[go: up one dir, main page]

JP2005255822A - Rubber-reinforced epoxy resin product - Google Patents

Rubber-reinforced epoxy resin product Download PDF

Info

Publication number
JP2005255822A
JP2005255822A JP2004068526A JP2004068526A JP2005255822A JP 2005255822 A JP2005255822 A JP 2005255822A JP 2004068526 A JP2004068526 A JP 2004068526A JP 2004068526 A JP2004068526 A JP 2004068526A JP 2005255822 A JP2005255822 A JP 2005255822A
Authority
JP
Japan
Prior art keywords
epoxy resin
core
rubber
shell polymer
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004068526A
Other languages
Japanese (ja)
Inventor
Katsumi Yamaguchi
克己 山口
Masahiro Miyamoto
正広 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004068526A priority Critical patent/JP2005255822A/en
Publication of JP2005255822A publication Critical patent/JP2005255822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin product obtained by curing a reinforced epoxy resin composition, by overcoming various problems which are possessed by conventional techniques and caused when an epoxy resin is reinforced. <P>SOLUTION: This rubber-reinforced epoxy resin product contains a cured material obtained by curing an epoxy resin composition (C) in which a core-shell polymer (B) is dispersed in the epoxy resin (A) in a state of existing as primary particles by a curing agent (D), wherein the epoxy resin product comprises at least one kind selected from a group comprising a glass fiber-reinforced composite material, a carbon fiber-reinforced composite material, an adhesive, a coating material, a laminated sheet, and a semiconductor sealing agent. The epoxy resin product has, in more detail, such a structure that the core-shell polymer (B) is dispersed in the state of existing as the primary particles, even after the resin composition is cured by the curing agent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ゴム強化エポキシ樹脂組成物を利用したゴム強化エポキシ樹脂製品に関し、更に詳しくは、エポキシ樹脂中にコアシェルポリマーが一次粒子の状態で分散しているエポキシ樹脂組成物を利用したゴム強化エポキシ樹脂製品に関する。   The present invention relates to a rubber-reinforced epoxy resin product using a rubber-reinforced epoxy resin composition. More specifically, the present invention relates to a rubber-reinforced epoxy using an epoxy resin composition in which a core-shell polymer is dispersed in a primary particle state in an epoxy resin. It relates to resin products.

エポキシ樹脂に改質剤を添加して靭性強化する方法としては、エポキシ樹脂組成物中にゴム成分あるいは熱可塑性樹脂を添加する方法が知られている。   As a method for enhancing toughness by adding a modifier to an epoxy resin, a method of adding a rubber component or a thermoplastic resin to the epoxy resin composition is known.

ゴム成分を添加する方法としては、反応性液状ゴム(CTBNなど)やニトリルゴムを添加する方法(例えば、特許文献1参照。)が知られている。しかし、反応性液状ゴムは、一旦エポキシ樹脂へ溶解した後、硬化時に相分離するという過程を経るため、配合するエポキシ樹脂の種類や硬化条件の違いによって得られる硬化物のモルホロジーが変化し、所望の改質効果が得られなかったり、品質の再現性に問題があることに加え、硬化後のエポキシ樹脂相にゴム成分が一部溶解し残存するために、硬化物の弾性率やガラス転移温度(以下、Tgとも言う。)が低下してエポキシ樹脂製品の品質が低下する等の問題があった。さらに、エポキシ樹脂製品自体が大型になり、エポキシ樹脂製品作成のための硬化温度が部位によって異なると、部位により品質が異なってしまう虞もあった。   As a method of adding a rubber component, a method of adding a reactive liquid rubber (such as CTBN) or a nitrile rubber (for example, see Patent Document 1) is known. However, since the reactive liquid rubber undergoes a process of once dissolving in the epoxy resin and then phase-separating at the time of curing, the morphology of the cured product changes depending on the type of epoxy resin to be blended and the curing conditions. In addition to the fact that the modification effect cannot be obtained or there is a problem in the reproducibility of the quality, the rubber component partially dissolves and remains in the cured epoxy resin phase. (Hereinafter, also referred to as Tg) has been lowered, resulting in a problem that the quality of the epoxy resin product is lowered. Furthermore, when the epoxy resin product itself becomes large and the curing temperature for producing the epoxy resin product varies depending on the site, the quality may vary depending on the site.

ゴム成分の添加によって問題となるモルホロジー変化とその制御の問題を解決する方法として、エポキシ樹脂中でアクリル酸エステル等のモノマーを重合することで、エポキシ樹脂中にゴム状粒子が分散した組成物を得る方法が知られている(例えば、特許文献2参照。)。しかしながら、上記方法によってもゴム成分の一部が硬化後のエポキシ樹脂相に溶解することを避けられず、ガラス転移温度が低下する場合があり、品質的に十分なものとは言えなかった。   As a method for solving the problem of morphological change and its control due to the addition of the rubber component, a composition in which rubber-like particles are dispersed in the epoxy resin is obtained by polymerizing monomers such as acrylate esters in the epoxy resin. The obtaining method is known (for example, refer to Patent Document 2). However, even by the above method, it is unavoidable that a part of the rubber component is dissolved in the cured epoxy resin phase, and the glass transition temperature may be lowered, which is not sufficient in quality.

一方、熱可塑性樹脂を添加する方法としては、ガラス転移温度の高い熱可塑性樹脂(いわゆるスーパーエンプラなど)が使用されることが周知である。この方法では、硬化物のガラス転移温度、耐熱性を保持したままある程度の靭性を付与することが可能であるが、一般に添加量を多く要するため、系の粘度増加を伴い取り扱い性に問題があったり、溶解などの煩雑な工程が必要であったり、モルホロジーのコントロールが必要であるという問題があり、十分なレベルとは言えなかった。   On the other hand, as a method for adding a thermoplastic resin, it is well known that a thermoplastic resin having a high glass transition temperature (so-called super engineering plastic or the like) is used. In this method, it is possible to impart a certain degree of toughness while maintaining the glass transition temperature and heat resistance of the cured product.However, since a large amount of addition is generally required, there is a problem in handling with an increase in the viscosity of the system. And complicated processes such as dissolution are necessary, and morphological control is necessary, and it cannot be said to be a sufficient level.

また、エポキシ樹脂に不溶なゴム状重合体粒子を含むエポキシ樹脂組成物は、ゴム成分が硬化後のエポキシ樹脂相に溶解することがないため、耐熱性(ガラス転移温度)の低下を抑制することができる。この場合のゴム状重合体粒子はエポキシ樹脂中で重合したものではなく、あらかじめ重合しておいたものをエポキシ樹脂に混合したものである。このようなゴム状重合体粒子としては、いわゆるコアシェルポリマーが代表的なものである(例えば、特許文献3若しくは特許文献4参照。)。また、これらのコアシェルポリマーは、Kane Ace(鐘淵化学工業株式会社製)、Paraloid(ローム アンド ハース社製)などの製品名で広く市販されている。しかし、これらは一次粒子の集合体(凝集体)として、例えば、数十〜数百ミクロンのパウダー状で市販されており、エポキシ樹脂に混合するに際しては、これらを10μm未満に微粉末化したり、更に50〜200℃の温度で加熱攪拌、高速せん断攪拌、熱ロール、インターミキサー、ニーダーや三本ロール等の混錬機で入念に混合しなければ、混合したコアシェルポリマーが容易に沈殿あるいは浮上して分離する問題がある。更に数時間に亘るような入念な混合混錬を経た後でも、混合したコアシェルポリマーは一次粒子で分散せずに凝集しており、さらにエポキシ樹脂の種類によっては混合したコアシェルポリマーが分離しやすいなどの問題や、分散安定剤などを添加する必要があるなど、満足できるものではない。更に、エポキシ樹脂中で実際に分散しているコアシェルポリマーの大きさは一次粒子ではないため、コアシェルポリマー粒子の設計を最適化することが難しいなどの問題点があった。これらの背景から、市販されているパウダー状のコアシェルポリマーは、エポキシ樹脂の強化剤として充分な性能を有していないのが現状であった。
特公昭62−34251号公報 特開昭59−138254号公報 米国特許第3322852号明細書 米国特許第3496250号明細書
In addition, the epoxy resin composition containing rubber-like polymer particles insoluble in the epoxy resin prevents the heat resistance (glass transition temperature) from decreasing because the rubber component does not dissolve in the cured epoxy resin phase. Can do. The rubber-like polymer particles in this case are not polymerized in the epoxy resin, but are prepolymerized and mixed with the epoxy resin. As such rubber-like polymer particles, a so-called core-shell polymer is representative (see, for example, Patent Document 3 or Patent Document 4). Moreover, these core-shell polymers are widely marketed under product names such as Kane Ace (manufactured by Kaneka Chemical Co., Ltd.) and Paraloid (manufactured by Rohm and Haas). However, these are commercially available as an aggregate (aggregate) of primary particles, for example, in the form of powder of several tens to several hundreds of microns, and when mixed with an epoxy resin, these can be finely powdered to less than 10 μm, Furthermore, if the mixture is not carefully mixed with a kneader such as a heated stirrer, high-speed shear stirrer, hot roll, intermixer, kneader, or triple roll at a temperature of 50 to 200 ° C., the mixed core-shell polymer easily precipitates or floats. There is a problem of separation. Even after careful mixing and kneading for several hours, the mixed core-shell polymer is agglomerated without being dispersed with primary particles, and depending on the type of epoxy resin, the mixed core-shell polymer is easy to separate, etc. This problem is unsatisfactory because of this problem and the need to add a dispersion stabilizer. Furthermore, since the size of the core-shell polymer actually dispersed in the epoxy resin is not the primary particles, there is a problem that it is difficult to optimize the design of the core-shell polymer particles. Under these circumstances, commercially available powdery core-shell polymers do not have sufficient performance as epoxy resin reinforcing agents.
Japanese Patent Publication No.62-34251 JP 59-138254 A U.S. Pat. No. 3,322,852 US Pat. No. 3,496,250

本発明の目的は、上記のような従来技術が有するエポキシ樹脂強化に際しての種々の問題点を克服し、高い靭性を有する強化エポキシ樹脂組成物を硬化させることで得られるエポキシ樹脂製品を提供することにある。   The object of the present invention is to provide an epoxy resin product obtained by curing the reinforced epoxy resin composition having high toughness, overcoming various problems in the epoxy resin reinforcement of the prior art as described above. It is in.

本発明は、エポキシ樹脂(A)中にコアシェルポリマー(B)が一次粒子の状態で分散しているエポキシ樹脂組成物(C)を、硬化剤(D)により硬化させて得られる硬化物を含有するゴム強化エポキシ樹脂製品であって、ガラス繊維強化複合材料、炭素繊維強化複合材料、接着剤、コーティング材料、積層板、半導体封止剤からなる群から選ばれる少なくとも1種であることを特徴とする、ゴム強化エポキシ樹脂製品に関する。   The present invention contains a cured product obtained by curing an epoxy resin composition (C) in which a core-shell polymer (B) is dispersed in a state of primary particles in an epoxy resin (A) with a curing agent (D). A rubber-reinforced epoxy resin product, characterized in that it is at least one selected from the group consisting of a glass fiber reinforced composite material, a carbon fiber reinforced composite material, an adhesive, a coating material, a laminate, and a semiconductor encapsulant. The present invention relates to a rubber-reinforced epoxy resin product.

好ましい実施態様は、エポキシ樹脂組成物(C)を硬化剤(D)により硬化した後も、コアシェルポリマー(B)が一次粒子の状態で分散していることを特徴とする、前記のゴム強化エポキシ樹脂製品に関する。   In a preferred embodiment, the rubber-reinforced epoxy is characterized in that the core-shell polymer (B) is dispersed in the form of primary particles even after the epoxy resin composition (C) is cured with the curing agent (D). It relates to resin products.

好ましい実施態様は、エポキシ樹脂(A)とコアシェルポリマー(B)を含有するエポキシ樹脂組成物(C)が、コアシェルポリマー(B)を含有する水性ラテックスを有機溶剤と混合した後、水相を分離、除去することで得られた、有機溶剤へコアシェルポリマー(B)が分散した分散体(E)を、エポキシ樹脂(A)と混合することにより製造されたエポキシ樹脂組成物を含有することを特徴とする、前記何れかに記載のゴム強化エポキシ樹脂製品に関する。   In a preferred embodiment, the epoxy resin composition (C) containing the epoxy resin (A) and the core-shell polymer (B) mixes the aqueous latex containing the core-shell polymer (B) with an organic solvent, and then separates the aqueous phase. And an epoxy resin composition produced by mixing the dispersion (E) obtained by removing the core-shell polymer (B) dispersed in an organic solvent with the epoxy resin (A). The rubber-reinforced epoxy resin product according to any one of the above.

好ましい実施態様は、エポキシ樹脂(A)とコアシェルポリマー(B)を含有するエポキシ樹脂組成物(C)が、コアシェルポリマー(B)を含有する水性ラテックスを有機溶剤と混合し、さらに水溶性電解質若しくは水性ラテックスと非混合性の有機溶剤を添加した後、水相を分離、除去することで得られた、有機溶剤へコアシェルポリマー(B)が分散した分散体(E)を、エポキシ樹脂(A)と混合することにより製造されたことを特徴とする、前記のゴム強化エポキシ樹脂製品に関する。   In a preferred embodiment, the epoxy resin composition (C) containing the epoxy resin (A) and the core-shell polymer (B) mixes an aqueous latex containing the core-shell polymer (B) with an organic solvent, and further contains a water-soluble electrolyte or After adding an aqueous latex and an immiscible organic solvent, the dispersion (E) obtained by dispersing the core phase polymer (B) in the organic solvent obtained by separating and removing the aqueous phase is converted into an epoxy resin (A). The rubber-reinforced epoxy resin product described above, wherein the rubber-reinforced epoxy resin product is manufactured by mixing with a rubber.

好ましい実施態様は、エポキシ樹脂組成物(C)の製造に際して、前記分散体(E)をエポキシ樹脂(A)と混合するに先立ち、分散体(E)を水または水溶性電解質の水溶液と接触後に水相を分離する操作を少なくとも1回以上行うことを特徴とする、前記何れかに記載のゴム強化エポキシ樹脂製品に関する。   In a preferred embodiment, in the production of the epoxy resin composition (C), prior to mixing the dispersion (E) with the epoxy resin (A), the dispersion (E) is contacted with water or an aqueous solution of a water-soluble electrolyte. The rubber-reinforced epoxy resin product according to any one of the above, wherein the operation of separating the aqueous phase is performed at least once.

好ましい実施態様は、コアシェルポリマー(B)を含有する水性ラテックスと最初に混合する有機溶剤の25℃における水に対する溶解度が、5重量%以上、40重量%以下であることを特徴とする、前記何れかに記載のゴム強化エポキシ樹脂製品に関する。   A preferred embodiment is characterized in that the solubility in water at 25 ° C. of the organic solvent first mixed with the aqueous latex containing the core-shell polymer (B) is 5% by weight or more and 40% by weight or less. The present invention relates to a rubber reinforced epoxy resin product.

好ましい実施態様は、硬化促進剤、無機充填剤、有機或いは高分子充填剤、難燃剤、耐電防止剤、導電性付与剤、滑剤、摺動性付与剤、界面活性剤、着色剤から選ばれる1種以上の添加物を含有することを特徴とする、前記何れかに記載のゴム強化エポキシ樹脂製品に関する。   Preferred embodiments are selected from curing accelerators, inorganic fillers, organic or polymer fillers, flame retardants, antistatic agents, conductivity imparting agents, lubricants, slidability imparting agents, surfactants, and colorants. The rubber-reinforced epoxy resin product according to any one of the above, characterized by containing at least one kind of additive.

本発明のエポキシ樹脂製品は、ゴム重合体粒子、特に好ましくはコアシェルポリマーが一次粒子の状態で安定に分散したゴム強化エポキシ樹脂組成物を使用することにより、従来のゴム強化エポキシ樹脂を使用したエポキシ樹脂製品と比較して 優れた破壊靱性、耐クラック性、剛性、耐熱性、ヒートショック性、接着性、耐疲労性を示すことができる。   The epoxy resin product of the present invention is an epoxy resin using a conventional rubber-reinforced epoxy resin by using a rubber-reinforced epoxy resin composition in which rubber polymer particles, particularly preferably a core-shell polymer is stably dispersed in a primary particle state. Excellent fracture toughness, crack resistance, rigidity, heat resistance, heat shock resistance, adhesion, and fatigue resistance can be shown compared to resin products.

本発明はゴム状重合体粒子、特に好ましくはコアシェルポリマーが一次粒子の状態で安定に分散させた強化エポキシ樹脂組成物を硬化剤で硬化させることで得られるエポキシ樹脂製品に関する。   The present invention relates to an epoxy resin product obtained by curing a reinforced epoxy resin composition in which rubber-like polymer particles, particularly preferably core-shell polymers are stably dispersed in a primary particle state, with a curing agent.

まず、本発明で用いる強化エポキシ樹脂につき説明する。   First, the reinforced epoxy resin used in the present invention will be described.

本発明で用いるエポキシ樹脂(A)は、エポキシ基を有する化合物であれば特に制限されないが、エポキシ基を有するプレポリマーであることが好ましい。本発明に用いることのできるエポキシ樹脂は、ポリエポキシドとも言われるエポキシ樹脂であることが好ましい。例えば、ビスフェノールAのジグリシジルエーテル、ノボラック型エポキシ樹脂、3或いは4官能のエポキシ樹脂、更には高分子量化したエポキシ樹脂(例えば、ビスフェノールAで高分子量化したビスフェノールAのジグリシジルエーテルなど)、或いは不飽和モノエポキシド(例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル)を重合して得られるホモポリマー若しくはコポリマーが例示される。   The epoxy resin (A) used in the present invention is not particularly limited as long as it is a compound having an epoxy group, but is preferably a prepolymer having an epoxy group. The epoxy resin that can be used in the present invention is preferably an epoxy resin also called a polyepoxide. For example, diglycidyl ether of bisphenol A, novolac type epoxy resin, tri- or tetrafunctional epoxy resin, and high molecular weight epoxy resin (for example, diglycidyl ether of bisphenol A high molecular weight with bisphenol A), or Examples thereof include homopolymers or copolymers obtained by polymerizing unsaturated monoepoxides (for example, glycidyl (meth) acrylate, allyl glycidyl ether).

本発明に用いることのできるポリエポキシドには、多価アルコール及び多価フェノールのグリシジルエーテル、ポリグリシジルアミン、ポリグリシジルアミド、ポリグリシジルイミド、ポリグリシジルヒダントイン、ポリグリシジルチオエーテル、エポキシ化脂肪酸またはエポキシ化乾性油、エポキシ化ポリオレフィン、エポキシ化不飽和ポリエステル、およびそれらの混合物が含まれる。多価フェノールより合成される多くのポリエポキシドは、例えば米国特許第4,431,782号に開示されている。ポリエポキシドは一価、二価、三価のフェノールより合成され、ノボラック樹脂も含まれる。ポリエポキシドにはエポキシ化シクロオレフィンの他、(メタ)アクリル酸グリシジル、アリルグリシジルエーテルの重合体若しくは共重合体によるポリエポキシドも含まれる。更に、適切なポリエポキシドの例としては、米国特許第3,804,735号、同第3,892,819号、同第3,948,698号、同第4,014,771号、及び、「エポキシ樹脂ハンドブック」(日刊工業新聞社、昭和62年)に開示されているものが挙げられる。   Examples of the polyepoxide that can be used in the present invention include glycidyl ethers, polyglycidyl amines, polyglycidyl amides, polyglycidyl imides, polyglycidyl hydantoins, polyglycidyl thioethers, epoxidized fatty acids or epoxidized drying oils of polyhydric alcohols and polyhydric phenols. , Epoxidized polyolefins, epoxidized unsaturated polyesters, and mixtures thereof. Many polyepoxides synthesized from polyhydric phenols are disclosed, for example, in US Pat. No. 4,431,782. Polyepoxides are synthesized from monovalent, divalent and trivalent phenols and also include novolak resins. In addition to epoxidized cycloolefin, polyepoxides include polyepoxides based on polymers or copolymers of glycidyl (meth) acrylate and allyl glycidyl ether. Further examples of suitable polyepoxides include U.S. Pat. Nos. 3,804,735, 3,892,819, 3,948,698, 4,014,771, and " What is disclosed in "Epoxy resin handbook" (Nikkan Kogyo Shimbun, 1987) is mentioned.

本発明に用いるポリエポキシドとしては前述のものが例示されるが、一般的にはエポキシ等量(Epoxy Equivalent Weight)として、80〜2000を有するものが挙げられる。これらのポリエポキシドは周知の方法で得ることができるが、通常よく用いられる方法として、例えば、多価アルコール若しくは多価フェノールなどに対して過剰量のエピハロヒドリンを塩基存在下で反応させることで得られる。   Examples of the polyepoxide used in the present invention include those described above. Generally, those having an epoxy equivalent weight (Epoxy Equivalent Weight) of 80 to 2000 are exemplified. These polyepoxides can be obtained by a well-known method. For example, a commonly used method is obtained by reacting an excess amount of epihalohydrin in the presence of a base with a polyhydric alcohol or polyhydric phenol.

ポリエポキシドには、反応性希釈剤としてモノエポキシド、例えば、脂肪族グリシジルエーテル、例えばブチルグリシジルエーテル、或いはフェニルグリシジルエーテル、クレジルグリシジルエーテルを含んでいても良い。一般的に知られているように、モノエポキシドはポリエポキシド配合物の化学量論に影響を及ぼすが、これの調整は硬化剤の量、或いはその他周知の方法で行われる。   The polyepoxide may contain a monoepoxide as a reactive diluent, for example, an aliphatic glycidyl ether such as butyl glycidyl ether, or phenyl glycidyl ether or cresyl glycidyl ether. As is generally known, the monoepoxide affects the stoichiometry of the polyepoxide formulation, but this can be adjusted by the amount of hardener or other known methods.

エポキシ樹脂(A)成分には、上記エポキシ基含有化合物の硬化剤及び/又は硬化促進剤を含有することも可能であるが、本発明に係る製造条件下で実質的にエポキシ樹脂と意図しない硬化反応を起こさないことが望まれる。かかる硬化剤及び/又は硬化促進剤としては、前述のエポキシ樹脂ハンドブックに記載のもので前述した要件を満たすものを使用することができる。   The epoxy resin (A) component may contain a curing agent and / or a curing accelerator of the above epoxy group-containing compound, but is substantially unintentional curing as an epoxy resin under the production conditions according to the present invention. It is desirable not to cause a reaction. As this hardening | curing agent and / or hardening accelerator, what satisfy | fills the requirements mentioned above in the above-mentioned epoxy resin handbook can be used.

本発明で用いることのできるコアシェルポリマー(B)は、エラストマーまたはゴム状のポリマーを主成分とするポリマーからなるコア部(B−1)と、これにグラフト重合されたポリマー成分からなるシェル層(B−2)より構成されるポリマーであることが好ましい。シェル層は、グラフト成分を構成するモノマーをコア成分にグラフト重合することでコア部の表面の一部もしくは全体を覆うことができる。   The core-shell polymer (B) that can be used in the present invention is composed of a core part (B-1) made of a polymer mainly composed of an elastomer or a rubber-like polymer, and a shell layer made of a polymer component graft-polymerized thereto ( It is preferable that it is a polymer comprised from B-2). The shell layer can cover a part or the whole of the surface of the core part by graft polymerization of the monomer constituting the graft component onto the core component.

前記コア部(B−1)を構成するポリマーは架橋されており、コア部分を構成するポリマーの良溶媒に対して膨潤しうるが実質的には溶解せず、エポキシ樹脂に不溶であることが好ましい。前記コア部分のゲル含量は60重量%以上であることが好ましく、より好ましくは80重量%以上、特に好ましくは90重量%以上、最も好ましくは95重量%以上である。前記コア部分を構成するポリマーは、ゴムとしての性質を有することが好ましいことから、ガラス転移温度(Tg)が0℃以下、好ましくは−10℃以下であることが好ましい。   The polymer constituting the core part (B-1) is cross-linked and may swell in a good solvent of the polymer constituting the core part, but does not substantially dissolve and is insoluble in the epoxy resin. preferable. The gel content of the core part is preferably 60% by weight or more, more preferably 80% by weight or more, particularly preferably 90% by weight or more, and most preferably 95% by weight or more. Since the polymer constituting the core portion preferably has rubber properties, the glass transition temperature (Tg) is preferably 0 ° C. or lower, and preferably −10 ° C. or lower.

前記コア部(B−1)を構成するポリマーは、共役ジエン系モノマー、(メタ)アクリル酸エステル系モノマーより選ばれる一種以上のモノマーを50重量%以上含有する単量体より構成されるか、またはポリシロキサンゴム、或いはこれらを併用することが好ましい。なお、本発明において、(メタ)アクリルとはアクリル及び/又はメタクリルを意味する。   The polymer constituting the core part (B-1) is composed of a monomer containing 50% by weight or more of one or more monomers selected from conjugated diene monomers and (meth) acrylic acid ester monomers, Or it is preferable to use polysiloxane rubber or these together. In the present invention, (meth) acryl means acryl and / or methacryl.

前記コア部(B−1)を構成する共役ジエン系モノマーとしては、例えば、ブタジエン、イソプレン、クロロプレン等を挙げることができるが、安価に入手でき、得られる重合体のゴムとしての性質が良好であり、重合が容易である点から、ブタジエンが特に好ましい。(メタ)アクリル酸エステル系モノマーとしては、例えば、ブチルアクリレート、2−エチルヘキシルアクリレート、ラウリルメタクリレートなどが挙げられるが、得られる重合体のゴムとしての性質が良好であり、重合が容易である点から、ブチルアクリレートおよび2−エチルヘキシルアクリレートが特に好ましい。これらは1種或いは2種以上を組み合わせて使用できる。共役ジエン系モノマー若しくは(メタ)アクリル酸エステル系モノマーの使用量は、コア部全体の重量に対して好ましくは50重量%以上、より好ましくは60重量%以上である。50重量%未満の場合にはエポキシ樹脂に対して靱性を付与する能力が低下する場合がある。   Examples of the conjugated diene monomer constituting the core part (B-1) include butadiene, isoprene, chloroprene, and the like. However, they can be obtained at low cost, and the properties of the resulting polymer as rubber are good. Butadiene is particularly preferred from the viewpoint of easy polymerization. Examples of the (meth) acrylic acid ester-based monomer include butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate, and the like. From the viewpoint that the properties of the resulting polymer are good and polymerization is easy. , Butyl acrylate and 2-ethylhexyl acrylate are particularly preferred. These can be used alone or in combination of two or more. The amount of the conjugated diene monomer or (meth) acrylic acid ester monomer used is preferably 50% by weight or more, more preferably 60% by weight or more based on the weight of the entire core part. If it is less than 50% by weight, the ability to impart toughness to the epoxy resin may be reduced.

さらに前記コア部(B−1)を構成するポリマーは、前述の共役ジエン系モノマー或いは(メタ)アクリル酸エステル系モノマーを主成分として使用する場合には、これらと共重合可能な1種以上のビニルモノマーとの共重合体であってもよい。そのようなモノマーとしては、上述のアルキル(メタ)アクリレート以外のアルキル(メタ)アクリレート、ビニル芳香族系モノマー、ビニルシアン系モノマー等が例示できる。例えば、(メタ)アクリレート系モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルメタアクリレート、ビニル芳香族系モノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルシアン系モノマーとしては、例えば(メタ)アクリロニトリル、置換アクリロニトリルを例示することができる。これらは1種或いは2種以上組み合わせて使用することができる。これらの使用量は、コア部(B−1)全体の重量に対して好ましくは50重量%未満、より好ましくは40重量%未満である。   Furthermore, when the polymer which comprises the said core part (B-1) uses the above-mentioned conjugated diene type monomer or the (meth) acrylic acid ester type monomer as a main component, it is 1 or more types copolymerizable with these. It may be a copolymer with a vinyl monomer. Examples of such monomers include alkyl (meth) acrylates other than the aforementioned alkyl (meth) acrylates, vinyl aromatic monomers, vinylcyan monomers, and the like. For example, (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl methacrylate, vinyl aromatic monomers, for example, styrene, α-methyl styrene, vinyl cyan monomers Examples thereof include (meth) acrylonitrile and substituted acrylonitrile. These can be used alone or in combination of two or more. The amount of these used is preferably less than 50% by weight, more preferably less than 40% by weight based on the total weight of the core part (B-1).

また、前記コア部(B−1)を構成する成分として、架橋度を調節するために、多官能性モノマーを使用しても良い。多官能性モノマーとしては、例えば、ジビニルベンゼン、ブタンジオールジ(メタ)アクリレート、(イソ)シアヌル酸トリアリル、(メタ)アクリル酸アリル、イタコン酸ジアリル、フタル酸ジアリル等を例示できる。これらの使用量はコア部の全重量に対して10重量%以下、好ましくは5重量%以下、更に好ましくは3重量%以下である。10重量%を越えて使用するとコア部のエラストマーとしての性質が損なわれるため好ましくない。   Moreover, you may use a polyfunctional monomer as a component which comprises the said core part (B-1), in order to adjust a crosslinking degree. Examples of the polyfunctional monomer include divinylbenzene, butanediol di (meth) acrylate, triallyl (iso) cyanurate, allyl (meth) acrylate, diallyl itaconate, diallyl phthalate, and the like. The amount of these used is 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less based on the total weight of the core part. If it exceeds 10% by weight, the properties of the core as an elastomer are impaired, which is not preferable.

さらに前記コア部(B−1)として、上述のようなビニル重合性ポリマーに替えて、或いはこれらと併用して、ポリシロキサンゴムを使用することも可能である。コア部(B−1)としてポリシロキサンゴムを使用する場合には、例えば、ジメチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ等の、アルキル或いはアリール2置換シリルオキシ単位から構成されるポリシロキサンゴムを使用することができる。また、このようなポリシロキサンゴムを使用する場合には、必要に応じて、重合時に多官能性のアルコキシシラン化合物を一部併用するか、ビニル反応性基を持ったシラン化合物をラジカル反応させること等により、予め架橋構造を導入しておくことがより好ましい。   Furthermore, it is also possible to use polysiloxane rubber as the core part (B-1) instead of the vinyl polymerizable polymer as described above or in combination with these. When polysiloxane rubber is used as the core part (B-1), for example, a polysiloxane rubber composed of alkyl or aryl disubstituted silyloxy units such as dimethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, etc. Can be used. When using such a polysiloxane rubber, if necessary, partially use a polyfunctional alkoxysilane compound during polymerization, or radically react a silane compound having a vinyl reactive group. It is more preferable to introduce a crosslinked structure in advance, for example.

前記シェル部(B−2)は、コアシェルポリマー(B)がエポキシ樹脂中で安定に一次粒子の状態で分散するための、エポキシ樹脂に対する親和性を与える機能を有する。前記シェル部(B−2)を構成するポリマーはコア部(B−1)を構成するポリマーにグラフト重合されており、実質的にコア部(B−1)を構成するポリマーと結合していることが好ましい。具体的には、シェル部(B−2)を構成するポリマーは、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上がコア部(B−1)に結合していることが望ましい。シェル部(B−2)は、後述する有機溶媒及びエポキシ樹脂(A)に対して膨潤性、相容性もしくは親和性を有するものが好ましい。またシェル部(B−2)は、使用時の必要性に応じて、エポキシ樹脂(A)もしくは使用時に配合される硬化剤との反応性を有し、エポキシ樹脂(A)が硬化剤と反応して硬化する条件下においてこれらと化学反応し結合を生成できる機能を有するものであっても良い。   The shell part (B-2) has a function of giving affinity to the epoxy resin so that the core-shell polymer (B) is stably dispersed in the state of primary particles in the epoxy resin. The polymer constituting the shell part (B-2) is graft-polymerized to the polymer constituting the core part (B-1) and is substantially bonded to the polymer constituting the core part (B-1). It is preferable. Specifically, the polymer constituting the shell part (B-2) is preferably 70% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight or more bonded to the core part (B-1). It is desirable that The shell part (B-2) preferably has swelling, compatibility or affinity for the organic solvent and epoxy resin (A) described later. The shell part (B-2) has reactivity with the epoxy resin (A) or a curing agent blended at the time of use depending on the necessity at the time of use, and the epoxy resin (A) reacts with the curing agent. Then, it may have a function of chemically reacting with these under the conditions of curing and generating a bond.

シェル部(B−2)を構成するポリマーは、安価に入手でき、また、良好なグラフト重合性と、エポキシ樹脂に対する親和性の双方を可能にできるという点から、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル化合物より選ばれる1種以上の成分を重合若しくは共重合して得られる重合体若しくは共重合体であることが好ましい。更に、特にシェル部のエポキシ樹脂硬化時における化学反応性を求める場合には、上記のモノマーに加えて、ヒドロキシアルキル(メタ)アクリレート、エポキシアルキル(メタ)アクリレート等の反応性側鎖を有する(メタ)アクリル酸エステル類、エポキシアルキルビニルエーテル、(メタ)アクリルアミド(N−置換物を含む)、α,β−不飽和酸、α,β−不飽和酸無水物、及びマレイミド誘導体等からなるモノマー群より選ばれる1種以上の成分を共重合して得られる共重合体がより好ましい。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、スチレン、α−メチルスチレン、(メタ)アクリロニトリル、(メタ)アクリル酸、2−ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリシジルビニルエーテル、(メタ)アクリルアミド、マレイン酸無水物、マレイン酸イミド等をそれぞれ例示することができるが、これらに限定されるものではない。これらは1種或いは2種以上を適宜組み合わせて使用できる。   The polymer constituting the shell part (B-2) can be obtained at a low cost, and can have both good graft polymerizability and affinity for the epoxy resin. A polymer or copolymer obtained by polymerizing or copolymerizing at least one component selected from a group vinyl compound and a vinyl cyanide compound is preferable. Further, in particular, when chemical reactivity at the time of curing the epoxy resin of the shell portion is required, in addition to the above-mentioned monomers, it has reactive side chains such as hydroxyalkyl (meth) acrylate and epoxyalkyl (meth) acrylate (meta ) From a monomer group consisting of acrylic acid esters, epoxy alkyl vinyl ether, (meth) acrylamide (including N-substituents), α, β-unsaturated acid, α, β-unsaturated acid anhydride, maleimide derivatives, etc. A copolymer obtained by copolymerizing at least one selected component is more preferable. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, styrene, α-methylstyrene, (meth) acrylonitrile, (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, Examples thereof include glycidyl (meth) acrylate, glycidyl vinyl ether, (meth) acrylamide, maleic anhydride, maleic imide and the like, but are not limited thereto. These can be used alone or in combination of two or more.

本発明におけるコアシェルポリマー(B)の好ましいコア部(B−1)/シェル部(B−2)比率(重量比)は、50/50〜95/5の範囲であることが好ましく、より好ましくは60/40〜90/10である。コア部(B−1)/シェル部(B−2)比率(重量比)が50/50を越えてコア部(B−1)の比率が低下すると、エポキシ樹脂(A)に対する靱性改良効果が低下する傾向がある。逆に95/5を越えてシェル部(B−2)の比率が低下すると、本発明における取扱い時に凝集をきたし易く操作性に問題が生じるとともに期待する物性が得られない可能性がある。   The preferred core part (B-1) / shell part (B-2) ratio (weight ratio) of the core-shell polymer (B) in the present invention is preferably in the range of 50/50 to 95/5, more preferably. 60/40 to 90/10. When the ratio of the core part (B-1) / shell part (B-2) (weight ratio) exceeds 50/50 and the ratio of the core part (B-1) decreases, the toughness improving effect on the epoxy resin (A) is improved. There is a tendency to decrease. On the other hand, if the ratio of the shell part (B-2) is reduced beyond 95/5, aggregation may easily occur during handling in the present invention, causing problems in operability and possibly preventing the expected physical properties from being obtained.

このようなコアシェルポリマー(B)の製造については特に制限無く、周知の方法、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などで製造することができる。この中でも特に乳化重合による製造方法が好適である。   There is no restriction | limiting in particular about manufacture of such a core shell polymer (B), For example, it can manufacture by a well-known method, for example, emulsion polymerization, suspension polymerization, micro suspension polymerization, etc. Among these, the production method by emulsion polymerization is particularly suitable.

本発明において用いることのできるコアシェルポリマー(B)の粒子径には特に制限は無く、コアシェルポリマー(B)を水性ラテックスの状態で安定的に得ることができるものであれば問題なく使用できる。なお、工業生産性の面からは、体積平均粒子径が0.03〜1μm程度のものが、製造が容易であるという点でより好ましい。なお、体積平均粒子径は、マイクロトラックUPA(日機装(株)製)を用いて測定することができる。   The particle diameter of the core-shell polymer (B) that can be used in the present invention is not particularly limited, and any core-shell polymer (B) that can be stably obtained in the form of an aqueous latex can be used without any problem. From the viewpoint of industrial productivity, those having a volume average particle diameter of about 0.03 to 1 μm are more preferable in terms of easy production. The volume average particle diameter can be measured using Microtrac UPA (manufactured by Nikkiso Co., Ltd.).

本発明のエポキシ樹脂製品にて用いるエポキシ樹脂組成物(C)は、特定の製造方法で得られたものであることが好ましい。具体的には、水性ラテックスの状態で得られるコアシェルポリマー(B)を有機溶剤と混合してコアシェルポリマー(B)を有機相中に取り出し、有機溶剤へコアシェルポリマー(B)が分散した分散体(E)を得た後に、エポキシ樹脂(A)と混合する方法があげられる。そのような方法としては、例えば特願2003−107882号明細書、特願2003−164416号明細書、あるいは特願2003−326711号明細書に記載の方法を使用することが好ましい。   The epoxy resin composition (C) used in the epoxy resin product of the present invention is preferably obtained by a specific production method. Specifically, the core-shell polymer (B) obtained in the state of an aqueous latex is mixed with an organic solvent, the core-shell polymer (B) is taken out into the organic phase, and a dispersion in which the core-shell polymer (B) is dispersed in the organic solvent ( After obtaining E), a method of mixing with the epoxy resin (A) can be mentioned. As such a method, for example, the method described in Japanese Patent Application No. 2003-107882, Japanese Patent Application No. 2003-164416, or Japanese Patent Application No. 2003-326711 is preferably used.

より具体的には、コアシェルポリマー(B)を含有する水性ラテックスを、特定の有機溶剤と混合し、水相を分離除去することで、コアシェルポリマー(B)が有機溶剤中へ分散した分散体(E)を得る過程において、好ましくはコアシェルポリマー(B)の水性ラテックスと特定の有機溶剤を混合後、さらに水溶性電解質あるいは水性ラテックスと非混合性の有機溶剤を添加してから、水相を分離除去し、コアシェルポリマー(B)が有機溶剤へ分散した分散体(E)を得ることが好ましい。これをエポキシ樹脂(A)と混合し、必要に応じて有機溶剤を含む揮発成分を除去することにより、本発明のエポキシ樹脂製品にて用いるエポキシ樹脂組成物(C)を製造することができる。より好ましい方法として、分散体(E)を水或いは水溶性電解質水溶液と接触させた後、水相を分離除去する操作を1回以上行った後にエポキシ樹脂(A)と混合する方法を例示することができる。   More specifically, a dispersion in which the core-shell polymer (B) is dispersed in the organic solvent by mixing the aqueous latex containing the core-shell polymer (B) with a specific organic solvent and separating and removing the aqueous phase ( In the process of obtaining E), preferably, after mixing the aqueous latex of the core-shell polymer (B) with a specific organic solvent, and further adding a water-soluble electrolyte or an aqueous latex and an immiscible organic solvent, the aqueous phase is separated. It is preferable to remove and obtain a dispersion (E) in which the core-shell polymer (B) is dispersed in an organic solvent. By mixing this with the epoxy resin (A) and removing volatile components including an organic solvent as required, the epoxy resin composition (C) used in the epoxy resin product of the present invention can be produced. More preferably, after the dispersion (E) is brought into contact with water or a water-soluble electrolyte aqueous solution, the operation of separating and removing the aqueous phase is performed once or more and then mixed with the epoxy resin (A). Can do.

ここでコアシェルポリマー(B)を含有する水性ラテックスと混合する特定の有機溶剤としては、例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン類、エタノール、(イソ)プロパノール、ブタノール等のアルコール類、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチルエーテル等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等から選ばれる1種以上の有機溶媒或いはその混合物であって、20℃における水に対する溶解度が、好ましくは5重量%以上、40重量%以下を満たすものが好ましい。水の溶解度が5重量%未満である場合にはコアシェルポリマー(B)を含有する水性ラテックスとの混合がやや困難になる傾向にあり、逆に40重量%を越える場合には、水溶性電解質或いは水性ラテックスと非混合性の有機溶剤を添加した後に水相を効率的に分離除去することが次第に難しくなる傾向にある。   Examples of the specific organic solvent mixed with the aqueous latex containing the core-shell polymer (B) include esters such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone. Ketones, alcohols such as ethanol, (iso) propanol, butanol, ethers such as tetrahydrofuran, tetrahydropyran, dioxane, diethyl ether, aromatic hydrocarbons such as benzene, toluene, xylene, methylene chloride, chloroform, etc. One or more organic solvents selected from halogenated hydrocarbons or the like, or a mixture thereof, and those having a solubility in water at 20 ° C. of preferably 5% by weight or more and 40% by weight or less are preferable. When the water solubility is less than 5% by weight, mixing with the aqueous latex containing the core-shell polymer (B) tends to be somewhat difficult. Conversely, when it exceeds 40% by weight, the water-soluble electrolyte or It tends to become increasingly difficult to efficiently separate and remove the aqueous phase after adding an aqueous latex and an immiscible organic solvent.

また、水性ラテックスと非混合性の有機溶剤としては、公知の有機溶剤が使用可能である。例えば、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、ジエチルケトン、メチルイソブチルケトン等のケトン類、ジエチルエーテル、ブチルエーテル等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン等の脂肪族炭化水素、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等から選ばれる1種以上の有機溶媒或いはその混合物であって、好ましくは水の溶解度が5重量%未満であるものが例示される。水の溶解度が5重量%以上である場合は、コアシェルポリマー(B)を含有する水性ラテックスと前記特定の有機溶剤との混合物に添加した場合に、水相を効率的に分離する効果が少なくなる傾向にある。   Moreover, a well-known organic solvent can be used as an organic solvent immiscible with aqueous latex. For example, esters such as ethyl acetate, propyl acetate and butyl acetate, ketones such as diethyl ketone and methyl isobutyl ketone, ethers such as diethyl ether and butyl ether, aromatic hydrocarbons such as benzene, toluene and xylene, hexane, etc. And one or more organic solvents selected from aliphatic hydrocarbons such as aliphatic hydrocarbons such as methylene chloride and chloroform, or a mixture thereof, preferably those having a water solubility of less than 5% by weight. The When the water solubility is 5% by weight or more, the effect of efficiently separating the aqueous phase is reduced when added to a mixture of the aqueous latex containing the core-shell polymer (B) and the specific organic solvent. There is a tendency.

また、水溶性電解質としては、特に構造、組成などが限定される物ではなく、操作中に析出して汚染源となるようなことのない程度の水溶性を有するものであれば制限無く使用できる。具体的な例としては、例えば水溶性のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩があげられ、より具体的には塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、リン酸ナトリウム、リン酸カリウム、リン酸カルシウム、硫酸アンモニウム等が例示され、さらに塩酸、硫酸などの無機酸が例示される。水性ラテックスと特定の有機溶剤との混合物に対して、水性ラテックスと非混合性の有機溶剤を添加せず、なおかつこのような水溶性電解質を添加しない場合には、該混合物から、水相を効率的に分離除去することが比較的難しい場合がある。   Further, the water-soluble electrolyte is not particularly limited in structure, composition, and the like, and can be used without limitation as long as it has a water-solubility that does not precipitate during operation and become a contamination source. Specific examples include water-soluble alkali metal salts, alkaline earth metal salts, ammonium salts, and more specifically sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium sulfate, potassium sulfate, Examples thereof include magnesium sulfate, sodium phosphate, potassium phosphate, calcium phosphate, ammonium sulfate, and inorganic acids such as hydrochloric acid and sulfuric acid. When the aqueous latex and the non-mixable organic solvent are not added to the mixture of the aqueous latex and the specific organic solvent, and such a water-soluble electrolyte is not added, the aqueous phase is efficiently removed from the mixture. It may be relatively difficult to separate and remove.

また、より好ましくは、このようにして得られたコアシェルポリマー(B)の有機溶剤への分散体(E)をエポキシ樹脂(A)と混合するに先立ち、分散体(E)を水または水溶性電解質水溶液と接触させた後に水相を分離する操作を1回以上行うことにより、コアシェルポリマー(B)を含有する水性ラテックスの調製時に使用する乳化剤若しくは分散剤等の水溶性夾雑物をより低減或いは除去することも可能である。   More preferably, prior to mixing the dispersion (E) of the core-shell polymer (B) thus obtained in an organic solvent with the epoxy resin (A), the dispersion (E) is water or water-soluble. By performing the operation of separating the aqueous phase one or more times after contacting with the aqueous electrolyte solution, water-soluble impurities such as emulsifiers or dispersants used in preparing the aqueous latex containing the core-shell polymer (B) are further reduced or It is also possible to remove it.

こうして得られたエポキシ樹脂組成物(C)を含む混合物より、有機溶剤を含む揮発成分を除去する方法としては、公知の方法が適用可能であり、例えば槽内に該混合物を仕込み(減圧)留去する回分式の方法、槽内で乾燥ガスと該混合物を向流接触させる方法、薄膜式蒸発機を用いるような連続式の方法、脱揮装置を備えた押出機あるいは連続式攪拌槽を用いる方法などが挙げられる。揮発成分を除去する際の温度や所要時間等の条件は、エポキシ樹脂(A)が反応したり品質を損なわない範囲で適宜選択することができる。また、このような揮発成分の除去操作を、各種用途の便宜により、硬化剤(D)、或いはその各種用途に応じた添加剤を配合した後に実施することも可能である。   As a method for removing volatile components including an organic solvent from the mixture containing the epoxy resin composition (C) thus obtained, a known method can be applied. For example, the mixture is charged into a tank (depressurized) and distilled. Use a batch-type method to leave, a method in which a dry gas and the mixture are brought into countercurrent contact in a tank, a continuous method using a thin film evaporator, an extruder equipped with a devolatilizer, or a continuous stirring tank. The method etc. are mentioned. Conditions such as temperature and required time for removing the volatile component can be appropriately selected within a range in which the epoxy resin (A) does not react or deteriorate the quality. Further, such a volatile component removal operation can be carried out after blending a curing agent (D) or an additive according to the various uses for convenience of various uses.

本発明のエポキシ樹脂製品は、このようにして得られたエポキシ樹脂組成物(C)、あるいは(C)と適切なエポキシ樹脂を組み合わせた、強化エポキシ樹脂に対して、各産業分野の必要に応じて、硬化剤、架橋剤、充填剤、顔料、カップリング剤、レベリング剤、酸化防止剤、溶剤、分散安定剤、反応性希釈剤、付着性付与剤、消泡剤、潤滑剤、香料、熱可塑性樹脂、プロモーター、揺変剤等の添加物、配合剤を適宜配合し、成形・硬化せしめることによって得ることができる。以下、本発明のエポキシ樹脂製品について具体的に説明する。   The epoxy resin product of the present invention is an epoxy resin composition (C) obtained as described above, or a reinforced epoxy resin in which (C) and an appropriate epoxy resin are combined, depending on the needs of each industrial field. Curing agents, crosslinking agents, fillers, pigments, coupling agents, leveling agents, antioxidants, solvents, dispersion stabilizers, reactive diluents, adhesion-imparting agents, antifoaming agents, lubricants, perfumes, heat An additive such as a plastic resin, a promoter, a thixotropic agent, and a compounding agent are appropriately blended, and can be obtained by molding and curing. Hereinafter, the epoxy resin product of the present invention will be specifically described.

(1)コーティング材料
本発明の強化エポキシ樹脂を用いたコーティング材料は、高い靭性と耐衝撃性を有することに加え、樹脂の架橋度を損なわないため、防食性、耐薬品性に優れる。溶剤系、水系、無溶剤系(粉体塗料)の何れのコーティング材料でも有用である。また、プライマー、中塗り、トップコートのいずれにも使用できる。
(1) Coating material In addition to having high toughness and impact resistance, the coating material using the reinforced epoxy resin of the present invention is excellent in corrosion resistance and chemical resistance because it does not impair the degree of crosslinking of the resin. Any coating material of solvent-based, water-based, or solvent-free (powder paint) is useful. Moreover, it can be used for any of primer, intermediate coating and top coat.

硬化剤としては、酸無水物、ポリアミン、ノボラック型フェノール樹脂、3級アミン、トリフェニルホスフィン、イミダゾール化合物、二塩基酸ヒドラジド、N,N‘−ジアルキル尿素誘導体、アルキルアミノフェノール誘導体、メラミン、グアナミン等の1種以上を使用できる。   Curing agents include acid anhydrides, polyamines, novolac type phenol resins, tertiary amines, triphenylphosphine, imidazole compounds, dibasic acid hydrazides, N, N′-dialkylurea derivatives, alkylaminophenol derivatives, melamine, guanamine, etc. One or more of these can be used.

また熱可塑性樹脂を適切な程度に添加することもできる。熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルブチラール、ポリビニルホルマール等のアセタール樹脂、ポリエーテルスルホン(PES)、ポリスルホン(PSF)、ポリエーテルイミド(PEI)、ポリアリレート、ポリアミド、ポリイミド等が挙げられる。ポリアミド、スチレンアクリロニトリル共重合体、アクリル樹脂、ポリエステルなど(これらは官能基を有するものであり得る)が例示できる。また、フェノール樹脂も配合可能である。   Moreover, a thermoplastic resin can also be added to a suitable grade. Examples of the thermoplastic resin include acetal resins such as phenoxy resin, polyvinyl butyral, and polyvinyl formal, polyethersulfone (PES), polysulfone (PSF), polyetherimide (PEI), polyarylate, polyamide, and polyimide. Examples thereof include polyamide, styrene acrylonitrile copolymer, acrylic resin, polyester and the like (these may have a functional group). Moreover, a phenol resin can also be mix | blended.

架橋剤としては、ポリアミン、ポリアミノアミド、ポリカルボン酸、酸無水物、ポリヒドラジド等が挙げられる。   Examples of the crosslinking agent include polyamine, polyaminoamide, polycarboxylic acid, acid anhydride, polyhydrazide and the like.

充填剤として、タルク粉末、結晶シリカ粉末、溶融シリカ粉末、炭酸カルシウム粉末、マグネシア粉末、ケイ酸カルシウム粉末、水和アルミナ粉末、アルミナ粉末、ジルコン粉末、グラファイト、硫酸バリウム、クレー、マイカ粉、バライト、珪藻土、ケイ酸カルシウム、ケイ酸アルミニウム、炭酸バリウム、炭酸マグネシウム等が例示できる。   As fillers, talc powder, crystalline silica powder, fused silica powder, calcium carbonate powder, magnesia powder, calcium silicate powder, hydrated alumina powder, alumina powder, zircon powder, graphite, barium sulfate, clay, mica powder, barite, Examples include diatomaceous earth, calcium silicate, aluminum silicate, barium carbonate, and magnesium carbonate.

必要に応じ顔料やカップリング剤、レべリング剤などの添加物を配合できる。顔料としてチタン白、タルク、炭酸カルシウム、シリカ等の体質顔料が配合できる。   If necessary, additives such as pigments, coupling agents, and leveling agents can be blended. As pigments, extender pigments such as titanium white, talc, calcium carbonate and silica can be blended.

また、必要に応じてポリイソシアネートを配合できる。ポリイソシアネート類としては、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ジフェニルメタンジイソシアネート(MDI)、1,6−ヘキサメチレンジイソシアネート(HDI)、イソホロンジソシアネート(IPDI)、水素添加TDI、水素添加XDIなど、周知のポリイソシアネート類を使用できる。これらイソシアネート類はブロック剤と反応させたブロックイソシアネートであってもよい。ブロック化剤としては水酸基含有化合物か好ましい例として挙げられ、フェノール類、ラクタム類、オキシム類、イミド類、アルコール類などの化合物が挙げられる。市販のブロックイソシアネートやブロックイソシアネート含有ウレタン変性エポキシ樹脂を用いることもできる。   Moreover, polyisocyanate can be mix | blended as needed. Polyisocyanates include tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), diphenylmethane diisocyanate (MDI), 1,6-hexamethylene diisocyanate (HDI), isophorone disocyanate (IPDI), hydrogenated TDI, hydrogenated Known polyisocyanates such as XDI can be used. These isocyanates may be blocked isocyanates reacted with a blocking agent. Examples of the blocking agent include hydroxyl group-containing compounds and preferred examples, and examples thereof include compounds such as phenols, lactams, oximes, imides, and alcohols. Commercially available blocked isocyanates or blocked isocyanate-containing urethane-modified epoxy resins can also be used.

また、必要に応じて酸化防止剤も配合できる。酸化防止剤としてはフェノール系、りん系、硫黄系等の化合物が挙げられる。具体的にはトリス(2,4−ジ−tert−ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト等のりん系酸化防止剤、ジラウリル−3,3‘−チオジプロピオネート等の硫黄系酸化防止剤、IR−245、IR−1076(何れもチバスペシャリティケミカルズ製)等に代表されるフェノール系酸化防止剤を例示できる。酸化防止剤はエポキシ樹脂とその他の配合物との必要な反応を妨げないように配合することが必要である。   Moreover, antioxidant can also be mix | blended as needed. Examples of the antioxidant include phenolic, phosphorus-based and sulfur-based compounds. Specifically, phosphorus-based antioxidants such as tris (2,4-di-tert-butylphenyl) phosphite and tris (nonylphenyl) phosphite, and sulfur-based compounds such as dilauryl-3,3′-thiodipropionate Examples thereof include phenolic antioxidants represented by antioxidants, IR-245, IR-1076 (all manufactured by Ciba Specialty Chemicals) and the like. The antioxidant needs to be blended so as not to interfere with the necessary reaction between the epoxy resin and other blends.

溶剤系塗料では、通常、塗料化のために有機溶剤が使用されるが、本発明に係る強化エポキシ樹脂は、溶剤系塗料で一般的に使用される溶剤に溶解しても、コアシェルポリマーの安定性が損なわれることなく、安定に存在できるため、該強化エポキシ樹脂の特徴を損なわない。塗料化のために用いられる有機溶剤としては、トルエン、キシレン、ソルベッソ、酢酸エチル、酢酸ブチル、メチルエチルケトン、シクロヘキサノン、イソホロン、メチルソロソルブ、ブチルソロソルブ、エチレングリコールモノアセテート等から、蒸発速度など考慮して選ばれる。   In solvent-based paints, an organic solvent is usually used to make a paint. However, the reinforced epoxy resin according to the present invention is stable in the core-shell polymer even when dissolved in a solvent generally used in solvent-based paints. Therefore, the characteristics of the reinforced epoxy resin are not impaired. The organic solvent used for coating is toluene, xylene, sorbeso, ethyl acetate, butyl acetate, methyl ethyl ketone, cyclohexanone, isophorone, methyl solosolve, butyl solosolve, ethylene glycol monoacetate, etc. Chosen.

水系塗料では、公知の方法、即ち乳化剤、分散安定剤等を使用して、エポキシ樹脂を機械的せん断力で水中に分散させて、水系エポキシ樹脂を得るという方法で、容易に該強化エポキシ樹脂の水分散物を調製することができる。或いは本発明に係る強化エポキシ樹脂を1級または2級アミンを付加させて変性したアミン変性エポキシ樹脂とした後に、酸で中和し水中に分散させることでも得ることができる。本発明で用いる強化エポキシ樹脂を水分散体としても、含まれるコアシェルポリマー(B)はエポキシ樹脂相に安定に分散して存在しており、水層に溶解することがないため、形成された塗膜を強化できる。   In a water-based paint, a known method, that is, using an emulsifier, a dispersion stabilizer or the like, an epoxy resin is dispersed in water with mechanical shearing force to obtain a water-based epoxy resin. An aqueous dispersion can be prepared. Alternatively, the reinforced epoxy resin according to the present invention can be obtained by adding a primary or secondary amine to a modified amine-modified epoxy resin, and then neutralizing with an acid and dispersing in water. Even when the reinforced epoxy resin used in the present invention is used as an aqueous dispersion, the contained core-shell polymer (B) is stably dispersed in the epoxy resin phase and does not dissolve in the aqueous layer. Can strengthen the membrane.

水系の電着塗料組成物にも本発明の強化エポキシ樹脂は有用であり、例えばカチオン電着塗装用樹脂組成物を本発明の強化エポキシ樹脂から得ることができる。通常のカチオン電着塗装用のエポキシ樹脂組成物の水分散物を得る周知の方法に従って、得ることができる。即ち、エポキシ基の一部を必要に応じてアルキルフェノールやモノカルボン酸、またはヒドロキシカルボン酸との反応によって開環し、残りのエポキシ基とアミン等の反応によってイオン性基を導入した変性エポキシ樹脂とする。これを周知のブロックイソシアネートやメラミンを用いて周知の方法で架橋硬化させることで、塗膜とすることができる。   The reinforced epoxy resin of the present invention is also useful for water-based electrodeposition coating compositions. For example, a resin composition for cationic electrodeposition coating can be obtained from the reinforced epoxy resin of the present invention. It can be obtained according to a known method for obtaining an aqueous dispersion of an epoxy resin composition for ordinary cationic electrodeposition coating. That is, a modified epoxy resin in which a part of an epoxy group is ring-opened by a reaction with an alkylphenol, a monocarboxylic acid, or a hydroxycarboxylic acid as necessary, and an ionic group is introduced by a reaction of the remaining epoxy group with an amine, etc. To do. By coating and curing this with a known method using a known blocked isocyanate or melamine, a coating film can be obtained.

必要に応じて、反応性希釈剤、付着性付与剤、消泡剤、潤滑剤、香料等を添加できる。塗装方法としては、ロールコート、カーテンフローコート、スプレー塗装、静電スプレー塗装など公知の方法で実施できる。   If necessary, a reactive diluent, an adhesion-imparting agent, an antifoaming agent, a lubricant, a fragrance, and the like can be added. As a coating method, a known method such as roll coating, curtain flow coating, spray coating or electrostatic spray coating can be used.

粉体塗料では、本発明の強化エポキシ樹脂に硬化剤、架橋剤、充填剤、添加剤等の所定量をミキサー等で混合し周知の方法、例えばエクストルーダー、コニーダー、ロール等で溶融混錬し、次いで粉砕機にて粉砕することで得られる。その他、流動性調整剤、表面調整剤、スベリ性付与剤などの粉体塗料用添加剤などを配合できる。得られた粉体塗料は周知の方法、例えば静電スプレー法、ホットスプレー法、流動浸漬法、静電流動浸漬法、ころがし法、ふりかけ法、など一般の粉体塗装方法で塗布できる。塗布後は周知の条件、例えば塗膜厚約20〜400μm、110〜230℃の範囲で硬化できる。本発明の強化エポキシ樹脂による粉体塗料は、耐蝕性、耐溶剤性、耐チッピング性、その他機械的性質で優れており、工業材料、タンク、パイプ、車両、建材、家電等に用いることができる。本発明に係る粉体塗料の軟化点は50〜160℃の範囲にある。   For powder coatings, the reinforced epoxy resin of the present invention is mixed with a predetermined amount of a curing agent, a crosslinking agent, a filler, an additive and the like by a mixer and melted and kneaded by a known method such as an extruder, a kneader, or a roll. Then, it is obtained by pulverizing with a pulverizer. In addition, additives for powder coatings such as a fluidity adjusting agent, a surface adjusting agent, and a slipperiness imparting agent can be blended. The obtained powder coating can be applied by a general powder coating method such as an electrostatic spray method, a hot spray method, a fluidized immersion method, an electrostatic fluidized immersion method, a rolling method, or a sprinkling method. After coating, it can be cured under known conditions, for example, a coating thickness of about 20 to 400 μm and a range of 110 to 230 ° C. The powder coating with the reinforced epoxy resin of the present invention is excellent in corrosion resistance, solvent resistance, chipping resistance, and other mechanical properties, and can be used for industrial materials, tanks, pipes, vehicles, building materials, home appliances and the like. . The softening point of the powder coating according to the present invention is in the range of 50 to 160 ° C.

(2)接着剤
本発明に係る強化エポキシ樹脂を用いた接着剤は、高い靭性や耐衝撃性を有し、基材の強度に優れると共に、接着剤基材の耐熱性(ガラス転移温度)を低下させないという特徴を有する。湿潤下でのTg低下が極めて少なく、Dry/WetでのTg変化が非常に少ない接着剤を得ることができる。このような特徴の1つ以上を利用して、土木、建築用のほか、自動車用(ヘミング、ウエルドボンド、補強剤、樹脂部品と鋼板の接着)、金属同士の接着、複合材料の接着、ハニカム材の組み立て用接着剤、電気電子部品の接着、或いは水中で用いる接着剤としても用いることができる。
(2) Adhesive The adhesive using the reinforced epoxy resin according to the present invention has high toughness and impact resistance, is excellent in the strength of the base material, and has the heat resistance (glass transition temperature) of the adhesive base material. It has the characteristic of not lowering. It is possible to obtain an adhesive with very little Tg decrease under wet conditions and very little Tg change in Dry / Wet. Utilizing one or more of these features, in addition to civil engineering and construction, automobiles (hemming, weld bonds, reinforcing agents, adhesion between resin parts and steel plates), metal-to-metal bonding, composite bonding, honeycomb It can also be used as an adhesive for assembling materials, an adhesive for electric and electronic parts, or an adhesive used in water.

本発明に係る強化エポキシ樹脂に、硬化剤、添加剤などを配合した後、所定の条件で硬化させ、被着体同士を接着させる。硬化剤としては、ジシアンジアミド(DICY)、イソフタル酸ジヒドラジド、N,N‘−ジアルキル尿素誘導体、N,N‘−ジアルキルチオ尿素誘導体などの潜在硬化剤、ジアミノジフェニルメタン等の芳香族ジアミン、その他イミダゾール類などを例示できる。   After a hardening agent, an additive, etc. are mix | blended with the reinforced epoxy resin which concerns on this invention, it is made to harden | cure on predetermined conditions and adherends are adhere | attached. Curing agents include latent curing agents such as dicyandiamide (DICY), isophthalic acid dihydrazide, N, N′-dialkylurea derivatives, N, N′-dialkylthiourea derivatives, aromatic diamines such as diaminodiphenylmethane, and other imidazoles. Can be illustrated.

この接着剤には、本発明の要件を損なわない範囲で従来のエポキシ系接着剤に用いるような、熱可塑性樹脂やフィラーを配合できる。熱可塑性樹脂としては、ポリエーテルスルホン(PES)、ポリサルホン(PSF)、ポリエーテルケトン(PEK)、ポリアミド、スチレンアクリロニトリル共重合体、アクリル樹脂、ポリエステルなどが例示できる。またこれらはエポキシ樹脂や硬化剤等と反応する反応性官能基を有するものであっても良い。また、フェノール樹脂やフェノキシ樹脂、ポリビニルブチラール、ポリビニルホルマール等のアセタール樹脂も配合可能である。   This adhesive can be blended with a thermoplastic resin or filler as used in a conventional epoxy adhesive within a range that does not impair the requirements of the present invention. Examples of the thermoplastic resin include polyethersulfone (PES), polysulfone (PSF), polyetherketone (PEK), polyamide, styrene acrylonitrile copolymer, acrylic resin, and polyester. These may have a reactive functional group that reacts with an epoxy resin, a curing agent, or the like. Further, acetal resins such as phenol resin, phenoxy resin, polyvinyl butyral, and polyvinyl formal can be blended.

フィラーとしては、微粒子シリカ(Fumed Silica)、炭酸カルシウム、硫酸バリウム、カルシウムメタシリケート、酸化チタン、、カーボンフィラー、ガラスチョップ、ガラスビーズ及びこれらを表面処理したもの等、公知のフィラーを使用することができる。   As the filler, it is possible to use known fillers such as fine particle silica (Fumed Silica), calcium carbonate, barium sulfate, calcium metasilicate, titanium oxide, carbon filler, glass chop, glass beads, and those obtained by surface treatment thereof. it can.

ブロックイソシアネートを加えることもでき、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ジフェニルメタンジイソシアネート(MDI)、1,6−ヘキサメチレンジイソシアネート(HDI)、イソホロンジソシアネート(IPDI)、水素添加TDI、水素添加XDIなど、周知のポリイソシアネート類を使用できる。これらイソシアネート類はブロック剤と反応させたブロックイソシアネートであってもよい。ブロック化剤としては水酸基含有化合物か好ましい例として挙げられ、フェノール類、ラクタム類、オキシム類、イミド類、アルコール類などの化合物が挙げられる。市販のブロックイソシアネートやブロックイソシアネート含有ウレタン変性エポキシ樹脂を用いることもできる。   Blocked isocyanates can also be added, such as tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), diphenylmethane diisocyanate (MDI), 1,6-hexamethylene diisocyanate (HDI), isophorone disocyanate (IPDI), hydrogenated TDI, Well-known polyisocyanates such as hydrogenated XDI can be used. These isocyanates may be blocked isocyanates reacted with a blocking agent. Examples of the blocking agent include hydroxyl group-containing compounds and preferred examples, and examples thereof include compounds such as phenols, lactams, oximes, imides, and alcohols. Commercially available blocked isocyanates or blocked isocyanate-containing urethane-modified epoxy resins can also be used.

また、被着体との界面接着強度を高めるために、軟質成分やプロモーター等を添加することもできる。   Further, in order to increase the interfacial adhesion strength with the adherend, a soft component, a promoter, or the like can be added.

本発明のエポキシ樹脂製品は接着剤として、構造接着剤(車両、車体の一次/二次構造材の組み立て、土木、建築)、耐熱性接着剤(航空機やその他耐熱性を必要とする用途)、低温特性に優れる接着剤(耐寒性が要求される接着剤)に用いることができる。また形態としては、ペースト状、フィルム状など、周知のエポキシ系接着剤の形状にて提供可能である。   The epoxy resin product of the present invention has an adhesive as a structural adhesive (assembly of primary / secondary structural materials for vehicles and vehicle bodies, civil engineering, construction), heat resistant adhesive (for aircraft and other applications that require heat resistance), It can be used for an adhesive having excellent low-temperature characteristics (an adhesive requiring cold resistance). Moreover, as a form, it can provide in the shape of a well-known epoxy adhesive, such as a paste form and a film form.

(3)電気電子材料
電気電子分野での本発明のエポキシ樹脂製品としては、エポキシ注形絶縁、粉体塗装絶縁、積層板などに使用可能である。
(3) Electrical and electronic materials The epoxy resin product of the present invention in the electrical and electronic field can be used for epoxy cast insulation, powder coating insulation, laminates, and the like.

エポキシ注形絶縁物として本発明の強化エポキシ樹脂が使用できる範囲には、注形(Casting)、被覆(Encapsulation)、埋込(Potting)、封止(Sealing)を含み得る。本発明に係る強化エポキシ樹脂によるこれら絶縁物は、曲げ強さ、圧縮強さ、衝撃強さなどの機械特性、ガラス転移温度、熱変形温度や耐熱性などの熱特性、吸水時の耐熱性、吸水率に優れる他、内部ボイド、表面ボイドやクラックの発生が少なく、内部応力を減少させることができクラック発生を抑制でき、また、クリープ特性や寸法精度や寸法安定性に優れる。また、収縮を抑えひけを少なくする(低収縮)性質にも優れている。エポキシ樹脂としては、エポキシ当量150〜800g/eqのものが好ましく、ビスフェノールA型が代表的なものとして例示できるが、耐熱性を増すために他官能エポキシ、ノボラックエポキシ、シクロオレフィン系エポキシなどが用いられるが、ジメチルヒダントイン型エポキシ、イミド含有エポキシ、エポキシ−イソシアネート、トリアジンエポキシ、トリグリシジルイソシアヌレート(TGIC)なども使用できる。また、周知の反応性希釈剤、高分子液状グリコール、液状ポリサルファイド等を加えても良い。硬化剤としては、脂肪族アミン、芳香族アミン、変性アミンやポリアミドアミン、酸無水物、ホウ素系、イミダゾール系、潜在性硬化剤などを用いることができる。高温機械強度やクリープなどの観点からは酸無水物の使用が好ましい。酸無水物としては、無水フタル酸、無水ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、無水メチルハイミック酸等の少なくとも1つ以上を用いることができる。また、周知の充填剤を用いることができ、シリカ、溶融石英、炭酸カルシクム、水和アルミナ、アルミナ、ジルコン、ガラスチョップ、アスベスト、タルク、マイカ、ペントナイトなどが例示される。   The range in which the reinforced epoxy resin of the present invention can be used as an epoxy cast insulator may include casting, encapsulation, potting, and sealing. These insulators by the reinforced epoxy resin according to the present invention are mechanical properties such as bending strength, compressive strength, impact strength, glass transition temperature, thermal properties such as heat distortion temperature and heat resistance, heat resistance during water absorption, In addition to excellent water absorption, there are few internal voids, surface voids and cracks, internal stress can be reduced and cracks can be suppressed, and creep characteristics, dimensional accuracy and dimensional stability are excellent. It also has excellent properties of suppressing shrinkage and reducing sink marks (low shrinkage). The epoxy resin preferably has an epoxy equivalent of 150 to 800 g / eq, and bisphenol A type can be exemplified as a typical one, but other functional epoxy, novolak epoxy, cycloolefin epoxy, etc. are used to increase heat resistance. However, dimethylhydantoin type epoxy, imide-containing epoxy, epoxy-isocyanate, triazine epoxy, triglycidyl isocyanurate (TGIC) and the like can also be used. Further, a known reactive diluent, polymer liquid glycol, liquid polysulfide, or the like may be added. As the curing agent, aliphatic amine, aromatic amine, modified amine, polyamide amine, acid anhydride, boron series, imidazole series, latent curing agent, and the like can be used. In view of high temperature mechanical strength and creep, it is preferable to use an acid anhydride. As the acid anhydride, at least one of phthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic acid, methyl hymic anhydride and the like can be used. Well-known fillers can be used, and examples thereof include silica, fused quartz, calcium carbonate, hydrated alumina, alumina, zircon, glass chop, asbestos, talc, mica and pentonite.

粉体塗料絶縁として本発明の強化エポキシ樹脂を用いるには、被絶縁物となる電気電子部品に、塗装方法として、流動浸漬法、静電スプレー法、静電流動浸漬法、粉体スプレー法など例示される方法で、好ましくは0.05〜5mmの厚みで塗布される。エポキシ樹脂としては、ビスフェノールA型、ノボラック型、ハロゲン化エポキシ樹脂の使用が例示される。硬化剤としては、芳香族アミン系、酸無水物系、イミダゾール系、ヒドラジド付加物、ジシアンジアミド(DICY)などが例示される。充填剤も使用でき、シリカ粉末、炭酸カルシウム、溶融石英、水酸化アルミニウムなどが例示される。   In order to use the reinforced epoxy resin of the present invention as powder coating insulation, the electrical and electronic parts that are to be insulated are applied as a coating method, such as fluidized immersion method, electrostatic spray method, electrostatic fluidized immersion method, powder spray method, etc. By the exemplified method, it is preferably applied with a thickness of 0.05 to 5 mm. Examples of the epoxy resin include use of bisphenol A type, novolac type, and halogenated epoxy resin. Examples of the curing agent include aromatic amines, acid anhydrides, imidazoles, hydrazide adducts, dicyandiamide (DICY), and the like. A filler can also be used, and examples thereof include silica powder, calcium carbonate, fused quartz, and aluminum hydroxide.

半導体封止剤として本発明に係るエポキシ樹脂を用いるには、ティッピング法、ポッティング、キャスティングと言われる注型法、B−ステージ状のエポキシ樹脂を加熱溶融し硬化させる方法、先述のようなパウダーコーティング、トランスファー成型などが例示される。   In order to use the epoxy resin according to the present invention as a semiconductor sealant, a tipping method, a potting method, a casting method called casting, a method of heating and melting a B-stage epoxy resin, a powder coating as described above And transfer molding.

エポキシ樹脂としては、ノボラック型エポキシ、クレゾールノボラック型エポキシ、ブロム化エポキシが例示される。好ましい硬化剤としてはフェノール樹脂、芳香族アミン変性物、酸無水物などが例示され、効果促進剤も用いられ、イミダゾール類が例示される。   Examples of the epoxy resin include novolak type epoxy, cresol novolak type epoxy, and brominated epoxy. Preferable curing agents include phenol resins, modified aromatic amines, acid anhydrides and the like, effect accelerators are also used, and imidazoles are exemplified.

積層板は、本発明に係るエポキシ樹脂組成物に、必要に応じ1つ以上のエポキシ樹脂、硬化剤、添加材等を加えワニスを製造し、これを紙、ガラスクロス、合成繊維布、炭素繊維布などに塗布含浸して作成したプリプレグを成型して得ることができる。本発明の強化エポキシ樹脂による積層板は、耐熱性、デラミネーション、耐ミーズリング性、クレージング、ブリスタリング(ふくれ)、Dry/WetでのTg変化、耐スミア性、スルーホール信頼性、仕上がり外観等に優れる。   Laminate is produced by adding one or more epoxy resins, curing agents, additives, etc. to the epoxy resin composition according to the present invention as needed to produce varnish, which is made of paper, glass cloth, synthetic fiber cloth, carbon fiber It can be obtained by molding a prepreg prepared by applying and impregnating a cloth or the like. The laminated board made of the reinforced epoxy resin of the present invention has heat resistance, delamination, mesling resistance, crazing, blistering, Tg change at Dry / Wet, smear resistance, through-hole reliability, finished appearance, etc. Excellent.

好ましいエポキシ樹脂としては、DGBEA型、ノボラック型、ビスフェノールAノボラック型、ハロゲン化ビスフェノールA型、ハロゲン化ノボラック型の各エポキシ樹脂が挙げられる。エポキシ樹脂としては、エポキシ等量が180〜1000のビスフェノールA型樹脂の他、ノボラック型エポキシやグリシジルアミン、トリグリシジルイソシアヌレート(TGIC)等の他官能エポキシの他、臭素化ビスフェノールA型エポキシを使用できる。   Preferred epoxy resins include DGBEA type, novolak type, bisphenol A novolak type, halogenated bisphenol A type, and halogenated novolac type epoxy resins. As epoxy resin, in addition to bisphenol A type resin with epoxy equivalent of 180-1000, other functional epoxy such as novolac type epoxy, glycidylamine, triglycidyl isocyanurate (TGIC), and brominated bisphenol A type epoxy are used. it can.

必要に応じて本発明の要件を損なわない範囲で難燃剤を添加してもよい。   You may add a flame retardant in the range which does not impair the requirements of this invention as needed.

硬化剤としては、ジシアンジアミド(DICY)、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等のアミン系硬化剤、無水ヘキサヒドロ無水フタル酸などの酸無水物、脂肪族ポリアミン、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂等のフェノール性硬化剤、イミダゾール類、三級アミン、ポリアミド、ポリメルカプタン、メラミン樹脂等が挙げられる。   Curing agents include amine curing agents such as dicyandiamide (DICY), diaminodiphenylmethane, diaminodiphenylsulfone, acid anhydrides such as hexahydrophthalic anhydride, aliphatic polyamines, aromatic polyamines, acid anhydrides, phenol novolac resins, etc. Phenolic curing agents, imidazoles, tertiary amines, polyamides, polymercaptans, melamine resins, and the like.

基材として用いられるガラス布は、電気特性の点からEガラスが好ましく2〜15μmのガラスファイバーより作られたガラス布が例示できる。またエポキシとの密着性を向上させるために。シラン化合物やクロム化合物等により表面処理が施されている。これにより耐ミーズリング性を改善することができる。   The glass cloth used as the substrate is preferably E glass from the viewpoint of electrical characteristics, and can be exemplified by a glass cloth made from 2 to 15 μm glass fiber. Also to improve the adhesion with epoxy. Surface treatment is performed with a silane compound or a chromium compound. As a result, the resistance to measling can be improved.

本発明に係る樹脂組成物を用いて、高多層の積層板を得ることができる。本発明に係る樹脂組成物を用いて得られる積層板は、優れた熱的特性、耐ハンダ耐熱性、耐ヒートショック性、ドリル穴あけ加工性、寸法安定性を有する。   Using the resin composition according to the present invention, a highly multilayer laminate can be obtained. The laminate obtained by using the resin composition according to the present invention has excellent thermal characteristics, solder heat resistance, heat shock resistance, drilling workability, and dimensional stability.

フィラーとしては、シリカ粉末、酸化チタン、アルミナ粉末、窒化ケイ素粉末、窒化アルミ粉末、ガラス繊維、ウイスカー等を用いることができる。   As the filler, silica powder, titanium oxide, alumina powder, silicon nitride powder, aluminum nitride powder, glass fiber, whisker or the like can be used.

難燃剤として縮合リン酸エステルに代表されるリン系難燃剤、無機系難燃剤、離型材として天然ワックス、合成ワックス、及びエステル類、着色剤としてカーボンブラック、シランカップリング剤等の無機充填剤の処理剤などを適宜、添加配合できる。   Phosphorus flame retardants typified by condensed phosphates as flame retardants, inorganic flame retardants, natural waxes, synthetic waxes and esters as release materials, carbon blacks as colorants, inorganic fillers such as silane coupling agents Treatment agents and the like can be added and blended as appropriate.

また、貯蔵安定剤として、例えば、メチルp−トルエンスルホネート、エチルp−トルエンスルホネート、メチルp−クロロベンゼンスルホネート等のアルキルフェニルスルホネート、またはハロゲン化アルキルフェニルスルホネート等が挙げられ、組成物全量に対し、0.001〜10重量部が使用されうる。   Examples of the storage stabilizer include alkyl phenyl sulfonates such as methyl p-toluene sulfonate, ethyl p-toluene sulfonate, methyl p-chlorobenzene sulfonate, and halogenated alkyl phenyl sulfonate. 0.001 to 10 parts by weight can be used.

また、本発明に係る強化エポキシ樹脂組成物は、低応力化剤としても使用でき、特に電子材料で問題になるハンダ浸漬時や繰り返し加熱による熱衝撃の緩和などの低応力化に優れており、このような特徴を生かして上記のような封止剤や積層版に利用できる。   In addition, the reinforced epoxy resin composition according to the present invention can be used as a stress reducing agent, and is excellent in reducing stress such as relaxation of thermal shock due to solder immersion or repeated heating, which is a problem particularly in electronic materials, Utilizing such characteristics, it can be used for the above-mentioned sealant and laminated plate.

(4)複合材料
複合材料としては、本発明で用いる強化エポキシ樹脂に、硬化剤、添加剤、必要であれば複数のエポキシ樹脂を加えて樹脂組成物を製造し、これを周知の方法でガラスクロスやカーボンクロス等に塗布含浸させてプリプレグを得ることができる。溶剤法やホットメルト法で塗布含浸可能である。また。プルトルージョン、フラメントワインディング、レイアップ、レジントランスファー成型、レジンインジェクション成型等で本発明の複合材料を得ることもできる。プリプレグは周知の方法、レイアップ法やバキュームバック法、トランスファー成型、ラッピングテープ法、プレス成型法、オートクレーブ成型法、内圧成型法などでエポキシ樹脂製品として有用な形状に加工可能である。また、得られたプリプレグは、ハニカムパネルの材料としても使用できる。
(4) Composite material As a composite material, a resin composition is produced by adding a curing agent, an additive, and, if necessary, a plurality of epoxy resins to the reinforced epoxy resin used in the present invention, and this is made into a glass by a well-known method. A prepreg can be obtained by applying and impregnating cloth, carbon cloth or the like. It can be applied and impregnated by a solvent method or a hot melt method. Also. The composite material of the present invention can also be obtained by pultrusion, fragmentation winding, layup, resin transfer molding, resin injection molding, or the like. The prepreg can be processed into a useful shape as an epoxy resin product by a known method, layup method, vacuum back method, transfer molding, wrapping tape method, press molding method, autoclave molding method, internal pressure molding method, and the like. The obtained prepreg can also be used as a material for a honeycomb panel.

本発明に係る強化エポキシ樹脂による複合材料は、樹脂自体の耐衝撃性に優れるため得られる複合材料の耐衝撃性や層間剥離性にも優れる。本発明では、従来のゴム成分をエポキシ樹脂に溶解させる技術とは異なり、耐熱性(Tg)の低下なく耐水性を低下させることもなく、また、弾性率の低下を最小限に抑制しつつ耐衝撃性を向上できる。従い、マトリックス樹脂の弾性率に依存する傾向があるCFRPで重要な圧縮強度は、本発明のエポキシ樹脂組成物によって、特に高温高湿下での圧縮強度に優れるという特徴がある。また、層間靭性や残存圧縮強度(Compression after Impact)、耐疲労性に優れる。また、振動特性や内部エネルギーの損失(Tanδ)なども、コアシェルポリマーの設計を変えることで容易かつ高い再現性で実現可能である。   The composite material made of the reinforced epoxy resin according to the present invention is excellent in the impact resistance and delamination property of the composite material obtained because the resin itself is excellent in impact resistance. In the present invention, unlike the conventional technique of dissolving a rubber component in an epoxy resin, the heat resistance (Tg) is not lowered, the water resistance is not lowered, and the elastic modulus is lowered while minimizing the decrease in the elastic modulus. Impact can be improved. Accordingly, the compressive strength important in CFRP, which tends to depend on the elastic modulus of the matrix resin, is characterized by excellent compressive strength particularly under high temperature and high humidity by the epoxy resin composition of the present invention. Moreover, it is excellent in interlaminar toughness, residual compression strength (compression after impact), and fatigue resistance. In addition, vibration characteristics, internal energy loss (Tan δ), and the like can be realized easily and with high reproducibility by changing the design of the core-shell polymer.

好ましいエポキシ樹脂としては、DGEBA型、多官能エポキシ樹脂であるグリシジルアミン型(アミノフェノールやキシリレンジアミン、ジアミノジフェニルメタン等から誘導されるものを含む)、トリグリシジルシアヌレート、ノボラック型などが挙げられる。硬化剤としては、芳香族アミン、潜在性硬化剤(DICYなど)、ポリアミドアミン、酸無水物、フェノールノボラック樹脂、クレゾールノボラック樹脂、、アミノ安息香酸エステル類、アミンアダクト型イミダゾール類、無水ポリカルボン酸などが挙げられる。また、硬化促進剤としては尿素誘導体や3級アミン、イミダゾール類など、周知のものを用いることができる。   Preferred epoxy resins include DGEBA type, polyfunctional epoxy resin glycidylamine type (including those derived from aminophenol, xylylenediamine, diaminodiphenylmethane, etc.), triglycidyl cyanurate, and novolak type. Curing agents include aromatic amines, latent curing agents (such as DICY), polyamidoamines, acid anhydrides, phenol novolac resins, cresol novolac resins, aminobenzoates, amine adduct imidazoles, and polycarboxylic anhydrides. Etc. Moreover, as a hardening accelerator, well-known things, such as a urea derivative, a tertiary amine, and imidazole, can be used.

繊維強化剤としては、ガラス繊維、炭素繊維、ボロン繊維、シリコンカーバイド繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ポリエチレン繊維など、周知の繊維強化剤を例示でき、その強化形態としては、各種強化繊維の一方向引き揃え、織布、不職布の他、2種以上の強化繊維を組み合わせて用いることもできる。   Examples of the fiber reinforcing agent include known fiber reinforcing agents such as glass fiber, carbon fiber, boron fiber, silicon carbide fiber, aramid fiber, silicon carbide fiber, alumina fiber, and polyethylene fiber. A combination of two or more kinds of reinforcing fibers can be used in addition to unidirectional alignment of fibers, woven fabric, and unemployed fabric.

また必要に応じてシリカ等の無機充填剤、揺変剤、及び顔料等を添加することもできる。   Moreover, inorganic fillers, such as a silica, a thixotropic agent, a pigment, etc. can also be added as needed.

必要であれば熱可塑性樹脂を、強化繊維への含浸性、反応性、耐熱性などの観点から適切な程度に添加することもできる。熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルブチラール、ポリビニルホルマール等のアセタール樹脂、ポリエーテルスルホン(PES)、ポリスルホン(PSF)、ポリエーテルイミド(PEI)、ポリアリレート、ポリアミド、ポリイミド等が挙げられる。   If necessary, the thermoplastic resin can be added to an appropriate level from the viewpoint of impregnation into the reinforcing fiber, reactivity, heat resistance, and the like. Examples of the thermoplastic resin include acetal resins such as phenoxy resin, polyvinyl butyral, and polyvinyl formal, polyethersulfone (PES), polysulfone (PSF), polyetherimide (PEI), polyarylate, polyamide, and polyimide.

プリプレグの樹脂含浸率としては、10〜40重量%の範囲が好ましい範囲として挙げられる。   As a resin impregnation rate of a prepreg, the range of 10 to 40 weight% is mentioned as a preferable range.

本発明の複合材料は、パイプ、タンク、パネル、船舶や自動車等の船体/車体、航空機の一次/二次構造剤、スポーティンググッズ(シャフト、フレーム、パネル等)などのエポキシ樹脂製品として使用可能である。   The composite material of the present invention can be used as epoxy resin products for pipes, tanks, panels, hulls / body bodies of ships and automobiles, primary / secondary structural agents for aircraft, and sporting goods (shafts, frames, panels, etc.) It is.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

(コアシェルポリマー(B)ラテックスの製造例)
3Lのガラス容器に純水440gとゴムラテックス1300gを仕込み、窒素置換を行いながら70℃で攪拌した。このゴムラテックスは、75重量%のブタジエンと25重量%のスチレンを共重合して得られたゴム状重合体粒子420gを含み、該粒子の体積平均粒子径は0.1μmであり、乳化剤としてゴムの固形分に対して1.5重量%のドデシルベンゼンスルホン酸ナトリウムを含むものである。このゴムラテックスにアゾビスイソブチロニトリル(AIBN)1.2gを加えた後、グラフト共重合体成分として、以下の混合物を3時間に渡って添加しグラフト重合した。
スチレン:54g、メタクリル酸メチル:72g、アクリロニトリル:36g、グリシジルメタクリレート:18g
添加終了後、更に2時間攪拌して反応させた。得られたラテックスはそのまま使用した。
(Production example of core-shell polymer (B) latex)
A 3 L glass container was charged with 440 g of pure water and 1300 g of rubber latex and stirred at 70 ° C. while purging with nitrogen. This rubber latex contains 420 g of rubber-like polymer particles obtained by copolymerizing 75% by weight of butadiene and 25% by weight of styrene, and the volume average particle diameter of the particles is 0.1 μm. It contains 1.5% by weight of sodium dodecylbenzenesulfonate with respect to the solid content of. After 1.2 g of azobisisobutyronitrile (AIBN) was added to this rubber latex, the following mixture was added as a graft copolymer component over 3 hours for graft polymerization.
Styrene: 54 g, methyl methacrylate: 72 g, acrylonitrile: 36 g, glycidyl methacrylate: 18 g
After completion of the addition, the reaction was further stirred for 2 hours. The obtained latex was used as it was.

(強化エポキシ樹脂の製造例1)
25℃の1L混合槽にメチルエチルケトン340gを導入し、撹拌しながら、前記製造例で得られたコアシェルポリマー(B)の水性ラテックスを252g投入した。均一に混合後、水126gを投入し、撹拌しながら5重量%硫酸ナトリウム水溶液を30g添加後、静置分離した水層を排出した。混合槽内のコアシェルポリマー(B)を含む有機層にメチルエチルケトン90gを追加し均一に混合した。撹拌を行いながら水176gを投入し、均一に混合後、更に水126gを投入し、撹拌しながら、次に5重量%硫酸ナトリウム水溶液を30g添加した後、静置した。分離した水層を排出した。再び、混合槽内のコアシェルポリマー(B)を含む有機層にメチルエチルケトン120gを追加し、均一に混合、撹拌を行いながら水176gを投入し、均一に混合後、水126gを投入し、撹拌しながら、5重量%硫酸ナトリウム水溶液を30g添加した後、静置した。分離した水層を排出した。更に有機層に水252gを仕込み、緩やかに20分撹拌後、20分静置し、その後水層を排出した。その後、有機層を分取してこれにDGEBA型エポキシ樹脂(エポキシ価186)204gを投入し、混合後、メチルエチルケトンを減圧留去し、コアシェルポリマーを含む強化エポキシ樹脂(強化DGEBA型エポキシ樹脂)組成物を得た。この強化DGEBA型エポキシ樹脂は透明であり、この強化エポキシ樹脂組成物100重量部を触媒量のピペリジン(5重量部)で硬化させ得られた(120℃/16h)硬化物は透明であり、コアシェルポリマーは一次粒子の状態で分散しており、凝集物は実質的に観察されず、コアシェルポリマー(B)が凝集なく均一に分散できていることを確認した。
(Production Example 1 of Reinforced Epoxy Resin)
Into a 1 L mixing tank at 25 ° C., 340 g of methyl ethyl ketone was introduced, and 252 g of the aqueous latex of the core-shell polymer (B) obtained in the above production example was added while stirring. After uniformly mixing, 126 g of water was added, 30 g of 5 wt% aqueous sodium sulfate solution was added with stirring, and then the separated and separated aqueous layer was discharged. 90 g of methyl ethyl ketone was added to the organic layer containing the core-shell polymer (B) in the mixing tank and mixed uniformly. While stirring, 176 g of water was added and mixed uniformly, and then 126 g of water was further added. While stirring, 30 g of a 5 wt% aqueous sodium sulfate solution was added, and the mixture was allowed to stand. The separated aqueous layer was drained. Again, 120 g of methyl ethyl ketone was added to the organic layer containing the core-shell polymer (B) in the mixing tank, and 176 g of water was added while uniformly mixing and stirring. After adding 30 g of 5 wt% sodium sulfate aqueous solution, the mixture was allowed to stand. The separated aqueous layer was drained. Further, 252 g of water was added to the organic layer, stirred gently for 20 minutes, allowed to stand for 20 minutes, and then the aqueous layer was discharged. Thereafter, the organic layer is separated, and 204 g of DGEBA type epoxy resin (epoxy value 186) is added thereto. After mixing, methyl ethyl ketone is distilled off under reduced pressure, and a reinforced epoxy resin (reinforced DGEBA type epoxy resin) composition containing a core-shell polymer is prepared. I got a thing. This reinforced DGEBA type epoxy resin is transparent, and a cured product obtained by curing 100 parts by weight of this reinforced epoxy resin composition with a catalytic amount of piperidine (5 parts by weight) (120 ° C./16 h) is transparent, and the core shell The polymer was dispersed in a state of primary particles, and the aggregate was not substantially observed, and it was confirmed that the core-shell polymer (B) was uniformly dispersed without aggregation.

(強化エポキシ樹脂の製造例2)
25℃に保った1L混合槽にメチルエチルケトン350gを添加し、パドル翼3段の撹拌翼で撹拌しながら、前記製造例で得られたコアシェルポリマー(B)の水性ラテックス250gを混合した。撹拌を停止して、水250gを添加した。攪拌を再開し、メチルイソブチルケトンを340g添加した後、再び攪拌を停止し、30分後に分離した水相のみ排出した。混合槽中に残ったコアシェルポリマーを含む有機相に、水を250g添加した後に3分間攪拌し、その後、攪拌を止めて20分静置後に分離した水層のみ排出した。混合槽中に残ったゴム状重合体粒子を含む有機相に、水を250g添加した後に3分間攪拌した後、攪拌を止めて20分静置後に分離した水層のみ排出した。得られたコアシェルポリマーを含む有機相を、グリシジルアミン型エポキシ樹脂であるELM−120(住友化学工業製、トリグリシジル m−アミノフェノール)と混合し、減圧下で溶剤を留去して、コアシェルポリマー(B)を含む強化グリシジルアミン型エポキシ樹脂組成物を得た。この強化エポキシ樹脂組成物は透明であり、この強化エポキシ樹脂組成物100重量部を触媒量のピペリジン(5重量部)で硬化させ得られた(120℃/16h)硬化物は透明であり、コアシェルポリマーは一次粒子の状態で分散しており、凝集物は実質的に観察されなかった。
(Production example 2 of reinforced epoxy resin)
350 g of methyl ethyl ketone was added to a 1 L mixing tank maintained at 25 ° C., and 250 g of the aqueous latex of the core-shell polymer (B) obtained in the above production example was mixed while stirring with a three-stage paddle blade. Stirring was stopped and 250 g of water was added. Stirring was resumed, and after adding 340 g of methyl isobutyl ketone, stirring was stopped again, and only the separated aqueous phase was discharged after 30 minutes. After adding 250 g of water to the organic phase containing the core-shell polymer remaining in the mixing tank, the mixture was stirred for 3 minutes, after which stirring was stopped and only the aqueous layer separated after standing for 20 minutes was discharged. After adding 250 g of water to the organic phase containing the rubber-like polymer particles remaining in the mixing tank and stirring for 3 minutes, stirring was stopped and only the aqueous layer separated after standing for 20 minutes was discharged. The obtained organic phase containing the core-shell polymer is mixed with ELM-120 (manufactured by Sumitomo Chemical Co., Ltd., triglycidyl m-aminophenol), which is a glycidylamine type epoxy resin, and the solvent is distilled off under reduced pressure to obtain a core-shell polymer. A reinforced glycidylamine type epoxy resin composition containing (B) was obtained. This reinforced epoxy resin composition was transparent, and a cured product obtained by curing 100 parts by weight of this reinforced epoxy resin composition with a catalytic amount of piperidine (5 parts by weight) (120 ° C./16 h) was transparent, and the core shell The polymer was dispersed in the form of primary particles, and substantially no aggregates were observed.

(実施例1)
ビスフェノールA型エポキシ樹脂(エポキシ当量1100、軟化点100℃)55重量部、カルボキシル基末端ポリエステル樹脂ER8101(日本エステル)25重量部、上記の強化エポキシ樹脂の製造例1で得られた強化DGEBA型エポキシ樹脂20重量部、酸化チタンJR603(テイカ製)15重量部、キュアゾールC17Z(四国化成製、イミダゾール系硬化剤)を混合後、エクストルーダーで溶融混錬し、冷却後に微粉砕して、150メッシュでろ過して粉体塗料を得た。この粉体塗料をリン酸亜鉛処理した亜鉛めっき鋼板に静電粉体塗装し、膜厚60μmとした後に、これを180℃で30分間焼き付けることで、硬化塗膜が得られた。
(Example 1)
55 parts by weight of bisphenol A type epoxy resin (epoxy equivalent 1100, softening point 100 ° C.), 25 parts by weight of carboxyl group-terminated polyester resin ER8101 (Japanese ester), reinforced DGEBA type epoxy obtained in Production Example 1 of the above reinforced epoxy resin After mixing 20 parts by weight of resin, 15 parts by weight of titanium oxide JR603 (manufactured by Teika), and Curazole C17Z (manufactured by Shikoku Kasei Co., Ltd., imidazole curing agent), melt and knead with an extruder, finely pulverize after cooling, and 150 mesh Filtration gave a powder paint. The powder coating was electrostatic powder coated on a zinc phosphate-treated galvanized steel sheet to a film thickness of 60 μm, and then baked at 180 ° C. for 30 minutes to obtain a cured coating film.

(実施例2)
実施例1で得たコアシェルポリマーを含む強化DGEBA型エポキシ樹脂40重量部、DGEBA型エポキシ樹脂(エポキシ当量186)25重量部、ビスフェノールA型エポキシ樹脂(エポキシ当量650)35重量部に、ジシアンジアミド5重量部、Diuron[3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア]3重量部を混合し、更に微粒子シリカ(CAB−O−Sil TS−720)4重量部を減圧下で混合脱泡し、接着剤組成物を得た。被着体(亜鉛めっき鋼板)にこれらを塗布し、直径0.25mmのガラスビーズをスペーサーとして用い、T−peel試験片(1/32亜鉛めっき鋼板)とLap−Shear試験片(1/16鋼板)を、180ss℃/30分硬化させて作成した。T−peel強度は30Pli、Lap−Shear強度は4000Psiであった。
(Example 2)
40 parts by weight of reinforced DGEBA type epoxy resin containing the core-shell polymer obtained in Example 1, 25 parts by weight of DGEBA type epoxy resin (epoxy equivalent 186), 35 parts by weight of bisphenol A type epoxy resin (epoxy equivalent 650), 5% by weight of dicyandiamide 3 parts by weight of Diuron [3- (3,4-dichlorophenyl) -1,1-dimethylurea] and 4 parts by weight of fine particle silica (CAB-O-Sil TS-720) were mixed and removed under reduced pressure. Foaming was performed to obtain an adhesive composition. These are applied to an adherend (galvanized steel sheet), glass beads having a diameter of 0.25 mm are used as spacers, a T-peel specimen (1/32 galvanized steel sheet) and a Lap-Shear specimen (1/16 steel sheet). ) Was cured at 180 ss / 30 minutes. The T-peel intensity was 30 Pli, and the Lap-Shear intensity was 4000 Psi.

(実施例3)
臭素化エポキシ樹脂(エポキシ当量440、臭素含量48%)33重量部と、実施例1で得られた強化エポキシ樹脂20重量部と、DGEBA型エポキシ樹脂(エポキシ当量186)37重量部、フェノールノボラックエポキシ樹脂(エポキシ当量190)15重量部を混合し、メチルエチルケトンを加えて、85重量%のメチルエチルケトン溶液とした。これにジシアンジアミド4重量部のジメチルホルムアミド20重量%溶液と、2−メチル−4−イミダゾール(0.1重量部)の10重量%メチルエチルケトン溶液を加え、充分に攪拌してワニス溶液を作成した。これをガラス基材に含浸、塗布して150℃で乾燥させ、プリプレグを得た。これを更に8枚重ね合わせ、両側に18μmの銅箔を重ね、170℃で90分間、加熱加圧一体成型して、板厚1.6mmの積層板を得た。
(Example 3)
Brominated epoxy resin (epoxy equivalent 440, bromine content 48%) 33 parts by weight, reinforced epoxy resin 20 parts by weight obtained in Example 1, DGEBA type epoxy resin (epoxy equivalent 186) 37 parts by weight, phenol novolac epoxy 15 parts by weight of a resin (epoxy equivalent 190) was mixed, and methyl ethyl ketone was added to obtain an 85% by weight methyl ethyl ketone solution. To this was added a dimethylformamide 20% by weight solution of 4 parts by weight of dicyandiamide and a 10% by weight methyl ethyl ketone solution of 2-methyl-4-imidazole (0.1 part by weight), and stirred well to prepare a varnish solution. This was impregnated and applied to a glass substrate and dried at 150 ° C. to obtain a prepreg. Eight more sheets were stacked, 18 μm copper foils were stacked on both sides, and heat-press integrated molding was performed at 170 ° C. for 90 minutes to obtain a laminated sheet having a thickness of 1.6 mm.

(実施例4)
強化エポキシ樹脂の製造例1で得られた強化エポキシ樹脂28重量部と、DGEBA型エポキシ樹脂(エポキシ当量186)14重量部、ビスフェノールA型エポキシ樹脂(エポキシ当量460)55重量部、フェノールノボラック型エポキシ樹脂(エポキシ当量180)10重量部、ジシアンジアミド5重量部、Diuron3重量部、ポリエーテルスルホン(VictrexのPES5003P)5重量部、を混合してプリプレグ用樹脂組成物を調製した。この樹脂組成物を離型紙上に塗布しフィルム状とした後に、ホットメルト法で一方向に配列させた炭素繊維に、樹脂フィルム2枚を両側から重ねて加熱加圧により樹脂含浸させ、樹脂重量分が34重量%の一方向プリプレグを作成した。
Example 4
Reinforced epoxy resin 28 parts by weight of the reinforced epoxy resin obtained in Production Example 1, 14 parts by weight of DGEBA type epoxy resin (epoxy equivalent 186), 55 parts by weight of bisphenol A type epoxy resin (epoxy equivalent 460), phenol novolac type epoxy A resin composition for prepreg was prepared by mixing 10 parts by weight of a resin (epoxy equivalent 180), 5 parts by weight of dicyandiamide, 3 parts by weight of Diuron, and 5 parts by weight of polyethersulfone (PES5003P from Victrex). After applying this resin composition on a release paper to form a film, carbon fibers arranged in one direction by a hot melt method are overlapped with two resin films from both sides and impregnated with resin by heating and pressurization. A unidirectional prepreg with a weight of 34% by weight was made.

更にこれを20枚積層して140℃で2時間、0.30MPaにてオートクレーブで成型し、繊維強化複合材料板を得た。この複合材料板のシャルピー衝撃試験値は180kJ/m2であった。 Further, 20 sheets were laminated and molded by autoclaving at 140 ° C. for 2 hours at 0.30 MPa to obtain a fiber-reinforced composite material plate. The Charpy impact test value of this composite material plate was 180 kJ / m 2 .

(実施例5)
強化エポキシ樹脂の製造例2で得られた強化エポキシ樹脂16重量部と、DGEBA型エポキシ樹脂(エポキシ当量186)13重量部、強化エポキシ樹脂の製造例1で得られた強化エポキシ樹脂20重量部、ビスフェノールA型エポキシ樹脂(エポキシ当量460)60重量部、ジシアンジアミド5重量部、Diuron3重量部、ポリビニルホルマール樹脂7重量部を混合してプリプレグ用樹脂組成物を調製した。実施例4と同様の方法で繊維強化複合材料板を得た。この複合材料板のシャルピー衝撃試験値は180kJ/m2であった。
(Example 5)
16 parts by weight of reinforced epoxy resin obtained in Production Example 2 of reinforced epoxy resin, 13 parts by weight of DGEBA type epoxy resin (epoxy equivalent 186), 20 parts by weight of reinforced epoxy resin obtained in Production Example 1 of reinforced epoxy resin, A prepreg resin composition was prepared by mixing 60 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent 460), 5 parts by weight of dicyandiamide, 3 parts by weight of Diuron, and 7 parts by weight of a polyvinyl formal resin. A fiber reinforced composite material plate was obtained in the same manner as in Example 4. The Charpy impact test value of this composite material plate was 180 kJ / m 2 .

Claims (7)

エポキシ樹脂(A)中にコアシェルポリマー(B)が一次粒子の状態で分散しているエポキシ樹脂組成物(C)を、硬化剤(D)により硬化させて得られる硬化物を含有するゴム強化エポキシ樹脂製品であって、ガラス繊維強化複合材料、炭素繊維強化複合材料、接着剤、コーティング材料、積層板、半導体封止剤からなる群から選ばれる少なくとも1種であることを特徴とする、ゴム強化エポキシ樹脂製品。   Rubber-reinforced epoxy containing a cured product obtained by curing an epoxy resin composition (C) in which a core-shell polymer (B) is dispersed in a state of primary particles in an epoxy resin (A) with a curing agent (D) A rubber product characterized in that it is a resin product and is at least one selected from the group consisting of a glass fiber reinforced composite material, a carbon fiber reinforced composite material, an adhesive, a coating material, a laminate, and a semiconductor encapsulant. Epoxy resin products. エポキシ樹脂組成物(C)を硬化剤(D)により硬化した後も、コアシェルポリマー(B)が一次粒子の状態で分散していることを特徴とする、請求項1に記載のゴム強化エポキシ樹脂製品。   The rubber-reinforced epoxy resin according to claim 1, wherein the core-shell polymer (B) is dispersed in the form of primary particles even after the epoxy resin composition (C) is cured with the curing agent (D). Product. エポキシ樹脂(A)とコアシェルポリマー(B)を含有するエポキシ樹脂組成物(C)が、コアシェルポリマー(B)を含有する水性ラテックスを有機溶剤と混合した後、水相を分離、除去することで得られた有機溶剤へコアシェルポリマー(B)が分散した分散体(E)を、エポキシ樹脂(A)と混合することにより製造されたエポキシ樹脂組成物を含有することを特徴とする、請求項1または2に記載のゴム強化エポキシ樹脂製品。   After the epoxy resin composition (C) containing the epoxy resin (A) and the core-shell polymer (B) is mixed with the organic solvent with the aqueous latex containing the core-shell polymer (B), the aqueous phase is separated and removed. The epoxy resin composition manufactured by mixing the dispersion (E) in which the core-shell polymer (B) is dispersed in the obtained organic solvent and the epoxy resin (A) is contained. Or the rubber reinforced epoxy resin product of 2. エポキシ樹脂(A)とコアシェルポリマー(B)を含有するエポキシ樹脂組成物(C)が、コアシェルポリマー(B)を含有する水性ラテックスを有機溶剤と混合し、さらに水溶性電解質若しくは水性ラテックスと非混合性の有機溶剤を添加した後、水相を分離、除去することで得られた、有機溶剤へコアシェルポリマー(B)を分散した分散体(E)を、エポキシ樹脂(A)と混合することにより製造されたことを特徴とする、請求項3に記載のゴム強化エポキシ樹脂製品。   The epoxy resin composition (C) containing the epoxy resin (A) and the core-shell polymer (B) mixes the aqueous latex containing the core-shell polymer (B) with an organic solvent, and further does not mix with the water-soluble electrolyte or aqueous latex. The dispersion (E) in which the core-shell polymer (B) is dispersed in the organic solvent obtained by separating and removing the aqueous phase after adding the organic solvent is mixed with the epoxy resin (A). The rubber-reinforced epoxy resin product according to claim 3, which is manufactured. エポキシ樹脂組成物(C)の製造に際して、前記分散体(E)をエポキシ樹脂(A)と混合するに先立ち、分散体(E)を水または水溶性電解質の水溶液と接触後に水相を分離する操作を少なくとも1回以上行うことを特徴とする、請求項3または4に記載のゴム強化エポキシ樹脂製品。   In the production of the epoxy resin composition (C), prior to mixing the dispersion (E) with the epoxy resin (A), the aqueous phase is separated after contacting the dispersion (E) with water or an aqueous solution of a water-soluble electrolyte. The rubber-reinforced epoxy resin product according to claim 3 or 4, wherein the operation is performed at least once. コアシェルポリマー(B)を含有する水性ラテックスと最初に混合する有機溶剤の20℃における水に対する溶解度が、5重量%以上、40重量%以下であることを特徴とする、請求項3乃至5の何れかに記載のゴム強化エポキシ樹脂製品。   6. The solubility in water at 20 ° C. of the organic solvent first mixed with the aqueous latex containing the core-shell polymer (B) is 5% by weight or more and 40% by weight or less. The rubber-reinforced epoxy resin product described in Crab. 硬化促進剤、無機充填剤、有機或いは高分子充填剤、難燃剤、耐電防止剤、導電性付与剤、滑剤、摺動性付与剤、界面活性剤、着色剤から選ばれる1種以上の添加物を含有することを特徴とする、請求項1乃至6の何れかに記載のゴム強化エポキシ樹脂製品。   One or more additives selected from curing accelerators, inorganic fillers, organic or polymer fillers, flame retardants, antistatic agents, conductivity imparting agents, lubricants, slidability imparting agents, surfactants, and colorants The rubber-reinforced epoxy resin product according to claim 1, comprising:
JP2004068526A 2004-03-11 2004-03-11 Rubber-reinforced epoxy resin product Pending JP2005255822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068526A JP2005255822A (en) 2004-03-11 2004-03-11 Rubber-reinforced epoxy resin product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068526A JP2005255822A (en) 2004-03-11 2004-03-11 Rubber-reinforced epoxy resin product

Publications (1)

Publication Number Publication Date
JP2005255822A true JP2005255822A (en) 2005-09-22

Family

ID=35081877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068526A Pending JP2005255822A (en) 2004-03-11 2004-03-11 Rubber-reinforced epoxy resin product

Country Status (1)

Country Link
JP (1) JP2005255822A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161738A (en) * 2005-12-09 2007-06-28 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber reinforced composite materials
WO2008105189A1 (en) 2007-02-28 2008-09-04 Kaneka Corporation Thermosetting resin composition having rubbery polymer particle dispersed therein, and process for production thereof
JP2009506169A (en) * 2005-08-24 2009-02-12 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Epoxy composition having improved impact resistance
WO2009017690A3 (en) * 2007-07-26 2009-04-16 Henkel Corp Curable epoxy resin-based adhesive compositions
JP2009242571A (en) * 2008-03-31 2009-10-22 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber reinforced composite material
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it
JP2010090371A (en) * 2008-09-11 2010-04-22 Mitsubishi Rayon Co Ltd Epoxy resin composition and cured epoxy products formed by curing the same
JP2010150310A (en) * 2008-12-24 2010-07-08 Toray Ind Inc Epoxy resin composition, fiber-reinforced composite material and method for manufacturing the same
JP2010185034A (en) * 2009-02-13 2010-08-26 Yokohama Rubber Co Ltd:The Structural adhesive composition
JP2010189561A (en) * 2009-02-19 2010-09-02 Toray Ind Inc Fiber-reinforced composite material and method for producing the same
JP2010254942A (en) * 2009-04-23 2010-11-11 Samsung Electro-Mechanics Co Ltd Printed circuit board resin composition and printed circuit board using this
JP2011510147A (en) * 2008-01-25 2011-03-31 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ Powder coating composition having a primer substantially free of zinc
WO2012033164A1 (en) * 2010-09-10 2012-03-15 株式会社カネカ Curable resin composition
WO2012086463A1 (en) 2010-12-20 2012-06-28 株式会社ダイセル Curable epoxy resin composition and photosemiconductor device using same
JP2013500369A (en) * 2009-07-29 2013-01-07 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ Powder coating composition capable of having a substantially zinc-free primer
JPWO2011040567A1 (en) * 2009-10-01 2013-02-28 株式会社Ihi Matrix resin composition for fiber reinforced plastic and fiber reinforced plastic structure
US8545667B2 (en) 2006-10-06 2013-10-01 Henkel Ag & Co. Kgaa Pumpable epoxy paste adhesives resistant to wash-off
US8673108B2 (en) 2006-07-31 2014-03-18 Henkel Ag & Co. Kgaa Curable epoxy resin-based adhesive compositions
US8779059B2 (en) 2008-07-31 2014-07-15 Daicel Chemical Industries, Ltd. Optical semiconductor sealing resin composition and optical semiconductor device using same
WO2015053289A1 (en) * 2013-10-11 2015-04-16 株式会社カネカ Core-shell polymer-containing epoxy resin composition, cured product of same and method for producing same
JP2015078280A (en) * 2013-10-16 2015-04-23 株式会社カネカ Polymer fine particle-containing curable resin composition
WO2015064561A1 (en) * 2013-10-29 2015-05-07 株式会社カネカ Curable resin composition containing polymer fine particles and having improved storage stability
US9133375B2 (en) 2007-10-30 2015-09-15 Henkel Ag & Co. Kgaa Epoxy-paste adhesives resistant to wash-off
JP2015182248A (en) * 2014-03-20 2015-10-22 株式会社カネカ Laminate in which different kinds of members are bonded with curable resin composition
WO2016159223A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Curable epoxy resin composition exhibiting excellent thixotropy
WO2016159224A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Curable epoxy resin composition exhibiting excellent storage stability
JP2016199673A (en) * 2015-04-09 2016-12-01 株式会社カネカ Curable resin composition containing fine polymer particles with improved adhesion
EP3192835A4 (en) * 2014-09-11 2018-05-02 Kaneka Corporation Epoxy resin composition for casting
WO2018208073A1 (en) * 2017-05-12 2018-11-15 부산대학교 산학협력단 Additive for epoxy adhesive and epoxy adhesive composition for construction including same
CN112358706A (en) * 2020-05-09 2021-02-12 襄阳国网合成绝缘子有限责任公司 Composite insulator umbrella skirt material and preparation method thereof
JP2021095531A (en) * 2019-12-18 2021-06-24 セメダイン株式会社 Adhesive composition for automobile structure
WO2022186316A1 (en) * 2021-03-03 2022-09-09 株式会社カネカ Curable resin composition and adhesive
CN116635229A (en) * 2020-12-25 2023-08-22 株式会社钟化 Curable resin composition and adhesive
JP2024514135A (en) * 2021-09-28 2024-03-28 ケーシーシー コーポレーション Epoxy resin composition for molding

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506169A (en) * 2005-08-24 2009-02-12 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Epoxy composition having improved impact resistance
US7919555B2 (en) 2005-08-24 2011-04-05 Henkel Ag & Co. Kgaa Epoxy compositions having improved impact resistance
JP2007161738A (en) * 2005-12-09 2007-06-28 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber reinforced composite materials
US8673108B2 (en) 2006-07-31 2014-03-18 Henkel Ag & Co. Kgaa Curable epoxy resin-based adhesive compositions
US8545667B2 (en) 2006-10-06 2013-10-01 Henkel Ag & Co. Kgaa Pumpable epoxy paste adhesives resistant to wash-off
WO2008105189A1 (en) 2007-02-28 2008-09-04 Kaneka Corporation Thermosetting resin composition having rubbery polymer particle dispersed therein, and process for production thereof
US8217098B2 (en) 2007-02-28 2012-07-10 Kaneka Corporation Thermosetting resin composition having rubbery polymer particle dispersed therein, and process for production thereof
EP2123711A4 (en) * 2007-02-28 2012-11-21 Kaneka Corp THERMOSETTING RESIN COMPOSITION, IN WHICH RUBBER POLYMER PARTICLES ARE DISPERSED, AND PROCESS FOR PRODUCING THE SAME
JP5544162B2 (en) * 2007-02-28 2014-07-09 株式会社カネカ Rubber-like polymer particle-dispersed thermosetting resin composition and method for producing the same
WO2009017690A3 (en) * 2007-07-26 2009-04-16 Henkel Corp Curable epoxy resin-based adhesive compositions
US9133375B2 (en) 2007-10-30 2015-09-15 Henkel Ag & Co. Kgaa Epoxy-paste adhesives resistant to wash-off
JP2011510147A (en) * 2008-01-25 2011-03-31 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ Powder coating composition having a primer substantially free of zinc
JP2009242571A (en) * 2008-03-31 2009-10-22 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber reinforced composite material
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it
US8779059B2 (en) 2008-07-31 2014-07-15 Daicel Chemical Industries, Ltd. Optical semiconductor sealing resin composition and optical semiconductor device using same
JP2010090371A (en) * 2008-09-11 2010-04-22 Mitsubishi Rayon Co Ltd Epoxy resin composition and cured epoxy products formed by curing the same
JP2010150310A (en) * 2008-12-24 2010-07-08 Toray Ind Inc Epoxy resin composition, fiber-reinforced composite material and method for manufacturing the same
JP2010185034A (en) * 2009-02-13 2010-08-26 Yokohama Rubber Co Ltd:The Structural adhesive composition
JP2010189561A (en) * 2009-02-19 2010-09-02 Toray Ind Inc Fiber-reinforced composite material and method for producing the same
JP2010254942A (en) * 2009-04-23 2010-11-11 Samsung Electro-Mechanics Co Ltd Printed circuit board resin composition and printed circuit board using this
JP2013500369A (en) * 2009-07-29 2013-01-07 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ Powder coating composition capable of having a substantially zinc-free primer
JPWO2011040567A1 (en) * 2009-10-01 2013-02-28 株式会社Ihi Matrix resin composition for fiber reinforced plastic and fiber reinforced plastic structure
WO2012033164A1 (en) * 2010-09-10 2012-03-15 株式会社カネカ Curable resin composition
WO2012086463A1 (en) 2010-12-20 2012-06-28 株式会社ダイセル Curable epoxy resin composition and photosemiconductor device using same
WO2015053289A1 (en) * 2013-10-11 2015-04-16 株式会社カネカ Core-shell polymer-containing epoxy resin composition, cured product of same and method for producing same
US10370531B2 (en) 2013-10-11 2019-08-06 Kaneka Corporation Core-shell polymer-containing epoxy resin composition, cured product thereof and method for preparing the same
JPWO2015053289A1 (en) * 2013-10-11 2017-03-09 株式会社カネカ Core-shell polymer-containing epoxy resin composition, cured product thereof, and production method thereof
JP2015078280A (en) * 2013-10-16 2015-04-23 株式会社カネカ Polymer fine particle-containing curable resin composition
WO2015064561A1 (en) * 2013-10-29 2015-05-07 株式会社カネカ Curable resin composition containing polymer fine particles and having improved storage stability
CN105683238A (en) * 2013-10-29 2016-06-15 株式会社钟化 Curable resin composition containing polymer fine particles and having improved storage stability
EP3064520A4 (en) * 2013-10-29 2017-08-16 Kaneka Corporation Curable resin composition containing polymer fine particles and having improved storage stability
US9976027B2 (en) 2013-10-29 2018-05-22 Kaneka Corporation Polymer fine particle-containing curable resin composition having improved storage stability
JPWO2015064561A1 (en) * 2013-10-29 2017-03-09 株式会社カネカ Polymer fine particle-containing curable resin composition having improved storage stability
JP2015182248A (en) * 2014-03-20 2015-10-22 株式会社カネカ Laminate in which different kinds of members are bonded with curable resin composition
US10287387B2 (en) 2014-09-11 2019-05-14 Kaneka Corporation Epoxy resin composition for casting
EP3192835A4 (en) * 2014-09-11 2018-05-02 Kaneka Corporation Epoxy resin composition for casting
JPWO2016159223A1 (en) * 2015-03-31 2018-02-01 株式会社カネカ Curable epoxy resin composition with excellent thixotropy
WO2016159224A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Curable epoxy resin composition exhibiting excellent storage stability
WO2016159223A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Curable epoxy resin composition exhibiting excellent thixotropy
JP2016199673A (en) * 2015-04-09 2016-12-01 株式会社カネカ Curable resin composition containing fine polymer particles with improved adhesion
WO2018208073A1 (en) * 2017-05-12 2018-11-15 부산대학교 산학협력단 Additive for epoxy adhesive and epoxy adhesive composition for construction including same
US11618840B2 (en) 2017-05-12 2023-04-04 Pusan National Uniersity Industry-University Cooperration Foundation Additive for epoxy adhesive and epoxy adhesive composition for construction including same
JP2021095531A (en) * 2019-12-18 2021-06-24 セメダイン株式会社 Adhesive composition for automobile structure
CN112358706A (en) * 2020-05-09 2021-02-12 襄阳国网合成绝缘子有限责任公司 Composite insulator umbrella skirt material and preparation method thereof
CN116635229A (en) * 2020-12-25 2023-08-22 株式会社钟化 Curable resin composition and adhesive
WO2022186316A1 (en) * 2021-03-03 2022-09-09 株式会社カネカ Curable resin composition and adhesive
JP2024514135A (en) * 2021-09-28 2024-03-28 ケーシーシー コーポレーション Epoxy resin composition for molding

Similar Documents

Publication Publication Date Title
JP2005255822A (en) Rubber-reinforced epoxy resin product
JP6632401B2 (en) Structural adhesive composition
JP6924135B2 (en) Polymer fine particle-containing curable resin composition with improved impact resistance and peeling adhesiveness
KR101993014B1 (en) Impact-modified adhesives
WO2016159224A1 (en) Curable epoxy resin composition exhibiting excellent storage stability
EP1155082B1 (en) Shock-resistant epoxide resin compositions
EP1123348B1 (en) Impact-resistant epoxide resin compositions
JP6476045B2 (en) Curable resin composition containing fine polymer particles with improved adhesion
WO2016159223A1 (en) Curable epoxy resin composition exhibiting excellent thixotropy
US20110036497A1 (en) Pumpable epoxy paste adhesives resistant to wash-off
JP6966154B2 (en) Curable Compositions and Adhesives
JP6767758B2 (en) Polymer fine particle-containing curable resin composition with improved storage stability and adhesiveness
WO2015064561A1 (en) Curable resin composition containing polymer fine particles and having improved storage stability
JP2016501922A (en) Toughened curable epoxy compositions for high temperature applications
JP7547031B2 (en) Epoxy resin composition and adhesive
JP7290446B2 (en) Curable resin composition and use thereof
WO2020067044A1 (en) Curable epoxy resin composition and laminate in which same is used
JP6722477B2 (en) Curable resin composition containing fine polymer particles having improved peel adhesion and impact peel resistance
JP6523611B2 (en) Laminate in which dissimilar members are joined by a curable resin composition, and structural panel for vehicle
WO2022138807A1 (en) Curable resin composition and adhesive agent
DE102005018671B4 (en) Impact-resistant epoxy resin compositions
JP7531354B2 (en) Epoxy resin composition and adhesive
KR20240155849A (en) Epoxy structural adhesive resistant to moisture exposure during non-curing and curing
JP2023146870A (en) Curable resin composition, and cured product thereof, adhesive and laminate
CN113302240A (en) Flame retardant epoxy compositions and methods of use thereof