[go: up one dir, main page]

JP2005268667A - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP2005268667A
JP2005268667A JP2004081586A JP2004081586A JP2005268667A JP 2005268667 A JP2005268667 A JP 2005268667A JP 2004081586 A JP2004081586 A JP 2004081586A JP 2004081586 A JP2004081586 A JP 2004081586A JP 2005268667 A JP2005268667 A JP 2005268667A
Authority
JP
Japan
Prior art keywords
polishing
rate
less
particle diameter
colloidal silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004081586A
Other languages
Japanese (ja)
Inventor
Naoyuki Ishihara
直幸 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2004081586A priority Critical patent/JP2005268667A/en
Priority to KR1020050022623A priority patent/KR101141178B1/en
Priority to CN2005100592518A priority patent/CN1670116B/en
Priority to DE102005012607A priority patent/DE102005012607A1/en
Priority to US11/084,413 priority patent/US20050204639A1/en
Priority to GB0505456A priority patent/GB2412919B/en
Priority to TW094108350A priority patent/TWI390024B/en
Publication of JP2005268667A publication Critical patent/JP2005268667A/en
Priority to KR1020120021415A priority patent/KR20120025576A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/28Supports; Devices for holding power-driven percussive tools in working position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/04Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously of the hammer piston type, i.e. in which the tool bit or anvil is hit by an impulse member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/08Means for driving the impulse member comprising a built-in air compressor, i.e. the tool being driven by air pressure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/055Depth properties, e.g. tools having depth indicator or depth control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing composition capable of suppressing a remarkable reduction of a polishing speed resulting from a clogging of a polishing pad. <P>SOLUTION: This polishing composition is used for polishing a substrate by means of the polishing pad, and contains colloidal silica. A particle diameter of the colloidal silica is expressed by an average primary particle diameter calculated on the basis of BET modulus and an average secondary particle diameter measured on the basis of a laser beam diffraction modulus. When the average primary particle diameter is expressed by D<SB>SA</SB>and the average secondary particle diameter is expressed by D<SB>N4</SB>, a relation that D<SB>SA</SB>is equal to or smaller than D<SB>N4</SB>is established between D<SB>SA</SB>and D<SB>N4</SB>. Furthermore, D<SB>N4</SB>is 30 nm or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は研磨パッドによる基板の研磨に使用される研磨用組成物に関する。   The present invention relates to a polishing composition used for polishing a substrate with a polishing pad.

一般にシリコンウエハ等の基板の研磨においては、半導体デバイスの高性能化及び高集積密度化に伴う表面品質の向上は勿論のこと、近年の需要増加に対応するため、製造効率の向上が重要な課題とされている。この課題に応えるべく、例えば特許文献1では研磨速度(研磨能率)を向上させるため、研磨用組成物について鋭意工夫がなされている。具体的には、コロイダルシリカ又はシリカゲルとピペラジンを、前記シリカゾル又はシリカゲルのSiO2基準にて10〜80重量%を含んでなる研磨用組成物を使い、セラミックブロックに固定されたシリコンウエハと研磨パッドを回転させ、シリコンウエハの表面を化学的及び機械的に鏡面研磨している。
特開平5−154760号公報
In general, in polishing a substrate such as a silicon wafer, it is important to improve the manufacturing efficiency in order to respond to the recent increase in demand as well as the improvement in surface quality due to higher performance and higher integration density of semiconductor devices. It is said that. In order to respond to this problem, for example, in Patent Document 1, in order to improve the polishing rate (polishing efficiency), a contrivance has been made for the polishing composition. Specifically, a silicon wafer and a polishing pad fixed to a ceramic block using a polishing composition comprising 10 to 80% by weight of colloidal silica or silica gel and piperazine based on the silica sol or silica gel based on SiO 2. The surface of the silicon wafer is mirror-polished chemically and mechanically.
Japanese Patent Laid-Open No. 5-154760

ところが、基板の研磨では、研磨パッドを使用して繰り返し研磨が行われると、研磨パッドが目詰まりして単位時間当たりの研磨量(研磨速度)が低下する。従って、製造効率を向上させるに足る実用的な研磨速度を維持するには、研磨パッドの目詰まりを低減する必要があった。   However, in the polishing of the substrate, when the polishing is repeatedly performed using the polishing pad, the polishing pad is clogged, and the polishing amount (polishing rate) per unit time is reduced. Therefore, in order to maintain a practical polishing rate sufficient to improve manufacturing efficiency, it is necessary to reduce clogging of the polishing pad.

本発明はこのような実情に鑑みてなされたものであり、その目的とするところは、研磨パッドの目詰まりに起因する研磨速度の著しい低下を抑制可能な研磨用組成物を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a polishing composition capable of suppressing a significant decrease in polishing rate due to clogging of a polishing pad. .

上記の目的を達成するために、請求項1に記載の発明は、研磨パッドによる基板の研磨に使用され、コロイダルシリカを含有する研磨用組成物であって、前記コロイダルシリカは、BET法に基づいて算出された平均一次粒子径をDSAで表し、レーザー光回折法に基づいて測定された平均二次粒子径をDN4で表したとき、DSA及びDN4の間に、DSA≦DN4の関係が成立し、かつ、DN4が30nm以下であることを要旨とする。 In order to achieve the above object, the invention described in claim 1 is a polishing composition used for polishing a substrate with a polishing pad and containing colloidal silica, wherein the colloidal silica is based on a BET method. the average primary particle size calculated Te expressed in D SA, when the average secondary particle diameter measured based on the laser diffraction method was expressed in D N4, between D SA and D N4, D SA ≦ D The gist is that the relationship of N4 is established and DN4 is 30 nm or less.

請求項2に記載の発明は、請求項1に記載の発明において、DSAが20nm以下であることを要旨とする。
請求項3に記載の発明は、請求項1又は2に記載の発明において、DSA及びDN4の間に、DN4≦3×DSAの関係が成立することを要旨とする。
The invention described in claim 2 is summarized in that, in the invention described in claim 1, DSA is 20 nm or less.
The gist of the invention described in claim 3 is that, in the invention described in claim 1 or 2, the relationship of D N4 ≦ 3 × D SA is established between D SA and D N4 .

本発明によれば、研磨パッドの目詰まりに起因する研磨速度の著しい低下を抑制可能な研磨用組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the polishing composition which can suppress the remarkable fall of the polishing rate resulting from clogging of a polishing pad can be provided.

以下、本発明を半導体デバイスの基板として使用されるシリコンウエハの研磨用組成物に具体化した一実施形態について説明する。
シリコンウエハは、単結晶シリコンから形成されており、シリコン単結晶インゴットからシリコンウエハを切断する工程、表面にラッピング、エッチング等を施す工程、表面を鏡面状態に研磨する工程を経て製造される。研磨パッド及び研磨用組成物は、シリコンウエハの表面を研磨する工程で使用される。研磨パッドは、不織布、発泡体、スウェード等の多孔質体からなる。その研磨パッドをウエハ表面に接触させ、接触部分に研磨用組成物を供給しつつ、ウエハ表面と研磨パッドとを相対的に摺動させることにより、シリコンウエハが研磨される。研磨を繰り返し行うことで研磨用組成物中の粒子や、研磨パッドの屑、ウエハの削りかす等が研磨パッドを目詰まりさせた場合、研磨速度が著しく低下し、ドレッシング、パッド交換等の煩雑な作業が必要となるため、製造効率が低下してしまう。そこで、本実施形態では、研磨パッドの目詰まりを低減し、研磨の繰り返しによる研磨速度の低下を抑制することができるように、研磨用組成物が調製されている。
Hereinafter, an embodiment in which the present invention is embodied in a polishing composition for a silicon wafer used as a substrate of a semiconductor device will be described.
The silicon wafer is formed from single crystal silicon, and is manufactured through a step of cutting the silicon wafer from the silicon single crystal ingot, a step of lapping and etching the surface, and a step of polishing the surface into a mirror state. The polishing pad and the polishing composition are used in the step of polishing the surface of the silicon wafer. A polishing pad consists of porous bodies, such as a nonwoven fabric, a foam, and a suede. The silicon wafer is polished by bringing the polishing pad into contact with the wafer surface and sliding the wafer surface and the polishing pad relative to each other while supplying the polishing composition to the contact portion. When polishing is repeated, particles in the polishing composition, polishing pad debris, wafer scraps, etc. clog the polishing pad, the polishing rate is significantly reduced, and complicated dressing, pad replacement, etc. Since work is required, manufacturing efficiency is reduced. Therefore, in this embodiment, the polishing composition is prepared so as to reduce clogging of the polishing pad and to suppress a decrease in polishing rate due to repeated polishing.

研磨用組成物は、必須成分としてコロイダルシリカを含有している。なお、コロイダルシリカはスラリー状物質であり、分散媒を含有している。この分散媒としては、液体であればアルコール等の有機溶媒、水、界面活性剤等、特に限らず使用できるが、コロイダルシリカ中に不純物をできるだけ含ませないという観点から、フィルターにより不純物を濾過したイオン交換水、蒸留水等の水が好ましい。   The polishing composition contains colloidal silica as an essential component. Colloidal silica is a slurry substance and contains a dispersion medium. As the dispersion medium, an organic solvent such as alcohol, water, a surfactant, and the like can be used as long as they are liquid. However, from the viewpoint that impurities are not included in the colloidal silica as much as possible, impurities are filtered by a filter. Water such as ion exchange water and distilled water is preferred.

コロイダルシリカは、機械的研磨作用によってシリコンウエハを研磨する役割を担う。このコロイダルシリカの粒子径は、平均一次粒子径及び平均二次粒子径で示される。平均一次粒子径は、気体吸着による粉体の比表面積測定法(BET法)で測定される比表面積と、粒子密度とから算出され、DSAで表す。平均二次粒子径は、レーザー光回折法により測定され、DN4で表す。つまり、DSAは一次粒子の粒子径の平均値であり、DN4は二次粒子の粒子径の平均値である。ここで、一次粒子とはコロイダルシリカ中の二酸化ケイ素固形分のうち分散した状態の粒子(単一粒子)を示し、二次粒子とはその一次粒子が凝集した状態の粒子(凝集粒子)を示している。 Colloidal silica plays a role of polishing a silicon wafer by a mechanical polishing action. The particle diameter of the colloidal silica is indicated by an average primary particle diameter and an average secondary particle diameter. The average primary particle size, specific surface area measured by the specific surface area measurement method of the powder by the gas adsorption (BET method), is calculated from the particle density, represented by D SA. The average secondary particle diameter is measured by a laser light diffraction method and is expressed as DN4 . That is, DSA is an average value of the particle diameter of primary particles, and DN4 is an average value of the particle diameter of secondary particles. Here, the primary particles indicate dispersed particles (single particles) of the solid content of silicon dioxide in colloidal silica, and the secondary particles indicate particles in which the primary particles are aggregated (aggregated particles). ing.

一次粒子が凝集して二次粒子が形成されるため、DSA及びDN4の間には、DSA≦DN4の関係が成立することが必須である。また、一次粒子の過剰な凝集を抑制するという観点から、DSA及びDN4の間には、DN4≦(3×DSA)の関係が成立することが好ましい。DN4は、研磨パッドの目詰まり低減を十分に達成するという観点から、30nm以下であることが必須であり、25nm以下が好ましく、20nm以下がより好ましい。また、DSAは、研磨パッドの目詰まり低減を十分に達成するという観点から、20nm以下が好ましく、15nm以下がより好ましく、10nm以下が最も好ましい。一方、実用的な研磨速度を得るという観点から、DN4は5nm以上が好ましく、DSAは3nm以上が好ましい。尚、実用的な研磨速度とは製造効率に支障のない時間でシリコンウエハの研磨を完了できる研磨速度をいう。 Since primary particles are aggregated to form secondary particles, it is essential that a relationship of D SA ≦ D N4 is established between D SA and D N4 . Further, from the viewpoint of suppressing excessive aggregation of primary particles, it is preferable that a relationship of D N4 ≦ (3 × D SA ) is established between D SA and D N4 . DN 4 is essentially 30 nm or less, preferably 25 nm or less, and more preferably 20 nm or less, from the viewpoint of sufficiently achieving clogging reduction of the polishing pad. Further, D SA, from the viewpoint of sufficiently achieving clogging reduction of the polishing pad is preferably 20nm or less, more preferably 15 nm or less, and most preferably 10 nm. On the other hand, from the viewpoint of obtaining a practical polishing rate, D N4 is preferably more than 5 nm, D SA is preferably at least 3 nm. The practical polishing rate refers to a polishing rate at which polishing of a silicon wafer can be completed in a time that does not hinder manufacturing efficiency.

研磨用組成物中におけるコロイダルシリカの二酸化ケイ素(SiO2)固形分の含有量は、研磨パッドの目詰まり低減を十分に達成するという観点から、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が最も好ましい。一方、実用的な研磨速度を得るという観点から、コロイダルシリカのSiO2固形分の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましく、10質量%以上が最も好ましい。尚、コロイダルシリカは、鉄、ニッケル、銅、カルシウム、クロム、亜鉛、若しくはそれらの水酸化物、酸化物等の金属不純物を含む場合があり、この金属不純物はウエハ表面に付着し、その後の熱処理でウエハ中に拡散して電気特性に影響を与える虞がある。シリコンウエハの電気特性への影響を抑制するという観点から、コロイダルシリカの含有量を20質量%とした分散液(水)中における金属不純物の含有量は、300ppm以下が好ましく、100ppm以下がより好ましく、0.3ppm以下が最も好ましい。 The content of the silicon dioxide (SiO 2 ) solid content of the colloidal silica in the polishing composition is preferably 50% by mass or less, more preferably 30% by mass or less from the viewpoint of sufficiently achieving clogging reduction of the polishing pad. Preferably, 20 mass% or less is the most preferable. On the other hand, from the viewpoint of obtaining a practical polishing rate, the content of the SiO 2 solid content of colloidal silica is preferably 0.1% by mass or more, more preferably 1% by mass or more, and most preferably 10% by mass or more. Colloidal silica may contain metal impurities such as iron, nickel, copper, calcium, chromium, zinc, or their hydroxides, oxides, etc., and these metal impurities adhere to the wafer surface and are subjected to subsequent heat treatment. Therefore, it may be diffused into the wafer and affect the electrical characteristics. From the viewpoint of suppressing the influence on the electrical characteristics of the silicon wafer, the content of the metal impurities in the dispersion (water) in which the content of colloidal silica is 20% by mass is preferably 300 ppm or less, more preferably 100 ppm or less. 0.3 ppm or less is most preferable.

シリコンウエハを研磨する研磨用組成物の場合、コロイダルシリカの他、アルカリ化合物及びキレート剤のうち少なくとも一方を含有してもよい。なお、研磨用組成物にコロイダルシリカ以外の添加剤を含有させる場合、前記分散媒を添加剤の溶媒として作用させることも可能である。   In the case of a polishing composition for polishing a silicon wafer, at least one of an alkali compound and a chelating agent may be contained in addition to colloidal silica. When the polishing composition contains an additive other than colloidal silica, the dispersion medium can be allowed to act as a solvent for the additive.

アルカリ化合物は、腐食やエッチングによる化学的研磨作用によって前記機械的研磨を補助し、研磨を促進する研磨促進剤として作用する。アルカリ化合物としては、水酸化カリウム、水酸化ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等の無機アルカリ化合物、アンモニア、水酸化テトラメチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム等のアンモニウム塩、無水ピペラジン、ピペラジン・六水和物、1−(2−アミノエチル)ピペラジン、N−メチルピペラジン、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N−(β−アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミンが挙げられる。これらアルカリ化合物は単独又は二種以上の組み合わせで研磨用組成物中に含有される。また、水酸化カリウム、水酸化ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム、アンモニア、水酸化テトラメチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、無水ピペラジン、ピペラジン・六水和物、1−(2−アミノエチル)ピペラジン又はN−メチルピペラジンは、強い化学的研磨作用で研磨速度を高めるという観点から好ましい。尚、アルカリ化合物の中には前記金属不純物とキレート結合するが、その結合力の弱さに起因してシリコンウエハを化学的研磨する際に金属不純物を解放してしまうことで、却ってシリコンウエハを汚染してしまう虞のあるものが存在する。このため、水酸化カリウム、水酸化ナトリウム、アンモニア又は水酸化テトラメチルアンモニウムは、前記金属不純物と錯イオンを形成せず、シリコンウエハの汚染を抑制するという観点からより好ましい。   The alkali compound acts as a polishing accelerator that assists the mechanical polishing by a chemical polishing action by corrosion or etching and promotes the polishing. Examples of the alkali compound include potassium hydroxide, sodium hydroxide, potassium hydrogen carbonate, potassium carbonate, sodium hydrogen carbonate, sodium carbonate and other inorganic alkali compounds, ammonia, tetramethyl ammonium hydroxide, ammonium hydrogen carbonate, ammonium carbonate and other ammonium salts. , Anhydrous piperazine, piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β -Aminoethyl) Amine such as ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine and the like. These alkali compounds are contained alone or in combination of two or more in the polishing composition. In addition, potassium hydroxide, sodium hydroxide, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate, ammonia, tetramethylammonium hydroxide, ammonium bicarbonate, ammonium carbonate, anhydrous piperazine, piperazine hexahydrate, 1 -(2-Aminoethyl) piperazine or N-methylpiperazine is preferable from the viewpoint of increasing the polishing rate by a strong chemical polishing action. Some alkali compounds chelate bond with the metal impurities, but due to the weak binding force, the metal impurities are released when the silicon wafer is chemically polished. There is something that can be contaminated. For this reason, potassium hydroxide, sodium hydroxide, ammonia, or tetramethylammonium hydroxide is more preferable from the viewpoint of suppressing the contamination of the silicon wafer without forming complex ions with the metal impurities.

研磨用組成物中におけるアルカリ化合物の含有量は、研磨用組成物のゲル化を抑制する、或いはアルカリ化合物のエッチング力によるシリコンウエハの面荒れ等を抑制するという観点から、10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下が最も好ましい。一方、研磨の促進作用を維持するという観点から、アルカリ化合物の含有量は0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上が最も好ましい。   The content of the alkali compound in the polishing composition is preferably 10% by mass or less from the viewpoint of suppressing gelation of the polishing composition or suppressing surface roughness of the silicon wafer due to the etching force of the alkali compound. 8 mass% or less is more preferable, and 5 mass% or less is the most preferable. On the other hand, from the viewpoint of maintaining the promoting action of polishing, the content of the alkali compound is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and most preferably 0.5% by mass or more.

キレート剤は、前記金属不純物と錯イオンを形成してこれを捕捉し、シリコンウエハの汚染を抑制する。キレート剤は、ニトリロ三酢酸、エチレンジアミン四酢酸、ヒドロキシエチレンジアミン四酢酸、プロパンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミン四エチレンホスホン酸、エチレンジアミン四メチレンホスホン酸、エチレンジアミンテトラキスメチレンホスホン酸、ジエチレントリアミン五エチレンホスホン酸、ジエチレントリアミン五メチレンホスホン酸、トリエチレンテトラミン六エチレンホスホン酸、トリエチレンテトラミン六メチレンホスホン酸、プロパンジアミン四エチレンホスホン酸プロパンジアミン四メチレンホスホン酸等の酸、並びにそれらの酸のアンモニウム塩、カリウム塩、ナトリウム塩及びリチウム塩等の塩からなる群より選ばれる少なくとも一種である。   The chelating agent forms complex ions with the metal impurities and captures them to suppress contamination of the silicon wafer. Chelating agents include nitrilotriacetic acid, ethylenediaminetetraacetic acid, hydroxyethylenediaminetetraacetic acid, propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetraethylenephosphonic acid, ethylenediaminetetramethylenephosphonic acid, ethylenediaminetetrakismethylenephosphonic acid, Acids such as diethylenetriaminepentaethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid, triethylenetetraminehexaethylenephosphonic acid, triethylenetetraminehexamethylenephosphonic acid, propanediaminetetraethylenephosphonic acidpropanediaminetetramethylenephosphonic acid, and ammonium of these acids It is at least one selected from the group consisting of salts such as salts, potassium salts, sodium salts and lithium salts.

研磨用組成物中におけるキレート剤の含有量は、研磨用組成物のゲル化を抑制するという観点から、6質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が最も好ましい。一方、金属不純物の捕捉作用を維持するという観点から、キレート剤の含有量は、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が最も好ましい。   The content of the chelating agent in the polishing composition is preferably 6% by mass or less, more preferably 3% by mass or less, and most preferably 1% by mass or less from the viewpoint of suppressing gelation of the polishing composition. On the other hand, the content of the chelating agent is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and most preferably 0.01% by mass or more from the viewpoint of maintaining the capturing action of metal impurities.

前記の実施形態によって発揮される効果について、以下に記載する。
・ DSA及びDN4の間には、DSA≦DN4≦(3×DSA)の関係が成立するため、一次粒子径を小さく、且つ二次粒子径も小さく抑えた砥粒を得ることができ、研磨パッドの目詰まり低減を十分に達成することが可能となる。従って、研磨を繰り返し行う際に、研磨パッドの目詰まりに起因した研磨速度の著しい低下を確実に抑制することができる。
The effects exhibited by the above embodiment will be described below.
· D between the SA and D N4, since the relation of D SA ≦ D N4 ≦ (3 × D SA) is established, reduce the primary particle size, and secondary particle size may be obtained subdued abrasive grains small Therefore, the clogging of the polishing pad can be sufficiently reduced. Therefore, when the polishing is repeatedly performed, it is possible to reliably suppress a significant decrease in the polishing rate due to clogging of the polishing pad.

なお、前記実施形態を次のように変更して構成することもできる。
・ 研磨用組成物に、アルカリ化合物及びキレート剤以外の添加剤を加えてもよい。添加剤としては、防腐剤、界面活性剤等が挙げられる。特に、コロイダルシリカの粒子表面が負に帯電していることから、アニオン系界面活性剤はコロイダルシリカの分散剤としての機能を発揮し、さらなる研磨パッドの目詰まり抑制効果を期待することができる。
In addition, the said embodiment can also be changed and comprised as follows.
-You may add additives other than an alkali compound and a chelating agent to polishing composition. Examples of the additive include preservatives and surfactants. In particular, since the particle surface of colloidal silica is negatively charged, the anionic surfactant exhibits a function as a dispersant for colloidal silica and can be expected to further suppress clogging of the polishing pad.

・ 研磨用組成物を希釈して用いてもよい。希釈倍率は、実用的な研磨速度を得るという観点から、研磨用組成物中のコロイダルシリカのSiO2固形分の濃度が0.1〜50質量%のとき、50倍以下が好ましく、40倍以下がより好ましく、25倍以下が最も好ましい。 -You may dilute and use polishing composition. The dilution factor is preferably 50 times or less, preferably 40 times or less, when the concentration of SiO 2 solid content of colloidal silica in the polishing composition is 0.1 to 50% by mass from the viewpoint of obtaining a practical polishing rate. Is more preferable, and 25 times or less is most preferable.

・ 基板はシリコンウェハに限らず、コロイダルシリカを含有する研磨用組成物と研磨パッドを用いて研磨されるものであれば何れでもよい。このような基板として、例えば銅、アルミニウム、或いはそれらの合金等からなる配線構造を有する半導体デバイス、シリコン−ゲルマニウム等の半導体基板、ガリウム−砒素、インジウム−リン等の化合物半導体基板、タンタル酸リチウム、ニオブ酸リチウム、サファイア等からなる酸化物基板、ハードディスクドライブ等のための磁気記録媒体に用いられるアルミニウム基板やガラス基板、液晶ディスプレイ、有機ELディスプレイ等に用いられるガラス基板や樹脂基板等が挙げられる。   The substrate is not limited to a silicon wafer, and any substrate can be used as long as it is polished using a polishing composition containing colloidal silica and a polishing pad. As such a substrate, for example, a semiconductor device having a wiring structure made of copper, aluminum, or an alloy thereof, a semiconductor substrate such as silicon-germanium, a compound semiconductor substrate such as gallium-arsenic, indium-phosphorus, lithium tantalate, Examples thereof include oxide substrates made of lithium niobate, sapphire, and the like, aluminum substrates and glass substrates used for magnetic recording media for hard disk drives and the like, glass substrates and resin substrates used for liquid crystal displays, organic EL displays and the like.

次に、実施例及び比較例を挙げて本発明をさらに具体的に説明する。
表1に示すコロイダルシリカ、アルカリ化合物及びキレート剤をイオン交換水に混合して実施例1〜16及び比較例1〜7の研磨用組成物を調製し、これらを希釈倍率が20倍となるようにイオン交換水で希釈して得られた研磨液を用い、下記の研磨条件で研磨を行った。そして、以下に示す研磨速度及び速度低下率の評価結果を表1に示す。
Next, the present invention will be described more specifically with reference to examples and comparative examples.
Colloidal silica, an alkali compound and a chelating agent shown in Table 1 are mixed with ion-exchanged water to prepare polishing compositions of Examples 1 to 16 and Comparative Examples 1 to 7, and the dilution ratio thereof is 20 times. Polishing was performed under the following polishing conditions using a polishing liquid obtained by diluting with ion exchange water. Table 1 shows the evaluation results of the polishing rate and the rate of rate reduction shown below.

<研磨条件>研磨装置:片面研磨機(SPM−15;不二越機械工業社製、セラミックプレート4枚)、被研磨物:6インチのシリコンウエハ(p−型、結晶方位<100>、シリコンウエハの抵抗率0.1Ω・cm以上100Ω・cm未満)、被研磨物の研磨状況:セラミックプレート1枚につき4枚のシリコンウエハをワックスで固定した状況下で同一のシリコンウエハの研磨を繰り返し行う、荷重:31.5kPa、定盤の回転数:60min-1(60rpm)、セラミックプレートの回転数:120min-1(120rpm)、研磨パッド:Suba800(Rodel社製)を終始ドレッシングすることなく使用、研磨用組成物の使用状況:供給速度を毎分0.008m3(8L)として循環使用、研磨時間:1バッチ当たり15分、組成物の保持温度:40℃。 <Polishing conditions> Polishing apparatus: single-side polishing machine (SPM-15; manufactured by Fujikoshi Machine Industry Co., Ltd., 4 ceramic plates), object to be polished: 6-inch silicon wafer (p-type, crystal orientation <100>, silicon wafer Resistivity 0.1 Ω · cm or more and less than 100 Ω · cm), polishing condition of the object to be polished: a load in which polishing of the same silicon wafer is repeated under the condition that four silicon wafers are fixed with wax per ceramic plate : 31.5 kPa, surface plate rotation speed: 60 min −1 (60 rpm), ceramic plate rotation speed: 120 min −1 (120 rpm), polishing pad: Suba800 (manufactured by Rodel) without any dressing, for polishing usage of the composition: recycling, polishing time the feed rate as per minute 0.008m 3 (8L): 1 per batch 15 Holding the temperature of the composition: 40 ° C..

<研磨速度>ウエハ中心部の厚みを研磨前及び研磨後に測定し、研磨前後の厚みの差を研磨時間(15分)で除して研磨速度を算出した。尚、研磨速度は各バッチ毎に算出しており、表1には5,10,15バッチ目に算出した研磨速度を示した。   <Polishing rate> The thickness at the center of the wafer was measured before and after polishing, and the polishing rate was calculated by dividing the difference in thickness before and after polishing by the polishing time (15 minutes). The polishing rate was calculated for each batch, and Table 1 shows the polishing rates calculated for the fifth, tenth, and fifteenth batches.

<速度維持率> シリコンウエハの5バッチ目の研磨速度に対する10バッチ目の研磨速度の百分率((10バッチ目の研磨速度/5バッチ目の研磨速度)×100)と、5バッチ目の研磨速度に対する15バッチ目の研磨速度の百分率((15バッチ目の研磨速度/5バッチ目の研磨速度)×100)とを算出し、速度維持率を求めた。   <Speed maintenance ratio> Percentage of polishing rate of 10th batch with respect to polishing rate of 5th batch of silicon wafer ((polishing rate of 10th batch / polishing rate of 5th batch) × 100) and polishing rate of 5th batch The percentage of the polishing rate of the 15th batch with respect to (polishing rate of the 15th batch / polishing rate of the 5th batch) × 100) was calculated, and the rate maintenance rate was obtained.

Figure 2005268667
Figure 2005268667

なお、上記表1の「DSA」欄に示した平均一次粒子径の値はFlowSorbII2300(micromeritics製)で測定した比表面積を用いて算出した。「DN4」欄に示した平均二次粒子径の値はN4 Plus Submicron Particle Sizer(Beckman Coulter,Inc.製)で測定した。「第1アルカリ化合物」及び「第2アルカリ化合物」欄に示した「KOH」は水酸化カリウム、「TMAH」は水酸化テトラメチルアンモニウム、「PIZ」は無水ピペラジンの略称である。「キレート剤」欄に示した「TTHA」はトリエチレンテトラミン六酢酸、「EDPTO」はエチレンジアミンテトラキスメチレンスルホン酸、「DTPA」はジエチレントリアミン五酢酸の略称である。「研磨速度」の「評価」欄に示した「A」は研磨速度が1.0μm/分以上、「B」は1.0μm/分未満で0.9μm/分以上、「C」は0.9μm/分未満で0.8μm/分以上、「D」は0.8μm/分未満で0.7μm/分以上、「E」は0.7μm/分未満で0.6μm/分以上を表す。「速度維持率」の「評価」欄に示した「A」は速度維持率が90%以上、「B」は90%未満で80%以上、「C」は80%未満で70%以上、「D」は70%未満で60%以上を表す。なお、「研磨速度」の「評価」欄及び「速度維持率」の「評価」欄で「×」は10バッチ目又は15バッチ目に達する前に研磨速度が極端に低下したため、研磨速度についてはそれ以降の研磨を行わなかったことを表し、速度維持率については評価不能であったことを表す。 In addition, the value of the average primary particle diameter shown in the “D SA ” column of Table 1 was calculated using the specific surface area measured with FlowSorbII2300 (manufactured by micromeritics). The value of the average secondary particle size shown in the “D N4 ” column was measured by N4 Plus Submicron Particle Sizer (manufactured by Beckman Coulter, Inc.). "KOH" shown in the "first alkali compound" and "second alkali compound" columns is an abbreviation for potassium hydroxide, "TMAH" is tetramethylammonium hydroxide, and "PIZ" is an anhydrous piperazine. “TTHA” shown in the “chelating agent” column is an abbreviation for triethylenetetraminehexaacetic acid, “EDPTO” is an abbreviation for ethylenediaminetetrakismethylenesulfonic acid, and “DTPA” is an abbreviation for diethylenetriaminepentaacetic acid. “A” shown in the “Evaluation” column of “Polishing rate” is a polishing rate of 1.0 μm / min or more, “B” is less than 1.0 μm / min and 0.9 μm / min or more, and “C” is 0. Less than 9 μm / min, 0.8 μm / min or more, “D” represents less than 0.8 μm / min, 0.7 μm / min or more, and “E” represents less than 0.7 μm / min, 0.6 μm / min or more. “A” shown in the “Evaluation” column of “Speed maintenance rate” is a speed maintenance rate of 90% or more, “B” is less than 90% and 80% or more, “C” is less than 80% and 70% or more, “ "D" represents less than 70% and 60% or more. In the “Evaluation” column of “Polishing rate” and the “Evaluation” column of “Speed maintenance rate”, “x” markedly decreased before reaching the 10th or 15th batch. It represents that the subsequent polishing was not performed, and the rate maintenance rate was not evaluated.

上記表1に示すように、実施例1〜8については、比較例1〜5に比べ、研磨速度及び速度維持率共に非常に優れた評価となった。この結果から、実施例1〜8の研磨用組成物は研磨パッドを目詰まりさせにくく、研磨の繰り返しによる研磨速度の低下を抑制可能であることは明らかである。また、実施例8及び比較例2の速度維持率から、DN4を30nm以下とすることで研磨の繰り返しによる研磨速度の低下が抑制され、実施例8及び比較例1の速度維持率から、DSAを20nm以下とすることで研磨速度の低下がさらに抑制される結果となった。実施例9については、コロイダルシリカの添加量を低減したことで15バッチ目の研磨速度が低下する結果となった。実施例10,11については、比較例6に比べ、研磨速度及び速度維持率共に非常に優れた評価となった。実施例12,13については、比較例7に比べ、研磨速度及び速度維持率共に優れた評価となった。実施例3,10及び実施例5,11については、アルカリ化合物として水酸化カリウムを使用することで速度維持率が向上する結果となった。実施例3,14〜16については、アルカリ化合物の添加量の変化又はキレート剤添加の有無が研磨速度及び速度維持率にさほど影響を与えない結果となった。 As shown in Table 1 above, Examples 1 to 8 were evaluated to be very excellent in both the polishing rate and the rate maintenance rate as compared with Comparative Examples 1 to 5. From these results, it is clear that the polishing compositions of Examples 1 to 8 are less likely to clog the polishing pad and can suppress a decrease in polishing rate due to repeated polishing. Further, from the speed maintenance rate of Example 8 and Comparative Example 2, by reducing DN 4 to 30 nm or less, a decrease in the polishing rate due to repeated polishing is suppressed, and from the speed maintenance rate of Example 8 and Comparative Example 1, D 4 As a result of SA being 20 nm or less, the reduction in the polishing rate was further suppressed. About Example 9, it resulted in that the polishing rate of 15th batch fell by reducing the addition amount of colloidal silica. As for Examples 10 and 11, compared with Comparative Example 6, both the polishing rate and the rate maintenance rate were very excellent. In Examples 12 and 13, both the polishing rate and the rate maintenance rate were excellent compared to Comparative Example 7. About Example 3, 10 and Example 5, 11, it became a result that a rate maintenance factor improved by using potassium hydroxide as an alkali compound. As for Examples 3 and 14 to 16, the change in the addition amount of the alkali compound or the presence or absence of the addition of the chelating agent did not significantly affect the polishing rate and the rate maintenance rate.

また、実施例3,8及び比較例3について、研磨回数と研磨速度との関係を図1のグラフに示す。図1に示すように、比較例3は0.60μm/min以上の研磨速度を維持できる研磨回数が最も少なく、実施例8は比較例3に比べ0.60μm/min以上の研磨速度を維持できる研磨回数が多く、実施例3は実施例8に比べ0.60μm/min以上の研磨速度を維持できる研磨回数がさらに多いことが分かる。この結果からDN4が小さなものほど目詰まりしにくく、研磨を繰り返し行っても研磨速度の著しい低下を抑制可能であることは明らかである。 Further, for Examples 3 and 8 and Comparative Example 3, the relationship between the number of polishings and the polishing rate is shown in the graph of FIG. As shown in FIG. 1, Comparative Example 3 has the least number of polishings capable of maintaining a polishing rate of 0.60 μm / min or more, and Example 8 can maintain a polishing rate of 0.60 μm / min or more as compared with Comparative Example 3. It can be seen that the number of polishing is large, and the number of polishings in Example 3 that can maintain a polishing rate of 0.60 μm / min or more is higher than that in Example 8. From this result, it is clear that the smaller the DN 4 is, the less clogging occurs, and it is possible to suppress a significant decrease in the polishing rate even if the polishing is repeated.

さらに、前記実施形態より把握できる技術的思想について以下に記載する。
(1)DN4が5nm以上である請求項1〜3の何れか一項に記載の研磨用組成物。これにより、基板に対する実用的な研磨速度を得ることができる。
Further, the technical idea that can be grasped from the embodiment will be described below.
(1) DN4 is 5 nm or more, The polishing composition as described in any one of Claims 1-3. Thereby, a practical polishing rate for the substrate can be obtained.

(2)DSAが3nm以上である請求項1〜3の何れか一項に記載の研磨用組成物。これにより、基板に対する、より実用的な研磨速度を得ることができる。 (2) DSA is 3 nm or more, Polishing composition as described in any one of Claims 1-3. Thereby, a more practical polishing rate for the substrate can be obtained.

研磨回数と研磨速度との関係を示すグラフ。The graph which shows the relationship between the frequency | count of grinding | polishing, and grinding | polishing speed.

Claims (3)

研磨パッドによる基板の研磨に使用され、コロイダルシリカを含有する研磨用組成物であって、
前記コロイダルシリカは、BET法に基づいて算出された平均一次粒子径をDSAで表し、レーザー光回折法に基づいて測定された平均二次粒子径をDN4で表したとき、DSA及びDN4の間に、DSA≦DN4の関係が成立し、かつ、DN4が30nm以下である研磨用組成物。
A polishing composition used for polishing a substrate with a polishing pad and containing colloidal silica,
The colloidal silica, when the average primary particle diameter calculated based on the BET method expressed by D SA, an average secondary particle diameter measured based on the laser diffraction method was expressed in D N4, D SA and D A polishing composition wherein a relationship of D SA ≦ D N4 is established between N4 and D N4 is 30 nm or less.
SAが20nm以下である請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein DSA is 20 nm or less. SA及びDN4の間に、DN4≦3×DSAの関係が成立する請求項1又は2に記載の研磨用組成物。 The polishing composition according to claim 1, wherein a relationship of D N4 ≦ 3 × D SA is established between D SA and D N4 .
JP2004081586A 2004-03-19 2004-03-19 Polishing composition Pending JP2005268667A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004081586A JP2005268667A (en) 2004-03-19 2004-03-19 Polishing composition
KR1020050022623A KR101141178B1 (en) 2004-03-19 2005-03-18 Polishing composition and polishing method
CN2005100592518A CN1670116B (en) 2004-03-19 2005-03-18 Polishing composition and polishing method
DE102005012607A DE102005012607A1 (en) 2004-03-19 2005-03-18 Polishing composition and polishing method
US11/084,413 US20050204639A1 (en) 2004-03-19 2005-03-18 Polishing composition and polishing method
GB0505456A GB2412919B (en) 2004-03-19 2005-03-18 Polishing composition and polishing method
TW094108350A TWI390024B (en) 2004-03-19 2005-03-18 Polishing composition and polishing method
KR1020120021415A KR20120025576A (en) 2004-03-19 2012-02-29 Polishing composition and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081586A JP2005268667A (en) 2004-03-19 2004-03-19 Polishing composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011096938A Division JP2011181948A (en) 2011-04-25 2011-04-25 Polishing composition, and method for reducing clogging of polishing pad using the same

Publications (1)

Publication Number Publication Date
JP2005268667A true JP2005268667A (en) 2005-09-29

Family

ID=34510727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081586A Pending JP2005268667A (en) 2004-03-19 2004-03-19 Polishing composition

Country Status (7)

Country Link
US (1) US20050204639A1 (en)
JP (1) JP2005268667A (en)
KR (2) KR101141178B1 (en)
CN (1) CN1670116B (en)
DE (1) DE102005012607A1 (en)
GB (1) GB2412919B (en)
TW (1) TWI390024B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347737A (en) * 2004-05-07 2005-12-15 Nissan Chem Ind Ltd Polishing composition for silicon wafer
JP2007005562A (en) * 2005-06-23 2007-01-11 Yamaguchi Seiken Kogyo Kk Wafer polishing solution composition and wafer polishing method
JP2010130009A (en) * 2008-11-26 2010-06-10 Siltronic Ag METHOD OF POLISHING SEMICONDUCTOR WAFER HAVING STRAIN-RELAXED LAYER OF Si1-xGex
JP2013222847A (en) * 2012-04-17 2013-10-28 Fujimi Inc Polishing composition used for polishing semiconductor substrate having silicon penetration electrode structure, and polishing method using polishing composition
WO2014013977A1 (en) * 2012-07-17 2014-01-23 株式会社 フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using same
JP2015070274A (en) * 2013-09-27 2015-04-13 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Chemical mechanical polishing composition for polishing silicon wafers and related methods
KR20170074869A (en) 2014-10-22 2017-06-30 가부시키가이샤 후지미인코퍼레이티드 Composition for polishing
JP2017218514A (en) * 2016-06-08 2017-12-14 山口精研工業株式会社 Polishing agent composition
KR20180002629A (en) 2015-05-08 2018-01-08 가부시키가이샤 후지미인코퍼레이티드 Abrasive composition
JP2020050700A (en) * 2018-09-25 2020-04-02 株式会社フジミインコーポレーテッド Tungsten dissolution inhibitor, and polishing composition and surface-treated composition including the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814502B2 (en) * 2004-09-09 2011-11-16 株式会社フジミインコーポレーテッド Polishing composition and polishing method using the same
JP4808394B2 (en) * 2004-10-29 2011-11-02 株式会社フジミインコーポレーテッド Polishing composition
JP4487753B2 (en) * 2004-12-10 2010-06-23 株式会社Sumco Alkaline etching solution for silicon wafer and etching method using the etching solution
WO2007095322A1 (en) * 2006-02-14 2007-08-23 Cabot Microelectronics Corporation Compositions and methods for cmp of indium tin oxide surfaces
US8017524B2 (en) * 2008-05-23 2011-09-13 Cabot Microelectronics Corporation Stable, high rate silicon slurry
JP5554121B2 (en) * 2010-03-31 2014-07-23 富士フイルム株式会社 Polishing liquid and polishing method
CN102358825B (en) * 2011-08-05 2013-08-21 清华大学 Polishing composition for sapphire wafer
CN102618174A (en) * 2012-02-28 2012-08-01 南通海迅天恒纳米科技有限公司 Silicon wafer chemical-mechanical polishing composition with high dilution ratio and high stability
CN103450812B (en) * 2013-01-10 2014-09-17 湖南皓志新材料股份有限公司 Polishing solution for sapphire substrate
JP6156207B2 (en) * 2013-04-02 2017-07-05 信越化学工業株式会社 Method for producing synthetic quartz glass substrate
CN104592935B (en) * 2015-01-04 2016-04-27 江苏中晶科技有限公司 Mechanically resistant material grinding accelerator
CN104830236A (en) * 2015-05-14 2015-08-12 蓝思科技(长沙)有限公司 C-axis sapphire polishing solution and preparation method thereof
US20190084121A1 (en) * 2016-03-28 2019-03-21 Fujimi Incorporated Polishing pad and polishing method
CN113969107B (en) * 2021-10-18 2022-09-09 江苏山水半导体科技有限公司 Chemical mechanical polishing solution for large-size silicon edge polishing and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093866A (en) * 1999-09-20 2001-04-06 Speedfam Co Ltd Oxide single-crystal wafer processing/polishing composition and method of polishing the oxide single- crystal wafer
JP2002270545A (en) * 2001-03-07 2002-09-20 Hitachi Chem Co Ltd Polishing liquid for conductor and polishing method using the same
JP2003188122A (en) * 2001-12-18 2003-07-04 Sanyo Chem Ind Ltd Polishing liquid for cmp process

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715842A (en) * 1970-07-02 1973-02-13 Tizon Chem Corp Silica polishing compositions having a reduced tendency to scratch silicon and germanium surfaces
US4169337A (en) * 1978-03-30 1979-10-02 Nalco Chemical Company Process for polishing semi-conductor materials
US4462188A (en) * 1982-06-21 1984-07-31 Nalco Chemical Company Silica sol compositions for polishing silicon wafers
US4588421A (en) * 1984-10-15 1986-05-13 Nalco Chemical Company Aqueous silica compositions for polishing silicon wafers
US5352277A (en) * 1988-12-12 1994-10-04 E. I. Du Pont De Nemours & Company Final polishing composition
US5230833A (en) * 1989-06-09 1993-07-27 Nalco Chemical Company Low sodium, low metals silica polishing slurries
ATE120433T1 (en) * 1991-05-28 1995-04-15 Nalco Chemical Co POLISHING MUSH MADE OF SILICA WITH LOW SODIUM AND METALS CONTENT.
DE69611653T2 (en) * 1995-11-10 2001-05-03 Tokuyama Corp., Tokuya Polishing suspensions and processes for their manufacture
US5916819A (en) * 1996-07-17 1999-06-29 Micron Technology, Inc. Planarization fluid composition chelating agents and planarization method using same
FR2754937B1 (en) * 1996-10-23 1999-01-15 Hoechst France NOVEL MECHANICAL AND CHEMICAL POLISHING OF INSULATING MATERIAL LAYERS BASED ON SILICON OR SILICON DERIVATIVES
US6099604A (en) * 1997-08-21 2000-08-08 Micron Technology, Inc. Slurry with chelating agent for chemical-mechanical polishing of a semiconductor wafer and methods related thereto
JPH11349925A (en) * 1998-06-05 1999-12-21 Fujimi Inc Composition for edge polishing
JP3810588B2 (en) * 1998-06-22 2006-08-16 株式会社フジミインコーポレーテッド Polishing composition
JP4090589B2 (en) * 1998-09-01 2008-05-28 株式会社フジミインコーポレーテッド Polishing composition
FR2792643B1 (en) * 1999-04-22 2001-07-27 Clariant France Sa MECHANICAL AND CHEMICAL POLISHING COMPOSITION OF INSULATING MATERIAL BASED ON LOW DIELECTRIC POLYMER
JP2001118815A (en) * 1999-10-22 2001-04-27 Speedfam Co Ltd Polishing composition for polishing semiconductor wafer edge, and polishing machining method
US6454820B2 (en) * 2000-02-03 2002-09-24 Kao Corporation Polishing composition
TWI296006B (en) * 2000-02-09 2008-04-21 Jsr Corp
US6355075B1 (en) * 2000-02-11 2002-03-12 Fujimi Incorporated Polishing composition
US6310019B1 (en) * 2000-07-05 2001-10-30 Wako Pure Chemical Industries, Ltd. Cleaning agent for a semi-conductor substrate
KR100398141B1 (en) * 2000-10-12 2003-09-13 아남반도체 주식회사 Chemical mechanical polishing slurry composition and planarization method using same for semiconductor device
JP3440419B2 (en) * 2001-02-02 2003-08-25 株式会社フジミインコーポレーテッド Polishing composition and polishing method using the same
FR2835844B1 (en) * 2002-02-13 2006-12-15 Clariant PROCESS FOR THE MECANO-CHEMICAL POLISHING OF METAL SUBSTRATES
US6827639B2 (en) * 2002-03-27 2004-12-07 Catalysts & Chemicals Industries Co., Ltd. Polishing particles and a polishing agent
JP4212861B2 (en) * 2002-09-30 2009-01-21 株式会社フジミインコーポレーテッド Polishing composition and silicon wafer polishing method using the same, and rinsing composition and silicon wafer rinsing method using the same
JP4593064B2 (en) * 2002-09-30 2010-12-08 株式会社フジミインコーポレーテッド Polishing composition and polishing method using the same
US7005382B2 (en) * 2002-10-31 2006-02-28 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing process, production process of semiconductor device and material for preparing an aqueous dispersion for chemical mechanical polishing
KR100523618B1 (en) * 2002-12-30 2005-10-24 동부아남반도체 주식회사 Method for forming a contact hole in a semiconductor device
JP4668528B2 (en) * 2003-09-05 2011-04-13 株式会社フジミインコーポレーテッド Polishing composition
US7153335B2 (en) * 2003-10-10 2006-12-26 Dupont Air Products Nanomaterials Llc Tunable composition and method for chemical-mechanical planarization with aspartic acid/tolyltriazole

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093866A (en) * 1999-09-20 2001-04-06 Speedfam Co Ltd Oxide single-crystal wafer processing/polishing composition and method of polishing the oxide single- crystal wafer
JP2002270545A (en) * 2001-03-07 2002-09-20 Hitachi Chem Co Ltd Polishing liquid for conductor and polishing method using the same
JP2003188122A (en) * 2001-12-18 2003-07-04 Sanyo Chem Ind Ltd Polishing liquid for cmp process

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347737A (en) * 2004-05-07 2005-12-15 Nissan Chem Ind Ltd Polishing composition for silicon wafer
JP2007005562A (en) * 2005-06-23 2007-01-11 Yamaguchi Seiken Kogyo Kk Wafer polishing solution composition and wafer polishing method
JP2010130009A (en) * 2008-11-26 2010-06-10 Siltronic Ag METHOD OF POLISHING SEMICONDUCTOR WAFER HAVING STRAIN-RELAXED LAYER OF Si1-xGex
US8338302B2 (en) 2008-11-26 2012-12-25 Siltronic Ag Method for polishing a semiconductor wafer with a strained-relaxed Si1−xGex layer
JP2013222847A (en) * 2012-04-17 2013-10-28 Fujimi Inc Polishing composition used for polishing semiconductor substrate having silicon penetration electrode structure, and polishing method using polishing composition
CN104471016A (en) * 2012-07-17 2015-03-25 福吉米株式会社 Composition for polishing alloy material and method for producing alloy material using same
WO2014013977A1 (en) * 2012-07-17 2014-01-23 株式会社 フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using same
JPWO2014013977A1 (en) * 2012-07-17 2016-06-30 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same
JP2015070274A (en) * 2013-09-27 2015-04-13 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Chemical mechanical polishing composition for polishing silicon wafers and related methods
KR20170074869A (en) 2014-10-22 2017-06-30 가부시키가이샤 후지미인코퍼레이티드 Composition for polishing
US10190024B2 (en) 2014-10-22 2019-01-29 Fujimi Incorporated Polishing composition
KR20180002629A (en) 2015-05-08 2018-01-08 가부시키가이샤 후지미인코퍼레이티드 Abrasive composition
JP2017218514A (en) * 2016-06-08 2017-12-14 山口精研工業株式会社 Polishing agent composition
JP2020050700A (en) * 2018-09-25 2020-04-02 株式会社フジミインコーポレーテッド Tungsten dissolution inhibitor, and polishing composition and surface-treated composition including the same
JP7088797B2 (en) 2018-09-25 2022-06-21 株式会社フジミインコーポレーテッド Tungsten dissolution inhibitor, and polishing composition and surface treatment composition using it.

Also Published As

Publication number Publication date
KR20060044390A (en) 2006-05-16
GB0505456D0 (en) 2005-04-20
KR101141178B1 (en) 2012-05-02
KR20120025576A (en) 2012-03-15
GB2412919B (en) 2009-07-01
US20050204639A1 (en) 2005-09-22
TWI390024B (en) 2013-03-21
TW200538536A (en) 2005-12-01
CN1670116B (en) 2010-09-22
CN1670116A (en) 2005-09-21
GB2412919A (en) 2005-10-12
DE102005012607A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
JP2005268667A (en) Polishing composition
JP4912592B2 (en) Polishing composition and method of using the same
JP4113282B2 (en) Polishing composition and edge polishing method using the same
TW201629183A (en) Composition for polishing
IL226558A (en) Composition and method for polishing polysilicon
JP2015057864A (en) Silicon carbide single crystal substrate
JP2005268665A (en) Polishing composition
JP2008270584A (en) Semiconductor wafer polishing composition and polishing method
WO2016181888A1 (en) Polishing composition
JP2009538236A (en) Compositions, methods and systems for polishing aluminum oxide and aluminum oxynitride substrates
TWI433903B (en) Polishing composition for nickel phosphorous memory disks
JP6145501B1 (en) Polishing composition and silicon substrate polishing method
JP6901497B2 (en) Polishing composition and silicon wafer polishing method
JP6010020B2 (en) Polishing composition and polishing method for bulk silicon
JP4759298B2 (en) Abrasive for single crystal surface and polishing method
JP3984902B2 (en) Chemical mechanical polishing aqueous dispersion for polishing polysilicon film or amorphous silicon film, chemical mechanical polishing method using the same, and semiconductor device manufacturing method
WO2001080296A1 (en) Polishing compound for polishing semiconductor device and method for manufacturing semiconductor device using the same
JP5598607B2 (en) Silicon wafer polishing method and polishing agent
JPWO2019043890A1 (en) Method for manufacturing semiconductor wafer
JP2011181948A (en) Polishing composition, and method for reducing clogging of polishing pad using the same
JP2004335664A (en) Polishing composition, preparation method thereof and wafer polishing method using the same
JPH09316431A (en) Polishing slurry
JP2002294223A (en) Polishing agent and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100330

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715