[go: up one dir, main page]

JP2005245328A - Closed circulation aquaculture system - Google Patents

Closed circulation aquaculture system Download PDF

Info

Publication number
JP2005245328A
JP2005245328A JP2004061190A JP2004061190A JP2005245328A JP 2005245328 A JP2005245328 A JP 2005245328A JP 2004061190 A JP2004061190 A JP 2004061190A JP 2004061190 A JP2004061190 A JP 2004061190A JP 2005245328 A JP2005245328 A JP 2005245328A
Authority
JP
Japan
Prior art keywords
cathode
electrolytic cell
seawater
anode
hypochlorous acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004061190A
Other languages
Japanese (ja)
Inventor
Yoshifumi Karizume
慶文 狩集
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikujo Yoshoku Kogaku Kenkyusho KK
Original Assignee
Rikujo Yoshoku Kogaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikujo Yoshoku Kogaku Kenkyusho KK filed Critical Rikujo Yoshoku Kogaku Kenkyusho KK
Priority to JP2004061190A priority Critical patent/JP2005245328A/en
Publication of JP2005245328A publication Critical patent/JP2005245328A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】 活性炭充填槽や中和剤添加装置のような塩素除去装置を用いる必要なく、過剰な次亜塩素酸を除去することができる閉鎖循環式養殖システムを提供する
【解決手段】 魚介類を飼育する飼育水槽1の海水を循環経路2を通して浄化しながら循環させるようにした閉鎖循環式養殖システムに関する。無隔膜で対向配置される陽極3と陰極4の間で塩水を電気分解して陽極3の側に次亜塩素酸を発生させる第一の電解槽5を循環経路2に接続する。隔膜6で仕切って陽極7が配置される陽極室8と陰極9が配置される陰極室10を形成すると共に、塩水を電気分解して陰極9の側に過酸化水素を発生させる第二の電解槽11を備える。第一の電解槽5を通過した海水に第二の電解槽11の陰極室10の塩水を混合させるようにする。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a closed circulation culture system capable of removing excess hypochlorous acid without using a chlorine removing device such as an activated carbon filling tank or a neutralizing agent adding device. The present invention relates to a closed circulation type aquaculture system that circulates while purifying seawater in a breeding aquarium 1 through a circulation path 2. A first electrolytic cell 5 that electrolyzes salt water between the anode 3 and the cathode 4 that are opposed to each other with a diaphragm and generates hypochlorous acid on the anode 3 side is connected to the circulation path 2. A second electrolysis that forms an anode chamber 8 in which an anode 7 is disposed by partitioning with a diaphragm 6 and a cathode chamber 10 in which a cathode 9 is disposed, and generates hydrogen peroxide on the cathode 9 side by electrolyzing salt water. A tank 11 is provided. The salt water in the cathode chamber 10 of the second electrolytic cell 11 is mixed with the seawater that has passed through the first electrolytic cell 5.
[Selection] Figure 1

Description

本発明は、陸上において、海水(人工海水を含む)を浄化しながら閉鎖系で循環させて、飼育水槽で魚介類を養殖したり一時的に蓄養したりするようにした閉鎖循環式養殖システムに関するものである。   The present invention relates to a closed circulation aquaculture system that circulates in a closed system while purifying seawater (including artificial seawater) on land to cultivate seafood in a breeding aquarium or temporarily cultivate it. Is.

海水面から離れた陸上地点で、食用あるいは鑑賞用の魚介類を飼育する閉鎖式養殖システムが従来から検討されている。この閉鎖循環式養殖システムでは、飼育魚介類の排泄物や残餌等を飼育水槽から除去する処理を、周辺環境への排出希釈によることなく、システム内で行なう必要がある。このために、飼育水槽に海水を循環させる循環経路を接続し、この循環経路に物理的ろ過装置、電解槽を設け、あるいは物理的ろ過装置、生物浄化槽、電解槽を設け、飼育水槽の海水を循環させる間に、海水中の魚介類の排泄物や残餌等を除去して浄化することが行なわれている。   A closed-type aquaculture system for raising food or appreciating seafood at a land point remote from the sea surface has been studied. In this closed-circulation aquaculture system, it is necessary to perform the process of removing the excrement and residual food of the reared fishery products from the rearing aquarium without using dilution in the surrounding environment. For this purpose, a circulation path for circulating seawater is connected to the breeding aquarium, and a physical filtration device and an electrolysis tank are provided in this circulation path, or a physical filtration device, a biological purification tank and an electrolysis tank are provided, During circulation, seafood excrement and residual food in seawater are removed and purified.

前者の循環経路に物理的ろ過装置、電解槽を設けたシステムでは、海水中の固形物を物理的ろ過装置でろ過して除去し、また電解槽で海水を電気分解することによって生成される次亜塩素酸などの活性塩素種で、魚介類の排泄物に起因するアンモニア等を分解して除去し、さらに海水を消毒殺菌することができる。また後者の循環経路に物理的ろ過装置、生物浄化槽、電解槽を設けたシステムでは、海水中の固形物を物理的ろ過装置でろ過して除去し、さらに生物浄化槽で硝化菌等の微生物でアンモニアを分解して除去し、また電解槽で海水を電気分解することによって生成される次亜塩素酸などの活性塩素種で海水を消毒殺菌することができる。(例えば特許文献1等参照)
特開2003−274796号公報
In the former system in which a physical filtration device and an electrolytic cell are installed in the circulation path, solids in seawater are removed by filtration with a physical filtration device, and the seawater is electrolyzed in the electrolytic cell. With active chlorine species such as chlorous acid, it is possible to decompose and remove ammonia and the like resulting from seafood excrement, and further disinfect and disinfect seawater. In the latter system, a physical filtration device, a biological septic tank, and an electrolytic cell are provided in the latter circulation path, and solids in seawater are removed by filtration with a physical filtration device. Further, in the biological septic tank, ammonia such as nitrifying bacteria is removed. It is possible to disinfect and disinfect seawater with active chlorine species such as hypochlorous acid produced by electrolyzing seawater in an electrolytic cell. (For example, see Patent Document 1)
JP 2003-27496 A

しかし、上記のように電解槽で海水を電気分解して次亜塩素酸を生成させる場合、過剰な次亜塩素酸は魚毒作用を有するために、特許文献1にみられるように、電解槽の次に塩素除去装置を設けて過剰な次亜塩素酸を除去する必要がある。   However, when electrolyzing seawater in an electrolytic cell to generate hypochlorous acid as described above, excess hypochlorous acid has a fish poisoning action, so that the electrolytic cell is used as disclosed in Patent Document 1. Next, it is necessary to provide a chlorine removing device to remove excess hypochlorous acid.

そして塩素除去装置としては、活性炭充填槽や、チオ硫酸ナトリウム等の塩素中和剤を添加する中和剤添加装置などが用いられているが、活性炭充填槽の場合には、海水中のSS(suspended solid:懸濁物質、浮遊物質)や電解で生成される不溶塩類で槽が閉塞され易く、頻繁な洗浄が必要である等の問題があり、中和剤添加装置の場合には、薬剤の補充やメンテナンスが繁雑になる等の問題がある。   And as a chlorine removal apparatus, the activated carbon filling tank, the neutralizing agent addition apparatus which adds chlorine neutralizing agents, such as sodium thiosulfate, etc. are used, but in the case of an activated carbon filling tank, SS ( suspended solid (suspended solids, suspended solids) and insoluble salts generated by electrolysis, the tank tends to be clogged, and frequent cleaning is required. There are problems such as complicated replenishment and maintenance.

本発明は上記の点に鑑みてなされたものであり、活性炭充填槽や中和剤添加装置のような塩素除去装置を用いる必要なく、過剰な次亜塩素酸を除去することができる閉鎖循環式養殖システムを提供することを目的とするものである。   The present invention has been made in view of the above points, and it is not necessary to use a chlorine removal device such as an activated carbon filling tank or a neutralizer addition device, and a closed circulation type that can remove excess hypochlorous acid. The purpose is to provide an aquaculture system.

本発明の請求項1に係る閉鎖循環式養殖システムは、魚介類を飼育する飼育水槽1の海水を循環経路2を通して浄化しながら循環させるようにした閉鎖循環式養殖システムにおいて、無隔膜で対向配置される陽極3と陰極4の間で塩水を電気分解して陽極3の側に次亜塩素酸を発生させる第一の電解槽5を循環経路2に接続し、隔膜6で仕切って陽極7が配置される陽極室8と陰極9が配置される陰極室10を形成すると共に、塩水を電気分解して陰極9の側に過酸化水素を発生させる第二の電解槽11を備え、第一の電解槽5を通過した海水に第二の電解槽11の陰極室10の塩水を混合させるようにして成ることを特徴とするものである。   A closed-circulation aquaculture system according to claim 1 of the present invention is a closed-circulation aquaculture system in which seawater in a breeding aquarium 1 for rearing fish and shellfish is circulated while purifying it through a circulation path 2, and is opposed to each other with a diaphragm. The first electrolytic cell 5 that electrolyzes salt water between the anode 3 and the cathode 4 to generate hypochlorous acid on the anode 3 side is connected to the circulation path 2 and is partitioned by the diaphragm 6 so that the anode 7 A cathode chamber 10 in which an anode chamber 8 and a cathode 9 are arranged is formed, and a second electrolytic cell 11 that electrolyzes salt water to generate hydrogen peroxide on the cathode 9 side is provided. The salt water in the cathode chamber 10 of the second electrolytic cell 11 is mixed with the seawater that has passed through the electrolytic cell 5.

この発明によれば、第一の電解槽5で海水を電気分解することによって生成される次亜塩素酸によって海水の消毒殺菌等を行なうことができると共に、第二の電解槽11において海水の電気分解で陰極室10に生成される過酸化水素によって、第一の電解槽5を通過する海水に過剰に含まれる次亜塩素酸を分解することができるものであり、活性炭充填槽や中和剤添加装置のような塩素除去装置を用いる必要なく、過剰な次亜塩素酸を除去することができるものである。   According to the present invention, seawater can be sterilized and disinfected with hypochlorous acid generated by electrolyzing seawater in the first electrolytic cell 5, and the seawater electricity in the second electrolytic cell 11. Hydrogen peroxide produced in the cathode chamber 10 by decomposition can decompose excessive hypochlorous acid contained in seawater passing through the first electrolytic cell 5, and can be an activated carbon filling tank or a neutralizing agent. Excess hypochlorous acid can be removed without using a chlorine removing device such as an adding device.

また請求項2の発明は、請求項1において、第一の電解槽5に電気分解のために通電される電気量に応じて、第二の電解槽11に電気分解のために通電される電気量を制御する制御部12を備えて成ることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the second electrolyzer 11 is electrically energized for electrolysis in accordance with the amount of electricity energized in the first electrolyzer 5 for electrolysis. It comprises the control part 12 which controls quantity, It is characterized by the above-mentioned.

この発明によれば、第一の電解槽5において生成される次亜塩素酸の量に応じて、第二の電解槽11の陰極室10に生成される過酸化水素の量を調整することができ、過酸化水素による次亜塩素酸の除去を効率高く行なうことができるものである。   According to the present invention, the amount of hydrogen peroxide generated in the cathode chamber 10 of the second electrolytic cell 11 can be adjusted according to the amount of hypochlorous acid generated in the first electrolytic cell 5. It is possible to remove hypochlorous acid with hydrogen peroxide with high efficiency.

本発明の請求項3に係る閉鎖循環式養殖システムは、魚介類を飼育する飼育水槽1の海水を循環経路2を通して浄化しながら循環させるようにした閉鎖循環式養殖システムにおいて、無隔膜で対向配置される陽極13と陰極14の間で塩水を電気分解して、陽極13の側に次亜塩素酸を発生させると共に陰極14の側に過酸化水素を発生させる電解槽15を循環経路2に接続して成ることを特徴とするものである。   A closed-circulation aquaculture system according to claim 3 of the present invention is a closed-circulation aquaculture system in which seawater in a breeding aquarium 1 for rearing fish and shellfish is circulated while purifying it through a circulation path 2, and is opposed to each other with a non-circular membrane An electrolytic cell 15 for electrolyzing salt water between the anode 13 and the cathode 14 to generate hypochlorous acid on the anode 13 side and hydrogen peroxide on the cathode 14 side is connected to the circulation path 2. It is characterized by comprising.

この発明によれば、電解槽15の陽極13の側に生成される次亜塩素酸によって海水の消毒殺菌等を行なうことができると共に、陰極室14の側に生成される過酸化水素によって、海水に過剰に含まれる次亜塩素酸を分解することができるものであり、活性炭充填槽や中和剤添加装置のような塩素除去装置を用いる必要なく、過剰な次亜塩素酸を除去することができるものである。   According to the present invention, seawater can be sterilized and sterilized by hypochlorous acid produced on the anode 13 side of the electrolytic cell 15, and seawater is produced by hydrogen peroxide produced on the cathode chamber 14 side. It is possible to decompose hypochlorous acid contained in excess, and it is possible to remove excess hypochlorous acid without using a chlorine removing device such as an activated carbon filling tank or a neutralizing agent adding device. It can be done.

請求項1の本発明によれば、第一の電解槽5で海水を電気分解することによって生成される次亜塩素酸によって海水の消毒殺菌等を行なうことができると共に、第二の電解槽11において海水の電気分解で陰極室10に生成される過酸化水素によって、第一の電解槽5を通過する海水に過剰に含まれる次亜塩素酸を分解することができる。この結果、活性炭充填槽や中和剤添加装置のような塩素除去装置を用いる必要なく、過剰な次亜塩素酸を除去することができる。   According to the present invention of claim 1, seawater can be sterilized and disinfected with hypochlorous acid generated by electrolyzing seawater in the first electrolytic cell 5, and the second electrolytic cell 11 is used. , The hypochlorous acid contained excessively in the seawater passing through the first electrolytic cell 5 can be decomposed by hydrogen peroxide generated in the cathode chamber 10 by electrolysis of seawater. As a result, it is possible to remove excess hypochlorous acid without using a chlorine removing device such as an activated carbon filling tank or a neutralizing agent adding device.

また請求項3の発明によれば、電解槽15の陽極13の側に生成される次亜塩素酸によって海水の消毒殺菌等を行なうことができると共に、陰極室14の側に生成される過酸化水素によって、海水に過剰に含まれる次亜塩素酸を分解することができる。この結果、活性炭充填槽や中和剤添加装置のような塩素除去装置を用いる必要なく、過剰な次亜塩素酸を除去することができる。   According to the invention of claim 3, seawater can be sterilized and sterilized by hypochlorous acid generated on the anode 13 side of the electrolytic cell 15, and peroxidation generated on the cathode chamber 14 side. With hydrogen, hypochlorous acid contained excessively in seawater can be decomposed. As a result, it is possible to remove excess hypochlorous acid without using a chlorine removing device such as an activated carbon filling tank or a neutralizing agent adding device.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1(a)は本発明の実施の形態の一例を示すものであり、魚介類が飼育される飼育水槽1に循環経路2が接続してあり、循環経路2に設けた循環ポンプ20を作動させることによって、飼育水槽1内の海水を循環経路2を通して循環させるようにしてある。そしてこの循環経路2には、海水の流れに沿った順で、循環ポンプ20、水浄化装置21、第一の電解槽5、混合槽22が接続してある。水浄化装置21は、海水中の固形分をろ過等によって除去する物理的ろ過部や、海水中のアンモニア等を硝化菌などの微生物で分解除去する生物ろ過部などを備えて形成してあり、飼育水槽1内の海水を水浄化装置21に通過させて循環させることによって、飼育水槽1内の海水を魚介類を飼育するのに適した水質に保ち、閉鎖循環システムで魚介類の飼育を行なうことができるものである。   FIG. 1A shows an example of an embodiment of the present invention, in which a circulation path 2 is connected to a breeding aquarium 1 where seafood is raised, and a circulation pump 20 provided in the circulation path 2 is operated. By doing so, the seawater in the breeding aquarium 1 is circulated through the circulation path 2. The circulation path 2 is connected with a circulation pump 20, a water purification device 21, a first electrolytic tank 5, and a mixing tank 22 in the order along the flow of seawater. The water purification device 21 includes a physical filtration unit that removes solids in seawater by filtration, a biological filtration unit that decomposes and removes ammonia in seawater with microorganisms such as nitrifying bacteria, and the like. By passing the seawater in the breeding aquarium 1 through the water purification device 21 and circulating it, the seawater in the breeding aquarium 1 is maintained in a water quality suitable for breeding seafood, and the seafood is raised in a closed circulation system. It is something that can be done.

第一の電解槽5の槽内には図1(b)のように、海水が流れる方向と平行に陽極3と陰極4が配置してあり、この陽極3と陰極4は隔膜を介すること無く直接対向させてある。またこの陽極3と陰極4は制御部12を介して直流電源(不図示)に電気的に接続してあり、陽極3にプラス電位の、陰極4にマイナス電位の直流電流が通電されるようにしてある。   As shown in FIG. 1B, an anode 3 and a cathode 4 are disposed in the tank of the first electrolytic cell 5 in parallel with the direction in which seawater flows, and the anode 3 and the cathode 4 do not pass through a diaphragm. Directly opposed. The anode 3 and the cathode 4 are electrically connected to a DC power source (not shown) via the control unit 12 so that a positive potential is applied to the anode 3 and a negative potential is applied to the cathode 4. It is.

図1において11は第二の電解槽であり、この第二の電解槽11の槽内には隔膜6を設けて仕切ることによって陽極室8と陰極室10が形成してある。陽極室8内には陽極7が、陰極室10内には陰極9が配置してあり、陽極7と陰極9は隔膜6を介して対向させてある。この陽極7と陰極9は制御部12を介して直流電源に電気的に接続してあり、陽極7にプラス電位の、陰極9にマイナス電位の直流電流が通電されるようにしてある。この第二の電解槽11には塩水貯溜槽24が循環水路25で接続してあり、塩水を第二の電解槽11に循環させるようにしてある。この塩水としては海水など食塩水を用いるのが好ましく、塩濃度は0.5質量%以上であることが望ましい。循環水路25は第二の電解槽11の入口側で分岐して陽極室8と陰極室10の入口にそれぞれ接続してあり、第二の電解槽11の出口側では、循環水路25は陽極室8の出口に接続してある。陰極室10の出口は添加水路26によって上記の混合槽22に接続してある。   In FIG. 1, reference numeral 11 denotes a second electrolytic cell. An anode chamber 8 and a cathode chamber 10 are formed in the second electrolytic cell 11 by partitioning a diaphragm 6. An anode 7 is disposed in the anode chamber 8, and a cathode 9 is disposed in the cathode chamber 10, and the anode 7 and the cathode 9 are opposed to each other through the diaphragm 6. The anode 7 and the cathode 9 are electrically connected to a DC power source via the control unit 12 so that a positive potential DC current is passed through the anode 7 and a negative potential is passed through the cathode 9. A salt water storage tank 24 is connected to the second electrolytic tank 11 through a circulation water channel 25 so that the salt water is circulated through the second electrolytic tank 11. As the salt water, salt water such as seawater is preferably used, and the salt concentration is desirably 0.5% by mass or more. The circulation water channel 25 is branched on the inlet side of the second electrolytic cell 11 and connected to the inlets of the anode chamber 8 and the cathode chamber 10, respectively. On the outlet side of the second electrolytic cell 11, the circulation water channel 25 is connected to the anode chamber. 8 outlets are connected. The outlet of the cathode chamber 10 is connected to the mixing tank 22 by the addition water channel 26.

上記のように形成される閉鎖循環系養殖システムにあって、飼育水槽1内の海水は循環ポンプ20で循環経路2を通して水浄化装置21に供給され、水浄化装置21内で上記のように浄化処理される。このように浄化された海水は循環経路2を通して水浄化装置21から第一の電解槽5に流入し、第一の電解槽5内を通過する。そしてこのように第一の電解槽5内に海水を通過させながら、無隔膜で対向する陽極3と陰極4に直流電流を通電することによって海水を電気分解することができるものであり、陽極3の表面と陰極4の表面で次のような電極反応が生じる。   In the closed circulation system aquaculture system formed as described above, seawater in the breeding aquarium 1 is supplied to the water purification device 21 through the circulation path 2 by the circulation pump 20 and purified in the water purification device 21 as described above. It is processed. The seawater thus purified flows from the water purification device 21 into the first electrolytic cell 5 through the circulation path 2 and passes through the first electrolytic cell 5. In this way, seawater can be electrolyzed by passing a direct current through the anode 3 and the cathode 4 facing each other with a non-diaphragm while passing seawater through the first electrolytic cell 5. The following electrode reaction occurs on the surface of the cathode and the surface of the cathode 4.

陽極:Cl+2OH→ClO+HO+2e
陰極:2H+2e→H
このように陽極3の表面の電極反応で次亜塩素酸が生成されるものであり、この次亜塩素酸を含有する海水は循環経路2を通して混合槽22に流入し、混合槽22に貯溜される間に次亜塩素酸によって、海水を消毒殺菌したり、脱色したりすることができるものである。ここで、次亜塩素酸によって海水中のアンモニアを分解することも可能であるが、上記のように水浄化装置21でアンモニアを生物学的に硝化して除去する場合には、次亜塩素酸によるアンモニアの分解は特に必要ではないので、高濃度で次亜塩素酸を生成させるように海水の電気分解を行なう必要はなく、例えば0.5mg/L以下程度の濃度で次亜塩素酸を生成させるようにすればよい。また、陰極13の陰極反応で水素イオン(H)が水素ガス(H)として放出されるので、水素イオンの減少によるpH上昇が生じるものであり、海水のpHを上昇させることができるものである。水浄化装置21で上記のようにアンモニアを生物学的に硝化して除去する場合、硝酸が生成されることによって海水のpHは低下する傾向にあるが、このように陰極反応でpH上昇を生じさせることによって、海水のpH調整をして、魚介類の飼育に適したpHに保つことができるものである。
Anode: Cl + 2OH → ClO + H 2 O + 2e
Cathode: 2H + + 2e → H 2
Thus, hypochlorous acid is generated by the electrode reaction on the surface of the anode 3, and seawater containing this hypochlorous acid flows into the mixing tank 22 through the circulation path 2 and is stored in the mixing tank 22. During this time, seawater can be disinfected and decolorized with hypochlorous acid. Here, it is possible to decompose ammonia in seawater with hypochlorous acid. However, when ammonia is biologically nitrified and removed by the water purification device 21 as described above, hypochlorous acid is used. It is not necessary to decompose ammonia by means of seawater, so it is not necessary to electrolyze seawater so as to generate hypochlorous acid at a high concentration. For example, hypochlorous acid is generated at a concentration of about 0.5 mg / L or less. You can make it. Further, since hydrogen ions (H + ) are released as hydrogen gas (H 2 ) by the cathode reaction of the cathode 13, the pH rises due to the decrease in hydrogen ions, and the pH of seawater can be raised. It is. When ammonia is biologically nitrified and removed with the water purification device 21 as described above, the pH of seawater tends to decrease due to the formation of nitric acid, but as described above, the pH increases due to the cathodic reaction. By adjusting the pH, the pH of seawater can be adjusted and maintained at a pH suitable for the rearing of seafood.

一方、第二の電解槽11に塩水を通過させながら、隔膜を介して対向する陽極7と陰極9に直流電流を通電することによって塩水を電気分解することができるものであり、陽極7の表面と陰極9の表面で次のような電極反応が生じる。   On the other hand, the salt water can be electrolyzed by passing a direct current through the anode 7 and the cathode 9 facing each other through the diaphragm while allowing the salt water to pass through the second electrolytic cell 11. The following electrode reaction occurs on the surface of the cathode 9.

陽極:Cl+2OH→ClO+HO+2e
陰極:O+2e→O
+2H+e→H
このように陰極9の表面の電解反応で陰極室10に過酸化水素が生成される。ここで、陰極9の電解反応で過酸化水素を効率良く生成させるためには、陰極室10に通される塩水の溶存酸素量(DO)が高いことが望ましく、DO5mg/L以上であることが好ましい。このために、陰極室10に通される塩水に酸素を供給するようにしてもよい。また、陰極室10には塩水を供給して通す代りに、浄水供給路27から塩分を含まない浄水(真水)を陰極室10に供給して通すようにしてもよい。浄水は陰極反応のHの供給源になり、過酸化水素の生成効率を高めることができるものである。
Anode: Cl + 2OH → ClO + H 2 O + 2e
Cathode: O 2 + 2e → O 2
O 2 + 2H + + e → H 2 O 2
Thus, hydrogen peroxide is generated in the cathode chamber 10 by the electrolytic reaction on the surface of the cathode 9. Here, in order to efficiently generate hydrogen peroxide by the electrolytic reaction of the cathode 9, it is desirable that the dissolved oxygen amount (DO) of the salt water passed through the cathode chamber 10 is high, and it is DO5 mg / L or more. preferable. For this purpose, oxygen may be supplied to the salt water passed through the cathode chamber 10. Further, instead of supplying salt water to the cathode chamber 10, purified water (fresh water) not containing salt may be supplied to the cathode chamber 10 from the purified water supply path 27 and passed therethrough. Purified water serves as a source of H + for the cathodic reaction and can increase the production efficiency of hydrogen peroxide.

そして第二の電解槽11の陰極室10を通過して過酸化水素を含む水は、添加水路26を通して混合槽22に添加され、第一の電解槽5を通過して混合槽22に流入した海水と混合される。過酸化水素は消毒殺菌作用や脱色作用を有するので、この過酸化水素によって海水の消毒殺菌や脱色を行なうことができるものである。また、この過酸化水素は次亜塩素酸と次の反応式で反応し、次亜塩素酸を塩素へと分解することができる。   Then, water containing hydrogen peroxide passing through the cathode chamber 10 of the second electrolytic cell 11 is added to the mixing vessel 22 through the addition water channel 26, and flows into the mixing vessel 22 through the first electrolytic cell 5. Mixed with seawater. Since hydrogen peroxide has a disinfecting and disinfecting action and a decolorizing action, seawater can be disinfected and discolored with this hydrogen peroxide. Further, this hydrogen peroxide can react with hypochlorous acid in the following reaction formula to decompose hypochlorous acid into chlorine.

+ClO→Cl+HO+O
このように、第二の電解槽11の陰極室10から過酸化水素を含む水を混合槽22に供給して添加することによって、第一の電解槽5で生成された過剰の次亜塩素酸を過酸化水素で中和して分解することができるものであり、過剰の次亜塩素酸の濃度を魚毒作用を発揮しない程度の低濃度にした状態で、混合槽22から海水を飼育水槽1に循環経路2を通して返送することができるものである。従って、過剰な次亜塩素酸を除去するために活性炭充填槽や中和剤添加装置のような塩素除去装置を設備する必要がなくなるものである。また、このように次亜塩素酸が過酸化水素と反応して分解する際に、次のような中間反応が起こり、強力な酸化力の塩素ラジカルや水酸ラジカルが生成されるために、これらのラジカルによっても海水の消毒殺菌や脱色を行なうことができるものである。
H 2 O 2 + ClO → Cl + H 2 O + O 2
Thus, the excess hypochlorous acid produced | generated in the 1st electrolytic cell 5 by supplying the water containing hydrogen peroxide from the cathode chamber 10 of the 2nd electrolytic cell 11 to the mixing tank 22, and adding it. Can be decomposed by neutralizing with hydrogen peroxide, and seawater is bred from the mixing tank 22 in a state where the concentration of excess hypochlorous acid is low enough not to exert fish poisoning action. 1 can be returned through the circulation path 2. Accordingly, it is not necessary to provide a chlorine removing device such as an activated carbon filling tank or a neutralizing agent adding device in order to remove excess hypochlorous acid. In addition, when hypochlorous acid reacts with hydrogen peroxide and decomposes in this way, the following intermediate reaction occurs, generating chlorine radicals and hydroxyl radicals with strong oxidizing power. This radical can also disinfect and disinfect seawater.

HClO+H→Cl・+3OH・
例えば、第一の電解槽5で次亜塩素酸が0.5mg/Lの濃度で、第二の電解槽11の陰極室10で過酸化水素が0.5mg/Lの濃度で生成された場合、これらを混合槽22に3分間滞留させることによって、海水を99%の殺菌率で殺菌することができるものであり、また次亜塩素酸と過酸化水素のいずれも海水中に残留しないようにすることができるものである。
HClO + H 2 O 2 → Cl · + 3OH ·
For example, when hypochlorous acid is generated at a concentration of 0.5 mg / L in the first electrolytic cell 5 and hydrogen peroxide is generated at a concentration of 0.5 mg / L in the cathode chamber 10 of the second electrolytic cell 11 By keeping these in the mixing tank 22 for 3 minutes, the seawater can be sterilized at a sterilization rate of 99%, and neither hypochlorous acid nor hydrogen peroxide remains in the seawater. Is something that can be done.

過酸化水素は魚毒性が非常に低いので、第二の電解槽11の陰極室10で生成される過酸化水素の量は、第一の電解槽5で生成される次亜塩素酸の量よりも多いことが望ましい。そのため、第一の電解槽5の陽極3と陰極4に通電して海水を電気分解する際の電気量を制御部12で検知し、この検知された電気量に基づいて第二の電解槽11への通電電気量を制御部12で演算して制御することによって、第二の電解槽11の陰極室10で生成される過酸化水素量が第一の電解槽5で生成される次亜塩素酸量よりも多くなるようにしてある。ここで、第一の電解槽5に通電する電気量と生成される次亜塩素酸量との関係及び、第二の電解槽11に通電する電気量と生成される過酸化水素量との関係を、それぞれ予備試験で求めておき、それらの関係式が制御部12に記憶させてある。そして第一の電解槽5への通電電気量が制御部12で検知されると、この電気量に基づいて次亜塩素酸の生成量を演算することができ、さらにこの演算された次亜塩素酸の生成量よりも過酸化水素の生成量が多くなるように、第二の電解槽11への通電電気量を演算して制御することができるものである。   Since hydrogen peroxide has very low fish toxicity, the amount of hydrogen peroxide generated in the cathode chamber 10 of the second electrolytic cell 11 is smaller than the amount of hypochlorous acid generated in the first electrolytic cell 5. It is desirable that there are many. Therefore, the control unit 12 detects the amount of electricity when the anode 3 and the cathode 4 of the first electrolytic cell 5 are energized to electrolyze seawater, and the second electrolytic cell 11 is based on the detected amount of electricity. The amount of hydrogen peroxide generated in the cathode chamber 10 of the second electrolytic cell 11 is reduced to hypochlorous acid generated in the first electrolytic cell 5 by calculating and controlling the amount of electricity supplied to the control unit 12. It is set to be larger than the acid amount. Here, the relationship between the amount of electricity supplied to the first electrolytic cell 5 and the amount of generated hypochlorous acid, and the relationship between the amount of electricity applied to the second electrolytic cell 11 and the amount of generated hydrogen peroxide. Are obtained in a preliminary test, and their relational expressions are stored in the control unit 12. When the amount of electricity supplied to the first electrolytic cell 5 is detected by the control unit 12, the amount of hypochlorous acid generated can be calculated based on the amount of electricity, and the calculated hypochlorous acid is further calculated. The amount of electricity supplied to the second electrolytic cell 11 can be calculated and controlled so that the amount of hydrogen peroxide generated is greater than the amount of acid generated.

図2は本発明の他の実施の形態の一例を示すものであり、飼育水槽1の循環経路2に海水の流れに沿った順で、循環ポンプ20、水浄化装置21、電解槽15、混合槽22が接続してある。飼育水槽1、循環経路2、循環ポンプ20、水浄化装置21、混合槽22の構成は図1の実施の形態と同様である。   FIG. 2 shows an example of another embodiment of the present invention. The circulation pump 20, the water purification device 21, the electrolytic cell 15, and the mixing are arranged in the order along the flow of seawater in the circulation path 2 of the breeding aquarium 1. A tank 22 is connected. The structure of the breeding water tank 1, the circulation path 2, the circulation pump 20, the water purification device 21, and the mixing tank 22 is the same as that of the embodiment of FIG.

電解槽15の槽内には図2のように、海水が流れる方向と平行に陽極13と陰極14が配置してあり、この陽極13と陰極14は隔膜を介すること無く直接対向させてある。またこの陽極13と陰極14には直流電源29が電気的に接続してあり、陽極13にプラス電位の、陰極14にマイナス電位の直流電流が通電されるようにしてある。   As shown in FIG. 2, an anode 13 and a cathode 14 are disposed in the tank of the electrolytic cell 15 in parallel with the direction in which seawater flows. The anode 13 and the cathode 14 are directly opposed to each other without a diaphragm. A DC power supply 29 is electrically connected to the anode 13 and the cathode 14 so that a positive potential DC current is supplied to the anode 13 and a negative potential is supplied to the cathode 14.

そしてこの電解槽15にあって、陽極13と陰極14はそれぞれイリジウムめっきチタン電極で形成してあり、陽極13と陰極14の電極間距離は3〜5mmの範囲に設定してある。また電解槽15内を通過する海水の通水速度は90mm/秒以上(1500mm/秒以下であることが好ましい)に設定し、陽極13と陰極14に通電する直流電流の電流密度は0.1〜4A/dmに設定してある。さらに、電解槽15に通される海水には酸素を供給して、電解槽15の入口での海水の溶存酸素量が5mg/L以上の飽和に近い溶存酸素量になるようにしてある。 And in this electrolytic cell 15, the anode 13 and the cathode 14 are each formed with the iridium plating titanium electrode, and the distance between electrodes of the anode 13 and the cathode 14 is set to the range of 3-5 mm. The water flow rate of seawater passing through the electrolytic cell 15 is set to 90 mm / second or more (preferably 1500 mm / second or less), and the current density of the direct current flowing through the anode 13 and the cathode 14 is 0.1. It is set to ~4A / dm 2. Furthermore, oxygen is supplied to the seawater passed through the electrolytic cell 15 so that the dissolved oxygen content of the seawater at the inlet of the electrolytic cell 15 is a dissolved oxygen amount close to saturation of 5 mg / L or more.

上記の条件で電解槽15において海水を電気分解すると、陽極13の表面と陰極14の表面で次のような電極反応が生じる。   When seawater is electrolyzed in the electrolytic cell 15 under the above conditions, the following electrode reaction occurs on the surface of the anode 13 and the surface of the cathode 14.

陽極:Cl+2OH→ClO+HO+2e
陰極:O+2e→O
+2H+e→H
このように陽極13の表面の電極反応で次亜塩素酸が生成され、陰極14の表面の電極反応で過酸化水素が生成されるものである。
Anode: Cl + 2OH → ClO + H 2 O + 2e
Cathode: O 2 + 2e → O 2
O 2 + 2H + + e → H 2 O 2
Thus, hypochlorous acid is generated by the electrode reaction on the surface of the anode 13, and hydrogen peroxide is generated by the electrode reaction on the surface of the cathode 14.

ここで、イリジウムめっきチタン電極で陽極14と陰極14を形成すると共に電極間距離を3mmに設定し、さらに電流密度を0.45A/dm、溶存酸素量を6mg/Lに設定して電解槽15で電気分解を行なう際の、電解槽15内を通過する海水の通水速度と電解槽15の出口での海水中の過酸化水素濃度との関係を測定し、その結果を表1に示す。表1にみられるように、通水速度を90mm/秒以上に設定することよって過酸化水素が生成されるものであった。 Here, the anode 14 and the cathode 14 are formed with iridium-plated titanium electrodes, the distance between the electrodes is set to 3 mm, the current density is set to 0.45 A / dm 2 , and the dissolved oxygen amount is set to 6 mg / L. 15, the relationship between the water flow rate of seawater passing through the electrolytic cell 15 and the hydrogen peroxide concentration in the seawater at the outlet of the electrolytic cell 15 when electrolysis is performed at 15 is shown in Table 1. . As seen in Table 1, hydrogen peroxide was generated by setting the water flow rate to 90 mm / second or more.

Figure 2005245328
Figure 2005245328

また、イリジウムめっきチタン電極で陽極14と陰極14を形成すると共に電極間距離を3mmに設定し、さらに電解槽15内の海水の通過速度を1095mm/秒、溶存酸素量を6mg/Lに設定して電解槽15で電気分解を行なう際の、電解槽15に通電する電流密度と電解槽15の出口での海水中の過酸化水素濃度との関係を測定し、その結果を表2に示す。   Further, the anode 14 and the cathode 14 are formed with iridium-plated titanium electrodes, the distance between the electrodes is set to 3 mm, the passage speed of seawater in the electrolytic cell 15 is set to 1095 mm / sec, and the dissolved oxygen amount is set to 6 mg / L. The relationship between the current density applied to the electrolytic cell 15 and the hydrogen peroxide concentration in the seawater at the outlet of the electrolytic cell 15 when electrolysis is performed in the electrolytic cell 15 is shown in Table 2.

Figure 2005245328
Figure 2005245328

上記のように電解槽15で海水を電気分解することによって、陽極13に次亜塩素酸が、陰極14に過酸化水素が生成されるものであり、この次亜塩素酸と過酸化水素を含有する海水は電解槽15から循環経路2を通して混合槽22に流入する。そして、混合槽22に貯溜される間に次亜塩素酸によって、海水を消毒殺菌したり、脱色したりすることができるものである。また過酸化水素も消毒殺菌作用や脱色作用を有するので、この過酸化水素によっても海水の消毒殺菌や脱色を行なうことができるものである。例えば、次亜塩素酸と過酸化水素がそれぞれ0.5mg/Lの濃度で生成された場合、海水を混合槽22に3分間滞留させることによって、海水を99%の殺菌率で殺菌することができる。   By electrolyzing seawater in the electrolytic cell 15 as described above, hypochlorous acid is produced at the anode 13 and hydrogen peroxide is produced at the cathode 14, and this hypochlorous acid and hydrogen peroxide are contained. The seawater that flows into the mixing tank 22 flows from the electrolytic tank 15 through the circulation path 2. And while storing in the mixing tank 22, seawater can be disinfected and decolored with hypochlorous acid. Further, since hydrogen peroxide also has a disinfecting and disinfecting action and a decolorizing action, seawater can be disinfected and discolored with this hydrogen peroxide. For example, when hypochlorous acid and hydrogen peroxide are produced at a concentration of 0.5 mg / L, the seawater can be sterilized at a sterilization rate of 99% by retaining the seawater in the mixing tank 22 for 3 minutes. it can.

さらに、混合槽22内で過酸化水素は次亜塩素酸と上記と同様な反応式で反応し、次亜塩素酸を塩素へと分解することができるものである。このようにして、過剰の次亜塩素酸を過酸化水素で中和して分解することができるものであり、過剰の次亜塩素酸の濃度を魚毒作用を発揮しない程度の低濃度にした状態で、混合槽22から海水を飼育水槽1に循環経路2を通して返送することができるものである。従って、過剰な次亜塩素酸を除去するために活性炭充填槽や中和剤添加装置のような塩素除去装置を設備する必要がなくなるものである。   Further, hydrogen peroxide reacts with hypochlorous acid in the mixing tank 22 by the same reaction formula as described above, and hypochlorous acid can be decomposed into chlorine. In this way, excess hypochlorous acid can be decomposed by neutralizing with hydrogen peroxide, and the concentration of excess hypochlorous acid was made low enough not to exert fish poisoning effects. In this state, seawater can be returned from the mixing tank 22 to the breeding tank 1 through the circulation path 2. Accordingly, it is not necessary to provide a chlorine removing device such as an activated carbon filling tank or a neutralizing agent adding device in order to remove excess hypochlorous acid.

本発明の実施の形態の一例を示すものであり、(a)は全体の概略図、(b)は第一の電解槽と第二の電解槽と混合槽の部分の拡大した概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It shows an example of embodiment of this invention, (a) is the whole schematic, (b) is the expanded schematic sectional drawing of the part of a 1st electrolytic cell, a 2nd electrolytic cell, and a mixing tank. is there. 本発明の他の実施の形態の一例を示す全体の概略図である。It is the whole schematic which shows an example of other embodiment of this invention.

符号の説明Explanation of symbols

1 飼育水槽
2 循環経路
3 陽極
4 陰極
5 第一の電解槽
6 隔膜
7 陽極
8 陽極室
9 陰極
10 陰極室
11 第二の電解槽
12 制御部
13 陽極
14 陰極
15 電解槽
DESCRIPTION OF SYMBOLS 1 Breeding tank 2 Circulation route 3 Anode 4 Cathode 5 First electrolytic cell 6 Diaphragm 7 Anode 8 Anode chamber 9 Cathode 10 Cathode chamber 11 Second electrolytic cell 12 Control unit 13 Anode 14 Cathode 15 Electrolyzer

Claims (3)

魚介類を飼育する飼育水槽の海水を循環経路を通して浄化しながら循環させるようにした閉鎖循環式養殖システムにおいて、無隔膜で対向配置される陽極と陰極の間で塩水を電気分解して陽極の側に次亜塩素酸を発生させる第一の電解槽を循環経路に接続し、隔膜で仕切って陽極が配置される陽極室と陰極が配置される陰極室を形成すると共に、塩水を電気分解して陰極の側に過酸化水素を発生させる第二の電解槽を備え、第一の電解槽を通過した海水に第二の電解槽の陰極室の塩水を混合させるようにして成ることを特徴とする閉鎖循環式養殖システム。   In a closed-circulation aquaculture system that circulates the seawater in the rearing tank for rearing seafood while purifying it through the circulation path, the salt water is electrolyzed between the anode and the cathode that are opposed to each other with a non-diaphragm, and the anode side The first electrolytic cell for generating hypochlorous acid is connected to the circulation path, and the anode chamber in which the anode is disposed and the cathode chamber in which the cathode is disposed is partitioned by a diaphragm, and the salt water is electrolyzed. A second electrolytic cell for generating hydrogen peroxide is provided on the cathode side, and salt water in the cathode chamber of the second electrolytic cell is mixed with seawater that has passed through the first electrolytic cell. Closed circulation aquaculture system. 第一の電解槽に電気分解のために通電される電気量に応じて、第二の電解槽に電気分解のために通電される電気量を制御する制御部を備えて成ることを特徴とする請求項1に記載の閉鎖循環式養殖システム。   The first electrolyzer is provided with a control unit that controls the amount of electricity energized for electrolysis in accordance with the amount of electricity energized for electrolysis. The closed circulation culture system according to claim 1. 魚介類を飼育する飼育水槽の海水を循環経路を通して浄化しながら循環させるようにした閉鎖循環式養殖システムにおいて、無隔膜で対向配置される陽極と陰極の間で塩水を電気分解して、陽極の側に次亜塩素酸を発生させると共に陰極の側に過酸化水素を発生させる電解槽を循環経路に接続して成ることを特徴とする閉鎖循環式養殖システム。
In a closed-circulation aquaculture system that circulates the seawater in the rearing tank for raising seafood while purifying it through the circulation path, the salt water is electrolyzed between the anode and the cathode that are opposed to each other with a non-diaphragm. A closed-circulation aquaculture system comprising an electrolytic cell for generating hypochlorous acid on the side and hydrogen peroxide on the cathode side, connected to a circulation path.
JP2004061190A 2004-03-04 2004-03-04 Closed circulation aquaculture system Withdrawn JP2005245328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061190A JP2005245328A (en) 2004-03-04 2004-03-04 Closed circulation aquaculture system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061190A JP2005245328A (en) 2004-03-04 2004-03-04 Closed circulation aquaculture system

Publications (1)

Publication Number Publication Date
JP2005245328A true JP2005245328A (en) 2005-09-15

Family

ID=35026421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061190A Withdrawn JP2005245328A (en) 2004-03-04 2004-03-04 Closed circulation aquaculture system

Country Status (1)

Country Link
JP (1) JP2005245328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130844A (en) * 2014-01-15 2015-07-23 株式会社片山化学工業研究所 Decomposition treatment method for hydrogen peroxide
JP2015524665A (en) * 2012-08-14 2015-08-27 蘇州天普光電科技有限公司Stp Co.,Ltd. Aquaculture sterilization system
JP7618153B1 (en) 2024-04-03 2025-01-21 公立大学法人 富山県立大学 Ammonia-containing water treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524665A (en) * 2012-08-14 2015-08-27 蘇州天普光電科技有限公司Stp Co.,Ltd. Aquaculture sterilization system
JP2015130844A (en) * 2014-01-15 2015-07-23 株式会社片山化学工業研究所 Decomposition treatment method for hydrogen peroxide
JP7618153B1 (en) 2024-04-03 2025-01-21 公立大学法人 富山県立大学 Ammonia-containing water treatment device

Similar Documents

Publication Publication Date Title
JP6131342B2 (en) Method for producing sterilized cultured water and method for culturing flowing water-sterilized water fish using the same
JP5028566B2 (en) Seawater purification device for surviving marine seafood and seawater purification method
WO2002082895A1 (en) Method of shrimp farming in seawater or brackish water ponds
JP3887214B2 (en) Circulating aquaculture equipment
JP7481781B1 (en) Circulating water treatment system for cultivating aquatic organisms and method for cultivating aquatic organisms
JP3840190B2 (en) Seafood culture method
JP3887329B2 (en) Seafood farming equipment
JP3887256B2 (en) Closed circulation aquaculture system
JP2003052275A (en) Method for culturing fish and shellfish and closed circulating culture system
JP2005245328A (en) Closed circulation aquaculture system
RU2157793C1 (en) Method of preparing disinfecting neutral anolite solution neutral anolite
JP2004132592A (en) Electrochemical water treatment method and water treatment system
JP3840250B2 (en) Closed circulation culture system and pH adjusting device
JP7481782B1 (en) Electrolysis device for aquatic organism cultivation, circulating water treatment system for aquatic organism cultivation, and electrolysis method for aquatic organism cultivation
JP2012152695A (en) Electrolytic salt water sterilization method and electrolytic salt water sterilization device
JP2005245327A (en) Closed circulation aquaculture system
JP2023534615A (en) Sodium hypochlorite production system and water treatment method using the same
JP7618153B1 (en) Ammonia-containing water treatment device
JP2005245329A (en) Closed circulation aquaculture system
KR20000021417A (en) Device for pasteurizing and desalting food waste
JP3840189B2 (en) Seafood farming equipment
JP2002335811A (en) Culturing seawater circulating unit
JP3583608B2 (en) Electrolytic sterilizing apparatus and electrolytic sterilizing method
WO2025141975A1 (en) Electrolysis device for aquatic organism farming, circulation type water treatment system for aquatic organism farming, and electrolysis method for aquatic organism farming
JP4846298B2 (en) Seawater disinfection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061222