[go: up one dir, main page]

JP2005262244A - Method for joining metallic member by pulse energization - Google Patents

Method for joining metallic member by pulse energization Download PDF

Info

Publication number
JP2005262244A
JP2005262244A JP2004075500A JP2004075500A JP2005262244A JP 2005262244 A JP2005262244 A JP 2005262244A JP 2004075500 A JP2004075500 A JP 2004075500A JP 2004075500 A JP2004075500 A JP 2004075500A JP 2005262244 A JP2005262244 A JP 2005262244A
Authority
JP
Japan
Prior art keywords
temperature
joining
joined
pulse
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004075500A
Other languages
Japanese (ja)
Inventor
Yoshito Miyasaka
好人 宮坂
Hitoshi Karasawa
均 唐沢
Takayuki Fujimori
隆幸 藤森
Masayuki Ishikawa
政幸 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Netsu Kogyo Co Ltd
Original Assignee
Suwa Netsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Netsu Kogyo Co Ltd filed Critical Suwa Netsu Kogyo Co Ltd
Priority to JP2004075500A priority Critical patent/JP2005262244A/en
Publication of JP2005262244A publication Critical patent/JP2005262244A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining difficultly joinable metallic materials (hard-to-join materials) by pulse energization without an intermediate material such as a brazing filler metal. <P>SOLUTION: When joining two or more conductive metallic members by pulse energization, while pressurizing the joint faces of the metallic members in a state that the faces are abutted, a temperature raising/lowering operation, in which the temperature of the metallic members is raised by applying a pulse current to the members and then lowered under the temperature of their transformation point or solid solution treatment, is repeated a plurality of times. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パルス通電による金属部材の接合方法に関するものである。   The present invention relates to a method for joining metal members by pulse energization.

ロウ付け等の接合方法に対し、近年、パルス通電による接合方法が様々な金属部材の接合に用いられている。
なかでも互いに融点の異なる金属部材同士のパルス通電による接合に際しては、パルス電流の周波数を高くしたり(例えば、特許文献1参照)、或いは被接合材間にロウ材を挟むことにより、初めて充分な接合が可能となった。
In recent years, a joining method based on pulse energization is used for joining various metal members to a joining method such as brazing.
In particular, when joining metal members having different melting points by pulse energization, it is sufficient for the first time by increasing the frequency of the pulse current (see, for example, Patent Document 1) or sandwiching a brazing material between the materials to be joined. Joining became possible.

しかしながら、接合の困難な金属材料(難接合金属材料)、例えばSTAVAX(ウッデホルム株式会社所有の登録商標)等のSUS420J2系の合金(プリハードン鋼)などでは、パルス通電による接合といえどもロウ材を介在させずに接合することは全くできなかった。   However, in metal materials that are difficult to bond (hardly-bonded metal materials), such as SUS420J2 alloys (pre-hardened steel) such as STAVAX (registered trademark owned by Woodeholm Co., Ltd.), brazing material is intervened even when joining by pulse energization It was impossible to join them without using them.

特開2002−103049号公報(第2頁など)JP 2002-103049 A (2nd page, etc.)

本発明は、このような従来の問題点を解消し、ロウ材等の介在物なしに、接合の困難な金属材料(難接合金属材料)をパルス通電により強固に接合する方法を提供することを目的とするものである。   The present invention eliminates such conventional problems and provides a method of strongly joining a metal material that is difficult to join (hardly-joined metal material) by pulse energization without inclusions such as a brazing material. It is the purpose.

本発明者は、上記目的を達成すべく鋭意検討を重ねた。
その結果、本発明者は、「少なくともクロムを含むニッケル基耐熱合金」以外の金属材料について、パルス電流を通電して昇温させ、次いで変態点を挟んで降温させる昇降温操作を複数回繰り返すことにより、ロウ材等の介在物なしに、接合の困難な金属材料(難接合金属材料)をパルス通電により強固に接合することができることを見出した。一方、変態点を持たない、「少なくともクロムを含むニッケル基耐熱合金」については、パルス電流を通電して昇温させ、次いで固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返すことにより、ロウ材等の介在物なしに、パルス通電により強固に接合することができることを見出した。
本発明者は、これらの知見に基づいて本発明を完成するに至った。
The present inventor has intensively studied to achieve the above object.
As a result, the present inventor repeats a temperature raising / lowering operation for a metal material other than “a nickel-based heat-resistant alloy containing at least chromium” by energizing a pulse current and then lowering the temperature across the transformation point a plurality of times. Thus, it has been found that a metal material that is difficult to join (hardly-joined metal material) can be firmly joined by pulse energization without inclusions such as a brazing material. On the other hand, for "a nickel-base heat-resistant alloy containing at least chromium" that does not have a transformation point, the temperature is raised by energizing a pulsed current, and then the temperature is lowered and lowered with the solution treatment temperature interposed therebetween, by repeating multiple times. The present inventors have found that it can be firmly joined by pulse energization without inclusions such as brazing material.
The present inventor has completed the present invention based on these findings.

請求項1に係る本発明は、通電可能な二以上の金属部材をパルス電流の通電により接合するにあたり、前記金属部材の接合面を突き合わせた状態で加圧しつつ、パルス電流を通電して昇温させ、次いで変態点又は固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返すことを特徴とするパルス通電による金属部材の接合方法を提供するものである。
請求項2に係る本発明は、金属部材が、少なくともクロムを含む難接合合金である、請求項1記載の接合方法を提供するものである。
請求項3に係る本発明は、昇温後降温したときの最低温度が900℃以下である、請求項1又は2記載の接合方法を提供するものである。
請求項4に係る本発明は、昇温時の最高温度が1030℃以上である、請求項1乃至3のいずれかに記載の接合方法を提供するものである。
According to the first aspect of the present invention, when two or more metal members that can be energized are joined by energization of a pulse current, the temperature is raised by energizing the pulse current while applying pressure while the joining surfaces of the metal members are in contact with each other. Then, a method for joining metal members by pulse energization is provided, in which a temperature raising / lowering operation of lowering the temperature with the transformation point or solution treatment temperature interposed therebetween is repeated a plurality of times.
The present invention according to claim 2 provides the joining method according to claim 1, wherein the metal member is a hard-to-join alloy containing at least chromium.
The present invention according to claim 3 provides the joining method according to claim 1 or 2, wherein the lowest temperature when the temperature is lowered after the temperature rise is 900 ° C. or lower.
The present invention according to claim 4 provides the joining method according to any one of claims 1 to 3, wherein a maximum temperature at the time of temperature rise is 1030 ° C or higher.

請求項1〜4に係る本発明によれば、ロウ材等の介在物なしに、接合の困難な金属材料(難接合金属材料)をパルス通電により強固に接合することができる。   According to the first to fourth aspects of the present invention, a metal material that is difficult to bond (hardly-bonded metal material) can be firmly bonded by pulse energization without inclusions such as a brazing material.

以下、本発明の実施の形態を示す。
請求項1に係る本発明は、パルス通電による金属部材の接合方法に関し、通電可能な二以上の金属部材をパルス電流の通電により接合するにあたり、前記金属部材の接合面を突き合わせた状態で加圧しつつ、パルス電流を通電して昇温させ、次いで変態点又は固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返すことを特徴とするものである。
Embodiments of the present invention will be described below.
The present invention according to claim 1 relates to a method of joining metal members by pulse energization. When joining two or more metal members that can be energized by energization of a pulse current, pressurization is performed with the joining surfaces of the metal members abutting each other. While raising and lowering the temperature by energizing the pulse current and then lowering the temperature with the transformation point or solution treatment temperature sandwiched, the temperature raising and lowering operation is repeated a plurality of times.

ここで接合する金属部材は二つに限られず、二以上の金属部材を同時に接合することもできる。棒状の金属部材の場合には、直列に複数本突き合わせた状態で加圧すれば、同時に複数の接合面を接合することができる。また、このように直列に接合した金属部材を複数組平行に配列して、これらを同時に加圧・通電すれば、より多数の接合を同時に行うことができる。   Here, the number of metal members to be joined is not limited to two, and two or more metal members can be joined at the same time. In the case of a rod-shaped metal member, a plurality of joint surfaces can be joined at the same time by applying pressure in a state where a plurality of the metal members are butted in series. Further, if a plurality of metal members joined in series in this way are arranged in parallel and are simultaneously pressurized and energized, a larger number of joints can be performed simultaneously.

接合しうる金属部材としては、通電可能なものであれば、その種類や形状等は特に制限されない。例えば、接合しうる金属部材としては、例えば、高速度工具鋼(ハイス鋼)、ダイス鋼(SKD)、ステンレス鋼(SUS)などの鉄鋼材料;銅、アルミニウム、亜鉛、非鉄合金などの非鉄金属;ニッケル基耐熱合金、形状記憶合金、耐熱合金、防振合金、防音合金、シールド材などの特殊合金;放電プラズマ焼結体、ホットプレス焼結体などの焼結金属;高温になると導電性を呈するセラミックなどの部材;半導体;単結晶材料などが挙げられる。
とりわけ本発明は、接合の困難な金属材料(難接合金属材料)の接合に好適である。
そのような難接合金属材料としては、例えば、請求項2に記載したように、少なくともクロムを含む難接合合金などが挙げられる。
具体的には、少なくともクロムを含む鉄基(Fe基)合金や、少なくともクロムを含むニッケル基(Ni基)合金などが挙げられる。
少なくともクロムを含むFe基合金としてより具体的には、例えば、JISで定めるSKD11、SKD61、SUS420J2、SNCM420、SKH51などが挙げられる。これらはいずれも少なくともクロムを3%以上含むFe基合金である。
また、少なくともクロムを含むNi基合金としてより具体的には、例えば、析出効果形Ni基合金 Inconel 718 やマトリックス強化形Ni基合金 Inconel 600 などが挙げられる。
The metal member that can be joined is not particularly limited as long as it can be energized. For example, examples of metal members that can be joined include steel materials such as high-speed tool steel (high-speed steel), die steel (SKD), and stainless steel (SUS); non-ferrous metals such as copper, aluminum, zinc, and non-ferrous alloys; Nickel-based heat-resistant alloys, shape memory alloys, heat-resistant alloys, vibration-proof alloys, sound-proof alloys, shield materials, and other special alloys; sintered metals such as discharge plasma sintered bodies and hot-press sintered bodies; exhibit conductivity at high temperatures Materials such as ceramics; semiconductors; single crystal materials and the like.
In particular, the present invention is suitable for joining metal materials that are difficult to join (hardly-joined metal materials).
As such a difficult-to-join metal material, for example, as described in claim 2, a difficult-to-join alloy containing at least chromium is cited.
Specifically, an iron-based (Fe-based) alloy containing at least chromium, a nickel-based (Ni-based) alloy containing at least chromium, or the like can be given.
More specifically, examples of the Fe-based alloy containing at least chromium include SKD11, SKD61, SUS420J2, SNCM420, and SKH51 defined by JIS. These are all Fe-based alloys containing at least 3% chromium.
More specifically, examples of Ni-based alloys containing at least chromium include precipitation effect Ni-based alloys Inconel 718 and matrix-reinforced Ni-based alloys Inconel 600.

接合する金属部材としては、上記したように通電可能なものであれば、その種類は特に制限されないが、極めて高精度の寸法加工が施されたものを用いることが好ましい。また、接合する金属部材の両面又は片面は、予め洗浄し、汚れや付着物などを取り除いておくことが望ましい。具体的には例えば、超音波等を用い、イソプロパノールなどの有機溶剤を用いて接合する金属部材の両面又は片面を洗浄しておくことが望ましい。或いは、接合する金属部材の両面又は片面に、スパッタ、洗浄液等による清浄化を施し、接合界面の異物、酸化膜、不動態被膜等を除去して接合を行っても良い。さらには、接合する金属部材の両面又は片面に、アルゴン雰囲気下でのプラズマ処理もしくは大気圧下でのプラズマ照射処理による界面改質を施しておいても良い。このようなアルゴン雰囲気下でのプラズマ処理による界面改質を施すことにより、界面の酸化被膜等を除去し、接合を容易ならしめることができる。   The metal member to be joined is not particularly limited as long as it can be energized as described above, but it is preferable to use a member subjected to dimensional processing with extremely high accuracy. In addition, it is desirable that both surfaces or one surface of the metal member to be bonded be cleaned in advance to remove dirt, deposits, and the like. Specifically, for example, it is desirable to wash both surfaces or one surface of the metal member to be joined using an ultrasonic solvent or the like and an organic solvent such as isopropanol. Alternatively, the both surfaces or one surface of the metal member to be bonded may be cleaned by sputtering, cleaning liquid, or the like, and the foreign material, oxide film, passive film, or the like at the bonding interface may be removed for bonding. Furthermore, interface modification by plasma treatment under an argon atmosphere or plasma irradiation treatment under atmospheric pressure may be performed on both surfaces or one surface of the metal members to be joined. By performing such interface modification by plasma treatment in an argon atmosphere, the oxide film and the like at the interface can be removed, and the bonding can be facilitated.

さらに、接合する金属部材としては、接合面の両面又は片面に鏡面乃至平滑化処理を施されたものが好ましい。接合面の両面又は片面に鏡面乃至平滑化処理を施す方法としては、研磨、バフ仕上げ等公知の方法が挙げられる。この処理により接合面の表面粗度を0.5μm以下の鏡面乃至平滑面に仕上げておくことが望ましい。
なお、パルス通電による接合を行うにあたっては、接合する金属部材は、必要に応じて、Vブロックなどを用いて正確な位置決めを行ってもよい。
Furthermore, as a metal member to join, the thing to which the mirror surface thru | or smoothing process was given to both surfaces or one side of the joining surface is preferable. Examples of a method for applying a mirror surface or a smoothing treatment to both surfaces or one surface of the joint surface include known methods such as polishing and buffing. It is desirable to finish the surface roughness of the joining surface to a mirror surface or a smooth surface of 0.5 μm or less by this treatment.
In joining by pulse energization, the metal member to be joined may be accurately positioned using a V block or the like as necessary.

本発明においては、上記した如き各種金属部材について、2種以上複数の金属部材を同時に接合することができ、同種金属部材同士で、或いは異種金属部材同士を組み合わせて接合することができる。
具体的には、鉄鋼材料同士の接合、鉄鋼材料と非鉄金属や特殊合金との接合、非鉄金属同士(アルミニウム同士、銅同士など)の接合、特殊合金同士の接合等を行うことができる。
また、形状記憶合金、磁性材、非磁性材などの組み合わせのように異なった特性を有する部材同士の接合にも用いることができる。
さらに、接合面の両面又は片面に任意な形状の加工溝を施し、接合によって、直線、曲線を含む流体の通路、細穴、スリット、溜まり場等を形成することができる。
In the present invention, two or more kinds of metal members can be joined at the same time with respect to the various metal members as described above, and the same kind of metal members or different kinds of metal members can be joined together.
Specifically, joining of steel materials, joining of steel materials and non-ferrous metals and special alloys, joining of non-ferrous metals (such as aluminum and copper), and joining of special alloys can be performed.
It can also be used to join members having different characteristics such as a combination of shape memory alloy, magnetic material, non-magnetic material and the like.
Furthermore, a processing groove having an arbitrary shape is formed on both surfaces or one surface of the joint surface, and a fluid passage including a straight line and a curve, a narrow hole, a slit, a pool, and the like can be formed by joining.

本発明は、熱交換流路内蔵各種金型・液体気体材料の曲線通路内蔵マニホールド、タービンブレード、エンジンバルブ、ピストンヘッド、燃料電池冷却板、燃料噴射ノズル、繊維材料噴射ノズル、半導体発熱部冷却板、油圧部をはじめ、微小細穴スリットを有した極細パンチ型、光ファイバーコネクター及びターミナル部、ロケットエンジン燃焼部等冷却パイプ接合、磁性材非磁性材接合によるセンサー電磁弁などへ応用することができる。   The present invention includes various molds with built-in heat exchange channels, manifolds with built-in curved passages for liquid gas materials, turbine blades, engine valves, piston heads, fuel cell cooling plates, fuel injection nozzles, fiber material injection nozzles, semiconductor heating unit cooling plates It can be applied to a hydraulic solenoid, an ultra-fine punch type with a fine hole slit, an optical fiber connector and terminal part, a cooling pipe joint such as a rocket engine combustion part, and a sensor electromagnetic valve by a magnetic material non-magnetic material joint.

接合すべき金属部材の形状は特に制限はなく、例えばバルク状(固体)でも良いし、1mm以下程度の薄板状でも良いし、パイプ状、波板状などであっても良い。本発明は、これら各種形状の金属部材について、同一形状のもの同士、或いは異なる形状のもの同士の相互の接合に利用することができる。
なお、接合面は、平坦であっても良いし、両接合面間に隙間が形成されないようにすれば曲面であっても良い。
さらに接合面を、第1の金属部材の接合面と第2の金属部材の接合面が相互に密着するように、相補的な接合面形状に加工しておくこともできる。例えば、一方の金属部材の接合面が凸曲面の場合には、これと密着するような凹曲面を他方の金属部材の接合面形状として採用することもできる。
The shape of the metal members to be joined is not particularly limited, and may be, for example, a bulk shape (solid), a thin plate shape of about 1 mm or less, a pipe shape, a corrugated plate shape, or the like. The present invention can be used for joining various shapes of metal members having the same shape or different shapes.
The joining surface may be flat or a curved surface so long as no gap is formed between the joining surfaces.
Further, the joint surface can be processed into a complementary joint surface shape so that the joint surface of the first metal member and the joint surface of the second metal member are in close contact with each other. For example, when the joint surface of one metal member is a convex curved surface, a concave curved surface that is in close contact with the metal member can be adopted as the shape of the joint surface of the other metal member.

請求項1に係る本発明は、このような通電可能な二以上の金属部材をパルス電流の通電により接合するにあたり、前記金属部材の接合面を突き合わせた状態で加圧しつつ、パルス電流を通電して昇温させ、次いで変態点又は固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返すことを特徴とするものである。
パルス電流を通電するにあたり、まず前記金属部材を突き合わせ、突き合わせた状態で加圧する。
より具体的には、必要に応じて上記のようにして接合面の両面又は片面を処理しておいた後、該接合面を互いに突き合わせ、突き合わせられた接合面を密着させるように加圧する。
According to the first aspect of the present invention, when two or more metal members that can be energized are joined by energization of a pulse current, the pulse current is energized while applying pressure while the joining surfaces of the metal members are in contact with each other. The temperature raising / lowering operation of raising the temperature and then lowering the temperature across the transformation point or the solution treatment temperature is repeated a plurality of times.
When energizing the pulse current, first, the metal member is abutted and pressurized in the abutted state.
More specifically, after both surfaces or one surface of the bonding surface is processed as described above as necessary, the bonding surfaces are butted against each other, and pressure is applied so that the butted bonding surfaces are brought into close contact with each other.

接合面に対する加圧力は、金属部材の持つ固有の硬度、耐圧力等により様々に異なるが、一般には1〜700MPaの範囲内、好ましくは10〜200MPaの範囲内とすれば良い。加圧方向は1軸方向のみでなく、直交する方向や斜め方向など、多軸方向から加えることもできる。
なお、電極方向と接合界面加圧方向とは、異なっていても良いし、同じであっても良い。
接合部材と接する電極の形状は、接合部材の形状に合わせ、円盤状でも、通電可能なローラー状でも良いし、さらには彫り込んだものであっても良い。接合部材を挟む電極は、カーボン材でも、モリブデン材でも良いが、カーボン材がより好ましい。
The pressure applied to the joint surface varies depending on the inherent hardness, pressure resistance, etc. of the metal member, but is generally in the range of 1 to 700 MPa, preferably in the range of 10 to 200 MPa. The pressing direction can be applied not only from a single axis direction but also from a multi-axis direction such as an orthogonal direction or an oblique direction.
The electrode direction and the bonding interface pressing direction may be different or the same.
The shape of the electrode in contact with the bonding member may be a disk shape, a roller shape that can be energized, or may be engraved according to the shape of the bonding member. The electrode sandwiching the bonding member may be a carbon material or a molybdenum material, but a carbon material is more preferable.

請求項1に係る本発明においては、このように二以上の金属部材の接合面を突き合わせた状態で加圧しつつ、パルス電流を通電する。
より詳しくは、二以上の金属部材の接合面を互いに突き合わせ、突き合わせられた接合面を密着させるように所定の圧力で加圧しつつ、接合する金属部材の任意な方向に一対の電極をあて、接合すべき金属部材のみにパルス通電させる。
In the present invention according to claim 1, a pulse current is applied while applying pressure in a state where the joint surfaces of two or more metal members are in contact with each other.
More specifically, the bonding surfaces of two or more metal members are abutted with each other, and a pair of electrodes are applied to any direction of the metal members to be bonded while pressurizing at a predetermined pressure so that the abutted bonding surfaces are brought into close contact with each other. Only the metal member to be pulsed is energized.

ここで「接合する金属部材のみにパルス通電させる。」とは、接合する金属部材以外に通電するようなものを使用しないということであり、換言すると放電プラズマ焼結法で一般に用いられている、接合する金属部材を取り囲むようなカーボン型を使用しないということである。
電極間に接合する金属部材以外の金属部材を取り囲む通電可能なカーボン型を使用しないことによって、通電可能なカーボン型を使用することによる電流密度の低下を防ぎ、また、接合する金属部材側帯部の直接温度制御を可能にして効率の良い接合をし、併せて、これまでカーボン型の中で円盤又は円柱状のみしかできなかった接合金属部材の形状的制約を排除し、任意な形状の接合が可能となり、飛躍的に接合範囲を拡大した。
請求項1に係る本発明においては、上記したように接合する金属部材を取り囲むカーボン型を使用せず、接合する金属部材のみに通電させることにより、電流密度を上げ、接合界面間にパルス電流を流すことによって、パルス通電による接合処理を行う。
Here, “pulsed current is applied only to the metal member to be joined” means that a material other than the metal member to be joined is not used. In other words, it is generally used in the discharge plasma sintering method. This means that a carbon mold surrounding the metal members to be joined is not used.
By not using an energizable carbon mold that surrounds a metal member other than the metal member to be joined between the electrodes, it is possible to prevent a decrease in current density due to the use of an energizable carbon mold, and to Enables direct temperature control to achieve efficient bonding, and eliminates the shape restrictions of bonded metal members that could only be made in the shape of a disk or cylinder in the carbon mold so far. It became possible, and the joining range was dramatically expanded.
In the present invention according to claim 1, the current density is increased by energizing only the metal member to be joined without using the carbon mold surrounding the metal member to be joined as described above, and a pulse current is generated between the joining interfaces. By performing the flow, a bonding process by pulse energization is performed.

このとき、突き合わせられた接合面近傍を外部から強制的に加熱しながら通電させることができる。これにより長尺の部材などを短時間に効率良く接合することができる。
このような外部から強制的に加熱する手段としては特に制限はないが、ニクロム線等の直接加熱方式、或いはマイクロ波誘導加熱、ミリ波誘導加熱、サブミリ波誘導加熱などの誘導加熱方式が最も好ましい。この他に高周波加熱等が挙げられ、これらの1種を単独で、或いは2種以上を組み合わせて用いることができる。
外部から強制的に加熱する際の加熱時間は、一般的には60分以下とすれば良い。
また、接合する金属部材の熱の発散を防止し、温度ムラを防ぐために、接合する金属部材外周に、1重乃至多重の反射板を設置することができる。
At this time, it is possible to energize the vicinity of the butted joint surfaces while forcibly heating from the outside. Thereby, a long member etc. can be joined efficiently in a short time.
There are no particular restrictions on the means for forcibly heating from the outside, but direct heating methods such as nichrome wire, or induction heating methods such as microwave induction heating, millimeter wave induction heating, submillimeter wave induction heating are most preferable. . In addition, high-frequency heating and the like can be mentioned, and one of these can be used alone, or two or more can be used in combination.
The heating time for forcibly heating from the outside may generally be 60 minutes or less.
Moreover, in order to prevent the heat | fever divergence of the metal member to join and to prevent temperature nonuniformity, a single to multiple | multiplex reflection board can be installed in the metal member outer periphery to join.

パルス通電接合は、通常、真空又は不活性ガス雰囲気中において行われる。即ち、パルス通電接合を行う際には、真空雰囲気としておくことが望ましいが、窒素ガス、アルゴンガス等の不活性ガス雰囲気下において行っても良い。   The pulse current bonding is usually performed in a vacuum or an inert gas atmosphere. That is, it is desirable to perform a pulse energization bonding in a vacuum atmosphere, but it may be performed in an inert gas atmosphere such as nitrogen gas or argon gas.

また、パルス電流としては、直流パルス電流でも交流パルス電流のどちらでも可能であるが、通常直流パルス電流が用いられる。パルス電流は、周波数3〜160Hzの範囲で通電させればよい。
請求項1に係る本発明においては、上記したように接合する金属部材を取り囲むカーボン型を使用せず、接合すべき金属部材のみに通電させることにより、電流密度を上げ、接合界面間にデューティー比、つまりパルスのONとOFFの比(ON/ON+OFF)が50〜99%(パルスのON:OFFの比=1:1〜99:1)のパルス電流を流すことが好ましい。
パルス電流のデューティー比については、上記範囲内であれば通電可能な金属部材に全て有効であるが、金属部材の種類によっては、より適切なデューティー比の範囲がある。
例えば、金属部材として炭素鋼S45Cを用いた場合、パルス電流のデューティー比としては、パルスのON:OFFの比=75:25〜99:1の範囲が好ましいが、より好ましい範囲としては、90:10〜98:2の範囲が推奨される。
このようなパルスのON時間の比率の高いパルス電流を流し、自己発熱により全体を緩やかに昇温させて、なるべく部材全体を均一に昇温させることが好ましい。
また、パルス電流としては、100〜50000A、好ましくは300〜30000Aの範囲のものが用いられ、電圧は100V以下から1v程度が実用範囲であるが、これに制限されるものではない。
The pulse current can be either a direct current pulse current or an alternating current pulse current, but a direct current pulse current is usually used. The pulse current may be energized within a frequency range of 3 to 160 Hz.
In the present invention according to claim 1, the current density is increased by energizing only the metal member to be joined without using the carbon mold surrounding the metal member to be joined as described above, and the duty ratio is increased between the joining interfaces. That is, it is preferable to flow a pulse current having a pulse ON / OFF ratio (ON / ON + OFF) of 50 to 99% (pulse ON: OFF ratio = 1: 1 to 99: 1).
The duty ratio of the pulse current is effective for all energizable metal members within the above range, but there is a more appropriate duty ratio range depending on the type of metal member.
For example, when carbon steel S45C is used as the metal member, the duty ratio of the pulse current is preferably a pulse ON: OFF ratio = 75: 25 to 99: 1, but a more preferable range is 90: A range of 10-98: 2 is recommended.
It is preferable that a pulse current having a high ON time ratio of such a pulse is supplied, the temperature of the entire member is gradually increased by self-heating, and the temperature of the entire member is increased as uniformly as possible.
Moreover, as a pulse current, the thing of the range of 100-50000A, Preferably 300-30000A is used, The voltage is about 100V or less to about 1v, However, It is not restrict | limited to this.

請求項1に係る本発明においては、このようなパルス電流を通電して昇温させ、次いで変態点又は固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返すこと、つまり2回以上繰り返すことが必要である。より詳しくは、接合する金属部材の変態点又は固溶化処理温度を挟んでの昇降温操作を繰り返すことが必要である。
ここで「変態点又は固溶化処理温度」としたのは、「少なくともクロムを含むNi基耐熱合金」は変態点を持たないことから、「少なくともクロムを含むNi基耐熱合金」については、「変態点」に代えて、この変態点に相当すると認められる「固溶化処理温度」としたものである。
昇温時の最高温度と降温時の最低温度については、接合する金属部材の種類等により異なり一義的に定めることは困難であるが、通常、昇温時の最高温度は950℃以上であり、また、昇温後降温したときの最低温度は900℃以下である。
例えば、金属部材が難接合材であるFe基合金、特にクロムを含むFe基合金である場合、昇温時の最高温度は1000℃以上を必要とする。
請求項2に記載したような、少なくともクロムを含む難接合合金の場合には、特にこの昇降温操作の繰り返しが有効であり、昇温時の最高温度は1030℃以上とする必要がある。特に金属部材が少なくともクロムを含むNi基耐熱合金である場合には、昇温時の最高温度は1100℃以上とすることが望ましい。
ここで昇温時の最高温度には、昇降温操作の間に少なくとも1回以上到達すればよい。
一方、例えば、金属部材が、少なくともクロムを含むFe基合金である場合、昇温後降温したときの最低温度は900℃以下であることが必要であり、好ましくは780℃以下である。また、金属部材が少なくともクロムを含むNi基耐熱合金である場合には、昇温後降温したときの最低温度は800℃以下であることが望ましい。
昇温時の最高温度と昇温後降温したときの最低温度が、上記範囲を外れた場合には、いずれも本発明の目的を達成することはできない。
降温は、パルス電流を休止し、自然放冷により行ってもよいし、或いはアルゴンガス等の不活性ガスを接合する金属部材に吹き付けて強制冷却することにより行ってもよい。昇温後降温したときの最低温度は、接合する金属部材の変態点以下又は固溶化処理温度以下とする。
なお、好ましくは冷却速度を30℃/分〜400℃/分の範囲で行うことで、組織的な変化を接合強度に寄与させることができる。これは、接合部材の変態点又は固溶化処理温度をできるだけ早く通過させることで、組織の過渡現象を固定し、再度の昇温時に接合界面の組織的な変化を速やかに起こさせることで、接合がより強固になるようにできるためである。
その後、再度、パルス電流を流して金属部材を昇温させ、このような昇降温操作を複数回繰り返して金属部材を接合する。
In the present invention according to claim 1, such a pulse current is energized to raise the temperature, and then the temperature raising / lowering operation for lowering the temperature across the transformation point or the solution treatment temperature is repeated a plurality of times, that is, repeated two or more times. It is necessary. More specifically, it is necessary to repeat the temperature raising / lowering operation with the transformation point or solution treatment temperature of the metal member to be joined in between.
Here, “transformation point or solution treatment temperature” is used because “Ni-based heat-resistant alloy containing at least chromium” does not have a transformation point. Instead of “point”, “solution treatment temperature” recognized as corresponding to this transformation point is used.
The maximum temperature at the time of temperature rise and the minimum temperature at the time of temperature fall differ depending on the type of metal member to be joined and it is difficult to uniquely determine, but usually the maximum temperature at the time of temperature rise is 950 ° C. or more, Further, the minimum temperature when the temperature is lowered after the temperature rise is 900 ° C. or lower.
For example, when the metal member is an Fe-based alloy that is a difficult-to-bond material, particularly an Fe-based alloy containing chromium, the maximum temperature at the time of temperature rise needs to be 1000 ° C. or higher.
In the case of a hard-to-join alloy containing at least chromium as described in claim 2, it is particularly effective to repeat this temperature raising / lowering operation, and the maximum temperature at the time of temperature rise needs to be 1030 ° C. or higher. In particular, when the metal member is a Ni-base heat-resistant alloy containing at least chromium, it is desirable that the maximum temperature at the time of temperature rise be 1100 ° C. or higher.
Here, the maximum temperature at the time of temperature rise may be reached at least once during the temperature raising / lowering operation.
On the other hand, for example, when the metal member is an Fe-based alloy containing at least chromium, the minimum temperature when the temperature is lowered after the temperature rise needs to be 900 ° C. or less, preferably 780 ° C. or less. Further, when the metal member is a Ni-base heat-resistant alloy containing at least chromium, it is desirable that the minimum temperature when the temperature is lowered after the temperature rise is 800 ° C. or less.
If the maximum temperature at the time of temperature rise and the minimum temperature when the temperature is lowered after the temperature rise are out of the above range, the object of the present invention cannot be achieved.
The temperature lowering may be performed by stopping the pulse current and naturally cooling, or may be performed by blowing an inert gas such as argon gas onto a metal member to be joined and forcibly cooling. The minimum temperature when the temperature is lowered after the temperature rise is not higher than the transformation point of the metal member to be joined or not higher than the solution treatment temperature.
It should be noted that the structural change can be caused to contribute to the bonding strength by preferably performing the cooling rate in the range of 30 ° C./min to 400 ° C./min. This is done by passing the transformation point or solution treatment temperature of the joining member as soon as possible, fixing the transient phenomenon of the structure, and promptly causing a systematic change of the joint interface when the temperature rises again. This is because can be made stronger.
Thereafter, the pulse current is supplied again to raise the temperature of the metal member, and the metal member is joined by repeating such a temperature raising / lowering operation a plurality of times.

なお、ここでいう温度は、図4に示すように、接合する金属部材中央部に熱電対6を差し込んで接合時の温度を計測した値である。
図1は、パルス通電による金属部材の接合装置の概念図である。図1において、符号1は接合する金属部材を示し、符号2はカーボン電極の如き電極を示している。また、符号3は、パルス電流発生機を示し、符号4は、電極を加圧するための加圧手段(例えば、エアーシリンダーや油圧シリンダー)を示している。さらに、図1において、符号2Aは上ラム電極を示し、符号2Bは下ラム電極を示している。但し、これら上下のラム電極は、それぞれ上下の電極2と一体となったものでも良い。また、符号5は、チャンバー内を真空状態にしうる真空チャンバーを示している。この真空チャンバーは、真空雰囲気だけでなく、必要に応じて不活性ガス雰囲気とすることもできるようにされている。
In addition, the temperature here is the value which measured the temperature at the time of joining, inserting the thermocouple 6 in the metal member center part to join, as shown in FIG.
FIG. 1 is a conceptual diagram of a metal member joining apparatus using pulse energization. In FIG. 1, reference numeral 1 denotes a metal member to be joined, and reference numeral 2 denotes an electrode such as a carbon electrode. Reference numeral 3 represents a pulse current generator, and reference numeral 4 represents a pressurizing means (for example, an air cylinder or a hydraulic cylinder) for pressurizing the electrode. Further, in FIG. 1, reference numeral 2A denotes an upper ram electrode, and reference numeral 2B denotes a lower ram electrode. However, the upper and lower ram electrodes may be integrated with the upper and lower electrodes 2, respectively. Reference numeral 5 denotes a vacuum chamber that can be evacuated. The vacuum chamber is not limited to a vacuum atmosphere, but can be an inert gas atmosphere as necessary.

温度計測するには、他の方法として、接合する金属部材表面の発熱状態を放射温度計で測定する方法もある。しかしながら、この場合、熱電対で計測する場合よりも、高温又は低温を示す場合がある。例えば、SKD11(少なくともクロムを含むFe基合金)からなる金属部材に熱電対を差し込んで計測すると940℃を示すが、このとき放射温度計は1030℃を示す。放射温度計のε値を金属部材の種類に合わせて適切な値を設定したとしても、熱電対と放射温度計とでは、表示される温度がかなり異なる。
これは、本発明の方法がパルス電流による自己発熱のため、金属部材の表面を流れる電流密度と中心部を流れる電流密度に差があり、内部の温度と外表面の温度に差が生じるためである。初期は外表面の昇温が早く、その後、内部の昇温が早くなったりするなど、パルス電流による自己発熱の場合には、外部加熱からの伝熱機構では想像できない現象が起きるためである。
そのため、本発明の方法では、接合するときの温度表示としては、接合する金属部材に熱電対をほぼ中心部まで差し込んだときの計測値を用いてある。
As another method for measuring the temperature, there is a method of measuring the heat generation state of the surfaces of the metal members to be joined with a radiation thermometer. However, in this case, the temperature may be higher or lower than when measured with a thermocouple. For example, when a thermocouple is inserted into a metal member made of SKD11 (a Fe-based alloy containing at least chromium) and measured, the temperature is 940 ° C., and at this time, the radiation thermometer indicates 1030 ° C. Even if the ε value of the radiation thermometer is set to an appropriate value according to the type of the metal member, the displayed temperature is considerably different between the thermocouple and the radiation thermometer.
This is because the method of the present invention is self-heating due to the pulse current, so there is a difference between the current density flowing through the surface of the metal member and the current density flowing through the center, and there is a difference between the internal temperature and the external surface temperature. is there. This is because, in the case of self-heating due to a pulse current, the temperature rises rapidly on the outer surface at an early stage, and then the temperature rises quickly on the inside, so that a phenomenon that cannot be imagined by a heat transfer mechanism from external heating occurs.
For this reason, in the method of the present invention, the measured value when the thermocouple is almost inserted into the metal member to be joined is used as the temperature display when joining.

請求項1に係る本発明においては、このようなパルス電流を通電して昇温させ、次いで変態点又は固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返すこと、つまり2回以上繰り返すことが必要であって、そのような昇降温操作を1回だけ行った場合には、ロウ材等の介在物なしに、難接合金属材料をパルス通電により強固に接合することができず、本発明の目的を達成することはできない。図2は、そのような昇降温操作を1回だけ行う場合の模様を示すグラフであり、昇降温操作を1回だけ行う接合プログラムの概念図である。この場合には、昇降温操作による昇降温パターンが一つの山を示している。
このように昇降温操作を1回だけ行う場合には、ロウ材等の低融点金属を介在させなければ、例えばSTAVAX(ウッデホルム株式会社所有の登録商標)等のSUS420J2系の合金(プリハードン鋼)、クロムが3%以上含まれているステンレス系合金鋼、クロム系耐熱鋼などのような難接合金属材料では、被接合金属材料同士を直接に接合することが困難であった。
In the present invention according to claim 1, such a pulse current is energized to raise the temperature, and then the temperature raising / lowering operation for lowering the temperature across the transformation point or the solution treatment temperature is repeated a plurality of times, that is, repeated two or more times. When such a temperature raising / lowering operation is performed only once, it is impossible to firmly bond a difficult-to-join metal material by pulse energization without inclusions such as a brazing material. The object of the invention cannot be achieved. FIG. 2 is a graph showing a pattern when such a temperature raising / lowering operation is performed only once, and is a conceptual diagram of a joining program for performing the temperature raising / lowering operation only once. In this case, the temperature increasing / decreasing pattern by the temperature increasing / decreasing operation indicates one mountain.
In this way, when the temperature raising / lowering operation is performed only once, if a low melting point metal such as brazing material is not interposed, for example, SUS420J2 alloy (prehardened steel) such as STAVAX (registered trademark owned by Woodeholm Corporation), In difficult-to-join metal materials such as stainless steel alloy steel and chromium heat-resistant steel containing 3% or more of chromium, it is difficult to directly join metal materials to be joined.

これに対して、請求項1に係る本発明のように、パルス電流を通電して昇温させ、次いで変態点又は固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返した場合には、ロウ材等の介在物なしに、難接合金属材料をパルス通電により強固に接合することができる。図3は、そのような昇降温操作を2回繰り返す場合の模様を示すグラフであり、昇降温操作を2回繰り返す接合プログラムの概念図である。この場合には、昇降温操作による昇降温パターンが二つの山を示している。
この変態点又は固溶化処理温度を挟んでの複数回の昇降温操作により接合の強度が著しく向上する原理は、正確には分かっていないが、接合する金属部材に対する予熱効果と共に、接合する金属部材の変態点又は固溶化処理温度を挟んでの昇降温操作による組織の変化の繰り返しとが、エネルギー準位とか酸化物不導体膜などの接合界面の接合障壁を低下させる効果があるのではないかと想像される。
即ち、ある意味で接合する金属部材に対して予熱が行われることで、接合する金属部材に印加されるパルス電流がロス少なく、接合の障壁を打ち破るエネルギーとして利用されたり、変態点又は固溶化処理温度を挟んでの昇降温操作により組織が変化することで、接合界面に生成している酸化物層が接合する金属部材中に拡散し消滅するのではないかと考えられる。
しかしながら、本発明の手法が新しいものであるため、原理の解明にまでは至っていない。
On the other hand, as in the present invention according to claim 1, when a temperature increase / decrease operation in which a pulse current is energized to raise the temperature and then the temperature is lowered across the transformation point or the solution treatment temperature is repeated a plurality of times. In addition, it is possible to firmly bond a difficult-to-join metal material by pulse energization without inclusions such as a brazing material. FIG. 3 is a graph showing a pattern when such a temperature raising / lowering operation is repeated twice, and is a conceptual diagram of a joining program in which the temperature raising / lowering operation is repeated twice. In this case, the temperature increasing / decreasing pattern by the temperature increasing / decreasing operation indicates two peaks.
The principle by which the strength of bonding is remarkably improved by a plurality of temperature raising and lowering operations with the transformation point or solution treatment temperature in between is not exactly known, but the preheating effect on the metal member to be joined together with the metal member to be joined. The repetitive changes in the structure due to the temperature increase / decrease operation across the transformation point or the solution treatment temperature may have the effect of lowering the energy level or the bonding barrier at the bonding interface such as the oxide nonconducting film. Imagine.
That is, by preheating the metal members to be joined in a sense, there is little loss of pulse current applied to the metal members to be joined, and it can be used as energy to break the joining barrier, transformation point or solution treatment It is considered that the oxide layer generated at the bonding interface diffuses and disappears in the metal member to be bonded due to the change of the structure due to the temperature raising and lowering operation with the temperature interposed therebetween.
However, since the technique of the present invention is new, the principle has not yet been elucidated.

請求項1に係る本発明においては、このようにして昇降温操作を複数回繰り返した後、真空又は不活性ガス雰囲気中において、熱処理を加えて相互拡散を行い、接合をより強固なものとすることができる。これは、パルス通電による接合だけでは、時間的に接合が未完である部分を、相互拡散を行うことで、より完全に接合することができるためである。
特に接合する金属部材の材質によっては、1回の相互拡散接合処理では完全に接合しない場合も考えられることから、1回だけでなく、それ以上の複数回にわたる相互拡散接合処理を行ってもよい。
これまでは焼結後にいわゆる焼き戻し処理などを行うことにより、固相状態で接合することは行われてきたが、これとこの相互拡散接合処理とは全く異なる。パルス通電における相互拡散接合処理はこれまで他に見られない。
パルス通電による接合時には、自己発熱により温度を上げ所定温度としているが、上記熱処理はパルス通電によるものではないことから、外部加熱により温度を上げ所定温度とする必要がある。
このような相互拡散接合処理は、接合部材の溶融点の70%以上、90%未満で行うことができる。
この相互拡散接合処理を行う際には、パルス電流は流さない。また、加圧は特に必要ないが、前段階からの加圧をそのまま引き続いて行っても良い。
In the present invention according to claim 1, after the temperature raising / lowering operation is repeated a plurality of times as described above, heat diffusion is performed in a vacuum or an inert gas atmosphere to perform interdiffusion to further strengthen the bonding. be able to. This is because a part where bonding is not completed in time can be bonded more completely by performing interdiffusion only by bonding by pulse energization.
In particular, depending on the material of the metal member to be joined, it may be possible that the joint is not completely joined by one interdiffusion joining process. Therefore, the interdiffusion joining process may be performed not only once but multiple times. .
In the past, so-called tempering treatment has been performed after sintering, so that joining in a solid state has been performed, but this and this interdiffusion joining treatment are completely different. No other interdiffusion bonding process in pulse energization has been found so far.
During bonding by pulse energization, the temperature is raised to a predetermined temperature by self-heating, but since the heat treatment is not due to pulse energization, it is necessary to raise the temperature by external heating to the predetermined temperature.
Such an interdiffusion bonding process can be performed at 70% or more and less than 90% of the melting point of the bonding member.
When this interdiffusion bonding process is performed, no pulse current flows. Further, although pressurization is not particularly necessary, pressurization from the previous stage may be performed as it is.

請求項1に係る本発明では、上記したように昇降温操作を複数回繰り返してのパルス通電による接合処理を行った後に、引き続いて所定条件にて熱処理する相互拡散接合処理を行うこと、つまりパルス通電による接合処理を行い液相状態とした後に、相互拡散接合処理すること、が好ましい。
このような液相状態とした後の相互拡散接合処理は、あくまでパルス通電における液相状態とした後の相互拡散接合処理を指しており、従来公知の液相拡散接合とは異なっている。従来公知の液相拡散接合は、接合面間に低融点部材をインサートして行う場合に生ずる現象を指しており、明らかにここでいう液相状態とした後の相互拡散接合処理とは異なっているが、そのような液相状態での拡散がパルス通電においても生ずることが分かった。なお、この「液相状態とした後の相互拡散接合処理」は、溶融させて液相状態とした後に相互拡散させる点で、溶融させてはおらず固相状態で拡散させる「固相拡散」とは明確に異なる。
In the present invention according to claim 1, after performing the joining process by pulse energization by repeating the temperature raising / lowering operation a plurality of times as described above, the interdiffusion joining process in which heat treatment is subsequently performed under a predetermined condition is performed. It is preferable to perform a mutual diffusion bonding process after performing a bonding process by energization to obtain a liquid phase state.
The interdiffusion bonding process after the liquid phase state is used refers to the mutual diffusion bonding process after the liquid phase state in pulse energization, and is different from the conventionally known liquid phase diffusion bonding. The conventionally known liquid phase diffusion bonding refers to a phenomenon that occurs when a low melting point member is inserted between the bonding surfaces, and clearly differs from the mutual diffusion bonding processing after the liquid phase state described here. However, it has been found that such diffusion in the liquid phase state occurs even in pulse energization. In addition, this “interdiffusion bonding treatment after being in a liquid phase state” is “solid phase diffusion” in which it is not melted but diffused in a solid phase state in that it is melted and then liquid phase state is allowed to cause mutual diffusion. Are clearly different.

このようなパルス通電において液相状態とした後の熱処理(相互拡散接合処理)によれば、衝撃試験等において、母材と同等の特性を有するものと認められるほどの強固な接合が得られ、接合する金属部材を極めて強固かつ確実に短時間で、しかも低コストで接合することができる。   According to the heat treatment (interdiffusion bonding treatment) after making the liquid phase state in such pulse energization, a strong bonding enough to be recognized as having the same characteristics as the base material in an impact test or the like is obtained, The metal members to be joined can be joined extremely firmly and reliably in a short time and at low cost.

本発明は以上の如きものである。このようにして本発明によれば、ロウ材等の介在物なしに、接合の困難な金属材料、例えばFe基合金や耐熱合金であるNi基合金などをパルス通電により強固に接合することができる。なお、接合完成後、所望の公知各種熱処理を施すこともできる。   The present invention is as described above. Thus, according to the present invention, metal materials that are difficult to join, such as an Fe-based alloy or a Ni-based alloy that is a heat-resistant alloy, can be firmly joined by pulse energization without inclusions such as a brazing material. . In addition, after completion of joining, desired various known heat treatments can be performed.

次に、本発明を実施例により詳しく説明するが、本発明はこれらによって何ら制限されるものではない。
実施例1
(1)接合
図1に示すようなパルス通電接合装置、即ち接合する金属部材1にパルス電流を供給する1対の電極2と、前記電極2にパルス電流を通電するパルス電流発生機3と、前記電極2を加圧するための加圧手段4とを備え、さらに真空チャンバー5を備えたパルス通電による接合装置を用い、図3に示すような昇降温操作を2回繰り返す接合プログラムの概念図に基づき、表1に示す条件にてパルス通電による接合を行った。電極2としては、カーボン電極を用いた。
なお、パルス電流のデューティー比として、パルスのON:OFFの比=98:2で3Hzのパルス電流を用いた。
接合する金属部材1としては、表面粗度が1.0μm以下であり、表1に示す材質のものであって、直径16mm、長さ42mmのテストピースを用い、これを2個突き合わせて接合した。
この金属部材1をまず超音波を用い、イソプロパノールで洗浄した。
次いで、この金属部材1を互いに突き合わせ、200kg(10MPa)の荷重をかけて加圧した状態で、金属部材1の両端に一対の電極をあて、金属部材1のみに通電させることにより電流密度を上げ、接合界面間にパルス比が98:2のパルス電流(900A)を流すことによって、パルス通電による接合(第1段目の接合)処理を行った。このとき熱電対6により計測した接合部の温度は最高1010℃まで上昇した。パルス電流は900Aであった。
以上の操作の間、雰囲気は10Pa以下の真空に保った。
その後、パルス電流の供給を休止し、自然放冷して金属部材1の変態点以下に降温した後、再び、200kg(10MPa)の荷重をかけて加圧した状態で、金属部材1の両端に一対の電極をあて、金属部材1のみに通電させることにより電流密度を上げ、接合界面間にパルス比が98:2のパルス電流(1000A)を流すことによって、パルス通電による接合(第2段目の接合)処理を行った。このとき熱電対6により計測した接合部の温度は最高1060℃まで上昇した。パルス電流は1000Aであった。
なお、このとき接合部材1の周囲に反射板を1重に巻き付け覆った。
EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not restrict | limited at all by these.
Example 1
(1) Joining Pulse energization joining apparatus as shown in FIG. 1, that is, a pair of electrodes 2 for supplying a pulse current to the metal member 1 to be joined, a pulse current generator 3 for energizing the electrode 2 with a pulse current, FIG. 3 is a conceptual diagram of a joining program that includes a pressurizing means 4 for pressurizing the electrode 2, and further uses a pulse energizing joining device equipped with a vacuum chamber 5 to repeat the temperature raising and lowering operation twice as shown in FIG. 3. Based on the conditions shown in Table 1, joining by pulse energization was performed. As the electrode 2, a carbon electrode was used.
Note that, as a duty ratio of the pulse current, a pulse current of 3 Hz was used at a pulse ON: OFF ratio of 98: 2.
The metal member 1 to be joined has a surface roughness of 1.0 μm or less and is made of the material shown in Table 1, and a test piece having a diameter of 16 mm and a length of 42 mm was used, and two of them were abutted and joined. .
The metal member 1 was first cleaned with isopropanol using ultrasonic waves.
Next, the metal members 1 are brought into contact with each other, and with a load of 200 kg (10 MPa) applied thereto, a pair of electrodes are applied to both ends of the metal member 1 so that only the metal member 1 is energized to increase the current density. Then, a pulse current (900 A) having a pulse ratio of 98: 2 was allowed to flow between the bonding interfaces to perform bonding (first-stage bonding) processing by pulse energization. At this time, the temperature of the joint measured by the thermocouple 6 rose to a maximum of 1010 ° C. The pulse current was 900A.
During the above operation, the atmosphere was kept at a vacuum of 10 Pa or less.
Thereafter, the supply of the pulse current is stopped, and after spontaneous cooling, the temperature is lowered below the transformation point of the metal member 1, and then again applied to both ends of the metal member 1 with a load of 200 kg (10 MPa) applied thereto. By applying a pair of electrodes and energizing only the metal member 1 to increase the current density, a pulse current (1000 A) having a pulse ratio of 98: 2 is caused to flow between the bonding interfaces, thereby joining by pulse energization (second stage). ). At this time, the temperature of the joint measured by the thermocouple 6 rose to a maximum of 1060 ° C. The pulse current was 1000A.
At this time, the reflector was wrapped around the joining member 1 in a single layer and covered.

しかる後、パルス通電を止め、外部加熱により1030℃の温度において熱処理(相互拡散接合処理)を行った。
以上の操作の間、雰囲気は5Pa以下の真空に保った。
このようにして、接合物を製造した。
Thereafter, pulse energization was stopped, and heat treatment (interdiffusion bonding treatment) was performed at a temperature of 1030 ° C. by external heating.
During the above operation, the atmosphere was kept at a vacuum of 5 Pa or less.
In this way, a joined product was manufactured.

(2)破断エネルギー測定試験
このようにして得られた接合物より削り出した試験片(引張試験片平行部:直径8mm)について、JIS Z2242(金属材料衝撃試験方法)に準拠して、破断エネルギーを測定した。結果を表1に示す。
(2) Breaking energy measurement test With respect to the test piece (tensile test piece parallel part: diameter 8 mm) cut out from the joined product thus obtained, the breaking energy according to JIS Z2242 (metal material impact test method). Was measured. The results are shown in Table 1.

破断エネルギーは次の式から求められる。
・破断エネルギー(E)=M(cosβ−cosα)
ここでM=W・r(Wはハンマの質量による負荷(単位:N)であり、rはハンマの回転軸中心から重心までの距離(単位:m)である。)で表される。
また、αはハンマの持ち上げ角度であり、βは試験片破断後のハンマの振上がり角度である。
なお、今回の試験装置としては、発生最大衝撃エネルギーが次の如き装置を用いた。従って、破断エネルギーとして、最大9.7KJまで測定できることになる。
W=10.78KN
r=0.9m
M=W・r=9.702KN・m≒9.7KJ
The breaking energy is obtained from the following equation.
・ Fracture energy (E) = M (cosβ-cosα)
Here, M = W · r (W is the load due to the mass of the hammer (unit: N), and r is the distance (unit: m) from the center of the rotation axis of the hammer to the center of gravity).
Further, α is a hammer lifting angle, and β is a hammer swing-up angle after the test piece is broken.
In addition, as a test apparatus of this time, the apparatus with the maximum generated impact energy as follows was used. Therefore, it is possible to measure up to 9.7 KJ as the breaking energy.
W = 10.78KN
r = 0.9m
M = W · r = 9.702KN · m≈9.7KJ

Figure 2005262244
Figure 2005262244

表1の結果によれば、本発明のように昇降温操作を複数回繰り返すことにより、難接合金属材料を強固に接合することができることが分かる。   According to the results in Table 1, it can be seen that the hard-to-join metal material can be firmly joined by repeating the temperature raising / lowering operation a plurality of times as in the present invention.

本発明によれば、ロウ材等の介在物なしに、難接合金属材料をパルス通電により強固に接合することができることから、金属材料の接合に有効に利用することができる。   According to the present invention, since a difficult-to-join metal material can be firmly joined by pulse energization without inclusions such as a brazing material, it can be effectively used for joining metal materials.

パルス通電による金属部材の接合装置の概念図である。It is a conceptual diagram of the joining apparatus of the metal member by pulse electricity supply. 昇降温操作を1回だけ行う接合プログラムの概念図である。It is a conceptual diagram of the joining program which performs temperature raising / lowering operation only once. 昇降温操作を2回繰り返す接合プログラムの概念図である。It is a conceptual diagram of the joining program which repeats temperature raising / lowering operation twice. 熱電対により温度を計測する模様を示す一部切り欠き説明図である。It is a partially notched explanatory drawing which shows the pattern which measures temperature with a thermocouple.

符号の説明Explanation of symbols

1 金属部材
2 電極
2A 上ラム電極
2B 下ラム電極
3 パルス電流発生機
4 加圧手段
5 真空チャンバー
6 熱電対
DESCRIPTION OF SYMBOLS 1 Metal member 2 Electrode 2A Upper ram electrode 2B Lower ram electrode 3 Pulse current generator 4 Pressurizing means 5 Vacuum chamber 6 Thermocouple

Claims (4)

通電可能な二以上の金属部材をパルス電流の通電により接合するにあたり、前記金属部材の接合面を突き合わせた状態で加圧しつつ、パルス電流を通電して昇温させ、次いで変態点又は固溶化処理温度を挟んで降温させる昇降温操作を複数回繰り返すことを特徴とするパルス通電による金属部材の接合方法。   When joining two or more metal members that can be energized by energizing a pulse current, the pulse current is energized and the temperature is raised while applying pressure while the joining surfaces of the metal members are in contact with each other, and then the transformation point or solution treatment A method for joining metal members by pulse energization, wherein a temperature raising / lowering operation for lowering the temperature across the temperature is repeated a plurality of times. 金属部材が、少なくともクロムを含む難接合合金である、請求項1記載の接合方法。   The joining method according to claim 1, wherein the metal member is a hard-to-join alloy containing at least chromium. 昇温後降温したときの最低温度が900℃以下である、請求項1又は2記載の接合方法。   The joining method according to claim 1 or 2, wherein the lowest temperature when the temperature is lowered after the temperature rise is 900 ° C or lower. 昇温時の最高温度が1030℃以上である、請求項1乃至3のいずれかに記載の接合方法。

The joining method according to claim 1, wherein a maximum temperature at the time of temperature rise is 1030 ° C. or higher.

JP2004075500A 2004-03-17 2004-03-17 Method for joining metallic member by pulse energization Withdrawn JP2005262244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075500A JP2005262244A (en) 2004-03-17 2004-03-17 Method for joining metallic member by pulse energization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075500A JP2005262244A (en) 2004-03-17 2004-03-17 Method for joining metallic member by pulse energization

Publications (1)

Publication Number Publication Date
JP2005262244A true JP2005262244A (en) 2005-09-29

Family

ID=35087324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075500A Withdrawn JP2005262244A (en) 2004-03-17 2004-03-17 Method for joining metallic member by pulse energization

Country Status (1)

Country Link
JP (1) JP2005262244A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111709A (en) * 2005-10-18 2007-05-10 Honda Motor Co Ltd Solid state welding method of metallic member
WO2007108058A1 (en) * 2006-03-16 2007-09-27 Mole's Act Co., Ltd. Method of bonding steel members, method of enhancing bonding strength of united object comprising steel members, steel product, and die-cast product
WO2008004311A1 (en) * 2006-07-07 2008-01-10 Toshiaki Kitazawa Process for production of molds and processes for production of molded articles and steel products
WO2008044776A1 (en) * 2006-10-13 2008-04-17 Mole's Act Co., Ltd. Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
JP2010016326A (en) * 2008-06-02 2010-01-21 Murata Mfg Co Ltd Ceramic electronic component and method for manufacturing the same
JP2010504902A (en) * 2006-09-27 2010-02-18 コミツサリア タ レネルジー アトミーク Method for joining refractory ceramic parts by spark plasma sintering (SPS) method
JP2012016743A (en) * 2010-07-09 2012-01-26 Toyota Motor Corp Solid phase diffusion-joining method for die-casting die material
JP2014174148A (en) * 2013-03-13 2014-09-22 Ntn Corp Standard test piece, analyzer, mechanical component, and method of manufacturing standard test piece
JP2015171299A (en) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 Manufacturing method of rotor
WO2019208658A1 (en) * 2018-04-25 2019-10-31 国立大学法人北見工業大学 Bonded body, laser oscillator, laser amplifier, and method for producing bonded body
CN113182660A (en) * 2021-05-08 2021-07-30 浙江工业大学 SPS diffusion welding method of DD98 same nickel-based single crystal superalloy
CN114836601A (en) * 2022-04-13 2022-08-02 上海理工大学 Rapid heat treatment device and heat treatment method for alloy sheet sample

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111709A (en) * 2005-10-18 2007-05-10 Honda Motor Co Ltd Solid state welding method of metallic member
JP4616149B2 (en) * 2005-10-18 2011-01-19 本田技研工業株式会社 Solid phase bonding method for metal parts
WO2007108058A1 (en) * 2006-03-16 2007-09-27 Mole's Act Co., Ltd. Method of bonding steel members, method of enhancing bonding strength of united object comprising steel members, steel product, and die-cast product
CN101400473B (en) * 2006-03-16 2012-07-18 模力斯阿克多有限公司 Method of bonding steel members
WO2008004311A1 (en) * 2006-07-07 2008-01-10 Toshiaki Kitazawa Process for production of molds and processes for production of molded articles and steel products
JP5149797B2 (en) * 2006-07-07 2013-02-20 株式会社Mole’S Act Method for producing molding die and method for producing steel product
US20100139840A1 (en) * 2006-09-27 2010-06-10 Alexandre Allemand Process for joining refractory ceramic parts by spark plasma sintering (sps)
US8956478B2 (en) 2006-09-27 2015-02-17 Commissariat A L'energie Atomique Process for joining refractory ceramic parts by spark plasma sintering (SPS)
JP2010504902A (en) * 2006-09-27 2010-02-18 コミツサリア タ レネルジー アトミーク Method for joining refractory ceramic parts by spark plasma sintering (SPS) method
WO2008044776A1 (en) * 2006-10-13 2008-04-17 Mole's Act Co., Ltd. Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
JP5198458B2 (en) * 2007-09-14 2013-05-15 セイコーエプソン株式会社 Method for joining steel members, method for strengthening joining force in joined bodies composed of steel members, steel products and die-cast products
JP2010016326A (en) * 2008-06-02 2010-01-21 Murata Mfg Co Ltd Ceramic electronic component and method for manufacturing the same
US9805865B2 (en) 2008-06-02 2017-10-31 Murata Manufacturing Co., Ltd. Ceramic electronic component and method for manufacturing the same
JP2012016743A (en) * 2010-07-09 2012-01-26 Toyota Motor Corp Solid phase diffusion-joining method for die-casting die material
JP2014174148A (en) * 2013-03-13 2014-09-22 Ntn Corp Standard test piece, analyzer, mechanical component, and method of manufacturing standard test piece
JP2015171299A (en) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 Manufacturing method of rotor
WO2019208658A1 (en) * 2018-04-25 2019-10-31 国立大学法人北見工業大学 Bonded body, laser oscillator, laser amplifier, and method for producing bonded body
JPWO2019208658A1 (en) * 2018-04-25 2021-08-05 国立大学法人北見工業大学 Manufacturing method of joints, laser oscillators, laser amplifiers and joints
US12142888B2 (en) 2018-04-25 2024-11-12 National Institute For Materials Science Joined body, laser oscillator, laser amplifier, and joined body manufacturing method
CN113182660A (en) * 2021-05-08 2021-07-30 浙江工业大学 SPS diffusion welding method of DD98 same nickel-based single crystal superalloy
CN114836601A (en) * 2022-04-13 2022-08-02 上海理工大学 Rapid heat treatment device and heat treatment method for alloy sheet sample

Similar Documents

Publication Publication Date Title
JP2005262244A (en) Method for joining metallic member by pulse energization
KR100784745B1 (en) Electrical joining methods and devices and joined member units
RU2598018C2 (en) Process for local repair of damaged thermomechanical part and part thus produced, in particular turbine part
US9643877B2 (en) Thermal plasma treatment method
KR19990077999A (en) Joined metal member and method of joining said member
JP2014513207A5 (en)
US20090289041A1 (en) Electric joining method and electric joining apparatus
Brückner et al. Innovations in laser cladding and direct metal deposition
CN112059449B (en) Method for prolonging fatigue life of titanium alloy part in welding or additive repair area
JP3752866B2 (en) Joining metal member joining method
JP2004315884A (en) Hot pressing device, and method of joining member by pulse energizing method using the hot pressing device
JP4080716B2 (en) Pulse current welding method for small joint surface
Davami et al. High-velocity laser accelerated deposition (HVLAD): An experimental study
JP2006315040A (en) Method and apparatus for electric diffusion joining
JP3737989B2 (en) Method of joining members by pulse energization
Elmer et al. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures
JP2007253240A (en) Pulse energization joining device for small joining face
JPH11256227A (en) Electric heating treatment and apparatus thereof and electrode for electric heating treatment
CN113322374A (en) Laser shock method based on suspension drop enhancement and application thereof
JP2003166404A (en) Manufacturing method and repairing method of turbine blade
JP3618715B2 (en) Cooling device for current-carrying electrode and assembly of current-carrying electrode and cooling device
Parishram Laser assisted repair welding of H13 tool steel for die casting
JP3752833B2 (en) Method for joining metal members
JP2004090082A (en) Method for manufacturing metallic body having slot and/or slit
Ridzon et al. Manufacturing Process Development for Joining GRCop-84 and-42 Alloys for DIII-D LHCD

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605