 (1950), p.696、および、文献:D. D. T. Keating and B. E. Warren, Journal of Applied Physics vol.22 (1951), p.286に記載されている。   For details, refer to Document: D. Chipman and BE Warren, Journal of Applied Physics vol.21 (1950), p.696, and Document: DDT Keating and BE Warren, Journal of Applied Physics vol.22 (1951), p. 286.

比重、均一伸び、引張強度および規則化率を、表2〜表5に併せて示す。   Specific gravity, uniform elongation, tensile strength and ordering rate are shown in Tables 2 to 5.

前記(1)〜(5)の発明に係る本発明例では、いずれも、熱延板および冷延板での割れ発生がなく、均一伸びで20%以上を確保できている。また、炭素量を0.0035%超とした前記(6)〜(8)の発明に係る本発明例では、いずれも、熱延板および冷延板での割れ発生はなく、均一伸び×引張り強度で8000MPa%以上を確保できている。   In the present invention examples according to the inventions (1) to (5), no cracks are generated in the hot-rolled sheet and the cold-rolled sheet, and a uniform elongation of 20% or more can be secured. Moreover, in the invention examples according to the inventions (6) to (8) in which the carbon content exceeds 0.0035%, there is no occurrence of cracks in the hot-rolled sheet and the cold-rolled sheet, and uniform elongation × tensile A strength of 8000 MPa% or more can be secured.

一方、成分または製造条件のいずれかが本発明の成分限定範囲を逸脱している比較例では、いずれも、均一伸びが20%未満で、かつ、均一伸び×引張り強度が8000MPa%未満であり、一部には、熱延板の割れも発生しており、製造性に劣ることがわかる。   On the other hand, in any of the comparative examples in which either the component or the production condition deviates from the component limitation range of the present invention, the uniform elongation is less than 20%, and the uniform elongation × tensile strength is less than 8000 MPa%, In some cases, cracks in the hot-rolled sheet also occur, indicating that the productivity is poor.

以上より、鋼成分を本発明で示した範囲に特定し、本発明で示した条件で製造することにより、延性に優れた低比重鋼板が得られることが明らかである。   From the above, it is clear that a low specific gravity steel sheet excellent in ductility can be obtained by specifying the steel components in the range shown in the present invention and producing them under the conditions shown in the present invention.

Figure 2005273004
Figure 2005273004

Figure 2005273004
Figure 2005273004

Figure 2005273004
Figure 2005273004

Figure 2005273004
Figure 2005273004

Figure 2005273004
Figure 2005273004

前述したように、本発明によれば延性に優れた低比重鋼板が得られる。この低比重鋼板は、自動車の軽量化等に有効に利用できるので、本発明は産業上、利用可能性の大きいものである。   As described above, according to the present invention, a low specific gravity steel sheet having excellent ductility can be obtained. Since this low specific gravity steel sheet can be used effectively for reducing the weight of automobiles, the present invention has a great industrial applicability.

Claims (11)

質量%で、
C :0.0035%以下、
Si:0.01〜7.0%以下、
Mn:0.01〜3.0%、
P :0.01%以下、
S :0.05%以下、
Al:2.0〜10.0%、
N :0.001〜0.05%
を含有し、残部がFeおよび不可避的不純物からなり、Fe−Alの規則化率が0.3以下、比重<7.50、均一伸びが20%以上であることを特徴とする延性に優れた低比重鋼板。
% By mass
C: 0.0035% or less,
Si: 0.01 to 7.0% or less,
Mn: 0.01 to 3.0%,
P: 0.01% or less,
S: 0.05% or less,
Al: 2.0-10.0%,
N: 0.001 to 0.05%
With the balance being Fe and inevitable impurities, Fe-Al ordering ratio of 0.3 or less, specific gravity <7.50, uniform elongation of 20% or more, and excellent ductility Low specific gravity steel plate.
さらに、質量%で、
Ti:0.005〜0.3%、
Nb:0.005〜0.3%、
V :0.01〜0.5%
の1種または2種を含有することを特徴とする請求項1記載の延性に優れた低比重鋼板。
Furthermore, in mass%,
Ti: 0.005 to 0.3%,
Nb: 0.005-0.3%
V: 0.01 to 0.5%
The low specific gravity steel plate excellent in ductility according to claim 1, comprising one or two of the following.
さらに、質量%で、
Cr:0.01〜5.0%、
Ni:0.01〜5.0%、
Mo:0.01〜3.0%、
W :0.01〜3.0%、
Cu:0.1〜3.0%
の1種または2種以上を含有することを特徴とする請求項1または2記載の延性に優れた低比重鋼板。
Furthermore, in mass%,
Cr: 0.01 to 5.0%,
Ni: 0.01 to 5.0%,
Mo: 0.01 to 3.0%,
W: 0.01-3.0%,
Cu: 0.1 to 3.0%
The low specific gravity steel sheet excellent in ductility according to claim 1 or 2, characterized by containing one or more of the following.
さらに、質量%で、
B :0.0003〜0.01%
を含有することを特徴とする請求項1〜3のいずれか1項に記載の延性に優れた低比重鋼板。
Furthermore, in mass%,
B: 0.0003 to 0.01%
The low specific gravity steel plate excellent in ductility according to any one of claims 1 to 3.
さらに、質量%で、
Ca:0.001〜0.01%、
Mg:0.0005〜0.01%、
Zr:0.001〜0.05%、
REM:0.001〜0.05%
の1種または2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の延性に優れた低比重鋼板。
Furthermore, in mass%,
Ca: 0.001 to 0.01%,
Mg: 0.0005 to 0.01%,
Zr: 0.001 to 0.05%,
REM: 0.001 to 0.05%
The low specific gravity steel plate excellent in ductility of any one of Claims 1-4 characterized by containing 1 type, or 2 or more types of these.
質量%で、
C :0.20%以下、
Si:0.01〜0.5%以下、
Mn:0.01〜3.0%、
P :0.01%以下、
S :0.05%以下、
Al:4.0〜6.0%、
N :0.001〜0.05%
を含有し、残部がFeおよび不可避的不純物からなり、Fe−Alの規則化率が0.3以下、比重<7.50、均一伸び×引張り強度が8000MPa%以上であることを特徴とする延性に優れた低比重鋼板。
% By mass
C: 0.20% or less,
Si: 0.01 to 0.5% or less,
Mn: 0.01 to 3.0%,
P: 0.01% or less,
S: 0.05% or less,
Al: 4.0-6.0%,
N: 0.001 to 0.05%
With the balance being Fe and inevitable impurities, Fe-Al ordering ratio of 0.3 or less, specific gravity <7.50, uniform elongation x tensile strength of 8000 MPa% or more Excellent low specific gravity steel plate.
前記質量%であらわされる各成分が、
1.0<Al−(21.43×C+1.43×Mn) …(1)
を満たすことを特徴とする請求項6記載の延性に優れた低比重鋼板。
Each component represented by the mass%,
1.0 <Al- (21.43 × C + 1.43 × Mn) (1)
The low specific gravity steel sheet excellent in ductility according to claim 6, wherein:
請求項1〜7のいずれか1項に記載の延性に優れた低比重鋼板を製造する方法であって、請求項1〜7のいずれか1項に記載の成分からなる鋼スラブを1000〜1250℃の温度域に加熱し、950〜1150℃の温度域で圧下率30%以上の大圧下を少なくとも1パス以上含み、かつ、850℃以上の仕上げ圧延温度とし、巻き取りまで10℃/s以上で冷却し、550℃未満で巻き取ることを特徴とする延性に優れた低比重鋼板の製造方法。   It is a method of manufacturing the low specific gravity steel plate excellent in ductility of any one of Claims 1-7, Comprising: The steel slab which consists of a component of any one of Claims 1-7 is 1000-1250. Heating to a temperature range of ℃, including at least one pass of large reduction with a reduction rate of 30% or more in a temperature range of 950 to 1150 ° C, and a finish rolling temperature of 850 ° C or more, and winding up to 10 ° C / s or more The method for producing a low specific gravity steel plate excellent in ductility, characterized by being cooled at 550 ° C. and wound up at less than 550 ° C. 請求項1〜7のいずれか1項に記載の延性に優れた低比重鋼板を製造する方法であって、請求項1〜7のいずれか1項に記載の成分からなる鋼スラブを1000〜1250℃の温度域に加熱し、950〜1150℃の温度域で圧下率30%以上の大圧下を少なくとも1パス以上含み、その後、950〜1100℃の温度域に少なくとも1秒以上停留させた後、900℃以上1000℃未満の温度域で圧下率30%以上の大圧下を少なくとも1パス以上含み、かつ、650℃以上850℃未満の仕上げ圧延温度とし、巻き取りまで10℃/s以上で冷却し、600℃以上750℃以下で巻き取ることを特徴とする延性に優れた低比重鋼板の製造方法。   It is a method of manufacturing the low specific gravity steel plate excellent in ductility of any one of Claims 1-7, Comprising: The steel slab which consists of a component of any one of Claims 1-7 is 1000-1250. After heating to a temperature range of ℃, including at least one pass or more of a large reduction of 30% or more in a temperature range of 950 to 1150 ° C., and then retaining at a temperature range of 950 to 1100 ° C. for at least 1 second, In a temperature range of 900 ° C. or higher and lower than 1000 ° C., at least one pass of large reduction with a reduction rate of 30% or higher is set to a finish rolling temperature of 650 ° C. or higher and lower than 850 ° C. The manufacturing method of the low specific gravity steel plate excellent in ductility characterized by winding at 600 degreeC or more and 750 degrees C or less. 請求項8または9記載の延性に優れた低比重鋼板の製造方法にて製造した熱延鋼板を700℃以上1100℃以下の温度域で1〜1000秒間焼鈍し、焼鈍後10℃/s以上の平均冷却速度で400℃以下の温度域まで冷却することを特徴とする延性に優れた低比重鋼板の製造方法。   A hot-rolled steel sheet produced by the method for producing a low specific gravity steel sheet excellent in ductility according to claim 8 or 9 is annealed for 1 to 1000 seconds in a temperature range of 700 ° C or higher and 1100 ° C or lower, and 10 ° C / s or higher after annealing. A method for producing a low specific gravity steel sheet excellent in ductility, characterized by cooling to a temperature range of 400 ° C. or lower at an average cooling rate. 請求項8または9記載の延性に優れた低比重鋼板の製造方法にて製造した熱延鋼板を、酸洗し、冷間圧延を行い、600℃以上1100℃以下の温度域で1〜1000秒間焼鈍し、焼鈍後10℃/s以上の平均冷却速度で400℃以下の温度域まで冷却することを特徴とする延性に優れた低比重鋼板の製造方法。   The hot-rolled steel sheet produced by the method for producing a low specific gravity steel sheet excellent in ductility according to claim 8 or 9, is pickled, cold-rolled, and is subjected to a temperature range of 600 ° C to 1100 ° C for 1 to 1000 seconds. A method for producing a low specific gravity steel sheet excellent in ductility, characterized by annealing and cooling to a temperature range of 400 ° C. or lower at an average cooling rate of 10 ° C./s or higher after annealing.
JP2004286452A 2004-02-24 2004-09-30 Method for producing low specific gravity steel sheet with excellent ductility Expired - Fee Related JP4430502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004286452A JP4430502B2 (en) 2004-02-24 2004-09-30 Method for producing low specific gravity steel sheet with excellent ductility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004047748 2004-02-24
JP2004286452A JP4430502B2 (en) 2004-02-24 2004-09-30 Method for producing low specific gravity steel sheet with excellent ductility

Publications (2)

Publication Number Publication Date
JP2005273004A true JP2005273004A (en) 2005-10-06
JP4430502B2 JP4430502B2 (en) 2010-03-10

Family

ID=35172980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286452A Expired - Fee Related JP4430502B2 (en) 2004-02-24 2004-09-30 Method for producing low specific gravity steel sheet with excellent ductility

Country Status (1)

Country Link
JP (1) JP4430502B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321168A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk High-rigidity low-density steel plate and manufacturing method thereof
JP2010526939A (en) * 2007-05-16 2010-08-05 アルセロールミタル・フランス Low density steel with good stamping performance
JP2010265526A (en) * 2009-05-15 2010-11-25 Nippon Steel Corp Low specific gravity steel sheet excellent in ductility, fatigue characteristics and toughness and method for producing the same
WO2014038759A1 (en) 2012-09-04 2014-03-13 Posco Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same
US8778097B2 (en) 2008-05-27 2014-07-15 Posco Low specific gravity and high strength steel sheets with excellent ridging resistibility and manufacturing methods thereof
WO2014178359A1 (en) 2013-05-01 2014-11-06 新日鐵住金株式会社 High-strength, low-specific gravity steel plate having excellent spot welding properties
WO2014178358A1 (en) 2013-05-01 2014-11-06 新日鐵住金株式会社 Galvanized steel sheet and production method therefor
CN106244927A (en) * 2016-09-30 2016-12-21 北京理工大学 A kind of low-density unimach and preparation method thereof
JP2019019382A (en) * 2017-07-18 2019-02-07 新日鐵住金株式会社 Low alloy steel
US10273556B2 (en) 2013-12-24 2019-04-30 Posco Lightweight steel sheet having excellent strength and ductility and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101889110B1 (en) * 2013-10-23 2018-08-16 주식회사 포스코 High strength ultra low carbon cold rolled steel sheet with low specific gravity and manufacturing method the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321168A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk High-rigidity low-density steel plate and manufacturing method thereof
JP2010526939A (en) * 2007-05-16 2010-08-05 アルセロールミタル・フランス Low density steel with good stamping performance
US9765415B2 (en) 2007-05-16 2017-09-19 Arcelormittal France Low density steel having good drawability
US9580766B2 (en) 2007-05-16 2017-02-28 Arcelormittal France Low-density steel having good drawability
US8778097B2 (en) 2008-05-27 2014-07-15 Posco Low specific gravity and high strength steel sheets with excellent ridging resistibility and manufacturing methods thereof
JP2010265526A (en) * 2009-05-15 2010-11-25 Nippon Steel Corp Low specific gravity steel sheet excellent in ductility, fatigue characteristics and toughness and method for producing the same
WO2014038759A1 (en) 2012-09-04 2014-03-13 Posco Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same
US9856542B2 (en) 2012-09-04 2018-01-02 Posco Ferritic lightweight high-strength steel sheet having excellent stiffness and ductility, and method of manufacturing the same
WO2014178359A1 (en) 2013-05-01 2014-11-06 新日鐵住金株式会社 High-strength, low-specific gravity steel plate having excellent spot welding properties
WO2014178358A1 (en) 2013-05-01 2014-11-06 新日鐵住金株式会社 Galvanized steel sheet and production method therefor
US10294551B2 (en) 2013-05-01 2019-05-21 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific-gravity steel sheet having superior spot weldability
US10336037B2 (en) 2013-05-01 2019-07-02 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method for producing the same
US10273556B2 (en) 2013-12-24 2019-04-30 Posco Lightweight steel sheet having excellent strength and ductility and method for manufacturing same
CN106244927A (en) * 2016-09-30 2016-12-21 北京理工大学 A kind of low-density unimach and preparation method thereof
CN106244927B (en) * 2016-09-30 2018-04-03 北京理工大学 A kind of low-density unimach and preparation method thereof
JP2019019382A (en) * 2017-07-18 2019-02-07 新日鐵住金株式会社 Low alloy steel

Also Published As

Publication number Publication date
JP4430502B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4084733B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP6588440B2 (en) High strength low specific gravity steel plate and method for producing the same
JP4235077B2 (en) High strength low specific gravity steel plate for automobile and its manufacturing method
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
EP2554699B1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
JP2010248565A (en) Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2019522723A (en) Cold-rolled and annealed steel sheet, process for its production, and use of such steel for producing automotive parts
JP5042694B2 (en) High strength low specific gravity steel plate excellent in ductility and workability and method for producing the same
JP4472015B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4248430B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP5388577B2 (en) Steel plate for galvanization excellent in workability and manufacturing method thereof
JP6056745B2 (en) High formability and high strength cold-rolled steel sheet excellent in chemical conversion treatment and production method thereof
JP4430502B2 (en) Method for producing low specific gravity steel sheet with excellent ductility
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP2013224476A (en) High-strength thin steel sheet excellent in workability and method for manufacturing the same
JP4299774B2 (en) High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same
JP2022513132A (en) Aluminum-iron alloy plated steel sheets for hot forming with excellent corrosion resistance and heat resistance, hot press-formed members, and manufacturing methods thereof.
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
JP7445744B2 (en) Ferritic stainless steel cold-rolled annealed steel sheet with improved high-temperature creep resistance and its manufacturing method
JP4507364B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JPH11279682A (en) High strength steel sheet with good workability and spot weldability and its manufacturing method
JP7373657B2 (en) Aluminum-iron plated steel sheet for hot pressing with excellent mold wear resistance and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4430502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees