JP2005244141A - InSb nanowire structure - Google Patents
InSb nanowire structure Download PDFInfo
- Publication number
- JP2005244141A JP2005244141A JP2004055584A JP2004055584A JP2005244141A JP 2005244141 A JP2005244141 A JP 2005244141A JP 2004055584 A JP2004055584 A JP 2004055584A JP 2004055584 A JP2004055584 A JP 2004055584A JP 2005244141 A JP2005244141 A JP 2005244141A
- Authority
- JP
- Japan
- Prior art keywords
- insb
- nanowire structure
- ions
- impurity metal
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 239000002070 nanowire Substances 0.000 title claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims abstract description 19
- 230000008018 melting Effects 0.000 claims abstract description 13
- 238000002844 melting Methods 0.000 claims abstract description 13
- 150000002500 ions Chemical class 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 238000010884 ion-beam technique Methods 0.000 claims description 6
- 229910052716 thallium Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- -1 atom ions Chemical class 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 239000002096 quantum dot Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
【課題】 簡便に作製できる、実際的なInSbナノ細線構造を提供する。
【解決手段】 InSbがに不純物金属原子を入り込ませることでInSbの融点近傍温度で自己形成成長したInSbナノ細線構造とする。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a practical InSb nanowire structure that can be easily produced.
An InSb nanowire structure is formed by self-growing at a temperature in the vicinity of the melting point of InSb by allowing impurity metal atoms to enter into InSb.
[Selection] Figure 1
Description
この出願の発明は、InSbナノ細線構造に関するものである。さらに詳しくは、この出願の発明は、量子ドットとともに、電子デバイスの微細化の点で注目される量子細線として有用な、InSbナノ細線構造とその作製方法に関するものである。 The invention of this application relates to an InSb nanowire structure. More specifically, the invention of this application relates to an InSb nanowire structure that is useful as a quantum wire attracting attention in terms of miniaturization of electronic devices together with quantum dots and a method for producing the same.
近年、半導体等の電子デバイスの微細化技術が急速に進展しており、この過程において量子ドットと量子細線とが注目されている。ここで量子ドットとは、100nm以下、たとえば数10nmのサイズをもつ微細結晶であり、また、量子細線は、これが1次元に並んだものであると考えることができる。量子ドットを利用すれば低消費電力で高速な量子コンピュータの実現が期待でき、量子細線を利用すれば、高性能のトランジスタが実現される。 In recent years, miniaturization technology of electronic devices such as semiconductors has been rapidly advanced, and quantum dots and quantum wires have attracted attention in this process. Here, the quantum dot is a fine crystal having a size of 100 nm or less, for example, several tens of nanometers, and the quantum wire can be considered to be one-dimensionally arranged. If quantum dots are used, a high-speed quantum computer with low power consumption can be expected, and if quantum wires are used, high-performance transistors can be realized.
このような量子ドット、量子細線のような低次元半導体ナノ構造の作製方法として、分子線エピタキシー法や、有機金属気相堆積法等の結晶成長方法、さらにはリソグラフィー・エッチングという微細加工技術などがこれまでに提案されている。 Low-dimensional semiconductor nanostructure fabrication methods such as quantum dots and quantum wires include molecular beam epitaxy, crystal growth methods such as metal organic vapor phase deposition, and microfabrication techniques such as lithography and etching. So far it has been proposed.
このような低次元半導体ナノ構造の形成材料の一つとして、InSbが知られており、量子ドット形成への検討が進められている。また、このInSbドットの形成にともなうアルゴン(Ar)イオンの照射によりドットの形成が変化することが報告されてもいる(非特許文献1−2)。 InSb is known as one of the materials for forming such a low-dimensional semiconductor nanostructure, and studies on the formation of quantum dots are underway. It has also been reported that dot formation changes due to irradiation with argon (Ar) ions accompanying the formation of InSb dots (Non-Patent Document 1-2).
しかしながら、量子ドットの形成についての検討に比べて、半導体の量子細線についての提案、報告はそれほど多くないのが実情である。 However, the actual situation is that there are not so many proposals and reports on semiconductor quantum wires compared to the study on the formation of quantum dots.
このため、量子細線の形成のための手段について、より実際的で、再現性の高い微細加工が可能とされる新しい技術の実現が望まれていた。
そこで、この出願の発明は、InSbが比較的低い融点(525℃)を持つことに着目し、簡便な気相法による手段により、量子細線として有用なInSbナノ細線を形成することのできる。より実際的な新しいナノ細線構造とその形成方法を提供することを課題としている。 Accordingly, the invention of this application pays attention to the fact that InSb has a relatively low melting point (525 ° C.), and it is possible to form InSb nanowires useful as quantum wires by means of a simple vapor phase method. It is an object to provide a more practical new nanowire structure and its formation method.
この出願の発明は、上記の課題を解決するものとして、第1には、InSbに不純物金属原子が入り込むことでInSbの融点近傍温度で自己形成成長したInSbナノ細線であることを特徴するInSbナノ細線構造を提供し、第2には、不純物金属原子は、Ga,Al,BおよびTlのうちの少なくともいずれかであることを特徴とする上記のナノ細線構造を提供する。 The invention of this application is to solve the above-mentioned problems. First, InSb nanowires are characterized in that they are InSb nanowires that are self-grown and grown at a temperature near the melting point of InSb as impurity metal atoms enter InSb. A nanowire structure is provided, and secondly, the impurity metal atom is at least one of Ga, Al, B, and Tl.
そして、この出願の発明は、第3には、基板上に不純物金属原子のイオンの照射によるダメージ層を形成し、次いで、InSbを蒸発させ、InSbの融点近傍温度で前記ダメージ層と接触させ、前記ダメージ層においてInSbナノ細線を自己形成成長させることを特徴とするInSbナノ細線構造の作製方法を提供し、第4には、基板上にInSbを蒸着させ、次いで不純物金属原子のイオンを照射し、InSbの融点近傍温度で前記イオンの被照射部においてInSbナノ細線を自己形成成長させることを特徴とするInSbナノ細線構造の作製方法を提供する。 And third, the invention of this application is to form a damage layer by irradiation with ions of impurity metal atoms on the substrate, then evaporate InSb, and contact with the damage layer at a temperature near the melting point of InSb, Provided is a method for producing an InSb nanowire structure, characterized in that an InSb nanowire structure is self-grown and grown in the damaged layer. Fourth, InSb is deposited on a substrate, and then ions of impurity metal atoms are irradiated. A method for producing an InSb nanowire structure is provided, in which an InSb nanowire is self-grown and grown in a portion irradiated with the ions at a temperature near the melting point of InSb.
第5には、不純物金属原子のイオンの照射を集束イオンビーム(FIB)により行うことを特徴とする請求項3または4のInSbナノ細線構造の作製方法を、第6には、不純物金属原子のイオンは、金属Ga,Al,BおよびTlのうちの少なくともいずれかであることを特徴とする請求項3ないし5のいずれかのInSbナノ細線構造の作製方法を、第7には、不純物金属原子のイオンがGa(ガリウム)イオンであって、基板がシリコンであることを特徴とする請求項3ないし6のいずれかのInSbナノ細線構造の作製方法を提供する。 Fifth, the method of producing an InSb nanowire structure according to claim 3 or 4, characterized in that the irradiation of the impurity metal atom ions is performed by a focused ion beam (FIB). 6. The method for producing an InSb nanowire structure according to claim 3, wherein the ions are at least one of metals Ga, Al, B, and Tl. The method for producing an InSb nanowire structure according to any one of claims 3 to 6, wherein the ions are Ga (gallium) ions and the substrate is silicon.
上記のとおりのこの出願の発明によれば、不純物金属原子が入り込むことでInSbを自己形成成長させるため、より簡便に、かつ実際的で、再現性良くInSbナノ細線構造を実現することができる。集束イオンビーム法や、Ga等の金属元素イオンを用いる場合には、このような効果はより顕著なものとなる。 According to the invention of this application as described above, since InSb is self-formed and grown by the entry of impurity metal atoms, an InSb nanowire structure can be realized more simply, practically and with good reproducibility. In the case of using a focused ion beam method or metal element ions such as Ga, such an effect becomes more remarkable.
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。 The invention of this application has the features as described above, and an embodiment thereof will be described below.
なによりも特徴的なことは、この出願の発明のナノ細線構造においては、InSbナノ細線が自己形成成長したものであることにある。この自己形成成長は、InSbに、常温常圧条件下で固体である金属を不純物原子とし、このものを入り込ませることによって可能とされる。 The most characteristic feature is that the InSb nanowires are self-formed and grown in the nanowire structure of the invention of this application. This self-forming growth is made possible by making InSb a metal that is solid under normal temperature and pressure conditions as an impurity atom and entering this.
この場合の金属原子としては、InSbの融点(525℃)を下げることの可能なものとして選択することが考慮される。このような固体元素としては、たとえば、Ga,Al,Tl,Hf,Nb,Ta,Mo,W,V,Bi,Co,Ni,Zr,Cd,Hg,Y,La、希土類元素等のIn、そしてSb以外の金属元素、あるいはB,Ge等が挙げられる。 It is considered that the metal atom in this case is selected as one that can lower the melting point (525 ° C.) of InSb. Examples of such solid elements include Ga, Al, Tl, Hf, Nb, Ta, Mo, W, V, Bi, Co, Ni, Zr, Cd, Hg, Y, La, and rare earth elements such as In, And metal elements other than Sb, B, Ge, etc. are mentioned.
なかでも、Ga,Al,B,およびTlが好適なものとして例示される。 Especially, Ga, Al, B, and Tl are illustrated as a suitable thing.
InSbナノ細線の作製は、この出願の発明において、次の二つの方法により可能とされる。 InSb nanowires can be produced by the following two methods in the invention of this application.
<1> まず、シリコン等の基板上に不純物金属のイオンの照射によるダメージ層(パターン)を形成し、次いで真空減圧下にInSbを蒸発させ、InSbの融点近傍温度でダメージ層と接触させることでInSbナノ細線をダメージ層において自己形成成長させる。 <1> First, a damage layer (pattern) is formed by irradiating impurity metal ions on a substrate such as silicon, and then InSb is evaporated under vacuum and reduced pressure, and contacted with the damage layer at a temperature near the melting point of InSb. InSb nanowires are grown in a self-forming manner in the damage layer.
<2> シリコン等の基板上にInSbを真空蒸着法等により気相で蒸着させ、次いで不純物金属のイオンを所定のパターンで照射し、InSbの融点近傍温度でイオンの被照射部においてInSbナノ細線を自己形成成長させる。 <2> InSb is vapor-deposited on a substrate such as silicon by a vapor deposition method or the like, and then an impurity metal ion is irradiated in a predetermined pattern, and an InSb nanowire is irradiated at an ion irradiated portion at a temperature near the melting point of InSb. Grow self-forming.
このいずれの方法においても、イオンは、不純物としての金属の原子または原子団(化合物を含む)として照射されてよく、また、これらの不純物金属のイオンの照射は、微細加工ナノファブリケーションを行うとの観点からは集束イオンビーム(FIB)法により行うことが好ましい。また、この出願の発明において規定するところの「InSbの融点近傍」とは、InSbの少くとも一部が液相となる温度の範囲を意味しており、実際的には、加熱方式や加熱装置の構造にもよるが、InSbの融点である525℃の±50℃の範囲を目安とすることができる。 In any of these methods, ions may be irradiated as metal atoms or atomic groups (including compounds) as impurities, and these impurity metal ions may be irradiated by microfabrication nanofabrication. From this point of view, it is preferable to carry out by a focused ion beam (FIB) method. Further, the “near the melting point of InSb” as defined in the invention of this application means a temperature range in which at least a part of InSb is in a liquid phase. Depending on the structure, a range of ± 50 ° C. of 525 ° C., which is the melting point of InSb, can be used as a guide.
そして、この温度での加熱は、真空減圧下の雰囲気とする。真空度としては、通常は、1×10-5Pa〜1×10-2Pa程度の範囲とすることが望ましい。 Then, heating at this temperature is performed in an atmosphere under vacuum. As the degree of vacuum, it is usually desirable to set the pressure in a range of about 1 × 10 −5 Pa to 1 × 10 −2 Pa.
また、InSb細線の自己形成成長においては、加熱温度の昇温、下降の速度を制御することも考慮されてよい。 In addition, in the self-forming growth of InSb thin wires, it may be considered to control the heating temperature rising / falling speed.
この出願の発明においては、直径約10nm〜50nm、長さ約1μm〜10μm程度の範囲にあるInSbナノ細線を自己成長させることができる。そして、上記作製方法<1>によれば、量子ドットの形成とともに量子細線の形成も可能とされる。 In the invention of this application, InSb nanowires having a diameter of about 10 nm to 50 nm and a length of about 1 μm to 10 μm can be self-grown. And according to the said preparation method <1>, formation of a quantum wire is also attained with formation of a quantum dot.
そこで以下に実施例を示す。もちろん以下の例によって発明が限定されることはない。 Therefore, examples will be shown below. Of course, the invention is not limited by the following examples.
<実施例1>
イオン源をGaとして、加速電圧30kVでの集束イオンビーム(FIB)によりSi基板上にドットパターンを形成した。このパターンにはGaの付着が確認された。
<Example 1>
A dot pattern was formed on the Si substrate by a focused ion beam (FIB) at an acceleration voltage of 30 kV, using Ga as the ion source. Ga adhesion was confirmed in this pattern.
石英管の中に、上記パターン形成したSi基板と、InSbの微小バルクを装入し、真空度2×10-3Paに排気した。これを封止した後に電気炉で加熱した。Si基板の温度は500℃〜530℃に、InSb微小バルクの温度は510℃〜550℃となるように加熱した。 Into the quartz tube, the patterned Si substrate and a small bulk of InSb were charged and evacuated to a vacuum degree of 2 × 10 −3 Pa. After sealing this, it heated with the electric furnace. The Si substrate was heated to 500 ° C. to 530 ° C., and the InSb microbulk was heated to 510 ° C. to 550 ° C.
図1は、加熱後のSi基板表面についてのSEM像を例示したものである。この図1において、直径約30nm、長さ約3μmのInSbナノ細線の自己形成成長が確認される。
<実施例2>
Si基板上に、真空蒸着法によりInSb薄膜を形成した。次いで、このInSb薄膜(130〜250nm)に対して、実施例1と同様のGaイオンの集束イオンビーム(FIB)を所定パターン(縦30μm、横100μm、深さ10〜180nm)で照射した。
FIG. 1 illustrates an SEM image of the Si substrate surface after heating. In FIG. 1, self-formed growth of InSb nanowires having a diameter of about 30 nm and a length of about 3 μm is confirmed.
<Example 2>
An InSb thin film was formed on a Si substrate by vacuum deposition. Next, this InSb thin film (130 to 250 nm) was irradiated with the same focused ion beam (FIB) of Ga ions as in Example 1 in a predetermined pattern (length 30 μm, width 100 μm, depth 10 to 180 nm).
次いで、イオン照射後のSi基板をガラス管に真空2×10-3Pa)封入し、Si基板の温度が500℃〜530℃となるように加熱した。 Next, the Si substrate after ion irradiation was sealed in a glass tube in a vacuum of 2 × 10 −3 Pa) and heated so that the temperature of the Si substrate was 500 ° C. to 530 ° C.
図2は、パターンの深さ40nmの場合のInSbナノ細線の自己形成成長を、図3は、パターンの深さ60nmの場合のInSbナノ細線の自己形成成長を例示したSEM像である。 FIG. 2 is an SEM image illustrating self-forming growth of InSb nanowires when the pattern depth is 40 nm, and FIG. 3 is an SEM image illustrating self-forming growth of InSb nanowires when the pattern depth is 60 nm.
Claims (7)
7. The method for producing an InSb nanowire structure according to claim 3, wherein the impurity metal atom ions are Ga (gallium) ions and the substrate is silicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004055584A JP4854180B2 (en) | 2004-02-27 | 2004-02-27 | Method for producing InSb nanowire structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004055584A JP4854180B2 (en) | 2004-02-27 | 2004-02-27 | Method for producing InSb nanowire structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005244141A true JP2005244141A (en) | 2005-09-08 |
JP4854180B2 JP4854180B2 (en) | 2012-01-18 |
Family
ID=35025518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004055584A Expired - Fee Related JP4854180B2 (en) | 2004-02-27 | 2004-02-27 | Method for producing InSb nanowire structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4854180B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100632383B1 (en) | 2005-06-07 | 2006-10-09 | 학교법인고려중앙학원 | Semiconductor nanomaterial doping method using neutron conversion doping process |
CN105862122A (en) * | 2016-05-09 | 2016-08-17 | 北京大学 | Methods for InSb nanowire manufacturing and Mn doping both based on multi-step glancing-angle deposition process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5410178A (en) * | 1994-08-22 | 1995-04-25 | Northwestern University | Semiconductor films |
JP2003158093A (en) * | 2001-09-06 | 2003-05-30 | Nippon Telegr & Teleph Corp <Ntt> | Element wiring formation method |
-
2004
- 2004-02-27 JP JP2004055584A patent/JP4854180B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5410178A (en) * | 1994-08-22 | 1995-04-25 | Northwestern University | Semiconductor films |
JP2003158093A (en) * | 2001-09-06 | 2003-05-30 | Nippon Telegr & Teleph Corp <Ntt> | Element wiring formation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100632383B1 (en) | 2005-06-07 | 2006-10-09 | 학교법인고려중앙학원 | Semiconductor nanomaterial doping method using neutron conversion doping process |
CN105862122A (en) * | 2016-05-09 | 2016-08-17 | 北京大学 | Methods for InSb nanowire manufacturing and Mn doping both based on multi-step glancing-angle deposition process |
Also Published As
Publication number | Publication date |
---|---|
JP4854180B2 (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9034687B2 (en) | Method of manufacturing graphene nanomesh and method of manufacturing semiconductor device | |
JP5600246B2 (en) | Nanowire containing silicon-rich oxide and method for producing the same | |
JP2008533732A (en) | Method for producing light-emitting diode comprising nanostructure pn junction and diode obtained by the method | |
US7696512B2 (en) | Electron device and process of manufacturing thereof | |
US7767185B2 (en) | Method of producing a carbon nanotube and a carbon nanotube structure | |
KR20030031334A (en) | Fabricating method of metallic nanowires | |
KR20050003620A (en) | Method for forming quantum dot in semiconductor device | |
JP4854180B2 (en) | Method for producing InSb nanowire structure | |
Khan et al. | Control of verticality and (111) orientation of In-catalyzed silicon nanowires grown in the vapour–liquid–solid mode for nanoscale device applications | |
JP2010208925A (en) | Method for producing semiconductor nanowire, and semiconductor device | |
JP4774665B2 (en) | Manufacturing method of semiconductor device | |
JP6658121B2 (en) | Graphene nanoribbon, method for manufacturing the same, and device | |
TWI315105B (en) | A method for the synthesis of qunatum dots | |
CN110697696B (en) | A kind of method that utilizes metal intercalation to prepare monolayer graphene in large area | |
Hull et al. | Synthesis and functionalization of epitaxial quantum dot nanostructures for nanoelectronic architectures | |
JP2008308381A (en) | Method for producing zinc oxide nanostructure and bonding method thereof | |
JP3527941B2 (en) | Method for producing semiconductor superatom and its combination | |
Wan et al. | High-vacuum electron-beam co-evaporation of Si nanocrystals embedded in Al2O3 matrix | |
CN110004488B (en) | graphene/Mn5Ge3Germanium (110) heterojunction and method for producing the same | |
Wan et al. | Titanium-induced germanium nanocones synthesized by vacuum electron-beam evaporation: growth mechanism and morphology evolution | |
KR101934162B1 (en) | Method of manufacturing high quality SiC nanowire | |
JP4953045B2 (en) | Fabrication method of metal nanoparticle embedded material | |
Bischoff et al. | Nanostructures by mass-separated FIB | |
WO2003015145A1 (en) | Micromachining method using ionbeam | |
US20050211970A1 (en) | Metal nano-objects, formed on semiconductor surfaces, and method for making said nano-objects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111025 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |