[go: up one dir, main page]

JP2005241441A - Mobile surface wind observation system - Google Patents

Mobile surface wind observation system Download PDF

Info

Publication number
JP2005241441A
JP2005241441A JP2004051735A JP2004051735A JP2005241441A JP 2005241441 A JP2005241441 A JP 2005241441A JP 2004051735 A JP2004051735 A JP 2004051735A JP 2004051735 A JP2004051735 A JP 2004051735A JP 2005241441 A JP2005241441 A JP 2005241441A
Authority
JP
Japan
Prior art keywords
wind
measuring device
observation system
mobile surface
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051735A
Other languages
Japanese (ja)
Inventor
No Hayashi
農 林
Masaru Kato
優 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Original Assignee
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC filed Critical Tottori University NUC
Priority to JP2004051735A priority Critical patent/JP2005241441A/en
Publication of JP2005241441A publication Critical patent/JP2005241441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

【課題】位置・速度の変動や動揺よる測定誤差を補正することでき、高精度な風速・風向の測定が可能な移動式水上風観測システムを提供する。
【解決手段】水上(例えば、洋上)を移動可能な移動体(船舶1)に設置され、所望空間領域の風速・風向を測定する測風装置(超音波風速計2あるいはドップラーソーダ3)と、この測風装置に取り付けられ、測風装置の位置および揺動量を測定する位置・揺動量測定装置(慣性計測装置10、GPS20、傾斜計30、コンパス40等)と、位置・揺動量測定装置の測定結果に基づいて測風装置が測定する風速・風向データを補正する補正装置とを備える。
【選択図】図1
A mobile surface wind observation system capable of correcting measurement errors due to fluctuations in position / velocity and fluctuations and capable of measuring wind speed / direction with high accuracy.
A wind measuring device (ultrasonic anemometer 2 or Doppler soda 3) installed on a movable body (ship 1) that can move on the water (for example, offshore) and measures a wind speed and a wind direction in a desired space region; A position / fluctuation amount measuring device (inertia measurement device 10, GPS 20, inclinometer 30, compass 40, etc.) that is attached to this wind measuring device and measures the position and fluctuation amount of the wind measuring device, and a position / fluctuation amount measuring device And a correction device that corrects wind speed / direction data measured by the wind measuring device based on the measurement result.
[Selection] Figure 1

Description

この発明は、水上(例えば、洋上)での風力発電設備建設場所を選定するための水上風観測システムに係わり、さらに詳しくは、船舶等の水上移動体に超音波風速計やドップラーソーダ等の風速・風向観測機器を搭載し、複数の所望位置で容易に水上風の風速・風向を精度よく測定することができる移動式水上風観測システムに関する。   The present invention relates to a surface wind observation system for selecting a wind power generation facility construction site on the water (for example, offshore). -It relates to a mobile surface wind observation system that is equipped with wind direction observation equipment and can easily measure the wind speed and direction of the surface wind easily at a plurality of desired positions.

地球温暖化防止の必要性が叫ばれている昨今、世界はもとより日本においても風力発電の導入が重要視されている。
ところが、山岳地帯の多い我が国においては、風力発電設備を設置できる適地は限られたおり、洋上風力発電の技術開発が急がれている。
風力発電設備導入の際には、精度の高い発電量予測が必要であり、陸上においいては、通常、高さ30m程度のポールに風速計・風向計を設置して、最低1年間の風況(風速、風向等)観測をおこなっている。
一方、洋上(海上)における従来の洋上風観測設備は、コンクリートまたは鋼製の基礎構造物を海中に設置し、この上に風速計・風向計などの機器を設置した固定式のものであった。
また、気象観測船やブイ(buoy:浮標)に風速計・風向計を設置して、観測が行われることもあった。
In recent years, the need to prevent global warming has been screamed, and the introduction of wind power generation is emphasized not only in the world but also in Japan.
However, in Japan, where there are many mountainous areas, there are limited places where wind power generation facilities can be installed, and technical development of offshore wind power generation is urgently needed.
When introducing wind power generation facilities, it is necessary to predict the amount of power generation with high accuracy. On land, wind speed meters and wind direction meters are usually installed on poles with a height of about 30 meters, and wind conditions for at least one year. (Wind speed, wind direction, etc.)
On the other hand, the conventional offshore wind observation equipment on the sea (offshore) was a fixed type in which a concrete or steel foundation was installed in the sea, and equipment such as an anemometer and anemometer was installed on top of this. .
In some cases, an anemometer and an anemometer were installed on a weather observation ship or a buoy.

なお、地上における移動式の風況(風速、風向等)精査の可能性あるいは実用化研究については、本願の出願人は、下記のような論文(非特許文献)を発表している。
移動式風況精査の可能性について、 第23回風力エネルギー利用シンポジウム論文集、(2001)、pp.184−187 移動式風況精査の実用化研究―ミニドップラーソーダによる短期間観測の有効性、 風力エネルギー(通巻64)、(2002)、pp.26−30
The applicant of this application has published the following paper (non-patent literature) regarding the possibility of detailed examination of mobile wind conditions (wind speed, wind direction, etc.) on the ground or research into practical use.
Regarding the possibility of mobile wind conditions, the 23rd Symposium on Wind Energy Utilization, (2001), pp. 184-187 Research on practical application of mobile wind condition inspection-Effectiveness of short-term observation with mini Doppler soda, Wind energy (Volume 64), (2002), pp. 26-30

上述したような、コンクリートまたは鋼製の基礎構造物を海中に設置し、この上に風速計・風向計などの機器を設置した従来の固定式の洋上風観測方法では、観測設備の建設に多大の費用が嵩むと共に、観測点を変更することができない。
従って、観測点を増やそうとすれば、多数の固定式観測設備を設置しなければならず、莫大な費用が発生する。
また、気象観測船やブイ(buoy:浮標)に風速計・風向計を設置したものでは、観測点の移動は容易であるが、自身(即ち、気象観測船やブイ)の移動速度の変化や動揺(揺動)があるために、正確な洋上風の風速・風向の測定(観測)は困難であった。
The conventional fixed offshore wind observation method in which a concrete or steel foundation structure as described above is installed in the sea and equipment such as an anemometer and wind vane is installed on the foundation is very large in the construction of observation equipment. As the cost increases, the observation point cannot be changed.
Therefore, if the number of observation points is increased, a large number of fixed observation facilities must be installed, resulting in enormous costs.
In addition, with an anemometer / wind direction meter installed on a weather observation ship or buoy (buoy), it is easy to move the observation point, but changes in the movement speed of its own (ie, weather observation ship or buoy) Due to the sway (oscillation), it was difficult to accurately measure (observe) the wind speed and direction of the offshore wind.

この発明は、上述のように問題点を解決するためになされたものであり、観測点の移動が容易な船舶等の水上(例えば、洋上や湖上)移動体に風観測設備を搭載していながら、水上移動体の位置・速度の変動や動揺よる測定誤差を補正することができ、高精度な風速・風向の測定が可能な移動式水上風観測システムを提供することを目的とする。   The present invention has been made to solve the problems as described above, and is equipped with wind observation equipment on a moving body (for example, on the ocean or on a lake) such as a ship where the observation point can be easily moved. An object of the present invention is to provide a mobile surface wind observation system capable of correcting measurement errors caused by fluctuations in position and speed of a mobile body and fluctuations and capable of measuring wind speed and direction with high accuracy.

この発明に係る移動式水上風観測システムは、水上を移動可能な移動体に設置され、所望空間領域の風速・風向を測定する測風装置と、上記測風装置に取り付けられ、上記測風装置の位置および揺動量を測定する位置・揺動量測定装置と、上記位置・揺動量測定装置の測定結果に基づいて、上記測風装置が測定する風速・風向データを補正する補正装置とを備えたものである。   The mobile surface wind observation system according to the present invention is installed in a movable body movable on the water, measures a wind speed and a wind direction in a desired space region, and is attached to the wind measuring device. A position / oscillation amount measuring device for measuring the position and the amount of oscillation, and a correction device for correcting the wind speed / wind direction data measured by the wind measuring device based on the measurement result of the position / oscillation amount measuring device. Is.

この発明によれば、船舶等の水上(例えば、洋上)移動体に風観測設備を搭載していながら、水上移動体の位置・速度の変動や動揺よる測定誤差を補正することでき、高精度な風速・風向の測定が可能な移動式水上風観測システムを提供できる。   According to the present invention, while a wind observation facility is mounted on a water moving body such as a ship (for example, offshore), it is possible to correct a measurement error due to fluctuations in position / velocity of the water moving body and fluctuation, and high accuracy. A mobile surface wind observation system that can measure wind speed and direction can be provided.

実施の形態1.
図1は、本発明による移動式水上(例えば、洋上)風観測システムを概念的に説明するための図である。
図に示すように、水上の移動体である船舶1には、大気中の所望位置(即ち、測風をしたい所望の空間領域)の風速・風向を測定するための超音波風速計2あるいはドップラーソーダ(音響測風レーダー)3が設置されている。
さらに、三杯型風速計や矢羽根型風向計で構成されるメカ式の風速・風向計4も設置されている。
また、船舶1にはGPS(GlobalPositioning System:全地球測位システム)が設置されており、所定の軌道を周回する複数のGPS衛星6からの電波を受信することによって船舶1の現在位置が高精度に特定される。
Embodiment 1 FIG.
FIG. 1 is a diagram for conceptually explaining a mobile water (for example, offshore) wind observation system according to the present invention.
As shown in the figure, an ultrasonic anemometer 2 or Doppler for measuring a wind speed and a wind direction at a desired position in the atmosphere (that is, a desired space area where wind measurement is desired) is provided on a ship 1 that is a moving body on the water. A soda (acoustic wind radar) 3 is installed.
In addition, a mechanical anemometer 4 composed of a triple cup anemometer and an arrow feather anemometer is also installed.
Further, the ship 1 is equipped with a GPS (Global Positioning System), and the current position of the ship 1 is accurately received by receiving radio waves from a plurality of GPS satellites 6 orbiting a predetermined orbit. Identified.

従って、船舶1に設置されている超音波風速計2およびドップラーソーダ(音響観測レーダー)3の現在位置も高精度に特定される。
また、超音波風速計2あるいはドップラーソーダ3には、加速度計とジャイロで構成される慣性計測装置(IMU:inertial measurement unit)、方位の測定を行うコンパス(磁気コンパス)および傾斜計が取り付けられている。
なお、超音波風速計とは、気流中を伝わる音波のドップラーシフトを利用して風速変動を測定する機器であり、ドップラーソーダとは音波を用いたリモートセンシング機器の一種であり、気流中の微少な温度変動により散乱される音波のドップラーシフトを利用して風速測定を行うものである。
Therefore, the current positions of the ultrasonic anemometer 2 and the Doppler soda (acoustic observation radar) 3 installed in the ship 1 are also specified with high accuracy.
The ultrasonic anemometer 2 or the Doppler soda 3 is provided with an inertial measurement unit (IMU: inertial measurement unit) composed of an accelerometer and a gyro, a compass (magnetic compass) for measuring the direction, and an inclinometer. Yes.
Note that an ultrasonic anemometer is a device that measures wind speed fluctuations using the Doppler shift of sound waves traveling in the airflow, and a Doppler soda is a type of remote sensing device that uses sound waves. The wind speed is measured using the Doppler shift of sound waves scattered by various temperature fluctuations.

船舶1に設置された超音波風速計2あるいはドップラーソーダ3によって所定位置(所望の空間領域)の風速・風向を測定する場合、船舶1が移動中であったり、揺動していると、超音波風速計2あるいはドップラーソーダ3自身も同時に移動し揺動している。
従って、超音波風速計2あるいはドップラーソーダ3の計測データに誤差が生じる。
図2は、本実施の形態による移動式水上風観測システムにおいて、移動体1の移動や揺動量を解析する方法を説明するためのブロックである。
図において、10は慣性計測装置であり、3軸加速度計11および3軸ジャイロ12で構成されている。
また、20はGPS、30は姿勢を計測する傾斜計、40は方位を計測する磁気コンパス(単にコンパスと略す)、50はカルマンフィルタである。
When measuring the wind speed / wind direction at a predetermined position (desired space region) with the ultrasonic anemometer 2 or the Doppler soda 3 installed on the ship 1, if the ship 1 is moving or swinging, The sonic anemometer 2 or the Doppler soda 3 itself moves and swings simultaneously.
Accordingly, an error occurs in the measurement data of the ultrasonic anemometer 2 or the Doppler soda 3.
FIG. 2 is a block diagram for explaining a method of analyzing the movement and swing amount of the moving body 1 in the mobile surface wind observation system according to the present embodiment.
In the figure, reference numeral 10 denotes an inertial measurement device, which includes a triaxial accelerometer 11 and a triaxial gyro 12.
Reference numeral 20 denotes a GPS, 30 denotes an inclinometer that measures an attitude, 40 denotes a magnetic compass (simply abbreviated as a compass), and 50 denotes a Kalman filter.

図2に基づいて、移動あるいは揺動する船舶1に設置された超音波風速計2(図示せず)あるいはドップラーソーダ3(図示せず)の位置、方位、姿勢、加速度、角速度検出方法の説明を行う。
慣性計測装置10(即ち、3軸加速度計11および3軸ジャイロ12)によって、X軸・Y軸・Z軸の加速度およびX軸・Y軸・Z軸まわりの角速度を計測する。
しかし、慣性計測装置10の計測値は、ドリフト(即ち、入力回転とは無関係な静止状態での零点誤差)による誤差が発生するために、これらの計測値とGPS20、傾斜計30、コンパス40による位置・方位・姿勢データからカルマンフィルタ50を用いて誤差推定値を導き、得られた誤差推定値を用いて慣性計測装置10が計測する計測値の逐次補正を行う。
以上によって、移動体に設置されている超音波風速計2あるいはドップラーソーダ3の位置、方位、姿勢、3軸の加速度、3軸の角速度を正確に検出する。
Based on FIG. 2, the position, orientation, orientation, acceleration, and angular velocity detection method of an ultrasonic anemometer 2 (not shown) or Doppler soda 3 (not shown) installed on a moving or swinging ship 1 will be described. I do.
The inertial measurement device 10 (that is, the three-axis accelerometer 11 and the three-axis gyro 12) measures the X-axis / Y-axis / Z-axis acceleration and the angular velocity around the X-axis / Y-axis / Z-axis.
However, since the measurement value of the inertial measurement device 10 has an error due to drift (that is, a zero point error in a stationary state unrelated to the input rotation), these measurement value and the GPS 20, the inclinometer 30, and the compass 40 are used. An error estimated value is derived from the position / orientation / posture data using the Kalman filter 50, and the measured value measured by the inertial measurement apparatus 10 is sequentially corrected using the obtained error estimated value.
As described above, the position, azimuth, orientation, triaxial acceleration, and triaxial angular velocity of the ultrasonic anemometer 2 or Doppler soda 3 installed on the moving body are accurately detected.

次に、風速補正方法の具体的な説明を行う。
超音波風速計2またはドップラーソーダ3に取り付けられた慣性計測装置10における3軸加速度計11の計測値から重力加速度を差し引いた加速度ベクトルを
Next, the wind speed correction method will be specifically described.
An acceleration vector obtained by subtracting the gravitational acceleration from the measured value of the triaxial accelerometer 11 in the inertial measurement device 10 attached to the ultrasonic anemometer 2 or the Doppler soda 3

Figure 2005241441
Figure 2005241441

とし、この加速度ベクトルを数値積分し、3軸の速度ベクトルを、 And this acceleration vector is numerically integrated, and the three-axis velocity vector is

Figure 2005241441
Figure 2005241441

とする。
また、計測される姿勢データを、ロール角(α)、ピッチ角(β)、ヨー角(γ)とし、真の座標系の単位ベクトルを、
And
Further, the posture data to be measured is a roll angle (α), a pitch angle (β), and a yaw angle (γ), and a unit vector of a true coordinate system is

Figure 2005241441
Figure 2005241441

とし、超音波風速計またはドップラーソーダの座標系における単位ベクトルを、 And the unit vector in the coordinate system of the ultrasonic anemometer or Doppler soda,

Figure 2005241441
Figure 2005241441

とすると、この時の測風装置(即ち、超音波風速計2またはドップラーソーダ3)の座標系は、図3に示される。
ここで、超音波風速計2による生の計測値(即ち、補正前の計測値)のベクトルを、
Then, the coordinate system of the wind measuring device at this time (that is, the ultrasonic anemometer 2 or the Doppler soda 3) is shown in FIG.
Here, a vector of raw measurement values (that is, measurement values before correction) by the ultrasonic anemometer 2 is

Figure 2005241441
Figure 2005241441

とすると、超音波風速計2における真の風速ベクトル(即ち、補正後の風速ベクトル)は、 Then, the true wind speed vector in the ultrasonic anemometer 2 (that is, the corrected wind speed vector) is

Figure 2005241441
Figure 2005241441

の式で導かれる。
一方、ドップラーソーダ3による生の風速計測値を
It is guided by the formula of
On the other hand, the raw wind speed measured by Doppler Soda 3

Figure 2005241441
Figure 2005241441

とし、音波送信時の移動体(即ち、ドップラーソーダ3)の速度計測データを、 And velocity measurement data of the moving body (ie, Doppler soda 3) at the time of sound wave transmission,

Figure 2005241441
Figure 2005241441

とし、送信音波の後方散乱波受信時における移動体(即ち、ドップラーソーダ3)の速度計測データを、 And velocity measurement data of the moving body (ie, Doppler soda 3) at the time of receiving the backscattered wave of the transmitted sound wave,

Figure 2005241441
Figure 2005241441

とすると、ドップラーソーダ3における真の風速ベクトル(即ち、補正後の風速ベクトル)は、 Then, the true wind speed vector in Doppler soda 3 (that is, the corrected wind speed vector) is

Figure 2005241441
Figure 2005241441

として導かれる。
なお、風速の3成分、即ち、X軸、Y軸、Z軸の風速ベクトルを合成することによって風向ベクトルを得ることができるので、上述の真の風速ベクトルを合成することにより、真の風向ベクトルも得ることが可能である。
また、上述の説明では、慣性計測装置10の出力を補正する方式の場合について述べているが、図4に示すように誤差推定値を慣性計測値10に帰還する方式であってもよい。
As led.
Since the wind direction vector can be obtained by synthesizing the three wind speed components, that is, the X-axis, Y-axis, and Z-axis wind speed vectors, the true wind direction vector can be obtained by synthesizing the true wind speed vector described above. Can also be obtained.
In the above description, the method of correcting the output of the inertial measurement device 10 is described. However, a method of feeding back the error estimated value to the inertial measurement value 10 as shown in FIG.

以上説明したように、本実施の形態による移動式水上風観測システムは、水上を移動可能な移動体(即ち、船舶1)に設置され、所望空間領域の風速・風向を測定する測風装置(即ち、超音波風速計2あるいはドップラーソーダ3)と、測風装置に取り付けられ、測風装置の位置および揺動量を測定する位置・揺動量測定装置(即ち、慣性計測装置10、GPS20、傾斜計30、コンパス40等)と、位置・揺動量測定装置の測定結果に基づいて測風装置が測定する風速・風向データを補正する補正装置(図示なし)とを備えたものである。
これにより、船舶等の水上移動体に風観測設備を搭載していながら、水上移動体の位置・速度の変動や動揺よる測定誤差を補正することでき、高精度な風速・風向の測定が可能な移動式水上風観測システムを実現できる。
As described above, the mobile surface wind observation system according to the present embodiment is installed in a movable body that can move on the water (that is, the ship 1), and measures the wind speed and direction in a desired space region ( That is, an ultrasonic anemometer 2 or Doppler soda 3) and a position / swing amount measuring device (that is, an inertial measuring device 10, a GPS 20, an inclinometer) attached to the wind measuring device and measuring the position and the swing amount of the wind measuring device. 30 and a compass 40) and a correction device (not shown) for correcting the wind speed / wind direction data measured by the wind measuring device based on the measurement result of the position / swing amount measuring device.
This makes it possible to correct measurement errors caused by fluctuations in the position and speed of the water moving body and fluctuations while mounting wind observation equipment on the water moving body such as a ship, and it is possible to measure the wind speed and direction with high accuracy. A mobile surface wind observation system can be realized.

なお、測風装置として、超音波風速計2およびドップラーソーダ3の両方を備え、両者が測定する測風データ(風速および風向データ)をそれぞれ補正して、補正された風速データ・風向データを得てもよい。
この場合、両者の補正された風速データ・風向データを用いることにより、さらに精度のよい真の測風データを得ることができる。
In addition, as the wind measuring device, both the ultrasonic anemometer 2 and the Doppler soda 3 are provided, and corrected wind speed data and wind direction data are obtained by correcting wind measurement data (wind speed and wind direction data) measured by both. May be.
In this case, more accurate true wind measurement data can be obtained by using both corrected wind speed data and wind direction data.

また、基地局の風速計・風向計が計測する計測データを用いて、上記測風装置が稼働していない期間(時間)の風向・風速を推定してもよい。
この場合、例えば、基地局から得る計測データと移動体1に設置された測風装置が測定する風速・風向データを回帰分析して相関を得ることにより、基地局から得る計測データと得られた相関に基づいて、測風装置が稼働していない時間(期間)の風速・風向を推定することができる。
Moreover, you may estimate the wind direction and wind speed of the period (time) when the said wind-measurement apparatus is not operating using the measurement data which the anemometer and anemometer of a base station measure.
In this case, for example, the measurement data obtained from the base station is obtained by performing regression analysis on the measurement data obtained from the base station and the wind speed / wind direction data measured by the wind measuring device installed in the moving body 1 to obtain a correlation. Based on the correlation, it is possible to estimate the wind speed and direction during the time (period) when the wind measuring device is not operating.

実施の形態2.
図5は、実施の形態2による移動式水上(例えば、洋上)風観測システムに用いられるドップラーソーダの揺動抑制装置の構成を示す図である。
本実施の形態による移動式水上風観測システムは、ドップラーソーダが揺動抑制装置に
載置され、移動体である船舶が揺動しても、ドップラーソーダの揺動が抑制されることを特徴とする。
図5に示すように、本実施の形態では、ドップラーソーダ70は、固定台60に取り付けられた第1の軸61により符号Aで示す方向に回動可能に支持され、かつ、固定台60に取り付けられた第2の軸62により符号Bで示す方向に回動可能に支持されている。
従って、移動体である船舶が揺動しても、ドップラーソーダ70の揺動は抑制されるので、さらに、精度の高い移動式水上風観測システムを実現することができる。
Embodiment 2. FIG.
FIG. 5 is a diagram showing a configuration of a Doppler soda swing suppression device used in the mobile water (for example, offshore) wind observation system according to the second embodiment.
The mobile surface wind observation system according to the present embodiment is characterized in that the Doppler soda is placed on a swing suppression device, and the swing of the Doppler soda is suppressed even if the ship as a moving body swings. To do.
As shown in FIG. 5, in the present embodiment, the Doppler soda 70 is supported by a first shaft 61 attached to the fixed base 60 so as to be rotatable in the direction indicated by the symbol A, and is fixed to the fixed base 60. The attached second shaft 62 is supported so as to be rotatable in the direction indicated by the symbol B.
Therefore, even if the ship as a moving body swings, the swinging of the Doppler soda 70 is suppressed, so that a more accurate mobile surface wind observation system can be realized.

この発明は、船舶等の移動体の移動や揺動に起因する誤差が補正でき、精度の高い移動式水上風観測システムの実現に有用である。   The present invention can correct errors caused by movement and swinging of a moving body such as a ship, and is useful for realizing a highly accurate mobile surface wind observation system.

本発明による移動式水上風観測システムを概念的に説明するための図である。It is a figure for demonstrating notionally the mobile surface wind observation system by this invention. 実施の形態1による移動式水上風観測システムにおいて、移動体1の移動や揺動量を解析する方法を説明するためのブロックである。3 is a block diagram for explaining a method for analyzing the movement and swing amount of a moving body 1 in the mobile surface wind observation system according to the first embodiment. 測風装置の座標系を示す図である。It is a figure which shows the coordinate system of a wind measuring device. 実施の形態1による移動式水上風観測システムにおいて、移動体1の移動や揺動量を解析する他の方法を説明するためのブロックである。7 is a block diagram for explaining another method for analyzing the movement and swing amount of the moving body 1 in the mobile surface wind observation system according to the first embodiment. 実施の形態2による移動式水上風観測システムに用いられるドップラーソーダの揺動抑制装置の構成を示す図である。It is a figure which shows the structure of the rocking | swiveling suppression apparatus of the Doppler soda used for the mobile surface wind observation system by Embodiment 2. FIG.

符号の説明Explanation of symbols

1 移動体(船舶) 2 超音波風速計 3 ドップラーソーダ
4 メカ式風速・風向計 5 GPS 6 GPS衛星
10 慣性計測装置 11 3軸加速度計 12 3軸ジャイロ
20 GPS 30 傾斜計 40 コンパス
DESCRIPTION OF SYMBOLS 1 Mobile body (ship) 2 Ultrasonic anemometer 3 Doppler soda 4 Mechanical type wind speed / wind direction meter 5 GPS 6 GPS satellite 10 Inertial measuring device 11 3-axis accelerometer 12 3-axis gyro 20 GPS 30 Inclinometer 40 Compass

Claims (6)

水上を移動可能な移動体に設置され、所望空間領域の風速・風向を測定する測風装置と、上記測風装置に取り付けられ、上記測風装置の位置および揺動量を測定する位置・揺動量測定装置と、
上記位置・揺動量測定装置の測定結果に基づいて、上記測風装置が測定する風速・風向データを補正する補正装置とを備えたことを特徴とする移動式水上風観測システム。
A wind measuring device that is installed on a movable body that can move on the water and measures the wind speed and direction of a desired space area, and a position and a rocking amount that is attached to the wind measuring device and measures the position and the rocking amount of the wind measuring device. A measuring device;
A mobile surface wind observation system comprising: a correction device that corrects wind speed / direction data measured by the wind measuring device based on a measurement result of the position / swing amount measuring device.
上記測風装置は、超音波風速計であることを特徴とする請求項1に記載の移動式水上風観測システム。   2. The mobile surface wind observation system according to claim 1, wherein the wind measuring device is an ultrasonic anemometer. 上記測風装置は、ドップラーソーダであることを特徴とする請求項1に記載の移動式水上風観測システム。   The mobile surface wind observation system according to claim 1, wherein the wind measuring device is a Doppler soda. 上記測風装置は、超音波風速計およびドップラーソーダとで構成されていることを特徴とする請求項1に記載の移動式水上風観測システム。   2. The mobile surface wind observation system according to claim 1, wherein the wind measuring device comprises an ultrasonic anemometer and a Doppler soda. 上記ドップラーソーダは、揺動抑制装置に載置されていることを特徴とする請求項3または4に記載の移動式水上風観測システム。   The mobile surface wind observation system according to claim 3 or 4, wherein the Doppler soda is placed on a swing suppression device. 上記測風装置が測定する風速・風向データと基地局の風速計・風向計が計測する計測データとに基づいて、上記測風装置が稼働していない期間の風向・風速を推定できることを特徴とする請求項1〜5のいずれか1項に記載の移動式水上風観測システム。   Based on the wind speed / wind direction data measured by the wind measuring device and the measurement data measured by the anemometer / wind direction meter of the base station, it is possible to estimate the wind direction / wind speed during a period when the wind measuring device is not operating. The mobile surface wind observation system according to any one of claims 1 to 5.
JP2004051735A 2004-02-26 2004-02-26 Mobile surface wind observation system Pending JP2005241441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051735A JP2005241441A (en) 2004-02-26 2004-02-26 Mobile surface wind observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051735A JP2005241441A (en) 2004-02-26 2004-02-26 Mobile surface wind observation system

Publications (1)

Publication Number Publication Date
JP2005241441A true JP2005241441A (en) 2005-09-08

Family

ID=35023326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051735A Pending JP2005241441A (en) 2004-02-26 2004-02-26 Mobile surface wind observation system

Country Status (1)

Country Link
JP (1) JP2005241441A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089370A1 (en) * 2005-02-28 2006-08-31 Tele-Ip Limited Marine sodar
WO2007060820A1 (en) * 2005-11-28 2007-05-31 Pioneer Corporation Moving object weather observation apparatus and method
JP2013253910A (en) * 2012-06-08 2013-12-19 Mitsubishi Electric Corp Wind measuring apparatus
JP2014055889A (en) * 2012-09-13 2014-03-27 Mitsubishi Electric Corp Wind measuring apparatus
JP2017190963A (en) * 2016-04-11 2017-10-19 有限会社タイプエス Weather observation system and weather observation device
US10324190B2 (en) 2015-10-23 2019-06-18 Mitsubishi Electric Corporation Wind measuring apparatus
WO2020045120A1 (en) * 2018-08-27 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Wind speed measuring device, wind speed measuring method, and program
KR102242162B1 (en) * 2020-08-05 2021-04-30 대한민국(기상청 국립기상과학원장) Method for calculating true wind direction and wind speed by adjusting measured values of wind anemometer mounted on vehicle based on differences caused by posture of vehicle and device using the same
US11254399B2 (en) 2018-03-08 2022-02-22 Etme: Peppas Kai Synergates E.E. Floating platform for maritime surveillance
CN116009566A (en) * 2022-12-21 2023-04-25 中国海洋大学 Real wind fusion algorithm based on platform posture correction and unmanned sailing boat control system
CN120103403A (en) * 2025-05-06 2025-06-06 自然资源部北海预报减灾中心(自然资源部青岛海洋中心) Ship wind measuring method, medium and system based on single Beidou positioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118666A (en) * 1986-11-06 1988-05-23 Furuno Electric Co Ltd Flood/ebb tide measuring equipment
JPH05288760A (en) * 1992-04-08 1993-11-02 Nkk Corp Doppler speed measuring apparatus
JPH09133760A (en) * 1995-11-09 1997-05-20 Kaijo Corp Doppler measuring device for traveling object mounting
JP2003004846A (en) * 2001-06-18 2003-01-08 Japan Radio Co Ltd Ship speed measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118666A (en) * 1986-11-06 1988-05-23 Furuno Electric Co Ltd Flood/ebb tide measuring equipment
JPH05288760A (en) * 1992-04-08 1993-11-02 Nkk Corp Doppler speed measuring apparatus
JPH09133760A (en) * 1995-11-09 1997-05-20 Kaijo Corp Doppler measuring device for traveling object mounting
JP2003004846A (en) * 2001-06-18 2003-01-08 Japan Radio Co Ltd Ship speed measurement device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089370A1 (en) * 2005-02-28 2006-08-31 Tele-Ip Limited Marine sodar
WO2007060820A1 (en) * 2005-11-28 2007-05-31 Pioneer Corporation Moving object weather observation apparatus and method
JP2013253910A (en) * 2012-06-08 2013-12-19 Mitsubishi Electric Corp Wind measuring apparatus
JP2014055889A (en) * 2012-09-13 2014-03-27 Mitsubishi Electric Corp Wind measuring apparatus
US10324190B2 (en) 2015-10-23 2019-06-18 Mitsubishi Electric Corporation Wind measuring apparatus
JP2017190963A (en) * 2016-04-11 2017-10-19 有限会社タイプエス Weather observation system and weather observation device
US11254399B2 (en) 2018-03-08 2022-02-22 Etme: Peppas Kai Synergates E.E. Floating platform for maritime surveillance
WO2020045120A1 (en) * 2018-08-27 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Wind speed measuring device, wind speed measuring method, and program
US11835544B2 (en) 2018-08-27 2023-12-05 Sony Semiconductor Solutions Corporation Wind speed measuring device and wind speed measuring method
KR102242162B1 (en) * 2020-08-05 2021-04-30 대한민국(기상청 국립기상과학원장) Method for calculating true wind direction and wind speed by adjusting measured values of wind anemometer mounted on vehicle based on differences caused by posture of vehicle and device using the same
US11243222B1 (en) 2020-08-05 2022-02-08 National Institute of Meteorological Sciences Method for calculating true wind direction and true wind speed by adjusting measured values of anemometer mounted on moving body based on observation errors caused by degree of slant of moving body and device using the same
CN116009566A (en) * 2022-12-21 2023-04-25 中国海洋大学 Real wind fusion algorithm based on platform posture correction and unmanned sailing boat control system
CN120103403A (en) * 2025-05-06 2025-06-06 自然资源部北海预报减灾中心(自然资源部青岛海洋中心) Ship wind measuring method, medium and system based on single Beidou positioning
CN120103403B (en) * 2025-05-06 2025-07-18 自然资源部北海预报减灾中心(自然资源部青岛海洋中心) A ship wind measurement method, medium and system based on single Beidou positioning

Similar Documents

Publication Publication Date Title
US20190323841A1 (en) System and Method of Determining a Remote Object Position of a Remote Object
CN102023016B (en) Navigation apparatus, operation control method, and mobile terminal apparatus
JP4672605B2 (en) Sea state measurement method by super buoy
JP4586172B2 (en) Inertial navigation system
CN102288170B (en) Correction method of electronic compass in underwater vehicle
CN102117952B (en) Four-shaft stable framework for antenna and control method
CN102278987A (en) Position calculating method and position calculating device
CN103760584B (en) A motion monitoring system for actual measurement of float-over installations
CN107063198A (en) A kind of boat-carrying Self-stabilization holder measuring system and application process
CN103076026B (en) A Method for Determining Velocity Error of Doppler Log in Strapdown Inertial Navigation System
JP2005241441A (en) Mobile surface wind observation system
CN105527642B (en) A kind of single star positioner and method
CN114659496B (en) Method for monitoring inclination of shipborne Beidou all-in-one machine
GB2516066A (en) Portable device for determining azimuth
CN102116634A (en) Autonomous dimensionality reduction navigation method for deep sky object (DSO) landing detector
US20170357007A1 (en) Radionavigation for swimmers
JP2022533728A (en) underwater navigation beacon
CN105547289A (en) Underwater vehicle combined navigation system and navigation information fusion method
Fong et al. Evaluation of the accuracy of a ship-mounted, bottom-tracking ADCP in a near-shore coastal flow
CN106338280A (en) A Calibration Method of Electronic Magnetic Compass
RU2490679C1 (en) Buoy for determining characteristics of sea waves
CN105116430A (en) SOTM pseudo course sea ship dynamic satellite searching method based on Kalman filtering
JP2009115714A (en) Method and apparatus for measuring speed of moving object
CN112684207A (en) ADCP (advanced digital control Performance) speed estimation and correction algorithm for deep submersible vehicle
RU2561229C1 (en) Buoy for determination of characteristics of sea wind waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706