JP2005265780A - Non-destructive inspection device using SQUID magnetic sensor - Google Patents
Non-destructive inspection device using SQUID magnetic sensor Download PDFInfo
- Publication number
- JP2005265780A JP2005265780A JP2004082697A JP2004082697A JP2005265780A JP 2005265780 A JP2005265780 A JP 2005265780A JP 2004082697 A JP2004082697 A JP 2004082697A JP 2004082697 A JP2004082697 A JP 2004082697A JP 2005265780 A JP2005265780 A JP 2005265780A
- Authority
- JP
- Japan
- Prior art keywords
- squid
- magnetic sensor
- magnetic
- nondestructive inspection
- inspection apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
【課題】非破壊検査に必要な印加交流磁界の周波数に何ら影響を及ぼすことなく、低周波帯域を用いた検査が可能となるSQUID磁気センサを用いる非破壊検査装置を提供する。
【解決手段】試料の外部から交流磁界を印加可能な印加コイル3を有するとともに、補償コイル4を用いてSQUID磁気センサ1に侵入する磁気雑音をリアルタイムで遮蔽するアクティブ磁気遮蔽手段を有する。そして、SQUID磁気センサ1に侵入した磁気雑音による出力をSQUID磁気センサ1近辺に配置した補償コイル4にフィードバックしてSQUID磁気センサ1周囲の磁気雑音をリアルタイムで遮蔽する、フィードバック回路を用いる。
【選択図】図1
There is provided a nondestructive inspection apparatus using a SQUID magnetic sensor capable of performing inspection using a low frequency band without affecting the frequency of an applied AC magnetic field necessary for nondestructive inspection.
The present invention includes an application coil 3 capable of applying an alternating magnetic field from the outside of a sample, and an active magnetic shielding means that shields magnetic noise entering the SQUID magnetic sensor 1 using a compensation coil 4 in real time. A feedback circuit is used that shields the magnetic noise around the SQUID magnetic sensor 1 in real time by feeding back the output due to the magnetic noise that has entered the SQUID magnetic sensor 1 to the compensation coil 4 disposed in the vicinity of the SQUID magnetic sensor 1.
[Selection] Figure 1
Description
本発明は、金属材料や導電性複合材料などを用いた構造物に発生する微小欠陥や深部欠陥などの検出において、劣悪な磁気環境下での低雑音計測を可能にするSQUID磁気センサを用いる非破壊検査装置に係り、特に、アクティブ磁気遮蔽手段を用いたSQUID非破壊検査装置に関するものである。 The present invention uses a SQUID magnetic sensor that enables low-noise measurement in a poor magnetic environment in the detection of minute defects and deep defects generated in a structure using a metal material or a conductive composite material. The present invention relates to a destructive inspection apparatus, and more particularly to a SQUID nondestructive inspection apparatus using active magnetic shielding means.
金属材料や導電性複合材料などを用いた構造物における非破壊検査においては、渦電流を誘導して亀裂を検出する渦流探傷法、超音波を用いる超音波試験法、X線を用いるX線試験法がこれまでに実用化されており、さらにSQUID(超伝導量子干渉素子;Supercoducting Quantum Interference Device)磁気センサを用いる非破壊検査方法も提案されている(下記特許文献1参照)。
従来の渦流探傷法では、高い感度を得るには高周波数の渦電流を誘導する必要があるため、試料表面近くのコンマ数mm程度の範囲しか検査が行えないという問題点がある。また、SQUID磁気センサなどと比較すると、感度が不十分である。従来の超音波試験法は、一様な金属材料に対しては優れた検査法であるが、内部が複雑な構造となっている複合材料に対しては、界面で超音波が反射したり散乱したりするため精密な検査が行えない。従来のX線試験法も優れた検査法であるが、X線は一般的に扱いづらく、被爆の問題から特別な施設や資格を必要とするため、汎用性が低い。 In the conventional eddy current flaw detection method, in order to obtain high sensitivity, it is necessary to induce a high-frequency eddy current, and therefore, there is a problem that inspection can be performed only in a range of about a few millimeters near the sample surface. Further, the sensitivity is insufficient as compared with a SQUID magnetic sensor or the like. The conventional ultrasonic testing method is an excellent inspection method for uniform metal materials, but for composite materials with a complex internal structure, ultrasonic waves are reflected or scattered at the interface. Precise inspection is not possible. The conventional X-ray test method is also an excellent inspection method, but X-rays are generally difficult to handle and require special facilities and qualifications due to the problem of exposure, and are therefore less versatile.
一方、SQUID磁気センサを用いた非破壊検査手法は、低周波数帯域においても大変高い感度を有するSQUID磁気センサを用いるため、渦流探傷法よりもはるかに深部および微小な欠陥の検出が可能となる。また、超音波試験法よりは内部の複雑構造の影響を受け難く、複合材料への適用が可能であることも証明されている。さらに、X線試験法のような危険性も少なく、特別な施設や資格の必要性もない。 On the other hand, since the nondestructive inspection method using the SQUID magnetic sensor uses the SQUID magnetic sensor having very high sensitivity even in the low frequency band, it is possible to detect a deeper portion and a minute defect than the eddy current flaw detection method. It has also been proved that it is less susceptible to complex internal structures than ultrasonic testing and can be applied to composite materials. Furthermore, there are few risks like the X-ray test method, and there is no need for special facilities or qualifications.
しかしながら、SQUID磁気センサを用いた非破壊検査手法は、低周波数帯域の強い外部磁場変動に弱く、鉄などの強磁性体の検査を行うには難があった。 However, the nondestructive inspection method using the SQUID magnetic sensor is weak against a strong external magnetic field fluctuation in a low frequency band, and it is difficult to inspect a ferromagnetic material such as iron.
すなわち、SQUID磁気センサを用いた非破壊検査手法においては、これまでに雑音出力を補償コイルを用いてSQUID磁気センサにフィードバックして磁気雑音を遮蔽する磁気雑音低減法が提案されており、フィードバック回路には高周波数遮断フィルタが用いられていた。これにより、低周波における磁気雑音は遮蔽されるが、一方でSQUID磁気センサの最大の長所である低周波数帯域での利用が不可能となり、深部欠陥の検出能力に自ら限界を設けてしまうという問題点があった(上記特許文献2、上記非特許文献1,2参照)。
That is, in the nondestructive inspection method using the SQUID magnetic sensor, a magnetic noise reduction method that shields the magnetic noise by feeding back the noise output to the SQUID magnetic sensor using a compensation coil has been proposed so far. A high-frequency cutoff filter was used. As a result, magnetic noise at low frequencies is shielded, but on the other hand, it cannot be used in the low frequency band, which is the greatest advantage of the SQUID magnetic sensor, and limits the ability to detect deep defects by itself. There were points (see
本発明は、上記状況に鑑みて、非破壊検査に必要な印加交流磁界の周波数に何ら影響を及ぼすことなく、低周波数から高周波数までノイズを減らして、かつ、これまでは困難であったSQUID磁気センサを移動させながら広範囲が検査可能となるSQUID磁気センサを用いる非破壊検査装置を提供することを目的とする。 In view of the above situation, the present invention reduces the noise from the low frequency to the high frequency without affecting the frequency of the applied AC magnetic field necessary for the nondestructive inspection, and the SQUID that has been difficult until now. An object of the present invention is to provide a nondestructive inspection apparatus using a SQUID magnetic sensor capable of inspecting a wide range while moving the magnetic sensor.
〔1〕SQUID磁気センサを用いる非破壊検査装置において、試料の外部から交流磁界を印加可能な印加コイルを有するとともに、補償コイルを用いてSQUID磁気センサに侵入する磁気雑音をリアルタイムで遮蔽するアクティブ磁気遮蔽手段を有することを特徴とする。 [1] In a nondestructive inspection apparatus using a SQUID magnetic sensor, an active magnet that has an application coil capable of applying an AC magnetic field from the outside of the sample and shields magnetic noise entering the SQUID magnetic sensor in real time using a compensation coil It has a shielding means.
〔2〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、SQUID磁気センサに侵入した磁気雑音による出力をSQUID磁気センサ近辺に配置した補償コイルにフィードバックしてSQUID磁気センサ周囲の磁気雑音をリアルタイムで遮蔽する、フィードバック回路を用いたアクティブ磁気遮蔽手段を有することを特徴とする。 [2] In the nondestructive inspection apparatus using the SQUID magnetic sensor as described in [1] above, the magnetic noise around the SQUID magnetic sensor is fed back by feeding back an output due to magnetic noise that has entered the SQUID magnetic sensor to a compensation coil arranged in the vicinity of the SQUID magnetic sensor. An active magnetic shielding means using a feedback circuit that shields noise in real time is provided.
〔3〕上記〔2〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記フィードバック回路は、前記印加コイルから印加する交流磁界の周波数を中心とする狭帯域のみを遮断する帯域遮断フィルタを用いることにより、非破壊検査に用いる周波数の外部印加磁界は遮蔽せず、他の周波数の磁気雑音のみを遮蔽することを特徴とする。 [3] In the nondestructive inspection apparatus using the SQUID magnetic sensor according to [2], the feedback circuit uses a band cutoff filter that blocks only a narrow band centered on the frequency of the AC magnetic field applied from the application coil. Thus, an externally applied magnetic field having a frequency used for nondestructive inspection is not shielded, but only magnetic noise of other frequencies is shielded.
〔4〕上記〔1〕、〔2〕又は〔3〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記SQUID磁気センサが、高温超伝導SQUID、あるいは高温超伝導SQUIDグラジオメータであることを特徴とする。 [4] In the nondestructive inspection apparatus using the SQUID magnetic sensor according to [1], [2] or [3], the SQUID magnetic sensor is a high temperature superconducting SQUID or a high temperature superconducting SQUID gradiometer. Features.
〔5〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記アクティブ磁気遮蔽手段を用い、試料に外部交流磁界を印加して、かつ試料を移動させて走査を行う機構を具備することを特徴とする。 [5] The non-destructive inspection apparatus using the SQUID magnetic sensor according to [1], wherein the active magnetic shielding unit is used to apply an external AC magnetic field to the sample and move the sample to perform scanning. It is characterized by doing.
〔6〕上記〔1〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記アクティブ磁気遮蔽手段を用い、試料に外部交流磁界を印加して、かつ前記SQUID磁気センサを移動させながら走査を行う機構を具備することを特徴とする。 [6] In the nondestructive inspection apparatus using the SQUID magnetic sensor according to [1], scanning is performed using the active magnetic shielding means, applying an external AC magnetic field to the sample and moving the SQUID magnetic sensor. A mechanism is provided.
〔7〕上記〔6〕記載のSQUID磁気センサを用いる非破壊検査装置において、前記アクティブ磁気遮蔽手段を用い、試料に外部交流磁界を印加して、かつ前記SQUID磁気センサをアーム制御機構によって制御される走査アームによって3次元的に移動させながら走査を行うことを特徴とする。 [7] The nondestructive inspection apparatus using the SQUID magnetic sensor according to [6], wherein the active magnetic shielding means is used, an external AC magnetic field is applied to the sample, and the SQUID magnetic sensor is controlled by an arm control mechanism. Scanning is performed while moving three-dimensionally by a scanning arm.
本発明によれば、フィードバック回路に印加交流磁界の周波数を中心とした狭帯域のみを遮断する帯域遮断フィルタを用いることにより、非破壊検査に必要な印加交流磁界の周波数になんら影響を及ぼすことなく、低磁気雑音での検査が可能となる。 According to the present invention, by using a band cutoff filter that cuts only a narrow band centered on the frequency of the applied AC magnetic field in the feedback circuit, the frequency of the applied AC magnetic field necessary for nondestructive inspection is not affected at all. Inspection with low magnetic noise becomes possible.
また、検査に用いる周波数以外の磁気雑音を遮蔽できるため、劣悪な磁気環境下にあっても高精度な検査が可能となり、実用化に大きく寄与することができる。 In addition, since magnetic noise other than the frequency used for inspection can be shielded, high-precision inspection is possible even in a poor magnetic environment, which can greatly contribute to practical use.
さらに、従来の方法では、地磁気の影響によりSQUID磁気センサを移動させて広範囲を走査するということが不可能であったが、本発明によれば、SQUID磁気センサが移動可能となり、従来では困難であった大型構造物の非破壊検査への実用化が可能となる。 Furthermore, in the conventional method, it was impossible to scan the wide range by moving the SQUID magnetic sensor due to the influence of geomagnetism. However, according to the present invention, the SQUID magnetic sensor can be moved, which is difficult in the past. Practical application to nondestructive inspection of existing large structures becomes possible.
SQUID磁気センサを用いる非破壊検査装置において、試料の外部から交流磁界を印加可能な印加コイルを有するとともに、補償コイルを用いてSQUID磁気センサに侵入する磁気雑音をリアルタイムで遮蔽するアクティブ磁気遮蔽手段を設ける。よって、非破壊検査に必要な印加交流磁界の周波数になんら影響を及ぼすことなく、低磁気雑音での検査が可能となる。 In a nondestructive inspection apparatus using a SQUID magnetic sensor, an active magnetic shielding means having an application coil capable of applying an AC magnetic field from the outside of the sample and shielding magnetic noise entering the SQUID magnetic sensor in real time using a compensation coil. Provide. Therefore, inspection with low magnetic noise is possible without affecting the frequency of the applied AC magnetic field necessary for nondestructive inspection.
本発明の実施の形態について図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
図1は本発明の第1実施例を示す非破壊検査装置の模式図である。 FIG. 1 is a schematic view of a nondestructive inspection apparatus showing a first embodiment of the present invention.
この図において、1は高温超伝導SQUID磁気センサ、2は高温超伝導SQUID磁気センサを冷却するための冷凍機、3は外部磁界印加コイル、4は補償コイル、5は帯域遮断フィルタ(BEF)、6は検査対象物(サンプル)、7はその検査対象物(サンプル)6の欠陥、8は検査対象物(サンプル)6を走査するために2次元移動させるサンプル移動用走査台である。
In this figure, 1 is a high-temperature superconducting SQUID magnetic sensor, 2 is a refrigerator for cooling the high-temperature superconducting SQUID magnetic sensor, 3 is an external magnetic field application coil, 4 is a compensation coil, 5 is a band cutoff filter (BEF),
このように、高温超伝導SQUID磁気センサ1は冷凍機2によって冷却され、この高温超伝導SQUID磁気センサ1の回りには外部磁界印加コイル3と補償コイル4とが配置されている。そして、検査対象物(サンプル)6を走査台8に配置し、外部磁界印加コイル3に電流を印加してサンプル6に渦電流を誘導する。サンプル6に欠陥7がある場合、その欠陥7が渦電流の流れを乱し、この乱れた電流により発生する磁界を、冷凍機2で冷却した高温超伝導SQUID磁気センサ1で検出する。高温超伝導SQUID磁気センサ1の出力は、BEF5を通過し、外部印加磁界のもつ周波数以外の成分が補償コイル4にフィードバックされる。これにより、外部印加磁界に対してはなんら影響することなく、外部印加磁界のもつ周波数以外の磁気雑音を補償コイル4が打ち消し、磁界を発生させ、低雑音での欠陥検査が可能となる。
As described above, the high-temperature superconducting SQUID
このような構成によれば、サンプル6が常時強い磁界を発生する鉄などの強磁性体であっても、サンプル6がSQUID磁気センサ1を通過したときに発生する検査に必要でない周波数の磁界を遮蔽することができるため、非磁性体・磁性体を問わず、導電性材料を対象とした、雑音を排除した高精度な非破壊検査が可能となる。
According to such a configuration, even if the
実際に、図1に示す構成をもつSQUID非破壊検査装置を作製し、SQUID出力雑音の測定を行った結果を図2に示す。この図2において、横軸は周波数〔Hz〕、縦軸は磁気雑音〔mφ0 /Hz1/2 〕を示している。 FIG. 2 shows a result of actually manufacturing a SQUID nondestructive inspection apparatus having the configuration shown in FIG. 1 and measuring SQUID output noise. In FIG. 2, the horizontal axis represents frequency [Hz] and the vertical axis represents magnetic noise [mφ 0 / Hz 1/2 ].
ここでは、50Hzを中心とする帯域を遮断する帯域遮断フィルタを用いた。比較のため、アクティブ磁気遮蔽機能を動作させた状態のノイズAに対してアクティブ磁気遮蔽機能を動作させなかった状態のノイズBも測定して、図2に示した。 Here, a band cutoff filter that cuts off a band centering on 50 Hz is used. For comparison, the noise B in the state where the active magnetic shielding function is not operated is also measured with respect to the noise A in the state where the active magnetic shielding function is operated, and is shown in FIG.
この図2に示すように、本発明によるアクティブ磁気遮蔽を適用することにより、アクティブ磁気遮蔽機能を動作させなかった状態と比較して、50Hz周辺を除く全ての周波数帯域において1桁近く環境磁気雑音を低減することができた。 As shown in FIG. 2, by applying the active magnetic shielding according to the present invention, compared with the state where the active magnetic shielding function is not operated, the environmental magnetic noise is nearly an order of magnitude in all frequency bands except around 50 Hz. Was able to be reduced.
図3は本発明による第2実施例を示す非破壊検査装置の模式図である。 FIG. 3 is a schematic view of a nondestructive inspection apparatus showing a second embodiment according to the present invention.
この実施例は、高温超伝導SQUID磁気センサ11、高温超伝導SQUID磁気センサ11を冷却するための冷凍機12、外部磁界印加コイル13、補償コイル14、帯域遮蔽フィルタ(BEF)15、そして検査対象物(サンプル)17を走査するために高温超伝導SQUID磁気センサ11を移動させるセンサ移動用走査機構16から構成される。
In this embodiment, a high-temperature superconducting SQUID
このような構成において、サンプル17をこの非破壊検査装置の下部に配置し、外部磁界印加コイル13に電流を印加してサンプル17に渦電流を誘導する。サンプル17に欠陥18がある場合、その欠陥18が渦電流の流れを乱し、この乱れた電流により発生する磁界を、冷凍機12で冷却した高温超伝導SQUID磁気センサ11で検出する。高温超伝導SQUID磁気センサ11の出力は、BEF15を通過し、外部磁界印加コイル13によって生じる外部印加磁界のもつ周波数以外の成分が補償コイル14にフィードバックされる。これにより、外部印加磁界に対してはなんら影響することなく、地磁気中を移動させることによって高温超伝導SQUID磁気センサ11に鎖交する印加磁界以外の周波数をもつ磁気雑音に対して、補償コイル14が打ち消し磁界を発生させる。これにより高温超伝導SQUID磁気センサ11を移動させながらの欠陥検査が可能となる。
In such a configuration, the
このような構成によれば、サンプル17が容易に移動させられない大型の構造物であっても、広範囲に渡った高精度な非破壊検査が可能となる。実際に、図3に示す構成をもつSQUID非破壊検査装置を作製し、高温超伝導SQUID磁気センサ11の移動と、移動時のSQUID出力雑音の測定を行った。高温超伝導SQUID磁気センサ11を固定した状態、アクティブ磁気遮蔽なしでセンサを移動させた状態、アクティブ磁気遮蔽を動作させてセンサを移動させた状態における、SQUID出力雑音の測定結果を表1に示す。また、より高性能な高温超伝導SQUIDグラジオメータを用いた場合の結果を表2に示す。
According to such a structure, even if it is a large structure in which the
図4は、本発明の第3実施例を示す非破壊検査装置の模式図である。 FIG. 4 is a schematic view of a nondestructive inspection apparatus showing a third embodiment of the present invention.
この実施例は、高温超伝導SQUID磁気センサ21、高温超伝導SQUID磁気センサ21を冷却するための冷凍機22、外部磁界印加コイル23、補償コイル24、帯域遮断フィルタ(BEF)25、冷凍機22ごと高温超伝導SQUID磁気センサ21を移動させるセンサ移動用ロボットアーム(走査アーム)26、アーム制御機構27、車輪28から構成されている。
In this embodiment, a high-temperature superconducting SQUID
このような構成において、実施例2と同様に、地磁気中を移動させることによって高温超伝導SQUID磁気センサ21に鎖交する印加磁界以外の周波数をもつ磁気雑音に対して、補償コイル24が打ち消し磁界を発生させることにより、高温超伝導SQUID磁気センサ21を移動させながらの欠陥検査が可能となる。
In such a configuration, as in the second embodiment, the
このような構成によれば、センサ移動用ロボットアーム(走査アーム)26によりさまざまな運用上の汎用性が生まれ、検査場所や検査対象の大小を問わず、自動操縦による非破壊検査が可能となる。 According to such a configuration, various operational versatility is generated by the sensor moving robot arm (scanning arm) 26, and nondestructive inspection by automatic piloting is possible regardless of the inspection place and the size of the inspection target. .
実際に、図4に示す構成をもつSQUID非破壊検査装置を作製し、高温超伝導SQUID磁気センサの移動と、移動時のSQUID出力雑音の測定を行ったところ、実施例2の表1に示した結果と同等の結果が得られた。すなわち、アクティブ磁気遮蔽の適用以前はSQUID磁気センサを移動させることは不可能であったが、本発明によるアクティブ磁気遮蔽の適用により、32mm/sの速度で高温超伝導SQUID磁気センサを移動させることが可能となった。また、高温超伝導SQUID磁気センサ移動中のSQUID出力雑音に関しては、移動させない状態と比較して、ほぼ同等の雑音レベルを保持することが可能であった。 Actually, a SQUID nondestructive inspection apparatus having the configuration shown in FIG. 4 was manufactured, and the movement of the high-temperature superconducting SQUID magnetic sensor and the measurement of the SQUID output noise during the movement were performed. A result equivalent to that obtained was obtained. That is, it was impossible to move the SQUID magnetic sensor before the application of the active magnetic shielding, but the high temperature superconducting SQUID magnetic sensor can be moved at a speed of 32 mm / s by applying the active magnetic shielding according to the present invention. Became possible. In addition, regarding the SQUID output noise during the movement of the high-temperature superconducting SQUID magnetic sensor, it was possible to maintain a substantially equivalent noise level as compared with the state in which it was not moved.
本発明で用いるSQUID磁気センサとしては、以下のものが好適である。 The following are suitable as the SQUID magnetic sensor used in the present invention.
(1)高温超伝導SQUID
高温超伝導SQUIDとしては、酸化物高温超伝導体を薄膜材料に用いた高い超伝導転移温度をもつSQUID、または酸化物高温超伝導体として、主にイットリウム(Y)系の酸化物材料(YBa2 Cu3 O7-x )を用いたものが好ましい。ただし、YについてはYb、Erなど他のIII A族元素を用いても良い。
(1) High temperature superconducting SQUID
As the high-temperature superconducting SQUID, an SQUID having a high superconducting transition temperature using an oxide high-temperature superconductor as a thin film material, or as an oxide high-temperature superconductor, mainly an yttrium (Y) -based oxide material (YBa Those using 2 Cu 3 O 7-x ) are preferred. However, as for Y, other group IIIA elements such as Yb and Er may be used.
(2)高温超伝導SQUIDグラジオメータ
高温超伝導SQUIDグラジオメータとしては、上記(1)の高温超伝導SQUIDにおいて、磁束を検出する検出コイルに差分型のコイルを用いたものが好ましい。この差分型検出コイルの使用により、空間的に一様な勾配をもつ環境磁気雑音を低減することができる。その場合、検出コイルの形状により、図5に示す一次微分型検出コイル31を有する一次微分型グラジオメータから二次、三次などの高次微分型グラジオメータまでを含む。
(2) High-temperature superconducting SQUID gradiometer As the high-temperature superconducting SQUID gradiometer, in the high-temperature superconducting SQUID of the above (1), one using a differential coil as a detection coil for detecting magnetic flux is preferable. By using this differential detection coil, environmental magnetic noise having a spatially uniform gradient can be reduced. In this case, depending on the shape of the detection coil, the range from the primary differential type gradiometer having the primary differential
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明SQUID磁気センサを用いる非破壊検査装置は、特に製造工場や発電所などの劣悪な磁気環境下における導電性材料の非破壊検査において低雑音化を実現する、あるいは航空機・ロケット・船舶など大型構造物に対する精密な広範囲非破壊検査装置に適している。 The nondestructive inspection apparatus using the SQUID magnetic sensor of the present invention realizes low noise in the nondestructive inspection of conductive materials in a poor magnetic environment such as a manufacturing factory or a power plant, or a large size such as an aircraft, a rocket, a ship, etc. Suitable for precise wide-range nondestructive inspection equipment for structures.
1,11,21 高温超伝導SQUID磁気センサ
2,12,22 冷凍機
3,13,23 外部磁界印加コイル
4,14,24 補償コイル
5,15,25 帯域遮断フィルタ(BEF)
6,17 検査対象物(サンプル)
7,18 検査対象物(サンプル)の欠陥
8 サンプル移動用走査台
16 センサ移動用走査台
26 センサ移動用ロボットアーム(走査アーム)
27 アーム制御機構
28 車輪
31 一次微分型検出コイル
1,11,21 High-temperature superconducting SQUID
6,17 Inspection object (sample)
7, 18 Defect of inspection object (sample) 8 Scan table for moving
27
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004082697A JP2005265780A (en) | 2004-03-22 | 2004-03-22 | Non-destructive inspection device using SQUID magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004082697A JP2005265780A (en) | 2004-03-22 | 2004-03-22 | Non-destructive inspection device using SQUID magnetic sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005265780A true JP2005265780A (en) | 2005-09-29 |
Family
ID=35090469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004082697A Pending JP2005265780A (en) | 2004-03-22 | 2004-03-22 | Non-destructive inspection device using SQUID magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005265780A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111753A (en) * | 2006-10-31 | 2008-05-15 | Osaka Univ | Rail inspection device |
GB2527835A (en) * | 2014-07-03 | 2016-01-06 | Technical Software Consultants Ltd | Apparatus and circuit |
JP2021502559A (en) * | 2017-11-13 | 2021-01-28 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | How to use a non-destructive material inspection system |
CN116047382A (en) * | 2023-03-23 | 2023-05-02 | 浙江工业大学 | Cold atom chip magnetic field signal detection device and detection method |
EP4549926A1 (en) * | 2023-11-01 | 2025-05-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | System and method for spatially resolved measurement of the magnetic flux density of a magnetic stray field at the surface of a test piece |
-
2004
- 2004-03-22 JP JP2004082697A patent/JP2005265780A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111753A (en) * | 2006-10-31 | 2008-05-15 | Osaka Univ | Rail inspection device |
GB2527835A (en) * | 2014-07-03 | 2016-01-06 | Technical Software Consultants Ltd | Apparatus and circuit |
EP2963415A1 (en) * | 2014-07-03 | 2016-01-06 | Technical Software Consultants Limited | Apparatus and circuit for an alternatig current field measurement |
CN105466999A (en) * | 2014-07-03 | 2016-04-06 | 软件技术咨询有限公司 | Apparatus and circuit |
GB2527835B (en) * | 2014-07-03 | 2017-02-22 | Technical Software Consultants Ltd | Compensating element for alternating current field measurement probe |
JP2021502559A (en) * | 2017-11-13 | 2021-01-28 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | How to use a non-destructive material inspection system |
JP7065468B2 (en) | 2017-11-13 | 2022-05-12 | エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー | How to use a non-destructive material inspection system |
CN116047382A (en) * | 2023-03-23 | 2023-05-02 | 浙江工业大学 | Cold atom chip magnetic field signal detection device and detection method |
EP4549926A1 (en) * | 2023-11-01 | 2025-05-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | System and method for spatially resolved measurement of the magnetic flux density of a magnetic stray field at the surface of a test piece |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raj et al. | Practical non-destructive testing | |
Yoshimura et al. | Detection of slit defects on backside of steel plate using low-frequency eddy-current testing | |
Hohmann et al. | Aircraft wheel testing with machine-cooled HTS SQUID gradiometer system | |
JPH06324021A (en) | Non-destructive inspection device | |
Zhang et al. | Flexible probe with array tunneling magnetoresistance sensors for curved structure inspection | |
CN106772140A (en) | Flat magnetic field scanning imaging system based on active-passive composite shielding | |
Mizukami et al. | Experimental and numerical analysis of eddy current sensor signal induced by out-of-plane fiber waviness in carbon fiber composites | |
Hatsukade et al. | Mobile cryocooler-based SQUID NDE system utilizing active magnetic shielding | |
Tsukada et al. | Magnetic property mapping system for analyzing three-dimensional magnetic components | |
JP2005265780A (en) | Non-destructive inspection device using SQUID magnetic sensor | |
JP2006329632A (en) | Nondestructive inspection apparatus and nondestructive inspection method using the same | |
JP2017067743A (en) | Non-destructive inspection device and non-destructive inspection method | |
Wang et al. | AC magnetic flux leakage testing with real-time liftoff compensation using double layer parallel-cable probe | |
Isawa et al. | Traveling DC-SQUID gradiometry for nondestructive evaluation | |
Isawa et al. | Practical scanning SQUID system for nondestructive evaluation | |
JPH01147360A (en) | Deterioration detection method and device | |
Yang et al. | Skin effect in eddy current testing with bobbin coil and encircling coil | |
Isawa et al. | Robotic 3D SQUID imaging system for practical nondestructive evaluation applications | |
Krause et al. | Aircraft wheel and fuselage testing with eddy current and SQUID | |
Safdernejad et al. | A robust multi-frequency mixing algorithm for suppression of rivet signal in GMR inspection of riveted structures | |
Rathod et al. | Low field methods (GMR, Hall Probes, etc.) | |
JP4050248B2 (en) | Non-destructive inspection apparatus and non-destructive inspection method by sensor movement | |
Biruu | High sensitivity two-dimensional electron gas (2DEG) Quantum Well Hall Effect sensors for novel pre-failure engineering stress analysis and non-destructive testing systems | |
Bonavolonta | Surface and inter-phase analysis of composite materials using electromagnetic techniques based on SQUID sensors | |
Watson | Non-destructive testing and evaluation applications of quantum well Hall effect sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20051213 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070911 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070918 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080212 |