[go: up one dir, main page]

JP2005265293A - Waste heat utilizing system of fuel cell - Google Patents

Waste heat utilizing system of fuel cell Download PDF

Info

Publication number
JP2005265293A
JP2005265293A JP2004078564A JP2004078564A JP2005265293A JP 2005265293 A JP2005265293 A JP 2005265293A JP 2004078564 A JP2004078564 A JP 2004078564A JP 2004078564 A JP2004078564 A JP 2004078564A JP 2005265293 A JP2005265293 A JP 2005265293A
Authority
JP
Japan
Prior art keywords
hot water
heat
water
fuel cell
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004078564A
Other languages
Japanese (ja)
Inventor
Yoshinori Morimoto
義則 森本
Yuji Sawada
雄治 澤田
Ken Shibata
憲 柴田
Takeshi Tomio
剛至 富尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004078564A priority Critical patent/JP2005265293A/en
Publication of JP2005265293A publication Critical patent/JP2005265293A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Central Air Conditioning (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat utilizing system of a fuel cell capable of raising temperature of hot water so that it is applicable to a desiccant air conditioner and amount of heat reserve in a hot-water storage tank is increased. <P>SOLUTION: This waste heat utilizing system of the fuel cell is provided with the fuel cell 2 for generating electricity and heat, the hot-water storage tank 4 storing heat as hot water, a solar heat collection device 6 for heating water by utilizing solar heat, the desiccant air conditioner 8, a cooling water circulation flow passage 12 for circulating cooling water of the fuel cell, a stored hot-water circulation flow passage 14 for circulating water in the hot-water storage tank 4, a heat exchanger 16 performing heat exchange between cooling water in the cooling water circulation flow passage 12 and water in the stored hot-water circulation flow passage 14, a first hot-water feeding flow passage 22 for feeding hot water after heat exchange into the solar heat collection device 6, a second hot-water feeding flow passage 24 for feeding hot water from the solar heat collection device 6 toward the hot-water storage tank 4, and a hot-water feeding flow passage 26 for feeding hot water toward the desiccant air conditioner 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池の排熱を利用する排熱利用システムに関する。   The present invention relates to an exhaust heat utilization system that utilizes exhaust heat of a fuel cell.

近年、環境問題、エネルギー効率などの観点から、電気と熱を発生する燃料電池が開発され、家庭用燃料電池として燃料電池反応の作動温度が低い固体高分子形燃料電池が注目されている。このような燃料電池を利用した排熱利用システムは、電気と熱を発生する燃料電池と、排熱を温水として貯える貯湯槽と、燃料電池を通して冷却水を循環する冷却水循環流路と、貯湯槽内の水を循環させる貯湯水循環流路と、冷却水循環流路を流れる冷却水と貯湯水循環流路を流れる水との間で熱交換する熱交換器とを備えている。このような排熱利用システムでは、燃料電池の排熱が冷却水循環流路を流れる冷却水及び貯湯水循環流路を流れる水を介して貯湯槽に伝達され、この貯湯槽に温水として貯えられる。   In recent years, fuel cells that generate electricity and heat have been developed from the viewpoints of environmental problems, energy efficiency, and the like, and polymer electrolyte fuel cells having a low operating temperature for fuel cell reactions have attracted attention as household fuel cells. An exhaust heat utilization system using such a fuel cell includes a fuel cell that generates electricity and heat, a hot water storage tank that stores exhaust heat as hot water, a cooling water circulation passage that circulates cooling water through the fuel cell, and a hot water storage tank A hot water circulation channel for circulating the internal water, and a heat exchanger for exchanging heat between the cooling water flowing through the cooling water circulation channel and the water flowing through the hot water circulation channel. In such an exhaust heat utilization system, the exhaust heat of the fuel cell is transmitted to the hot water storage tank via the cooling water flowing through the cooling water circulation channel and the water flowing through the hot water circulation channel, and is stored as hot water in the hot water storage tank.

このような排熱利用システムでは、燃料電池として固体高分子形燃料電池を用いた場合、その燃料電池反応の作動温度が低く(例えば約80℃程度)、そのために排熱温度も低くなり(例えば60℃程度)、従って、貯湯槽に貯えられる温水の温度を高く保つことが難しく、貯湯槽に貯えられた温水の用途は主として給湯用となる。   In such an exhaust heat utilization system, when a polymer electrolyte fuel cell is used as the fuel cell, the operating temperature of the fuel cell reaction is low (for example, about 80 ° C.), and therefore the exhaust heat temperature is also low (for example, Therefore, it is difficult to keep the temperature of the hot water stored in the hot water tank high, and the use of the hot water stored in the hot water tank is mainly for hot water supply.

このような排熱利用システムにおいては、夏期にように熱需要(給湯用)が電力需要に比べて極端に少なく、熱需要と電力需要とが大きくアンバランスする場合、燃料電池の排熱を充分に利用することができず、エネルギー効率が低下する。また、冬期のように熱需要(給湯用)が電力需要に比して大きい場合、貯湯槽に貯えられた温水では熱需要を充分にまかなうことができず、給湯時に補助熱源(例えば、補助ボイラ)が稼動するようになり、このような場合においてもエネルギー効率が低下する。   In such a waste heat utilization system, if the heat demand (for hot water supply) is extremely small compared to the power demand, as in the summer, and the heat demand and the power demand are largely unbalanced, the exhaust heat of the fuel cell is sufficient. Can not be used for energy efficiency. In addition, when the heat demand (for hot water supply) is larger than the power demand as in the winter season, the hot water stored in the hot water tank cannot sufficiently meet the heat demand, and an auxiliary heat source (for example, an auxiliary boiler) ) Will operate, and even in such a case, energy efficiency is reduced.

このようなことから、燃料電池の排熱を加熱器、例えばガスエンジンの排熱を利用して更に加温するようにしたものも提案されている(例えば、特許文献1参照)。この排熱利用システムでは、燃料電池の排熱がガスエンジンの排熱を利用して更に加熱され、この加熱された排熱を利用して、デシカント空調機器のデシカントホィールに送給される再生空気が再生温度、例えば80℃程度まで加温される。従って、燃料電池の排熱をデシカント空調機器の加温に利用することができ、燃料電池の排熱の有効利用が可能となる。   For this reason, there has also been proposed a device in which the exhaust heat of the fuel cell is further heated using the exhaust heat of a heater, for example, a gas engine (see, for example, Patent Document 1). In this exhaust heat utilization system, the exhaust heat of the fuel cell is further heated using the exhaust heat of the gas engine, and the regenerated air supplied to the desiccant wheel of the desiccant air conditioner using this heated exhaust heat. Is heated to a regeneration temperature, for example, about 80 ° C. Therefore, the exhaust heat of the fuel cell can be used for heating the desiccant air conditioner, and the exhaust heat of the fuel cell can be effectively used.

特開2003−279070号公報JP 2003-279070 A

しかしながら、上述した排熱利用システムでは、燃料電池の排熱をガスエンジンなどの排熱を利用して加温し、デシカント空調機器に適用しているので、デシカント空調機器を運転するときには、上述したようにして排熱を有効利用してエネルギー効率を高めることができるが、デシカント空調機器を運転しないときには、燃料電池の排熱及びガスエンジンの排熱を充分に有効利用することができず、エネルギー効率が低下する問題がある。   However, in the exhaust heat utilization system described above, the exhaust heat of the fuel cell is heated using the exhaust heat of a gas engine or the like and applied to the desiccant air conditioner. In this way, the exhaust heat can be effectively used to increase the energy efficiency. However, when the desiccant air conditioner is not operated, the exhaust heat of the fuel cell and the exhaust heat of the gas engine cannot be effectively utilized. There is a problem that efficiency decreases.

本発明の目的は、燃料電池の排熱を有効利用することができ、夏期においてはデシカント空調機器に適用可能なように温水の温度を上昇させ、冬期においては貯湯槽の蓄熱量が増大するように温水の温度を上昇させることができる燃料電池の排熱利用システムを提供することである。   An object of the present invention is to effectively use the exhaust heat of a fuel cell, to increase the temperature of hot water so that it can be applied to a desiccant air conditioner in summer, and to increase the amount of heat stored in a hot water tank in winter. Another object of the present invention is to provide a fuel cell exhaust heat utilization system capable of increasing the temperature of hot water.

本発明の請求項1に記載の燃料電池の排熱利用システムは、電気と熱を発生する燃料電池と、熱を温水として貯えるための貯湯槽と、太陽熱を利用して水を加温するための太陽熱集熱装置と、熱を消費する熱消費機器と、前記燃料電池を通して冷却水を循環する冷却水循環流路と、前記貯湯槽内の水を循環する貯湯水循環流路と、前記貯湯水循環流路を流れる水を前記太陽熱集熱装置に送給する第1温水送給流路と、前記太陽熱集熱装置からの温水を前記貯湯槽に送給する第2温水送給流路と、前記太陽熱集熱装置からの温水を前記熱消費機器に向けて送給する第3温水送給流路と、前記熱消費機器を通して温水を循環する消費温水循環流路と、前記冷却水循環流路を流れる冷却水と前記貯湯水循環流路を流れる水との間で熱交換を行うための第1熱交換器と、前記第3温水送給流路を流れる温水と前記消費温水循環流路を流れる温水との間で熱交換を行うための第2熱交換器と、を具備し、
前記貯湯槽内の水を前記太陽熱集熱装置を利用して加温するときには、この貯湯槽内の水が、前記貯湯水循環流路及び前記第1熱交換器を通して流れ、前記第1熱交換器において前記冷却水循環流路を循環する冷却水との間で熱交換され、その後前記第1温水送給流路を通して前記太陽熱集熱装置に送給され、前記太陽熱集熱装置で加温された後に前記第2温水送給流路を通して前記貯湯槽に戻され、
また、前記太陽熱集熱装置を利用して加温して前記熱消費機器にて消費するときには、前記貯湯槽内の水が、前記貯湯水循環流路及び前記第1熱交換器を通して流れ、前記第1熱交換器において前記冷却水循環流路を循環する冷却水との間で熱交換され、その後前記第1温水送給流路を通して前記太陽熱集熱装置に送給され、前記太陽熱集熱装置で加温された後に前記第3温水送給流路を通して流れ、前記第2熱交換器において前記消費温水循環流路を通して流れる温水との間で熱交換されることを特徴とする。
A fuel cell exhaust heat utilization system according to claim 1 of the present invention is a fuel cell that generates electricity and heat, a hot water storage tank for storing heat as hot water, and heating water using solar heat. A solar heat collecting device, a heat consuming device that consumes heat, a cooling water circulation passage that circulates cooling water through the fuel cell, a hot water circulation passage that circulates water in the hot water tank, and the hot water circulation flow A first hot water feed channel for feeding water flowing through the path to the solar heat collector, a second hot water feed channel for feeding hot water from the solar heat collector to the hot water storage tank, and the solar heat A third hot water supply passage that feeds hot water from the heat collector toward the heat consuming device, a consumed hot water circulation passage that circulates hot water through the heat consuming device, and cooling that flows through the cooling water circulation passage To exchange heat between the water and the water flowing through the hot water circulation passage Comprising a first heat exchanger, and a second heat exchanger for exchanging heat between the third hot water flowing hot water through the hot water feed channel to the consumption hot-water circulation passage,
When the water in the hot water storage tank is heated using the solar heat collecting device, the water in the hot water storage tank flows through the hot water storage circulation path and the first heat exchanger, and the first heat exchanger Heat exchanged with the cooling water circulating through the cooling water circulation flow path, and then fed through the first hot water feed flow path to the solar heat collecting device and heated by the solar heat collecting device. Returned to the hot water storage tank through the second hot water supply passage,
When the solar heat collecting device is used for heating and consumption by the heat consuming device, the water in the hot water storage tank flows through the hot water storage water circulation channel and the first heat exchanger, and In one heat exchanger, heat is exchanged with the cooling water circulating through the cooling water circulation flow path, and then supplied to the solar heat collecting apparatus through the first hot water supply flow path, and is added by the solar heat collecting apparatus. After being heated, it flows through the third hot water supply passage, and heat is exchanged with the hot water flowing through the consumed hot water circulation passage in the second heat exchanger.

また、本発明の請求項2に記載の燃料電池の排熱利用システムでは、請求項1に記載の構成に加えて、前記第3温水送給流路の下流側は第1及び第2分岐送給流路に分岐され、前記第1分岐送給流路は前記貯湯槽に接続され、前記第2分岐送給流路は前記貯湯水循環流路の前記第1熱交換器より上流側に接続されており、前記第3温水送給流路の分岐部を流れる温水の温度が所定温度以上であるときには、前記第3温水送給流路を流れる温水は前記第1分岐送給流路を通して前記貯湯槽に戻され、前記第3温水送給流路の前記分岐部を流れる温水の温度が設定温度より低いときには、前記第3温水送給流路を流れる温水は前記第2分岐送給流路を通して前記貯湯水循環流路に送給されることを特徴とする。   Further, in the fuel cell exhaust heat utilization system according to claim 2 of the present invention, in addition to the configuration according to claim 1, the downstream side of the third hot water supply passage is provided with first and second branch feeds. The first branch feed channel is connected to the hot water storage tank, and the second branch feed channel is connected upstream of the first heat exchanger of the hot water circulation channel. When the temperature of the hot water flowing through the branch portion of the third hot water supply passage is equal to or higher than a predetermined temperature, the hot water flowing through the third hot water supply passage passes through the first branch supply passage. When the temperature of the warm water returned to the tank and flowing through the branch portion of the third warm water feed channel is lower than a set temperature, the warm water flowing through the third warm water feed channel passes through the second branch feed channel. The hot water is supplied to the hot water circulation path.

また、本発明の請求項3に記載の燃料電池の排熱利用システムでは、請求項1又は2に記載の構成に加えて、前記熱消費機器がデシカント空調装置であることを特徴とする。   Further, in the fuel cell exhaust heat utilization system according to claim 3 of the present invention, in addition to the configuration according to claim 1 or 2, the heat consuming device is a desiccant air conditioner.

本発明の請求項1に記載の燃料電池の排熱利用システムによれば、電気及び熱を発生する燃料電池と太陽熱を利用して加温する太陽熱集熱装置とが組み合わせられ用いられ、燃料電池の排熱を利用して加温された温水が必要に応じて太陽熱集熱装置によって更に加温されて温度が高められる。太陽熱集熱装置により加温するために、貯湯槽内の水を循環する貯湯水循環流路と、貯湯水循環流路の水を太陽熱集熱装置に送給する第1温水送給流路と、太陽熱集熱装置にて加温された温水を貯湯槽に送給する第2温水送給流路と、太陽熱集熱装置にて加温された温水を熱消費機器に向けて送給する第3温水送給流路と、熱消費機器を通して温水を循環する消費温水循環流路とが設けられる。   According to the exhaust heat utilization system for a fuel cell according to claim 1 of the present invention, a fuel cell that generates electricity and heat and a solar heat collector that heats using solar heat are used in combination. The hot water heated using the exhaust heat is further heated by a solar heat collector as necessary to increase the temperature. A hot water circulation channel for circulating water in the hot water storage tank, a first hot water supply channel for feeding water from the hot water circulation channel to the solar heat collector, and solar heat for heating by the solar heat collector A second hot water supply passage for supplying hot water heated by the heat collector to the hot water storage tank, and a third hot water for supplying hot water heated by the solar heat collector toward the heat consuming device. A supply flow path and a consumed hot water circulation path for circulating hot water through the heat consuming device are provided.

貯湯槽内の水を太陽熱集熱装置を利用して加温するときには、この貯湯槽内の水が、貯湯水循環流路及び第1熱交換器を通して流れ、第1熱交換器において、燃料電池を冷却するための冷却水との間で熱交換され、その後第1温水送給流路を通して太陽熱集熱装置に送給され、太陽熱集熱装置で加温された後に第2温水送給流路を通して貯湯槽に戻され、このように第1熱交換器にて加温された後太陽熱集熱装置で更に加温された温水が貯湯槽に送給され、貯湯槽の温水の貯湯温度を高めることができる。   When the water in the hot water tank is heated using a solar heat collector, the water in the hot water tank flows through the hot water circulation path and the first heat exchanger. In the first heat exchanger, the fuel cell is Heat is exchanged with the cooling water for cooling, and then is supplied to the solar heat collector through the first hot water supply passage, and is heated by the solar heat collector and then passed through the second hot water supply passage. The hot water returned to the hot water tank and heated by the solar heat collector after being heated by the first heat exchanger in this way is supplied to the hot water tank to increase the hot water storage temperature of the hot water tank. Can do.

また、太陽熱集熱装置を利用して加温して熱消費機器にて消費するときには、貯湯槽内の水が、貯湯水循環流路及び第1熱交換器を通して流れ、第1熱交換器において燃料電池を冷却するための冷却水との間で熱交換され、その後第1温水送給流路を通して太陽熱集熱装置に送給され、太陽熱集熱装置で加温された後に第3温水送給流路を通して流れ、第2熱交換器において消費温水循環流路の温水との間で熱交換され、このように第1熱交換器にて加温された後太陽熱集熱装置で更に加温された温水が熱消費機器に向けて送給され、熱消費機器の温水と熱交換する温水の温度を高めることができる。   Further, when the solar heat collector is used for heating and consumption by the heat consuming device, the water in the hot water storage tank flows through the hot water storage circulation path and the first heat exchanger, and the fuel in the first heat exchanger. Heat is exchanged with cooling water for cooling the battery, then supplied to the solar heat collector through the first hot water supply passage, and heated by the solar heat collector, and then the third hot water supply flow Heat was exchanged with the hot water in the consumption hot water circulation flow path in the second heat exchanger, heated in the first heat exchanger in this way, and further heated in the solar heat collector. The hot water is supplied toward the heat consuming device, and the temperature of the hot water that exchanges heat with the hot water of the heat consuming device can be increased.

また、本発明の請求項2に記載の燃料電池の排熱利用システムによれば、第3温水送給流路の下流側は第1及び第2分岐送給流路に分岐され、第3温水送給流路の分岐部を流れる温水の温度が所定温度以上であるときには、第3温水送給流路を流れる温水は第1分岐送給流路を通して貯湯槽に戻されるので、熱消費機器による熱消費後の余剰の熱は貯湯槽に温水として貯えることができる。また、第3温水送給流路の分岐部を流れる温水の温度が設定温度より低いときには、前記第3温水送給流路を流れる温水は第2分岐送給流路を通して貯湯水循環流路に送給されるので、この温水は第1熱交換器にて冷却水との間で熱交換されて加温され、更に太陽熱集熱装置にて加温されて熱消費機器して消費されるようになる。   According to the exhaust heat utilization system for a fuel cell according to claim 2 of the present invention, the downstream side of the third hot water supply passage is branched into the first and second branch supply passages, and the third hot water is supplied. When the temperature of the hot water flowing through the branch portion of the feed flow path is equal to or higher than the predetermined temperature, the hot water flowing through the third hot water feed flow path is returned to the hot water storage tank through the first branch feed flow path. Excess heat after heat consumption can be stored as hot water in a hot water tank. In addition, when the temperature of the hot water flowing through the branch portion of the third hot water supply passage is lower than the set temperature, the hot water flowing through the third hot water supply passage is sent to the hot water circulation passage through the second branch supply passage. Since this hot water is heated, it is heated by exchanging heat with the cooling water in the first heat exchanger, and further heated by the solar heat collector and consumed as a heat consuming device. Become.

また、本発明の請求項3に記載の燃料電池の排熱利用システムによれば、熱消費機器がデシカント空調装置であり、貯湯槽の水を燃料電池の冷却水との間で熱交換した後に、この加温された水を太陽熱集熱装置で更に加温することによって、約80℃の温水に加温することができ、これによって、デシカント空調装置を効率よく運転することができる。   According to the exhaust heat utilization system for a fuel cell according to claim 3 of the present invention, the heat consuming device is a desiccant air conditioner, and the water in the hot water tank is exchanged with the cooling water of the fuel cell. By further heating the heated water with a solar heat collector, it can be heated to about 80 ° C. hot water, and the desiccant air conditioner can be operated efficiently.

以下、添付図面を参照して、本発明に従う燃料電池の排熱利用システムについて説明する。図1は、一実施形態の排熱利用システムを簡略的に示すシステム図であり、図2は、図1の排熱利用システムを給水蓄熱モードで運転したときの温水の流れを示す図であり、図3は、図1の排熱利用システムを貯湯槽蓄熱モードで運転したときの温水の流れを示す図であり、図4は、図1の排熱利用システムをデシカント空調モードで運転して温水を貯湯水循環流路に戻すときの温水の流れを示す図であり、図5は、図1の排熱利用システムをデシカント空調モードで運転して温水を貯湯槽に貯めるときの温水の流れを示す図であり、図6は、図1の排熱利用システムを床暖房モードで運転したときの温水の流れを示す図である。   Hereinafter, an exhaust heat utilization system for a fuel cell according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a system diagram schematically illustrating an exhaust heat utilization system according to an embodiment, and FIG. 2 is a diagram illustrating a flow of hot water when the exhaust heat utilization system of FIG. 1 is operated in a water supply heat storage mode. 3 is a diagram showing the flow of hot water when the exhaust heat utilization system of FIG. 1 is operated in the hot water storage heat storage mode, and FIG. 4 is an operation of the exhaust heat utilization system of FIG. 1 in the desiccant air conditioning mode. FIG. 5 is a diagram showing the flow of hot water when returning the hot water to the hot water circulation circuit, and FIG. 5 shows the flow of hot water when the exhaust heat utilization system of FIG. 1 is operated in the desiccant air conditioning mode and hot water is stored in the hot water tank. FIG. 6 is a diagram illustrating a flow of hot water when the exhaust heat utilization system of FIG. 1 is operated in the floor heating mode.

図1において、図示の燃料電池の排熱利用システムは、燃料電池としての固体高分子形燃料電池2と、温水を貯湯するための貯湯槽4と、太陽熱を利用して水(又は温水)を加温するための太陽熱集熱装置6とを備えている。固体高分子形燃料電池2は燃料電池反応によって電気と熱を発生し、また太陽熱集熱装置6は太陽光による熱を集熱して加温し、燃料電池2の排熱及び/又は太陽熱集熱装置6の集熱により加温された温水が貯湯槽4に貯えられ、排熱及び/又は集熱が温水として貯湯槽4に蓄熱される。また、この実施形態では、燃料電池2の排熱及び/又は太陽熱集熱装置6の集熱が熱消費機器としてのデシカント空調装置8及び床暖房装置10で消費されるように構成されている。熱消費機器として、例えば浴室暖房乾燥機などを採用するようにしてもよい。   In FIG. 1, the exhaust heat utilization system of a fuel cell shown in FIG. 1 includes a polymer electrolyte fuel cell 2 as a fuel cell, a hot water storage tank 4 for storing hot water, and water (or hot water) using solar heat. And a solar heat collecting device 6 for heating. The polymer electrolyte fuel cell 2 generates electricity and heat by a fuel cell reaction, and the solar heat collector 6 collects and heats the heat from sunlight, and exhausts heat from the fuel cell 2 and / or solar heat collection. Hot water heated by the heat collection of the device 6 is stored in the hot water storage tank 4, and exhaust heat and / or heat collection is stored in the hot water storage tank 4 as hot water. Moreover, in this embodiment, it is comprised so that the waste heat of the fuel cell 2 and / or the heat collection of the solar thermal collector 6 may be consumed by the desiccant air conditioner 8 and the floor heater 10 as heat consuming equipment. For example, a bathroom heater / dryer may be employed as the heat consuming device.

固体高分子形燃料電池2は冷却水循環流路12が設けられ、固体高分子形燃料電池2を冷却するための冷却水がこの冷却水循環流路12を通して循環される。また、貯湯槽4には貯湯水循環流路14が設けられ、貯湯槽4内の水がこの貯湯水循環流路14を通して循環される。冷却水循環流路12及び貯湯水循環流路14に関連して第1熱交換器16が設けられ、のこの第1熱交換器16において、冷却水循環流路12を流れる冷却水と貯湯水循環流路14を流れる水との間で熱交換が行われ、この熱交換によって、貯湯水循環流路14の水が加温される。   The polymer electrolyte fuel cell 2 is provided with a cooling water circulation channel 12, and cooling water for cooling the polymer electrolyte fuel cell 2 is circulated through the cooling water circulation channel 12. The hot water storage tank 4 is provided with a hot water storage water circulation channel 14, and the water in the hot water storage tank 4 is circulated through the hot water storage water circulation channel 14. A first heat exchanger 16 is provided in association with the cooling water circulation channel 12 and the hot water circulation channel 14, and in this first heat exchanger 16, the cooling water and the hot water circulation channel 14 flowing through the cooling water circulation channel 12. Heat is exchanged with the water flowing through the water, and the water in the hot water circulation channel 14 is heated by this heat exchange.

貯湯水循環流路14には、この第1熱交換器16より上流側に送給ポンプ18が設けられ、この送給ポンプ18の作用によって、貯湯槽4内の水が貯湯水循環流路14を通して循環される。また、第1熱交換器16より下流側には三方切換弁20が設けられ、この三方切換弁20の第1接続部が第1熱交換器16側に接続され、その第2接続部が太陽熱集熱装置6側に接続され、その第3接続部が貯湯槽4側に接続されている。このように構成されているので、三方切換弁20は、第1の切換状態にあるときには第1熱交換器16側と貯湯槽4側とを連通し、第1熱交換器16からの温水を貯湯槽4に導き、第2の切換状態にあるときには、第1熱交換器16側と太陽熱集熱装置6側とを連通し、第1熱交換器16からの温水を後述する如く太陽熱集熱装置6に導く。   The hot water storage circulation path 14 is provided with a feed pump 18 on the upstream side of the first heat exchanger 16, and the water in the hot water tank 4 circulates through the hot water storage circulation path 14 by the action of the feed pump 18. Is done. Further, a three-way switching valve 20 is provided on the downstream side of the first heat exchanger 16, a first connection portion of the three-way switching valve 20 is connected to the first heat exchanger 16 side, and the second connection portion is solar heat. It is connected to the heat collecting device 6 side, and its third connecting portion is connected to the hot water tank 4 side. Since the three-way switching valve 20 is in the first switching state, the three-way switching valve 20 communicates the first heat exchanger 16 side and the hot water tank 4 side, and allows hot water from the first heat exchanger 16 to flow. When guided to the hot water tank 4 and in the second switching state, the first heat exchanger 16 side and the solar heat collector 6 side are communicated, and the hot water from the first heat exchanger 16 is solar heat collected as will be described later. Guide to device 6.

太陽熱集熱装置6は第1温水送給流路22を介して三方切換弁20の第2接続部に接続され、また第2温水送給流路24を介して貯湯槽4に接続されている。また、太陽熱集熱装置6からの温水を熱消費機器としてのデシカント空調装置8に向けて送給するための第1消費温水送給流路26(第3温水送給流路を構成する)と、太陽熱集熱装置6からの温水を熱消費機器としての床暖房装置10に向けて送給するための第2消費温水送給流路28(第3温水送給流路を構成する)とが設けられ、この実施形態では、第1及び第2消費温水送給流路26,28の上流側部が上記第2温水送給流路24に接続され、第2消費温水送給流路28の下流側部が第1消費温水送給流路26に接続されている。また、第1消費温水送給流路26の下流側は二つに分岐され、第1分岐送給流路30は貯湯槽4に接続され、第2分岐送給流路32は貯湯水循環流路14(具体的には、第1熱交換器16よりも上流側の部位)に接続されている。   The solar heat collecting device 6 is connected to the second connecting portion of the three-way switching valve 20 via the first hot water supply passage 22 and is connected to the hot water storage tank 4 via the second hot water supply passage 24. . Moreover, the 1st consumption hot water supply flow path 26 (comprising the 3rd hot water supply flow path) for supplying the hot water from the solar heat collecting device 6 toward the desiccant air conditioner 8 as a heat consuming apparatus; And a second consumption hot water supply passage 28 (which constitutes a third hot water supply passage) for supplying hot water from the solar heat collector 6 toward the floor heating device 10 as a heat consuming device. In this embodiment, the upstream side portions of the first and second consumed hot water feed passages 26, 28 are connected to the second hot water feed passage 24, and the second consumed hot water feed passage 28 The downstream side portion is connected to the first consumed hot water supply passage 26. Further, the downstream side of the first consumption hot water supply passage 26 is branched into two, the first branch supply passage 30 is connected to the hot water tank 4, and the second branch supply passage 32 is a hot water circulation passage. 14 (specifically, upstream of the first heat exchanger 16).

この実施形態では、第2温水送給流路24(具体的には、第1及び第2消費温水送給流路26,28の接続部位よりも下流側の部位)には第1開閉弁34が配設され、第1消費温水送給流路26には第2開閉弁36が配設され、第2消費温水送給流路28には第3開閉弁38が配設されている。また、第1分岐送給流路30には第4開閉弁40が配設され、第2分岐送給流路32には第5開閉弁42が配設されている。従って、第1開閉弁34が開状態で、第2及び第3開閉弁36,38が閉状態のときには、太陽熱集熱装置6からの温水は貯湯槽4に送給されるが、第2開閉弁36が開状態で、第1及び第3開閉弁34,38が閉状態のときには、太陽熱集熱装置6からの温水は第1消費温水送給流路26に送給され、また第3開閉弁38が開で、第1及び第2開閉弁34,36が閉状態のときには、太陽熱集熱装置6からの温水は第2消費温水送給流路28に送給される。更に、第4開閉弁40が開状態で、第5開閉弁42が閉状態のときには、第1消費温水送給流路26からの温水は第1分岐送給流路30を通して貯湯槽4に送給され、また第4開閉弁40が閉状態で、第5開閉弁42が開状態のときには、第1消費温水送給流路26からの温水は第2分岐送給流路32を通して貯湯水循環流路14に送給される。   In this embodiment, the first on-off valve 34 is provided in the second hot water supply passage 24 (specifically, a portion downstream of the connection portion of the first and second consumed hot water supply passages 26, 28). The second on-off valve 36 is disposed in the first consumed hot water feed passage 26, and the third on-off valve 38 is disposed in the second consumed hot water feed passage 28. In addition, a fourth open / close valve 40 is disposed in the first branch supply flow path 30, and a fifth open / close valve 42 is disposed in the second branch supply flow path 32. Accordingly, when the first on-off valve 34 is in the open state and the second and third on-off valves 36 and 38 are in the closed state, the hot water from the solar heat collecting device 6 is supplied to the hot water storage tank 4, but the second on-off valve When the valve 36 is in the open state and the first and third on-off valves 34 and 38 are in the closed state, the hot water from the solar heat collecting device 6 is supplied to the first consumed hot water supply passage 26 and the third open / close is opened. When the valve 38 is open and the first and second on-off valves 34 and 36 are closed, the hot water from the solar heat collecting device 6 is supplied to the second consumed hot water supply passage 28. Furthermore, when the fourth on-off valve 40 is in the open state and the fifth on-off valve 42 is in the closed state, the hot water from the first consumption hot water supply passage 26 is sent to the hot water tank 4 through the first branch supply passage 30. When the fourth open / close valve 40 is closed and the fifth open / close valve 42 is open, the hot water from the first consumption hot water supply flow path 26 flows through the second branch supply flow path 32 to circulate hot water storage water. Sent to the road 14.

第1消費温水送給流路26を流れる温水の熱はデシカント空調装置8にて消費されるように構成されている。デシカント空調装置8は、デシカントホィール、顕熱熱交換器、蒸発冷却器、加熱器などを備えたそれ自体公知の空調装置であり、デシカントサイクルによって、外気を除湿、冷却して室内に導入するとともに、室内空気を加熱、加湿して屋外に排出する。このデシカントサイクルでは、デシカントホィールにおいてデシカントの再生(乾燥)が行われ、このデシカントの再生には約80℃程度の温度が必要であり、室内から屋内に排出される空気が約80℃程度に加熱され、この加熱に第1消費温水送給流路26を流れる温水の熱が利用される。   The heat of the hot water flowing through the first consumption hot water supply passage 26 is configured to be consumed by the desiccant air conditioner 8. The desiccant air conditioner 8 is a publicly known air conditioner including a desiccant wheel, a sensible heat exchanger, an evaporative cooler, a heater, and the like. The desiccant cycle dehumidifies and cools the outside air and introduces it into the room. Heat the room air, humidify it, and discharge it outdoors. In this desiccant cycle, the desiccant is regenerated (dried) in the desiccant wheel. The regeneration of the desiccant requires a temperature of about 80 ° C., and the air discharged from the room to the room is heated to about 80 ° C. The heat of the hot water flowing through the first consumption hot water supply passage 26 is used for this heating.

デシカント空調装置8には、空調用温水循環流路44(消費温水循環流路を構成する)が設けられ、デシカントの再生に用いられる空気を加温するための温水が空調用温水循環流路44を通して循環される。第1消費温水送給流路26及び第1消費温水循環流路44に関連して第1消費熱交換器46(第2熱交換器を構成する)が設けられ、この第1消費熱交換器46において、第1消費温水送給流路26を流れる温水と第1消費温水循環流路44を流れる温水との間で熱交換が行われ、この熱交換によって、第1消費温水循環流路44の温水が加温される。   The desiccant air conditioner 8 is provided with an air-conditioning hot water circulation channel 44 (which constitutes a consumed hot water circulation channel), and hot water for heating air used for regeneration of the desiccant is used for the air-conditioning hot water circulation channel 44. Circulated through. A first consumed heat exchanger 46 (which constitutes a second heat exchanger) is provided in association with the first consumed hot water supply passage 26 and the first consumed hot water circulation passage 44, and this first consumed heat exchanger. In 46, heat exchange is performed between the hot water flowing through the first consumed hot water supply channel 26 and the hot water flowing through the first consumed hot water circulation channel 44, and the first consumed hot water circulation channel 44 is exchanged by this heat exchange. Of warm water.

また、第2消費温水送給流路28を流れる温水の熱は、床暖房装置10にて消費されるように構成されている。床暖房装置10は、放熱チューブを内蔵する放熱パネル、放熱チューブからの均一化する均熱シート及び床面となる仕上げ部材などを備えたそれ自体公知のものであり、放熱チューブを流れる温水の熱によって床面を温め、床面から室内空間を暖房し、放熱チューブを流れる温水の加温に第2消費温水送給流路28を流れる温水の熱が利用される。   Moreover, the heat of the hot water flowing through the second consumption hot water supply passage 28 is configured to be consumed by the floor heating device 10. The floor heating device 10 is a publicly known device including a heat radiating panel having a built-in heat radiating tube, a uniform heat-uniforming sheet from the heat radiating tube, a finishing member to be a floor surface, and the like. Thus, the floor surface is heated, the indoor space is heated from the floor surface, and the heat of the hot water flowing through the second consumed hot water supply passage 28 is used to warm the hot water flowing through the heat radiating tube.

床暖房装置10には、床暖房用温水循環流路48(消費温水循環流路を構成する)が設けられ、床を暖房するために放熱チューブを流れる温水が床暖房用温水循環流路48を通して循環される。第2消費温水送給流路28及び第2消費温水循環流路48に関連して第2消費熱交換器50(第2熱交換器を構成する)が設けられ、この第2消費熱交換器50において、第2消費温水送給流路28を流れる温水と第2消費温水循環流路48を流れる温水との間で熱交換が行われ、この熱交換によって、第2消費温水循環流路48の温水が加温される。   The floor heating device 10 is provided with a hot water circulation channel 48 for floor heating (which constitutes a hot water circulation channel for consumption), and hot water flowing through the heat radiating tube for heating the floor passes through the hot water circulation channel 48 for floor heating. Circulated. A second consumed heat exchanger 50 (which constitutes a second heat exchanger) is provided in association with the second consumed hot water supply passage 28 and the second consumed hot water circulation passage 48, and this second consumed heat exchanger. 50, heat exchange is performed between the hot water flowing through the second consumed hot water supply passage 28 and the hot water flowing through the second consumed hot water circulation passage 48, and the second consumed hot water circulation passage 48 is obtained by this heat exchange. Of warm water.

この排熱利用システムは、更に、システムを制御するための制御装置52及びシステムの運転モードを設定するための運転操作装置54を備えている。この実施形態では、運転操作装置54は、給水蓄熱モード、第1貯湯槽蓄熱モード、第2貯湯槽蓄熱モード、デシカント空調モード及び床暖房モードの運転を設定可能なように構成されている。また、制御手段52は、燃料電池2、太陽熱集熱装置6、送給ポンプ18、三方切換弁20及び第1〜第5開閉弁34〜42を作動制御する。尚、デシカント空調装置8は、例えば専用の空調用リモコン(図示せず)によって、また床暖房装置10は、例えば専用の床暖房用リモコン(図示せず)によって作動制御される。   The exhaust heat utilization system further includes a control device 52 for controlling the system and an operation device 54 for setting the operation mode of the system. In this embodiment, the operation device 54 is configured to be able to set the operation in the water supply heat storage mode, the first hot water tank heat storage mode, the second hot water tank heat storage mode, the desiccant air conditioning mode, and the floor heating mode. The control means 52 controls the operation of the fuel cell 2, the solar heat collector 6, the feed pump 18, the three-way switching valve 20, and the first to fifth on-off valves 34 to 42. The operation of the desiccant air conditioner 8 is controlled by, for example, a dedicated air conditioning remote controller (not shown), and the floor heating apparatus 10 is controlled by, for example, a dedicated floor heating remote controller (not shown).

次に、図1とともに図2〜図6を参照して、上述した燃料電池の排熱利用システムの各種運転モードにおける運転状態について説明する。
運転操作装置54によって給水蓄熱モードを設定したときには、図2に示す運転状態になる。太陽熱集熱装置6には、水道管の如き水供給源(図示せず)に給水弁(図示せず)を介して接続されており、この給水蓄熱モードにおいては、給水弁が開状態になり、第1開閉弁34が開状態になり、また太陽熱集熱装置6が作動される。このような状態においては、水供給源からの水が太陽熱集熱装置6に送給され、この太陽熱集熱装置6にて所定温度(例えば、80℃程度)に加温され、かく加温された温水が第2温水送給流路24を介して貯湯槽4に流れ、太陽熱集熱装置6にて所定温度まで上昇された温水が貯湯槽4に貯えられ、貯湯槽4の蓄熱量を大きくすることができる。尚、このときには、燃料電池2、デシカント空調装置8、床暖房装置10及び送給ポンプ18は作動せず、また第2〜第5開閉弁36〜42が閉状態に保持される。
Next, with reference to FIGS. 2 to 6 together with FIG. 1, the operation state in various operation modes of the above-described fuel cell exhaust heat utilization system will be described.
When the water supply / heat storage mode is set by the operation device 54, the operation state shown in FIG. The solar heat collector 6 is connected to a water supply source (not shown) such as a water pipe via a water supply valve (not shown). In this water supply heat storage mode, the water supply valve is opened. The first on-off valve 34 is opened, and the solar heat collecting device 6 is operated. In such a state, water from the water supply source is supplied to the solar heat collector 6 and heated to a predetermined temperature (for example, about 80 ° C.) by the solar heat collector 6 and thus heated. The heated hot water flows into the hot water storage tank 4 through the second hot water supply passage 24, and the hot water raised to a predetermined temperature by the solar heat collecting device 6 is stored in the hot water storage tank 4, thereby increasing the amount of heat stored in the hot water storage tank 4. can do. At this time, the fuel cell 2, the desiccant air conditioner 8, the floor heating device 10, and the feed pump 18 are not operated, and the second to fifth on-off valves 36 to 42 are kept closed.

また、運転操作装置54によって第1貯湯槽蓄熱モードを設定したときには、図3に示す運転状態になる。燃料電池2、太陽熱集熱装置6及び送給ポンプ18が作動され、三方切換弁20が第2の切換状態に保持され、また第1開閉弁34が開状態になる。このような状態においては、固体高分子形燃料電池2の燃料電池反応によって電気が発生するとともに、この燃料電池2を冷却するための冷却水が冷却水循環流路12を通して循環される。また、送給ポンプ18の作用によって貯湯槽4内の水が貯湯水循環流路14を通して循環され、第1熱交換器16において冷却水循環流路12を流れる温水と貯湯水循環流路14を流れる水との間で熱交換が行われ、この熱交換によって加温された温水(例えば、60℃程度に加温される)が三方切換弁20を通り、第1温水送給流路22を通して太陽熱集熱装置6に送給される。太陽熱集熱装置6は、第1熱交換器16にて加温された温水を更に加温して所定温度(例えば、80℃程度)まで上昇し、かく加温された温水が貯湯槽4に貯えられ、貯湯槽4の蓄熱量を大きくすることができる。尚、このときには、デシカント空調装置8及び床暖房装置10は作動せず、また第2〜第5開閉弁36〜42が閉状態に保持される。   Moreover, when the first hot water storage tank heat storage mode is set by the operation device 54, the operation state shown in FIG. The fuel cell 2, the solar heat collector 6 and the feed pump 18 are operated, the three-way switching valve 20 is held in the second switching state, and the first on-off valve 34 is opened. In such a state, electricity is generated by the fuel cell reaction of the polymer electrolyte fuel cell 2, and cooling water for cooling the fuel cell 2 is circulated through the cooling water circulation passage 12. In addition, the water in the hot water tank 4 is circulated through the hot water circulation channel 14 by the action of the feed pump 18, and the hot water flowing in the cooling water circulation channel 12 and the water flowing in the hot water circulation channel 14 in the first heat exchanger 16. The hot water heated by this heat exchange (for example, heated to about 60 ° C.) passes through the three-way switching valve 20 and passes through the first hot water supply passage 22 to collect solar heat. It is fed to the device 6. The solar heat collector 6 further heats the hot water heated by the first heat exchanger 16 to rise to a predetermined temperature (for example, about 80 ° C.), and the heated hot water is supplied to the hot water storage tank 4. The amount of heat stored in the hot water storage tank 4 can be increased. At this time, the desiccant air conditioner 8 and the floor heater 10 do not operate, and the second to fifth on-off valves 36 to 42 are kept closed.

また、運転操作装置54によってデシカント空調モードを設定したときには、図4(又は図5)に示す運転状態になる。燃料電池2、太陽熱集熱装置6、送給ポンプ18及びデシカント空調装置8が作動され、三方切換弁20が第2の切換状態に保持され、また第2及び第5開閉弁36,42(又は第2及び第4開閉弁36,40)が開状態になる。このような状態においては、上述したと同様に、固体高分子形燃料電池2が発電し、この燃料電池2を冷却するための冷却水が冷却水循環流路12を循環され、また貯湯槽4内の水が貯湯水循環流路14を通して循環され、第1熱交換器16において冷却水循環流路12の温水と貯湯水循環流路14の水との間で熱交換が行われ、この熱交換によって加温された温水(例えば、60℃程度に加温される)が三方切換弁20及び第1温水送給流路22を通して太陽熱集熱装置6に送給される。太陽熱集熱装置6は、第1熱交換器16にて加温された温水を更に加温して所定温度(例えば、80℃程度)まで上昇し、かく加温された温水が第1消費温水送給流路26に送給され、またデシカント空調装置8のデシカントホィール(図示せず)を再生するための空気を加温するための温水が第1消費温水循環流路44を通して循環され、第1消費熱交換器46において第1消費温水送給流路26の温水と第1消費温水循環流路44の温水との間で熱交換が行われ、熱交換により加温された温水によりデシカント空調装置8の再生用空気が加温される。固体高分子形燃料電池2は燃料電池反応の作動温度が低く、その冷却水の熱を利用しても60℃程度の温水しか生成することができないが、この温水を太陽熱集熱装置6にて更に加温することによって80℃程度の温水にすることができ、これによって、デシカント空調装置8の再生用空気の加温に用いることが可能となり、固体高分子形燃料電池2の排熱のデシカント空調機器8への適用が可能となる。   Further, when the desiccant air-conditioning mode is set by the operation device 54, the operation state shown in FIG. 4 (or FIG. 5) is obtained. The fuel cell 2, the solar heat collector 6, the feed pump 18 and the desiccant air conditioner 8 are operated, the three-way switching valve 20 is maintained in the second switching state, and the second and fifth on-off valves 36, 42 (or The second and fourth on-off valves 36, 40) are opened. In such a state, as described above, the polymer electrolyte fuel cell 2 generates electric power, and the cooling water for cooling the fuel cell 2 is circulated through the cooling water circulation passage 12 and also in the hot water tank 4. Is circulated through the hot water circulation channel 14, and heat exchange is performed between the hot water in the cooling water circulation channel 12 and the water in the hot water circulation channel 14 in the first heat exchanger 16. The heated water (for example, heated to about 60 ° C.) is supplied to the solar heat collector 6 through the three-way switching valve 20 and the first hot water supply passage 22. The solar heat collecting device 6 further heats the warm water heated by the first heat exchanger 16 to rise to a predetermined temperature (for example, about 80 ° C.), and the warm water thus heated is the first consumed hot water. Hot water for heating air for regenerating a desiccant wheel (not shown) of the desiccant air conditioner 8 is circulated through the first consumption hot water circulation channel 44 and supplied to the supply channel 26. In the one consumption heat exchanger 46, heat exchange is performed between the hot water in the first consumption hot water supply passage 26 and the hot water in the first consumption hot water circulation passage 44, and the desiccant air conditioning is performed by the hot water heated by the heat exchange. The regeneration air of the device 8 is heated. The polymer electrolyte fuel cell 2 has a low operating temperature of the fuel cell reaction, and can generate only hot water of about 60 ° C. even if the heat of the cooling water is used. This hot water is generated by the solar heat collector 6. By further heating, the water can be heated to about 80 ° C., which can be used for heating the regeneration air of the desiccant air conditioner 8, and the desiccant of the exhaust heat of the polymer electrolyte fuel cell 2. Application to the air conditioner 8 becomes possible.

第1消費熱交換器46の熱交換後の第1消費温水送給流路26の温水の温度が設定温度(例えば、55℃程度であって、第1熱交換器16において冷却水との間で熱交換して加温される温度)以下である場合、図4で示すように、第5開閉弁42が開状態になり、第1消費温水送給流路26からの温水は第2分岐送給流路32を通して貯湯水循環流路14に送給され、第1熱交換器16において燃料電池2の冷却水との間で熱交換された後再び太陽熱集熱装置6に送給され、第1熱交換器16、三方切換弁20、太陽熱集熱装置6及び第1消費熱交換器46を通して循環される。このとき、床暖房装置10は作動せず、第1、第3及び第4開閉弁34,38,40は閉状態に保たれる。   The temperature of the hot water in the first consumed hot water supply passage 26 after the heat exchange of the first consumed heat exchanger 46 is a set temperature (for example, about 55 ° C., and the first heat exchanger 16 is connected to the cooling water. 4, the fifth on-off valve 42 is opened, and the hot water from the first consumed hot water supply passage 26 is in the second branch, as shown in FIG. The hot water is supplied to the hot water circulating flow path 14 through the supply flow path 32, and after being heat exchanged with the cooling water of the fuel cell 2 in the first heat exchanger 16, the heat is again supplied to the solar heat collecting device 6. It is circulated through the 1 heat exchanger 16, the three-way switching valve 20, the solar heat collector 6, and the first consumption heat exchanger 46. At this time, the floor heating device 10 does not operate, and the first, third, and fourth on-off valves 34, 38, 40 are kept closed.

一方、第1消費熱交換器46の熱交換後の第1消費温水送給流路26の温水の温度が上記設定温度を超えている場合、図5で示すように、第4開閉弁40が開状態になり、第1消費温水送給流路26からの温水は第1分岐送給流路30を通して貯湯槽4に送給される。この場合には、貯湯水循環流路14に戻して第1熱交換器16を通して流してもこの第1熱交換器において冷却水との熱交換が行われず、このようなことから貯湯槽4に送給され、その熱量が貯湯槽4に蓄熱され、その蓄熱量が増大する。このとき、床暖房装置10は作動せず、第1、第3及び第5開閉弁34,38,42は閉状態に保たれる。   On the other hand, when the temperature of the hot water in the first consumed hot water supply passage 26 after the heat exchange of the first consumed heat exchanger 46 exceeds the set temperature, as shown in FIG. The hot water from the first consumption hot water supply passage 26 is supplied to the hot water tank 4 through the first branch supply passage 30. In this case, even if the hot water is returned to the hot water circulation passage 14 and flows through the first heat exchanger 16, heat exchange with the cooling water is not performed in the first heat exchanger. The amount of heat is stored in the hot water storage tank 4, and the amount of stored heat increases. At this time, the floor heating apparatus 10 does not operate, and the first, third, and fifth on-off valves 34, 38, 42 are kept closed.

また、運転操作装置54によって床暖房モードを設定したときには、図6に示す運転状態になる。燃料電池2、太陽熱集熱装置6、送給ポンプ18及び床暖房装置10が作動され、三方切換弁20が第2の切換状態に保持され、また第3及び第5開閉弁38,42(又は第3及び第4開閉弁38,40)が開状態になる。この床暖房モードにおいては、太陽熱集熱装置6からの温水が第2消費温水送給流路28を通して流れるとともに、床暖房装置10の放熱チューブ(図示せず)を流れる温水が第2消費温水循環流路46を通して循環され、第2消費熱交換器50において第2消費温水送給流路28の温水と第2消費温水循環流路48の温水との間で熱交換が行われ、熱交換により加温された温水の熱を利用して暖房され、この暖房時においても、太陽熱集熱装置6により温水が80℃程度に加温されるので、効率よく暖房することができる。   Further, when the floor heating mode is set by the operation device 54, the operation state shown in FIG. 6 is obtained. The fuel cell 2, the solar heat collecting device 6, the feed pump 18 and the floor heating device 10 are operated, the three-way switching valve 20 is held in the second switching state, and the third and fifth on-off valves 38, 42 (or The third and fourth on-off valves 38, 40) are opened. In this floor heating mode, hot water from the solar heat collector 6 flows through the second consumed hot water supply passage 28 and hot water flowing through a heat radiating tube (not shown) of the floor heating device 10 is circulated in the second consumed hot water circulation. The heat is exchanged between the hot water in the second consumed hot water supply flow path 28 and the hot water in the second consumed hot water circulation flow path 48 in the second consumed heat exchanger 50 by circulation through the flow path 46. Heating is performed using the heat of the warmed water, and even during this heating, the hot water is heated to about 80 ° C. by the solar heat collector 6, so that heating can be performed efficiently.

この暖房時においても、第2消費熱交換器48の熱交換後の第2消費温水送給流路28の温水の温度が設定温度(例えば、55℃程度)以下である場合、図6に実線で示すように、第5開閉弁42が開状態になり、第2消費温水送給流路28からの温水は第2分岐送給流路32を通して貯湯水循環流路14に送給され、第1熱交換器16において燃料電池2の冷却水との間で熱交換された後再び太陽熱集熱装置6に送給されるが、第2消費熱交換器50の熱交換後の第2消費温水送給流路28の温水の温度が上記設定温度を超えている場合、図5に破線で示すように、第4開閉弁40が開状態になり、第2消費温水送給流路28からの温水は第1分岐送給流路30を通して貯湯槽4に送給される。   Even during the heating, when the temperature of the hot water in the second consumed hot water supply passage 28 after the heat exchange of the second consumed heat exchanger 48 is equal to or lower than a set temperature (for example, about 55 ° C.), a solid line in FIG. As shown in FIG. 5, the fifth on-off valve 42 is opened, and the hot water from the second consumption hot water supply passage 28 is supplied to the hot water circulation passage 14 through the second branch supply passage 32, and the first After the heat exchange with the cooling water of the fuel cell 2 in the heat exchanger 16, the heat is again fed to the solar heat collecting device 6, but the second consumed hot water is fed after the heat exchange of the second consumed heat exchanger 50. When the temperature of the hot water in the supply passage 28 exceeds the set temperature, the fourth on-off valve 40 is opened as shown by the broken line in FIG. 5, and the hot water from the second consumed hot water supply passage 28 is opened. Is fed to the hot water tank 4 through the first branch feed channel 30.

また、運転操作装置54によって第2貯湯槽蓄熱モードを設定したときには、燃料電池2及び送給ポンプ18が作動され、三方切換弁20が第1切換状態に保持される。この運転状態においては、固体高分子形燃料電池2が電気を発生し、その冷却水が冷却水循環流路12を通して循環され、また送給ポンプ18の作用によって貯湯槽4内の水が貯湯水循環流路14を通して循環され、第1熱交換器16において冷却水循環流路12の温水と貯湯水循環流路14の水との間で熱交換が行われ、この熱交換によって加温された温水(例えば、60℃程度に加温される)が三方切換弁20を通って貯湯槽4に送給される。尚、このときには、太陽熱集熱装置6、デシカント空調装置8及び床暖房装置10は作動せず、また第1〜第5開閉弁34〜42が閉状態に保持される。   Further, when the second hot water storage tank heat storage mode is set by the operation device 54, the fuel cell 2 and the feed pump 18 are operated, and the three-way switching valve 20 is held in the first switching state. In this operating state, the polymer electrolyte fuel cell 2 generates electricity, its cooling water is circulated through the cooling water circulation passage 12, and the water in the hot water tank 4 is circulated through the hot water circulation flow by the action of the feed pump 18. Heat is exchanged between the hot water in the cooling water circulation passage 12 and the water in the hot water circulation passage 14 in the first heat exchanger 16 and is heated through the heat exchange (for example, Is heated to about 60 ° C.) through the three-way switching valve 20 and fed to the hot water tank 4. At this time, the solar heat collector 6, the desiccant air conditioner 8, and the floor heater 10 do not operate, and the first to fifth on-off valves 34 to 42 are held closed.

以上、本発明に従う燃料電池の排熱利用システムの一実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。   As mentioned above, although one embodiment of the exhaust heat utilization system of the fuel cell according to the present invention has been described, the present invention is not limited to such an embodiment, and various modifications or corrections can be made without departing from the scope of the present invention. Is possible.

例えば、図示の実施形態では、熱消費機器としてデシカント空調装置8及び床暖房装置10を用いているが、これらのいずれか一方のみを用いるようにしてもよく、或いはこれらに加えて浴室暖房乾燥機を用いるようにしてもよい。   For example, in the illustrated embodiment, the desiccant air conditioner 8 and the floor heating device 10 are used as heat consuming equipment, but only one of these may be used, or in addition to these, a bathroom heating dryer. May be used.

本発明の燃料電池の排熱利用システムは、燃料電池と太陽熱集熱装置とを組み合わせて用い、燃料電池の排熱を利用して加温した温水を太陽熱集熱装置に送給して更に加温して温度を例えば80℃程度まで高めるものである。例えば、燃料電池としての固体高分子形燃料電池は燃料電池反応の作動温度が低く、その排熱を利用しても水を60℃程度までしか加温することができないが、太陽熱集熱装置と組み合わせることによって、温水を80℃程度まで上昇させることができ、このように温水の温度を上昇させることによって、熱消費機器としてのデシカント空調装置に適用することが可能となり、また熱消費機器としての床暖房装置、浴室暖房乾燥機などに適用したときに暖房効率を高めることができる。このように家庭用燃料電池として固体高分子形燃料電池を用いたときにおいても、利用温水の温度を高めて熱消費機器の用途を広くすることができ、またエネルギー利用率を高めることができる。   The fuel cell waste heat utilization system of the present invention uses a combination of a fuel cell and a solar heat collector, and supplies hot water heated using the waste heat of the fuel cell to the solar heat collector for further heating. The temperature is raised to, for example, about 80 ° C. For example, a polymer electrolyte fuel cell as a fuel cell has a low operating temperature of the fuel cell reaction and can only heat water up to about 60 ° C. using the exhaust heat. By combining them, the hot water can be raised to about 80 ° C. Thus, by raising the temperature of the hot water in this way, it can be applied to a desiccant air conditioner as a heat consuming device. When applied to a floor heating device, a bathroom heating dryer, etc., the heating efficiency can be increased. Thus, even when a polymer electrolyte fuel cell is used as a household fuel cell, the temperature of the hot water used can be increased to broaden the application of the heat consuming device, and the energy utilization rate can be increased.

一実施形態の排熱利用システムを簡略的に示すシステム図である。It is a system diagram showing the exhaust heat utilization system of one embodiment simply. 図2は、図1の排熱利用システムを給水蓄熱モードで運転したときの温水の流れを示す図である。FIG. 2 is a diagram illustrating a flow of hot water when the exhaust heat utilization system of FIG. 1 is operated in the water supply heat storage mode. 図1の排熱利用システムを貯湯槽蓄熱モードで運転したときの温水の流れを示す図である。It is a figure which shows the flow of warm water when the waste heat utilization system of FIG. 1 is drive | operated in hot water storage tank thermal storage mode. 図1の排熱利用システムをデシカント空調モードで運転して温水を貯湯水循環流路に戻すときの温水の流れを示す図である。It is a figure which shows the flow of warm water when operating the exhaust-heat utilization system of FIG. 1 in desiccant air-conditioning mode, and returning warm water to the hot water storage water circulation flow path. 図1の排熱利用システムをデシカント空調モードで運転して温水を貯湯槽に貯めるときの温水の流れを示す図である。It is a figure which shows the flow of warm water when operating the exhaust-heat utilization system of FIG. 1 in desiccant air-conditioning mode, and storing warm water in a hot water storage tank. 図1の排熱利用システムを床暖房モードで運転したときの温水の流れを示す図である。It is a figure which shows the flow of warm water when driving the exhaust-heat utilization system of FIG. 1 in floor heating mode.

符号の説明Explanation of symbols

2 固体高分子形燃料電池
4 貯湯槽
6 太陽熱集熱装置
8 デシカント空調装置
10 床暖房装置
12 冷却水循環流路
14 貯湯槽水循環流路
16,46,50 熱交換器
18 送給ポンプ
20 三方切換弁
22,24,26,28 温水送給流路
30,32 分岐送給流路
34,36,38,40,42 開閉弁
44,48 消費温水循環流路
52 制御装置
54 運転操作装置
2 Solid Polymer Fuel Cell 4 Hot Water Storage Tank 6 Solar Heat Collector 8 Desiccant Air Conditioner 10 Floor Heater 12 Cooling Water Circulation Channel 14 Hot Water Tank Circulation Channel 16, 46, 50 Heat Exchanger 18 Feed Pump 20 Three-way Switching Valve 22, 24, 26, 28 Hot water supply flow path 30, 32 Branched supply flow path 34, 36, 38, 40, 42 On-off valve 44, 48 Consumption hot water circulation flow path 52 Control device 54 Operation operation device

Claims (3)

電気と熱を発生する燃料電池と、熱を温水として貯えるための貯湯槽と、太陽熱を利用して水を加温するための太陽熱集熱装置と、熱を消費する熱消費機器と、前記燃料電池を通して冷却水を循環する冷却水循環流路と、前記貯湯槽内の水を循環する貯湯水循環流路と、前記貯湯水循環流路を流れる水を前記太陽熱集熱装置に送給する第1温水送給流路と、前記太陽熱集熱装置からの温水を前記貯湯槽に送給する第2温水送給流路と、前記太陽熱集熱装置からの温水を前記熱消費機器に向けて送給する第3温水送給流路と、前記熱消費機器を通して温水を循環する消費温水循環流路と、前記冷却水循環流路を流れる冷却水と前記貯湯水循環流路を流れる水との間で熱交換を行うための第1熱交換器と、前記第3温水送給流路を流れる温水と前記消費温水循環流路を流れる温水との間で熱交換を行うための第2熱交換器と、を具備し、
前記貯湯槽内の水を前記太陽熱集熱装置を利用して加温するときには、この貯湯槽内の水が、前記貯湯水循環流路及び前記第1熱交換器を通して流れ、前記第1熱交換器において前記冷却水循環流路を循環する冷却水との間で熱交換され、その後前記第1温水送給流路を通して前記太陽熱集熱装置に送給され、前記太陽熱集熱装置で加温された後に前記第2温水送給流路を通して前記貯湯槽に戻され、
また、前記太陽熱集熱装置を利用して加温して前記熱消費機器にて消費するときには、前記貯湯槽内の水が、前記貯湯水循環流路及び前記第1熱交換器を通して流れ、前記第1熱交換器において前記冷却水循環流路を循環する冷却水との間で熱交換され、その後前記第1温水送給流路を通して前記太陽熱集熱装置に送給され、前記太陽熱集熱装置で加温された後に前記第3温水送給流路を通して流れ、前記第2熱交換器において前記消費温水循環流路を通して流れる温水との間で熱交換されることを特徴とする燃料電池の排熱利用システム。
A fuel cell that generates electricity and heat, a hot water tank for storing heat as hot water, a solar heat collector for heating water using solar heat, a heat consuming device that consumes heat, and the fuel A cooling water circulation channel for circulating cooling water through the battery, a hot water circulation channel for circulating water in the hot water tank, and a first hot water supply for supplying water flowing through the hot water circulation channel to the solar heat collector A supply channel, a second hot water supply channel for supplying hot water from the solar heat collector to the hot water storage tank, and a second hot water supply channel for supplying hot water from the solar heat collector toward the heat consuming device. 3. Heat exchange is performed between the hot water supply flow path, the consumed hot water circulation path that circulates hot water through the heat consuming device, the cooling water that flows through the cooling water circulation path, and the water that flows through the hot water storage circulation path. A first heat exchanger, and hot water flowing through the third hot water supply passage Anda second heat exchanger for exchanging heat between the hot water flowing in the consumption hot-water circulation passage,
When the water in the hot water tank is heated using the solar heat collecting device, the water in the hot water tank flows through the hot water circulation path and the first heat exchanger, and the first heat exchanger. Heat exchanged with the cooling water circulating through the cooling water circulation flow path, and then fed through the first hot water feed flow path to the solar heat collecting device and heated by the solar heat collecting device. Returned to the hot water storage tank through the second hot water supply passage,
When the solar heat collecting device is used for heating and consumption by the heat consuming device, the water in the hot water storage tank flows through the hot water storage water circulation channel and the first heat exchanger, and In one heat exchanger, heat is exchanged with the cooling water circulating through the cooling water circulation flow path, and then supplied to the solar heat collecting apparatus through the first hot water supply flow path, and is added by the solar heat collecting apparatus. Use of exhaust heat of a fuel cell, wherein the fuel cell is heated after flowing through the third hot water supply passage and is exchanged with the hot water flowing through the consumed hot water circulation passage in the second heat exchanger system.
前記第3温水送給流路の下流側は第1及び第2分岐送給流路に分岐され、前記第1分岐送給流路は前記貯湯槽に接続され、前記第2分岐送給流路は前記貯湯水循環流路の前記第1熱交換器より上流側に接続されており、前記第3温水送給流路の分岐部を流れる温水の温度が所定温度以上であるときには、前記第3温水送給流路を流れる温水は前記第1分岐送給流路を通して前記貯湯槽に戻され、前記第3温水送給流路の前記分岐部を流れる温水の温度が設定温度より低いときには、前記第3温水送給流路を流れる温水は前記第2分岐送給流路を通して前記貯湯水循環流路に送給されることを特徴とする請求項1に記載の燃料電池の排熱利用システム。   The downstream side of the third hot water feed channel is branched into first and second branch feed channels, the first branch feed channel is connected to the hot water storage tank, and the second branch feed channel Is connected to the upstream side of the first heat exchanger of the hot water circulation passage, and when the temperature of the hot water flowing through the branch portion of the third hot water supply passage is equal to or higher than a predetermined temperature, the third hot water The hot water flowing through the feed channel is returned to the hot water tank through the first branch feed channel, and when the temperature of the hot water flowing through the branch of the third hot water feed channel is lower than a set temperature, the first 2. The exhaust heat utilization system for a fuel cell according to claim 1, wherein the hot water flowing through the three hot water supply passage is supplied to the hot water circulation passage through the second branch supply passage. 前記熱消費機器がデシカント空調装置であることを特徴とする請求項1又は2に記載の燃料電池の排熱利用システム。   The exhaust heat utilization system for a fuel cell according to claim 1 or 2, wherein the heat consuming device is a desiccant air conditioner.
JP2004078564A 2004-03-18 2004-03-18 Waste heat utilizing system of fuel cell Pending JP2005265293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078564A JP2005265293A (en) 2004-03-18 2004-03-18 Waste heat utilizing system of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078564A JP2005265293A (en) 2004-03-18 2004-03-18 Waste heat utilizing system of fuel cell

Publications (1)

Publication Number Publication Date
JP2005265293A true JP2005265293A (en) 2005-09-29

Family

ID=35090038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078564A Pending JP2005265293A (en) 2004-03-18 2004-03-18 Waste heat utilizing system of fuel cell

Country Status (1)

Country Link
JP (1) JP2005265293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922822A (en) * 2010-08-03 2010-12-22 樊光柱 Solar energy 3D digital control system
US9423140B2 (en) 2014-02-16 2016-08-23 Be Power Tech, Inc. Liquid desiccant regeneration system, systems including the same, and methods of operating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922822A (en) * 2010-08-03 2010-12-22 樊光柱 Solar energy 3D digital control system
US9423140B2 (en) 2014-02-16 2016-08-23 Be Power Tech, Inc. Liquid desiccant regeneration system, systems including the same, and methods of operating the same

Similar Documents

Publication Publication Date Title
JP6916600B2 (en) Vehicle battery cooling system
KR102097394B1 (en) Integrated heat Management system in Vehicle
KR101488472B1 (en) Drain device control system of waste heat using mixing valve and the mehtod thereof
KR20100005326A (en) Solar cooling and heating system
JP5980025B2 (en) Fuel cell cogeneration system
JP2008094207A5 (en)
JP2010007950A (en) Cogeneration system
CN114068985A (en) A proton exchange membrane fuel cell combined cooling, heating and power supply system
KR101256869B1 (en) Hybrid absorption type air conditioning system using solar heat
KR20200053996A (en) Heat pump system
JP2009074744A (en) Gas heat pump cogeneration apparatus
KR101610082B1 (en) Heating system for fuel cell vehicle and orerating method thereof
JP3670832B2 (en) Heat supply system
JP4128054B2 (en) Fuel cell system and operating method thereof
JP2018527699A (en) Fuel cell system
JP2005265293A (en) Waste heat utilizing system of fuel cell
JP2020153613A (en) Energy supply system
KR100853177B1 (en) Fuel cell car heating system and heating method using the same
JP4791661B2 (en) Polymer electrolyte fuel cell system
KR20180110967A (en) Self-sufficient solar fresh air heating and water preheating hybrid system
JP2013057435A (en) Heat supply system
JP2004257601A (en) Waste heat collecting system
KR20090021807A (en) Fuel cell system with cooling function
JP2003139434A (en) Thermal storage type air conditioning hot water supply system
JP2009016077A (en) Fuel cell power generator