JP2005251408A - Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell - Google Patents
Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell Download PDFInfo
- Publication number
- JP2005251408A JP2005251408A JP2004056009A JP2004056009A JP2005251408A JP 2005251408 A JP2005251408 A JP 2005251408A JP 2004056009 A JP2004056009 A JP 2004056009A JP 2004056009 A JP2004056009 A JP 2004056009A JP 2005251408 A JP2005251408 A JP 2005251408A
- Authority
- JP
- Japan
- Prior art keywords
- solid polymer
- polymer electrolyte
- membrane
- electrode assembly
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、燃料電池等に用いられる電解質膜に好適な耐酸化性等に優れた低コスト高耐久性固体高分子電解質、それを用いた固体高分子電解質膜、電解質/触媒電極接合体及び該固体高分子電解質を用いた燃料電池に関する。 The present invention relates to a low-cost, high-durability solid polymer electrolyte excellent in oxidation resistance and the like suitable for an electrolyte membrane used in fuel cells and the like, a solid polymer electrolyte membrane using the same, an electrolyte / catalyst electrode assembly, and the The present invention relates to a fuel cell using a solid polymer electrolyte.
固体高分子電解質は高分子鎖中にスルホン酸基、アミノ基等の電解質基を有する固体高分子材料であり、特定のイオンと強固に結合して、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等、各種の用途に利用されている。 A solid polymer electrolyte is a solid polymer material having an electrolyte group such as a sulfonic acid group or an amino group in a polymer chain, and is firmly bonded to a specific ion and selectively transmits a cation or an anion. Because of its properties, it is formed into particles, fibers, or membranes, and is used for various applications such as electrodialysis, diffusion dialysis, and battery membranes.
燃料電池はプロトン伝導性置換基を持つ固体高分子電解質膜の両面に一対の電極を設け、水素ガスやメタノールなどを燃料として一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤として他方の電極(空気極)へ供給し、起電力を得るものである。 A fuel cell is provided with a pair of electrodes on both sides of a solid polymer electrolyte membrane having a proton-conducting substituent, supplies hydrogen gas, methanol, etc. as fuel to one electrode (fuel electrode), and oxygen gas or air as an oxidant Is supplied to the other electrode (air electrode) to obtain an electromotive force.
ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)の商品名で知られる高いプロトン伝導性を有するふっ素系固体高分子電解質膜は化学的安定性に優れていることから燃料電池等の固体高分子電解質膜として、広く使用されている。 Fluorine-based solid polymer electrolytes with high proton conductivity known under the trade names Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) Since the membrane is excellent in chemical stability, it is widely used as a solid polymer electrolyte membrane for fuel cells and the like.
ところで、パーフルオロスルホン酸膜に代表されるふっ素系電解質は、C−F結合を有しているために化学的安定性が非常に大きく、上述した燃料電池用固体高分子電解質として非常に適している。 By the way, a fluorine-based electrolyte typified by a perfluorosulfonic acid membrane has a C—F bond and thus has a very large chemical stability, and is very suitable as the above-described solid polymer electrolyte for fuel cells. Yes.
しかしながら、ふっ素系固体高分子電解質は製造が困難で、非常に高価であるという欠点がある。そのため、ふっ素系固体高分子電解質膜は、宇宙用あるいは軍用の固体高分子型燃料電池等、限られた用途に用いられ、自動車用の低公害動力源としての固体高分子型燃料電池等、民生用への応用を困難なものとしていた。 However, the fluorine-based solid polymer electrolyte has a drawback that it is difficult to produce and is very expensive. Therefore, fluorine-based solid polymer electrolyte membranes are used in limited applications such as space or military solid polymer fuel cells, and are used in consumer applications such as solid polymer fuel cells as a low-pollution power source for automobiles. It was difficult to apply to
そこで、安価な固体高分子電解質膜として、エンジニアリングプラスチックに代表される芳香族炭化水素系高分子をスルホン化した固体高分子電解質膜が提案された。これらは製造が容易で低コストであるという利点がある。(例えば、特許文献1参照)。エンジニアリングプラスチックをスルホン化した芳香族炭化水素系固体高分子電解質膜をナフィオンに代表されるふっ素系固体高分子電解質膜と比較すると、製造が容易で低コストという利点がある。しかし、耐酸化性という面で非常に弱いという欠点も有している。 Therefore, as an inexpensive solid polymer electrolyte membrane, a solid polymer electrolyte membrane in which an aromatic hydrocarbon polymer typified by engineering plastics is sulfonated has been proposed. These have the advantage of easy manufacture and low cost. (For example, refer to Patent Document 1). Compared with a fluorine-based solid polymer electrolyte membrane represented by Nafion, an aromatic hydrocarbon-based solid polymer electrolyte membrane sulfonated from an engineering plastic has advantages of easy production and low cost. However, it has a drawback that it is very weak in terms of oxidation resistance.
特許文献2には、イオン伝導性が高く、強靭性が極めて優れる高分子固体電解質として分子内に少なくとも2つのスルホン酸基を有するスルホン酸化合物と分子内に少なくとも2つのアミノ基を有するアミノ化合物とを反応させて得られるポリスルホンアミド系高分子固体電解質が記載されている。然しながら、この高分子固体電解質膜のイオン伝導性では燃料電池用の固体電解質膜としては十分とは言えない。 Patent Document 2 discloses a sulfonic acid compound having at least two sulfonic acid groups in the molecule and an amino compound having at least two amino groups in the molecule as a polymer solid electrolyte having high ion conductivity and extremely excellent toughness. A polysulfonamide polymer solid electrolyte obtained by reacting is described. However, the ionic conductivity of this polymer solid electrolyte membrane is not sufficient as a solid electrolyte membrane for fuel cells.
非特許文献1によると、例えばスルホン化ポリエーテルエーテルケトンやポリエーテルスルホンはスルホン酸に隣接したエーテル部位から劣化すると報告している。このことから、スルホン酸の近傍に電子供与性基が存在すると、そこから酸化劣化が開始すると考えられる。このようにスルホン酸基を有する高分子固体電解質は、耐酸化性の点で問題を抱えている。 According to Non-Patent Document 1, it is reported that, for example, sulfonated polyether ether ketone and polyether sulfone deteriorate from an ether site adjacent to sulfonic acid. From this, it is considered that when an electron donating group is present in the vicinity of the sulfonic acid, the oxidative degradation starts therefrom. Thus, the polymer solid electrolyte having a sulfonic acid group has a problem in terms of oxidation resistance.
本発明の目的は、高価なふっ素系固体高分子電解質膜の代替品として用いられているスルホン化された芳香族高分子化合物の有する耐酸化性に劣るという欠点を解消し、ふっ素系固体高分子電解質膜に比して安価な炭化水素系化合物を用いて実用上十分なイオン導電性と高い耐酸化性を有し、しかも製造容易な固体高分子電解質、該固体高分子電解質からなる固体高分子電解質膜、さらには該固体高分子電解質からなる電解質/触媒電極接合体、該電解質/触媒電極接合体を用いた膜/電極接合体と該膜/電極接合体を用いた燃料電池を提供することにある。 The object of the present invention is to eliminate the disadvantage of inferior oxidation resistance of a sulfonated aromatic polymer compound used as an alternative to an expensive fluorine-based solid polymer electrolyte membrane. Solid polymer electrolyte that has practically sufficient ionic conductivity and high oxidation resistance and is easy to produce using a hydrocarbon-based compound that is less expensive than an electrolyte membrane, and a solid polymer comprising the solid polymer electrolyte To provide an electrolyte membrane, an electrolyte / catalyst electrode assembly comprising the solid polymer electrolyte, a membrane / electrode assembly using the electrolyte / catalyst electrode assembly, and a fuel cell using the membrane / electrode assembly. It is in.
上記課題を解決するために、主鎖に下記式(1)で表される構造を有する繰り返し単位として含む炭化水素系高分子の側鎖にプロトン伝導性置換基を導入することで可能になることが明らかになった。 In order to solve the above-mentioned problem, it is possible to introduce a proton-conducting substituent into a side chain of a hydrocarbon polymer containing a repeating unit having a structure represented by the following formula (1) in the main chain. Became clear.
本発明の炭化水素系高分子は、炭化水素系高分子の主鎖に耐酸化性の高いスルホンアミド基を含み、かつ劣化を受けやすいエーテル結合などの電子供与性基を含まないため、炭化水素系高分子が酸化劣化しにくいことを要旨とするもので、実用上十分な耐久性を有し、しかも経済的な固体高分子電解質を得ることが可能となる。 Since the hydrocarbon polymer of the present invention contains a sulfonamide group having high oxidation resistance in the main chain of the hydrocarbon polymer and does not contain an electron donating group such as an ether bond that is susceptible to deterioration, The main point is that the polymer is less susceptible to oxidative degradation, and it is possible to obtain a solid polymer electrolyte that has practically sufficient durability and is economical.
さらに、該固体高分子電解質からなる固体高分子電解質膜又は、該固体高分子電解質と触媒電極とからなる電解質/触媒電極接合体、さらにはその電解質/触媒電極接合体と該固体高分子電解質膜を用いた膜/電極接合体であり、該膜/電極接合体を用いた燃料電池を提供することである。 Further, a solid polymer electrolyte membrane comprising the solid polymer electrolyte, or an electrolyte / catalyst electrode assembly comprising the solid polymer electrolyte and a catalyst electrode, and further comprising the electrolyte / catalyst electrode assembly and the solid polymer electrolyte membrane The present invention provides a fuel cell using the membrane / electrode assembly.
本発明に係るポリスルホンアミド系固体高分子電解質はふっ素系固体高分子電解質膜に比べ、コストは非常に安価で、主鎖にスルホンアミド基を有することによって、耐久性特に耐酸化性に優れた固体高分子電解質が得られる。また本発明に係るポリスルホンアミド系固体高分子電解質を用いた膜、電解質/触媒電極接合体、膜/電極接合体、燃料電池は実用上十分な性能を示す。 The polysulfonamide-based solid polymer electrolyte according to the present invention is much cheaper than a fluorine-based solid polymer electrolyte membrane, and has a sulfonamide group in the main chain, so that it has excellent durability, particularly oxidation resistance. A polymer electrolyte is obtained. In addition, a membrane, an electrolyte / catalyst electrode assembly, a membrane / electrode assembly, and a fuel cell using the polysulfonamide-based solid polymer electrolyte according to the present invention exhibit practically sufficient performance.
本発明の固体高分子電解質は主鎖に主成分としてスルホンアミド基からなる炭化水素系高分子(これ以降ポリスルホンアミド系高分子と呼ぶ)を有し、側鎖にプロトン伝導性置換基を有していれば特に制限は無く、主鎖の一部に10%以下の共重合成分を含んでいても構わない。 The solid polymer electrolyte of the present invention has a hydrocarbon polymer composed of a sulfonamide group as a main component in the main chain (hereinafter referred to as a polysulfonamide polymer), and has a proton conductive substituent in the side chain. If it is, there will be no restriction | limiting in particular, A 10% or less copolymerization component may be included in a part of main chain.
主鎖の炭化水素部位には芳香族及びその誘導体、アルキル基及びそれらの誘導体、少なくとも1つのふっ素原子を置換基として有するアルキル基及びそれらの誘導体、芳香族基及びそれらの誘導体からなる群から選ばれる少なくとも1種であればよい。 The hydrocarbon portion of the main chain is selected from the group consisting of aromatics and derivatives thereof, alkyl groups and derivatives thereof, alkyl groups having at least one fluorine atom as a substituent and derivatives thereof, aromatic groups and derivatives thereof It is sufficient that it is at least one kind.
ポリスルホンアミド系高分子を得る方法に特に制限はないが、具体的には塩基を用いてジスルホニルクロリド化合物とジアミン化合物を反応させる方法、金属触媒等を用いてジハロゲン化スルホンアミド化合物を重合させる方法などがある。 The method for obtaining the polysulfonamide-based polymer is not particularly limited, but specifically, a method of reacting a disulfonyl chloride compound and a diamine compound using a base, a method of polymerizing a dihalogenated sulfonamide compound using a metal catalyst or the like and so on.
特許文献2にあるように、ポリスルホンアミド系高分子のみでもイオン伝導性を示すが、燃料電池に用いるにはイオン伝導度が不十分である。そこで、固体高分子電解質のイオン伝導度を向上させるため、側鎖にプロトン伝導性置換基を導入する必要がある。プロトン伝導性置換基はプロトンを伝導することができればとくに制限は無く、具体的にはスルホン酸基、ホスホン酸基、カルボン酸基、スルホンアミド基、スルホンイミド基、アルキルスルホン酸基、アルキルホスホン酸基、アルキルカルボン酸基が挙げられる。また、これらプロトン伝導性置換基のカウンターイオンは必ずしもプロトンに限らず、少量のアンモニウムイオンや金属イオンを含んでいても構わない。 As described in Patent Document 2, only polysulfonamide-based polymers exhibit ionic conductivity, but their ionic conductivity is insufficient for use in fuel cells. Therefore, in order to improve the ionic conductivity of the solid polymer electrolyte, it is necessary to introduce a proton conductive substituent into the side chain. The proton conductive substituent is not particularly limited as long as it can conduct protons. Specifically, the sulfonic acid group, phosphonic acid group, carboxylic acid group, sulfonamide group, sulfonimide group, alkylsulfonic acid group, alkylphosphonic acid group are not limited. Group and alkylcarboxylic acid group. Further, the counter ions of these proton conductive substituents are not necessarily limited to protons, and may contain a small amount of ammonium ions or metal ions.
プロトン伝導性置換基をポリスルホンアミド系高分子に導入する方法に特に制限はないが、式(1)のX1もしくはX3をプロトン伝導性置換基にする方法としては、具体的にはポリスルホンアミド系高分子の重合原料であるジスルホニルクロリド化合物、ジアミン化合物やジハロゲン化スルホンアミド化合物にプロトン伝導性置換基を導入してからポリスルホンアミド系高分子を重合する方法や、ポリスルホンアミド系高分子と硫酸やリン酸等を反応させプロトン伝導性置換基を導入する方法などがある。 The method for introducing a proton conductive substituent into a polysulfonamide-based polymer is not particularly limited. As a method for converting X 1 or X 3 in the formula (1) into a proton conductive substituent, specifically, a polysulfonamide is used. A method of polymerizing a polysulfonamide polymer after introducing a proton-conductive substituent into a disulfonyl chloride compound, a diamine compound or a dihalogenated sulfonamide compound, which is a raw material for polymer polymerization, or a polysulfonamide polymer and sulfuric acid Or a method of introducing a proton conductive substituent by reacting phosphoric acid or the like.
また、式(1)のX2もしくはX4をプロトン伝導性置換基にする方法としては、水酸化ナトリウム、水酸化カリウム、水素化リチウムや水素化ナトリウム等の塩基を用いてポリスルホンアミド系高分子のスルホンアミド基のプロトンを脱離させ、スルトン等と反応させる方法などがある。 In addition, as a method for converting X 2 or X 4 in the formula (1) into a proton conductive substituent, a polysulfonamide-based polymer is used by using a base such as sodium hydroxide, potassium hydroxide, lithium hydride or sodium hydride. There is a method in which the proton of the sulfonamide group is eliminated and reacted with sultone or the like.
式(1)のX1もしくはX3がプロトン伝導性置換基である場合は、プロトン伝導性置換基は脱離しにくい。式(1)のX2もしくはX4がプロトン伝導性置換基である場合は高いプロトン伝導度が得られるが、式(1)のX1もしくはX3にプロトン伝導性置換基である場合よりもプロトン伝導性置換基が脱離しやすい。そのため、耐久性の観点から式(1)のX1もしくはX3がプロトン伝導性置換基である方が好ましい。 When X 1 or X 3 in the formula (1) is a proton conductive substituent, the proton conductive substituent is hardly detached. When X 2 or X 4 in the formula (1) is a proton conductive substituent, high proton conductivity is obtained, but compared with the case where X 1 or X 3 in the formula (1) is a proton conductive substituent. Proton conductive substituents are easily removed. Therefore, from the viewpoint of durability, it is preferable that X 1 or X 3 in the formula (1) is a proton conductive substituent.
芳香族環を主鎖に導入すると主鎖の結晶性が向上し、膜の機械的強度が向上するのでこれを含むのが好適である。導入する芳香族環は2価の芳香族環であれば問題なく、下記式(2)で表されされるような構造をしていることが好ましい。更には、炭素数が6〜18であることが望ましい。また、芳香族環にニトロ基や、シアノ基、ふっ素化アルキル基などの電子吸引基を導入しても構わない。 Introducing an aromatic ring into the main chain improves the crystallinity of the main chain and improves the mechanical strength of the film, so it is preferable to include this. The aromatic ring to be introduced has no problem as long as it is a divalent aromatic ring, and preferably has a structure represented by the following formula (2). Furthermore, it is desirable that the carbon number is 6-18. Further, an electron withdrawing group such as a nitro group, a cyano group, or a fluorinated alkyl group may be introduced into the aromatic ring.
本発明の固体高分子電解質はこれらポリスルホンアミド系高分子を主成分とする。すなわち、通常の高分子に使用される可塑剤、安定剤、離型剤等の添加剤を本発明の目的に反しない範囲内で使用できる。また、該固体高分子電解質の機械的強度を向上させるために、プロトン伝導性置換基を導入したポリスルホンアミド系高分子と他の炭化水素系高分子やふっ素系高分子を該ポリスルホンアミド系高分子のイオン伝導度を著しく損なわない程度、すなわち30%以下の分量を混合しても良い。 The solid polymer electrolyte of the present invention contains these polysulfonamide polymers as main components. That is, additives such as plasticizers, stabilizers, mold release agents and the like used for ordinary polymers can be used within a range not departing from the object of the present invention. Further, in order to improve the mechanical strength of the solid polymer electrolyte, a polysulfonamide polymer introduced with a proton conductive substituent and another hydrocarbon polymer or fluorine polymer are combined with the polysulfonamide polymer. An amount of 30% or less may be mixed so as not to significantly impair the ionic conductivity.
本発明で用いられる固体高分子電解質のイオン交換基当量重量は200〜3000g/molが好適である。更にはイオン交換基当量重量は300〜2000g/molであることが好適であり、更に500〜1500g/molが好適である。イオン交換基当量重量が3000g/molを越えると該固体高分子電解質のイオン伝導度が低くなり出力性能が低下し、200g/molより低いと該固体高分子電解質の耐水性が低下し、それぞれ好ましくない。 The ion exchange group equivalent weight of the solid polymer electrolyte used in the present invention is preferably 200 to 3000 g / mol. Furthermore, the ion exchange group equivalent weight is preferably 300 to 2000 g / mol, and more preferably 500 to 1500 g / mol. When the ion exchange group equivalent weight exceeds 3000 g / mol, the ionic conductivity of the solid polymer electrolyte decreases and the output performance decreases, and when it is lower than 200 g / mol, the water resistance of the solid polymer electrolyte decreases. Absent.
なお、本発明でイオン交換基当量重量とは、導入されたプロトン伝導性置換基単位モルあたりのポリスルホンアミド系高分子の分子量に相当する重量を表し、値が小さいほどプロトン伝導性基が多く導入されていることを示す。イオン交換基当量重量は、1H―NMRスペクトロスコピー、元素分析、特表平1-52866号公報明細書に記載の酸塩基滴定、非水酸塩基滴定(規定液はカリウムメトキシドのベンゼン・メタノール溶液)等により測定が可能である。 In the present invention, the ion exchange group equivalent weight means the weight corresponding to the molecular weight of the polysulfonamide polymer per mole of the introduced proton conductive substituent unit, and the smaller the value, the more proton conductive groups are introduced. Indicates that The ion exchange group equivalent weight is 1 H-NMR spectroscopy, elemental analysis, acid-base titration and non-hydroxybase titration described in the specification of JP-T-1-52866 (the specified solution is benzene / methanol of potassium methoxide). Measurement is possible with a solution) or the like.
ポリスルホンアミド系固体高分子電解質のイオン交換基当量重量を200〜3000g/molに制御する方法としては、スルホン化率、アルキルスルホン化率、スルホンアミド化率、ホスホン化率等を制御すればよい。 As a method for controlling the ion exchange group equivalent weight of the polysulfonamide-based solid polymer electrolyte to 200 to 3000 g / mol, the sulfonation rate, the alkyl sulfonation rate, the sulfonamidation rate, the phosphonation rate, and the like may be controlled.
本発明で用いられる固体高分子電解質を燃料電池として使用する際には、通常膜の状態で使用される。ポリスルホンアミド系高分子を膜へ転化する方法に特に制限はないが、溶液状態より製膜する方法(溶液キャスト法)、溶融状態より製膜する方法(溶融プレス法もしくは溶融押し出し法)等が可能である。具体的に溶液キャスト法については、例えばポリマー溶液をガラス板上に流延塗布し、溶媒を除去することにより製膜する。製膜に用いる溶媒は、ポリスルホンアミド系化合物を溶解し、その後に除去し得るものであるならば特に制限はなく、N,N’-ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、テトラヒドロフラン等の非プロトン性極性溶媒、あるいはエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、ジクロロメタン、トリクロロエタン等のハロゲン系溶媒、メタノール、エタノール、i-プロピルアルコール、t-ブチルアルコール等のアルコールが好適に用いられる。 When the solid polymer electrolyte used in the present invention is used as a fuel cell, it is usually used in a membrane state. There are no particular restrictions on the method of converting the polysulfonamide polymer into a membrane, but a method of forming a film from a solution state (solution casting method), a method of forming a film from a molten state (melt press method or melt extrusion method), etc. are possible. It is. Specifically, with respect to the solution cast method, for example, a polymer solution is cast-coated on a glass plate, and the film is formed by removing the solvent. The solvent used for film formation is not particularly limited as long as it can dissolve and then remove the polysulfonamide compound, and N, N′-dimethylformamide, N, N-dimethylacetamide, N-methyl-2 -Aprotic polar solvents such as pyrrolidone, dimethyl sulfoxide, tetrahydrofuran, etc., or alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dichloromethane, trichloroethane, etc. Alcohols such as halogen solvents, methanol, ethanol, i-propyl alcohol, and t-butyl alcohol are preferably used.
該固体高分子電解質膜の厚みは特に制限はないが10〜200μmが好ましい。特に30〜100μmが好ましい。実用に耐える膜の強度を得るには10μmより厚い方が好ましく、膜抵抗の低減つまり発電性能向上のためには200μmより薄い方が好ましい。ただし、膜厚が10μmより薄くても膜が実用に耐えうる強度を有していればこの限りではない。溶液キャスト法の場合、膜厚は溶液濃度あるいは基板上への塗布厚により制御できる。溶融状態より製膜する場合、膜厚は溶融プレス法あるいは溶融押し出し法等で得た所定厚さのフィルムを所定の倍率に延伸することで膜厚を制御できる。 Although there is no restriction | limiting in particular in the thickness of this solid polymer electrolyte membrane, 10-200 micrometers is preferable. 30-100 micrometers is especially preferable. A thickness of more than 10 μm is preferable to obtain a membrane strength that can withstand practical use, and a thickness of less than 200 μm is preferable in order to reduce membrane resistance, that is, improve power generation performance. However, even if the film thickness is less than 10 μm, this does not apply as long as the film has a strength that can withstand practical use. In the case of the solution casting method, the film thickness can be controlled by the solution concentration or the coating thickness on the substrate. When the film is formed from a molten state, the film thickness can be controlled by stretching a film having a predetermined thickness obtained by a melt press method or a melt extrusion method at a predetermined magnification.
電解質/触媒電極接合体は、ポリスルホンアミド系固体高分子電解質を固体高分子電解質膜作成に使用した溶媒に溶解させ、これを用いて触媒電極を接合することで作成する。 The electrolyte / catalyst electrode assembly is prepared by dissolving a polysulfonamide-based solid polymer electrolyte in the solvent used for preparing the solid polymer electrolyte membrane and bonding the catalyst electrode using this.
ここでの触媒電極は、触媒金属の微粒子を導電材に担持することで作成できる。触媒電極に使用される触媒金属としては、水素の酸化反応および酸素の還元反応を促進する金属であればいずれのものでもよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、あるいはそれらの合金が挙げられる。特に白金が多くの場合用いられる。触媒となる金属の粒径は、通常は10〜300オングストロームである。これらの触媒はカーボン等の担体に付着させた方が触媒の使用量が少なくコスト的に有利である。触媒の担持量は電極が成形された状態で0.01〜10mg/cm2 が好ましい。 The catalyst electrode here can be prepared by supporting fine particles of catalyst metal on a conductive material. The catalyst metal used for the catalyst electrode may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen. For example, platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron , Cobalt, nickel, chromium, tungsten, manganese, vanadium, or alloys thereof. In particular, platinum is often used. The particle size of the metal serving as a catalyst is usually 10 to 300 angstroms. When these catalysts are attached to a carrier such as carbon, the amount of the catalyst used is small and advantageous in terms of cost. The amount of the catalyst supported is preferably 0.01 to 10 mg / cm 2 with the electrode formed.
導電材としては、電子伝導性物質であればいずれのものでも良く、例えば各種金属や炭素材料などが挙げられる。炭素材料としては、例えば、ファーネスブラック、チャンネルブラック、およびアセチレンブラック等のカーボンブラック、活性炭、黒鉛等が挙げられ、これらが単独あるいは混合して使用される。 As the conductive material, any material can be used as long as it is an electron conductive material, and examples thereof include various metals and carbon materials. Examples of the carbon material include carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and the like, and these are used alone or in combination.
これら導電材に触媒金属を担持させる方法としては、触媒金属を還元法により導電材(主に炭素材料の場合に使用)の表面に析出させる方法や、溶剤に触媒金属を懸濁させ、これを導電材表面に塗布する方法などがある。 As a method for supporting the catalyst metal on these conductive materials, the catalyst metal is deposited on the surface of the conductive material (mainly used in the case of carbon materials) by a reduction method, or the catalyst metal is suspended in a solvent. There is a method of applying to the surface of a conductive material.
膜/電極接合体は、ポリスルホンアミド系固体高分子電解質を固体高分子電解質膜作成に使用した溶媒に溶解させた溶液を電解質/触媒電極接合体に塗布し、固体高分子電解質膜と接合させることで作成する。ここで、用いる電解質/触媒電極接合体は必ずしもポリスルホンアミド系固体高分子電解質を用いた電解質/触媒電極接合体でなくとも構わない。しかし、固体高分子電解質は水に対して膨潤するため、異なる固体高分子電解質同士を接合させると固体高分子電解質と電解質/触媒電極接合体が離れる可能性があるため、固体高分子電解質膜に使用したポリスルホンアミド系固体高分子電解質を使用した電解質/触媒電極接合体と接合するのが好ましい。 The membrane / electrode assembly is formed by applying a solution prepared by dissolving a polysulfonamide-based solid polymer electrolyte in the solvent used for the preparation of the solid polymer electrolyte membrane to the electrolyte / catalyst electrode assembly and bonding it to the solid polymer electrolyte membrane. Create with. Here, the electrolyte / catalyst electrode assembly used does not necessarily have to be an electrolyte / catalyst electrode assembly using a polysulfonamide-based solid polymer electrolyte. However, since the solid polymer electrolyte swells with respect to water, joining different solid polymer electrolytes may cause the solid polymer electrolyte and the electrolyte / catalyst electrode assembly to be separated. It is preferable to join with the electrolyte / catalyst electrode assembly using the polysulfonamide-based solid polymer electrolyte used.
燃料電池は、以上のように形成された膜/電極接合体の外側にセパレータと呼ばれる燃料流路もしくは酸化剤流路を形成する溝付きの集電体を配したものを単セルとし、この様な単セルを複数個、冷却板等を介して積層することにより構成される。燃料電池は高い温度で作動させる方が電極の触媒活性が上がり電極過電圧が減少するため望ましいが、電解質膜は水分がないと機能しないため、水分管理が可能な温度で作動させる必要がある。燃料電池の作動温度の好ましい範囲は室温〜100℃である。 In the fuel cell, a single cell is formed by arranging a current collector with a groove forming a fuel flow path or an oxidant flow path called a separator on the outside of the membrane / electrode assembly formed as described above. A plurality of single cells are stacked through a cooling plate or the like. It is desirable to operate the fuel cell at a high temperature because the catalytic activity of the electrode increases and the electrode overvoltage decreases. However, since the electrolyte membrane does not function without moisture, it needs to be operated at a temperature at which moisture management is possible. The preferable range of the operating temperature of the fuel cell is from room temperature to 100 ° C.
以下実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. In addition, the measurement conditions of each physical property are as follows.
[イオン交換基当量重量測定]
イオン交換基当量重量測定しようとする本発明のポリスルホンアミド系高分子を密閉できるガラス容器中に精秤(a(グラム))し、そこに過剰量の塩化カルシウム水溶液を添加して一晩撹拌した。系内に発生した塩化水素を0.1Nの水酸化ナトリウム標準水溶液(力価f)にて、指示薬にフェノールフタレインを用いて滴定(b(ml))した。イオン交換基当量重量(g/mol)は下式より求めた。
イオン交換基当量重量=(1000×a)/(0.1×b×f)
[Ion exchange group equivalent weight measurement]
Ion exchange group equivalent weight measurement The polysulfonamide polymer of the present invention to be measured is precisely weighed (a (gram)) in a glass container that can be sealed, and an excess amount of calcium chloride aqueous solution is added thereto and stirred overnight. . Hydrogen chloride generated in the system was titrated (b (ml)) with 0.1N sodium hydroxide standard aqueous solution (titer f) using phenolphthalein as an indicator. The ion exchange group equivalent weight (g / mol) was determined from the following formula.
Ion exchange group equivalent weight = (1000 × a) / (0.1 × b × f)
[イオン伝導度測定]
本発明の固体高分子電解質膜を、電気化学インピーダンス測定装置(ソーラトロン製、SI1287)を用いて周波数0.1Hz〜65kHzの領域で2端子インピーダンス測定をし、イオン伝導度を測定した。なお、上記測定は水蒸気雰囲気下、75℃にて実施された。
[Ion conductivity measurement]
The solid polymer electrolyte membrane of the present invention was subjected to two-terminal impedance measurement using an electrochemical impedance measurement device (manufactured by Solartron, SI1287) in a frequency range of 0.1 Hz to 65 kHz, and ion conductivity was measured. In addition, the said measurement was implemented at 75 degreeC by water vapor | steam atmosphere.
[耐酸化性試験]
本発明の固体高分子電解質膜を、10%過酸化水素水20mlに硫酸鉄7水和物0.63mgを加えることからなる60℃に加熱したフェントン試薬(鉄40ppmを含む)に浸漬させ、固体高分子電解質膜がフェントン試薬に溶解するに至る時間を求めた。
[Oxidation resistance test]
The solid polymer electrolyte membrane of the present invention was immersed in a Fenton reagent (containing 40 ppm of iron) heated to 60 ° C. consisting of adding 0.63 mg of iron sulfate heptahydrate to 20 ml of 10% aqueous hydrogen peroxide, The time required for the polymer electrolyte membrane to dissolve in the Fenton reagent was determined.
[燃料電池単セル性能評価]
膜/電極接合体を評価セルに組み込み、燃料電池出力性能を評価した。反応ガスには、水素/酸素を用い、共に1気圧の圧力にて、70℃の水バブラーを通して加湿した後、評価セルに供給した。ガス流量は水素60ml/min、酸素40ml/min、セル温度は75℃とした。電池出力性能は、H201B充放電装置(北斗電工製)により評価した。
[Fuel cell single cell performance evaluation]
The membrane / electrode assembly was incorporated into an evaluation cell, and the fuel cell output performance was evaluated. Hydrogen / oxygen was used as a reaction gas, and both were humidified through a water bubbler at 70 ° C. at a pressure of 1 atm, and then supplied to the evaluation cell. The gas flow rate was 60 ml / min for hydrogen, 40 ml / min for oxygen, and the cell temperature was 75 ° C. The battery output performance was evaluated by an H201B charge / discharge device (made by Hokuto Denko).
[実施例1]
(1)スルホン化ベンゼン−ヘキサメチレンポリスルホンアミドの合成
ヘキサメチレンジアミン11.6g、炭酸ナトリウム21.2g、ラウリル硫酸ナトリウム8.0g、水800mlからなるアミン溶液を攪拌しながら、m−ベンゼンジスルホニルクロリド27.5g、塩化メチレン800mlからなるジスルホニルクロリド溶液を滴下した。15分攪拌後、メタノール400mlを加えたところ、白色の沈殿物が生じた。生じた沈殿物をミキサーによるエタノール洗浄、脱イオン水洗浄と吸引濾過による回収操作を3回繰り返した後、120℃にて一晩減圧乾燥した。
[Example 1]
(1) Synthesis of sulfonated benzene-hexamethylene polysulfonamide While stirring an amine solution consisting of 11.6 g of hexamethylenediamine, 21.2 g of sodium carbonate, 8.0 g of sodium lauryl sulfate, and 800 ml of water, m-benzenedisulfonyl chloride A disulfonyl chloride solution consisting of 27.5 g and 800 ml of methylene chloride was added dropwise. After stirring for 15 minutes, 400 ml of methanol was added, resulting in a white precipitate. The resulting precipitate was washed with ethanol by a mixer, washed with deionized water and suction filtration three times, and then dried under reduced pressure at 120 ° C. overnight.
500mlの四つ口丸底フラスコの内部を窒素置換した後、200mlのクロロ硫酸をいれた。5℃に維持して撹拌しながら上記のベンゼン−ヘキサメチレンポリスルホンアミド31.2gを溶解させた。30分攪拌後、反応溶液を脱イオン水10lにゆっくりと滴下することでスルホニルクロリド化ベンゼン−ヘキサメチレンポリスルホンアミドを析出させ、濾過回収した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した。 The inside of the 500 ml four-necked round bottom flask was purged with nitrogen, and then 200 ml of chlorosulfuric acid was added. While maintaining the temperature at 5 ° C., 31.2 g of the above benzene-hexamethylene polysulfonamide was dissolved. After stirring for 30 minutes, the reaction solution was slowly added dropwise to 10 l of deionized water to precipitate sulfonyl chloride benzene-hexamethylene polysulfonamide, which was collected by filtration. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral.
得られたスルホニルクロリド化ベンゼン−ヘキサメチレンポリスルホンアミドを過剰の水酸化ナトリウム水溶液に浸漬させ加水分解し、塩酸溶液で煮沸した後120℃にて一晩減圧乾燥することでスルホン化ベンゼン−ヘキサメチレンポリスルホンアミドを得た。
得られたスルホン化ベンゼン−ヘキサメチレンポリスルホンアミドのイオン交換基当量重量は1000g/molであった。
The obtained sulfonyl chloride benzene-hexamethylene polysulfonamide is hydrolyzed by immersing it in an excess aqueous sodium hydroxide solution, boiled with a hydrochloric acid solution, and then dried under reduced pressure at 120 ° C. overnight, thereby sulfonated benzene-hexamethylene polysulfone. The amide was obtained.
The resulting sulfonated benzene-hexamethylene polysulfonamide had an ion exchange group equivalent weight of 1000 g / mol.
(2)固体高分子電解質膜の作製
前記(1)で得られた生成物を10重量%の濃度になるようにメタノールに溶解した。この溶液をドクターナイフによりガラス上に展開し、乾燥することで、膜厚40μmの固体高分子電解質膜を作成した。
(2) Production of solid polymer electrolyte membrane The product obtained in the above (1) was dissolved in methanol to a concentration of 10% by weight. This solution was spread on glass with a doctor knife and dried to prepare a solid polymer electrolyte membrane having a thickness of 40 μm.
(3)触媒電極層、膜/電極接合体、燃料電池の作製
40重量%の白金担持カーボンに、前記(2)の10重量%濃度のメタノール溶液を、白金担持カーボンと固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調整した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜の両側に塗布した後、乾燥して白金担持量0.25mg/cm2の膜/電極接合体を作製した。これを用いて、燃料電池単セル性能評価をしたところ40mW/cm2の出力を示した。
(3) Preparation of catalyst electrode layer, membrane / electrode assembly, and fuel cell 40% by weight of platinum-supported carbon was mixed with the 10% by weight methanol solution of (2) above with platinum-supported carbon and solid polymer electrolyte. The mixture was added so that the weight ratio was 2: 1 and dispersed uniformly to prepare a paste (electrode catalyst coating solution). This electrode catalyst coating solution was applied to both sides of the solid polymer electrolyte membrane obtained in (2) above, and dried to prepare a membrane / electrode assembly having a platinum loading of 0.25 mg / cm 2 . When this was used to evaluate the performance of a single fuel cell, an output of 40 mW / cm 2 was shown.
[実施例2]
(1)スルホブチル化ベンゼン−ヘキサメチレンポリスルホンアミドの合成
実施例1に記載のベンゼン−ヘキサメチレンポリスルホンアミド31.2gを200mlの1N水酸化ナトリウム水溶液に溶解させた。これを攪拌しながら、1,4−ブタンスルトン6.7g、エタノール20mlからなるブタンスルトン溶液を滴下した。70℃で3時間の攪拌後、反応溶液を1N塩酸溶液を滴下することでスルホブチル化ポリスルホンアミドを析出させ、濾過回収した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した。得られたスルホブチル化ポリスルホンアミドのイオン交換基当量重量は1300g/molであった。
[Example 2]
(1) Synthesis of sulfobutylated benzene-hexamethylene polysulfonamide 31.2 g of benzene-hexamethylene polysulfonamide described in Example 1 was dissolved in 200 ml of 1N aqueous sodium hydroxide solution. While stirring this, a butane sultone solution consisting of 6.7 g of 1,4-butane sultone and 20 ml of ethanol was added dropwise. After stirring at 70 ° C. for 3 hours, 1N hydrochloric acid solution was added dropwise to the reaction solution to precipitate sulfobutylated polysulfonamide, which was collected by filtration. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral. The resulting sulfobutylated polysulfonamide had an ion exchange group equivalent weight of 1300 g / mol.
(2)固体高分子電解質膜の作製
実施例1と同様にして、膜厚40μmの固体高分子電解質膜を作成した。
(2) Production of Solid Polymer Electrolyte Membrane A solid polymer electrolyte membrane with a thickness of 40 μm was produced in the same manner as in Example 1.
(3)触媒電極層、膜/電極接合体、燃料電池の作製
実施例1と同様にして、白金担持量0.25mg/cm2の膜/電極接合体を作製した。これを用いて、燃料電池単セル性能評価をしたところ40mW/cm2の出力を示した。
(3) Production of catalyst electrode layer, membrane / electrode assembly and fuel cell A membrane / electrode assembly having a platinum loading of 0.25 mg / cm 2 was produced in the same manner as in Example 1. When this was used to evaluate the performance of a single fuel cell, an output of 40 mW / cm 2 was shown.
[実施例3]
(1)スルホブチル化ベンゼン−ベンゼンポリスルホンアミドの合成
p−アミノクロロベンゼン12.7g、水100mlからなるアミン溶液を攪拌しながら、p−クロロベンゼンスルホニルクロリド21.1gを加えた。ここに、水酸化ナトリウム8gを加えたところ、p−クロロベンゼンスルホニルクロリドが溶解した。これを、塩酸で中和したところ白色の沈殿物が生成した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引ろ過による回収操作を3回繰り替えした後、60℃にて一晩減圧乾燥した。
[Example 3]
(1) Synthesis of sulfobutylated benzene-benzenepolysulfonamide While stirring an amine solution consisting of 12.7 g of p-aminochlorobenzene and 100 ml of water, 21.1 g of p-chlorobenzenesulfonyl chloride was added. When 8 g of sodium hydroxide was added thereto, p-chlorobenzenesulfonyl chloride was dissolved. When this was neutralized with hydrochloric acid, a white precipitate was formed. The resulting precipitate was repeatedly washed three times with deionized water washing using a mixer and suction filtration, and then dried under reduced pressure at 60 ° C. overnight.
前述のスルホンアミド30.2gをジメチルアセトアミド(脱水)50mlに溶解させ、塩化ニッケル(無水)50mg、ビピリジン70mg、トリフェニルホスフィン3.8g、亜鉛8.7gを加え、80℃で8時間攪拌した。塩酸で金属塩を除去した後、ミキサーによる脱イオン水洗浄と吸引濾過による回収操作を繰り返した後、120℃にて一晩減圧乾燥した。 30.2 g of the above sulfonamide was dissolved in 50 ml of dimethylacetamide (dehydrated), 50 mg of nickel chloride (anhydrous), 70 mg of bipyridine, 3.8 g of triphenylphosphine, and 8.7 g of zinc were added, and the mixture was stirred at 80 ° C. for 8 hours. After removing the metal salt with hydrochloric acid, the collection operation by deionized water washing with a mixer and suction filtration was repeated, followed by drying under reduced pressure at 120 ° C. overnight.
上記のベンゼン−ベンゼンポリスルホンアミド31.0gを1N水酸化ナトリウム水溶液200mlに溶解させた。これを攪拌しながら、1,4−ブタンスルトン6.7g、エタノール20mlからなるブタンスルトン溶液を滴下した。70℃で3時間の攪拌後、反応溶液を1N塩酸溶液を滴下することでスルホブチル化ベンゼン−ベンゼンポリスルホンアミドを析出させ、濾過回収した。生じた沈殿物をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した。
得られたスルホブチル化ベンゼン−ベンゼンポリスルホンアミドのイオン交換基当量重量は1000g/molであった。
31.0 g of the above benzene-benzenepolysulfonamide was dissolved in 200 ml of 1N aqueous sodium hydroxide solution. While stirring this, a butane sultone solution consisting of 6.7 g of 1,4-butane sultone and 20 ml of ethanol was added dropwise. After stirring at 70 ° C. for 3 hours, 1N hydrochloric acid solution was added dropwise to the reaction solution to precipitate sulfobutylated benzene-benzenepolysulfonamide, which was collected by filtration. The resulting precipitate was repeatedly washed with deionized water using a mixer and collected by suction filtration until the filtrate became neutral.
The obtained sulfobutylated benzene-benzenepolysulfonamide had an ion exchange group equivalent weight of 1000 g / mol.
(2)固体高分子電解質膜の作製
前記(1)で得られた生成物を10重量%の濃度になるようにジメチルスルホキシドに溶解した。この溶液をドクターナイフによりガラス上に展開し、乾燥することで、膜厚40μmの固体高分子電解質膜を作成した。
(2) Production of solid polymer electrolyte membrane The product obtained in (1) was dissolved in dimethyl sulfoxide so as to have a concentration of 10% by weight. This solution was spread on glass with a doctor knife and dried to prepare a solid polymer electrolyte membrane having a thickness of 40 μm.
(3)触媒電極層、膜/電極接合体、燃料電池の作製
40重量%の白金担持カーボンに、前記(2)の10重量%濃度のジメチルスルホキシド溶液を、白金担持カーボンと固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調整した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜の両側に塗布した後、乾燥して白金担持量0.25mg/cm2の膜/電極接合体を作製した。これを用いて、燃料電池単セル性能評価をしたところ40mW/cm2の出力を示した。
(3) Preparation of catalyst electrode layer, membrane / electrode assembly and fuel cell 40% by weight of platinum-supported carbon was mixed with 10% by weight dimethyl sulfoxide solution of (2), platinum-supported carbon and solid polymer electrolyte. Was added so that the weight ratio was 2: 1 and dispersed uniformly to prepare a paste (electrode catalyst coating solution). This electrode catalyst coating solution was applied to both sides of the solid polymer electrolyte membrane obtained in the above (2) and then dried to prepare a membrane / electrode assembly having a platinum loading of 0.25 mg / cm 2 . When this was used to evaluate the performance of a single fuel cell, an output of 40 mW / cm 2 was shown.
[比較例1]
(1)スルホン化ポリエーテルスルホンの合成
撹拌機、温度計、塩化カルシウム管を接続した還流冷却器をつけた500mlの四つ口丸底フラスコの内部を窒素置換した後、25gのポリエーテルスルホン(PES)(アモコエンジニアリングポリマー社製、レーデル)と濃硫酸125mlを入れた。窒素気流下、室温にて一晩撹拌して均一溶液とした。この溶液に、窒素気流下、撹拌しながら滴下漏斗より48mlのクロロ硫酸を滴下した。滴下開始後しばらくクロロ硫酸が濃硫酸中の水分と激しく反応して発泡するためゆっくりと滴下し、発泡が穏やかになった後は5分以内に滴下を終了させた。滴下終了後の反応溶液を25℃にて3.5時間撹拌してスルホン酸化した。次いで、反応溶液を15lの脱イオン水にゆっくりと滴下しでスルホン酸化ポリエーテルスルホンを析出させ、濾過回収した。析出した沈澱をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、80℃にて一晩減圧乾燥した。
得られたスルホン酸化ポリエーテルスルホン電解質のイオン交換基当量重量は960g/molであった。
[Comparative Example 1]
(1) Synthesis of sulfonated polyethersulfone After the inside of a 500 ml four-necked round bottom flask equipped with a reflux condenser connected with a stirrer, thermometer and calcium chloride tube was purged with nitrogen, 25 g of polyethersulfone ( PES) (Amoco Engineering Polymer, Radel) and 125 ml of concentrated sulfuric acid were added. The mixture was stirred overnight at room temperature under a nitrogen stream to obtain a uniform solution. To this solution, 48 ml of chlorosulfuric acid was added dropwise from a dropping funnel while stirring under a nitrogen stream. Since the chlorosulfuric acid reacted vigorously with the water in the concentrated sulfuric acid and foamed for a while after the start of the dripping, it was dropped slowly, and after the foaming became mild, the dropping was finished within 5 minutes. After completion of the dropwise addition, the reaction solution was sulfonated by stirring at 25 ° C. for 3.5 hours. The reaction solution was then slowly added dropwise to 15 l of deionized water to precipitate sulfonated polyethersulfone, which was collected by filtration. The deposited precipitate was repeatedly washed with deionized water by a mixer and collected by suction filtration until the filtrate became neutral, and then dried under reduced pressure at 80 ° C. overnight.
The resulting sulfonated polyethersulfone electrolyte had an ion exchange group equivalent weight of 960 g / mol.
(2)固体高分子電解質膜の作製
実施例3と同様にして、膜厚40μmの固体高分子電解質膜を作成した。
(2) Production of Solid Polymer Electrolyte Membrane A solid polymer electrolyte membrane having a thickness of 40 μm was produced in the same manner as in Example 3.
[比較例2]
(1)ベンゼン−ヘキサメチレンポリスルホンアミドの合成
実施例1と同様にしてベンゼン−ヘキサメチレンポリスルホンアミドを合成した。
(2)固体高分子電解質膜の作製
実施例3と同様にして、膜厚40μmの固体高分子電解質膜を作成した。
[Comparative Example 2]
(1) Synthesis of benzene-hexamethylene polysulfonamide Benzene-hexamethylene polysulfonamide was synthesized in the same manner as in Example 1.
(2) Production of Solid Polymer Electrolyte Membrane A solid polymer electrolyte membrane having a thickness of 40 μm was produced in the same manner as in Example 3.
以上の実施例1〜3、比較例1〜2に関して、耐酸化性試験、イオン伝導度測定を行なった。この評価結果を表1に示す。 For Examples 1 to 3 and Comparative Examples 1 and 2 above, an oxidation resistance test and ion conductivity measurement were performed. The evaluation results are shown in Table 1.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004056009A JP2005251408A (en) | 2004-03-01 | 2004-03-01 | Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004056009A JP2005251408A (en) | 2004-03-01 | 2004-03-01 | Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005251408A true JP2005251408A (en) | 2005-09-15 |
Family
ID=35031697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004056009A Pending JP2005251408A (en) | 2004-03-01 | 2004-03-01 | Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005251408A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280740A (en) * | 2006-04-06 | 2007-10-25 | Hitachi Ltd | Electrolyte, electrolyte membrane, membrane electrode assembly using the same, fuel cell power supply and fuel cell power supply system |
-
2004
- 2004-03-01 JP JP2004056009A patent/JP2005251408A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280740A (en) * | 2006-04-06 | 2007-10-25 | Hitachi Ltd | Electrolyte, electrolyte membrane, membrane electrode assembly using the same, fuel cell power supply and fuel cell power supply system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3561250B2 (en) | Fuel cell | |
JP4051736B2 (en) | Polymer electrolyte, polymer electrolyte membrane, and fuel cell | |
JP3607862B2 (en) | Fuel cell | |
JP5713335B2 (en) | POLYSULFONE POLYMER, POLYMER ELECTROLYTE MEMBRANE CONTAINING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE SAME, FUEL CELL USING THE SAME, AND METHOD FOR PRODUCING THE POLYMER | |
JP2014005468A (en) | Polymer electrolyte, polymer electrolyte membrane, catalyst layer binder for fuel cell, and use thereof | |
WO2014157389A1 (en) | Electrolyte membrane composition, solid polymer electrolyte membrane, method of producing said electrolyte membrane, membrane-electrode assembly, solid polymer-type fuel cell, and water electrolysis cell and water electrolysis apparatus | |
JP2009021234A (en) | Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell | |
JP2009021233A (en) | Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell | |
JP4170973B2 (en) | Polymer containing terminal sulfonic acid group and polymer electrolyte and fuel cell employing the same | |
JP4774718B2 (en) | Polymer electrolyte membrane | |
JP4245991B2 (en) | Solid polymer electrolyte, membrane using the same, catalyst electrode layer, membrane / electrode assembly, and fuel cell | |
CN101689637A (en) | Catalyst ink, method for producing catalyst ink, method for producing membrane-electrode assembly, membrane-electrode assembly produced by the method, and fuel cell | |
JP5549970B2 (en) | Aromatic polyelectrolytes having superacid groups and their use | |
JP5129778B2 (en) | Solid polymer electrolyte, membrane thereof, membrane / electrode assembly using the same, and fuel cell | |
JP5309822B2 (en) | Aromatic sulfonic acid derivative, sulfonated polymer, polymer electrolyte material and polymer electrolyte fuel cell using the same | |
JP2004288497A (en) | Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same | |
JP5233065B2 (en) | Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell | |
JP2005251409A (en) | Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell | |
JP4077011B2 (en) | Solid polymer electrolyte, membrane electrode assembly and fuel cell | |
JP6819047B2 (en) | Diphenylsulfone compounds for polymer electrolytes, polymer electrolytes, methods for producing polymer electrolytes, membrane electrode assemblies, and polymer electrolyte fuel cells. | |
JP2005251408A (en) | Solid polymer electrolyte, membrane using it, electrolyte/catalyst electrode assembly, membrane/electrode assembly and fuel cell | |
KR102567197B1 (en) | Poly(phenylenebenzopheneone) based polymer for proton exchange membrane of fuel cell, polymer proton exchange membrane for fuel cell, and fuel cell comprising the same | |
KR102463011B1 (en) | Polymer electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell including same, and fuel cell including same | |
JP3911120B2 (en) | Solid polymer electrolyte, membrane thereof, electrode catalyst coating solution, membrane / electrode assembly using the same, and fuel cell | |
JP4324518B2 (en) | Solid polymer electrolyte for fuel cell and membrane / electrode assembly for fuel cell using the same |