JP2005239439A - Carbon microtube manufacturing method - Google Patents
Carbon microtube manufacturing method Download PDFInfo
- Publication number
- JP2005239439A JP2005239439A JP2004047454A JP2004047454A JP2005239439A JP 2005239439 A JP2005239439 A JP 2005239439A JP 2004047454 A JP2004047454 A JP 2004047454A JP 2004047454 A JP2004047454 A JP 2004047454A JP 2005239439 A JP2005239439 A JP 2005239439A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- microtube
- micrometers
- powder
- carbon microtube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000005083 Zinc sulfide Substances 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 8
- 229910052984 zinc sulfide Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000012377 drug delivery Methods 0.000 abstract description 3
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000000619 electron energy-loss spectrum Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- -1 polyethylene terephthalate core Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
【課題】 ドラッグデリバリーシステム、マイクロエレクトロニクスなどへの応用が期待
されるカーボンマイクロチューブの製造方法を提供する。
【解決手段】 硫化亜鉛粉末と活性炭粉末の混合物を不活性気流中で、1350〜1500℃に1
〜2時間加熱することにより、長さ数百マイクロメートル〜ミリメートルオーダー、外径
約1〜2マイクロメートル、壁厚10〜20ナノメートルのカーボンマイクロチューブを製造す
る。非常に薄い壁厚を有する結晶性のグラファイト構造のカーボンマイクロチューブの製
造が可能となった。
【選択図】 図1PROBLEM TO BE SOLVED: To provide a method for producing a carbon microtube expected to be applied to a drug delivery system, microelectronics and the like.
SOLUTION: A mixture of zinc sulfide powder and activated carbon powder is heated to 1350-1500 ° C in an inert air flow.
By heating for ~ 2 hours, a carbon microtube with a length on the order of several hundred micrometers to millimeters, an outer diameter of about 1 to 2 micrometers, and a wall thickness of 10 to 20 nanometers is manufactured. It has become possible to produce carbon microtubes with a crystalline graphite structure with a very thin wall thickness.
[Selection] Figure 1
Description
本発明は、バイオエレクトロニクスデバイスのマイクロ流体チップ間の接続やドラッグ
デリバリーシステムのチップと細胞間の接続等において有用なカーボンマイクロチューブ
の製造方法に関する。
The present invention relates to a method for producing a carbon microtube useful for connection between microfluidic chips of a bioelectronic device, connection between a chip and a cell of a drug delivery system, and the like.
上記のような応用分野では、大きな内径やグラファイト壁を有する中空の繊維状カーボ
ンが要求されており、ミリメートル以下のサイズの直径を持つ中空カーボン繊維が中空の
ポリアクリロニトリル繊維の焼成によって製造されている(たとえば、非特許文献1参照
。)。また、1〜100マイクロメートルの外径と100ナノメートル以下から数マイクロメート
ルまでの壁の厚さを有するカーボンマイクロチューブが熱的に安定なポリピロール外層と
熱分解しやすいポリエチレンテレフタレートの芯からなる同軸ケーブル繊維を窒素中で焼
成することによって製造されている(たとえば、非特許文献2参照。)。さらに、最近ポリ
エチレンを水、ニッケル粉と高温高圧で処理することにより、70〜1300ナノメートルの外
径を有するグラファイトチューブが製造された(たとえば、非特許文献3参照。)。
In the application fields as described above, hollow fibrous carbon having a large inner diameter and a graphite wall is required, and hollow carbon fibers having a diameter of a millimeter or less in size are produced by firing hollow polyacrylonitrile fibers. (For example, refer nonpatent literature 1.). Also, a carbon microtube having an outer diameter of 1 to 100 micrometers and a wall thickness from 100 nanometers to several micrometers is a coaxial structure consisting of a thermally stable polypyrrole outer layer and a polyethylene terephthalate core that is easily pyrolyzed. It is manufactured by firing cable fibers in nitrogen (for example, see Non-Patent Document 2). Furthermore, a graphite tube having an outer diameter of 70 to 1300 nanometers was recently manufactured by treating polyethylene with water, nickel powder and high temperature and pressure (see, for example, Non-Patent Document 3).
上記のように、種々の外径と壁厚を有するカーボンマイクロチューブの製造方法が知ら
れているが、様々な用途、応用分野を考えると、その分野ごとに、好ましい外径サイズや
壁厚のカーボンマイクロチューブが必要になる。本発明は、結晶性のグラファイト構造の
約1〜2マイクロメートルの均一な外径と10〜20ナノメートルの薄い壁厚を有するカーボン
マイクロチューブの製造方法を提供することを解決すべき課題としている。
As described above, methods for producing carbon microtubes having various outer diameters and wall thicknesses are known, but considering various applications and application fields, preferred outer diameter sizes and wall thicknesses are different for each field. A carbon microtube is required. An object of the present invention is to provide a method for producing a carbon microtube having a uniform outer diameter of about 1 to 2 micrometers and a thin wall thickness of 10 to 20 nanometers of a crystalline graphite structure. .
硫化亜鉛粉末と活性炭粉末の混合物を不活性ガス気流中で、1350〜1500℃に1〜2時間加
熱し、この後、加熱炉を室温に冷却する。黒色のシート状物が得られる。
A mixture of zinc sulfide powder and activated carbon powder is heated to 1350-1500 ° C. for 1-2 hours in an inert gas stream, and then the heating furnace is cooled to room temperature. A black sheet is obtained.
本発明の方法により、1〜2マイクロメートルの均一な外径で10〜20ナノメートルの非常
に薄い壁厚を有する結晶性のグラファイト構造のカーボンマイクロチューブの製造が可能
となった。
The method of the present invention has made it possible to produce crystalline microcrystalline carbon microtubes with a uniform outer diameter of 1 to 2 micrometers and a very thin wall thickness of 10 to 20 nanometers.
硫化亜鉛粉末と活性炭粉末の混合物をグラファイトるつぼに入れ、このるつぼを炭素繊
維の断熱材で覆われたグラファイト誘導加熱円筒管の付いた縦型高周波誘導加熱炉の中央
部に配置する。加熱炉を不活性ガス置換を良好に行うための前手段として減圧にする。減
圧は低い方がよいが、ポンプ能力と装置の気密度で決まる。約2×10−1Torrで十分で
ある。加熱炉を減圧にした後、窒素ガスなどの不活性ガスを流しながら、急速に(約30
分)温度を1350〜1500℃に上げ、この温度に1〜2時間維持する。その後、温度を室温まで
冷却すると加熱円筒管の内壁に黒色のシート状物が堆積する。
A mixture of zinc sulfide powder and activated carbon powder is placed in a graphite crucible, and this crucible is placed in the center of a vertical high-frequency induction heating furnace with a graphite induction heating cylindrical tube covered with carbon fiber insulation. The heating furnace is depressurized as a means for successfully performing inert gas replacement. The lower pressure is better, but it depends on the pump capacity and the air density of the device. About 2 × 10 −1 Torr is sufficient. After depressurizing the heating furnace, rapidly (approximately 30%) while flowing an inert gas such as nitrogen gas.
Min) Raise temperature to 1350-1500 ° C and maintain at this temperature for 1-2 hours. Thereafter, when the temperature is cooled to room temperature, a black sheet is deposited on the inner wall of the heated cylindrical tube.
上記において、硫化亜鉛粉末と活性炭粉末の重量比は15:1〜25:1の範囲が好ましい。硫
化亜鉛粉末の重量比がこの範囲よりも多いと最終生成物のカーボンマイクロチューブの中
に、一次元の亜鉛や硫化亜鉛の構造物が混入する。この範囲よりも硫化亜鉛粉末の重量が
少ないとカーボンマイクロチューブの収量が低下する。窒素ガス等の不活性ガスの流量は
150〜300sccmの範囲が好ましく、300sccmで十分にその役割を果たすので、これ以上の流
量にする必要はない。150sccmよりも流量が少ないと生成物中に亜鉛の粒子が混入する。
In the above, the weight ratio of the zinc sulfide powder and the activated carbon powder is preferably in the range of 15: 1 to 25: 1. When the weight ratio of the zinc sulfide powder is larger than this range, a one-dimensional zinc or zinc sulfide structure is mixed into the final product carbon microtube. If the weight of the zinc sulfide powder is less than this range, the yield of the carbon microtube is lowered. The flow rate of inert gas such as nitrogen gas is
The range of 150 to 300 sccm is preferred, and 300 sccm will fulfill its role sufficiently, so there is no need for a higher flow rate. If the flow rate is less than 150 sccm, zinc particles are mixed in the product.
加熱温度は1350〜1500℃が好ましく、1500℃で十分に反応が進行するので、これ以上の
温度に上げる必要はない。1350℃よりも低いとカーボンマイクロチューブが得られない。
加熱時間は1〜2時間の範囲が好ましく、2時間で十分に反応が進行するのでこれ以上の時
間をかける必要はない。1時間未満の場合は収量が低下する。上記のような操作を施すこ
とによって、得られたシート状物を分析すると外径が約1〜2マイクロメートル、壁厚が10
〜20ナノメートル、長さが数百マイクロメートル〜ミリメートルオーダーのカーボンマイ
クロチューブであることが確認される。
The heating temperature is preferably 1350 to 1500 ° C., and the reaction proceeds sufficiently at 1500 ° C., so it is not necessary to raise the temperature beyond this. If it is lower than 1350 ° C, carbon microtubes cannot be obtained.
The heating time is preferably in the range of 1 to 2 hours, and since the reaction proceeds sufficiently in 2 hours, it is not necessary to spend more time. If it is less than 1 hour, the yield decreases. When the obtained sheet-like material is analyzed by performing the above operations, the outer diameter is about 1 to 2 micrometers, and the wall thickness is 10
It is confirmed to be a carbon microtube having a length of about 20 nanometers and a length of several hundred micrometers to millimeters.
次に実施例を示して、さらに具体的に説明する。
シグマ・アルドリッチ社製の硫化亜鉛粉末(純度99.99%)2.0gと和光純薬工業(株)製の活
性炭粉末0.1gをグラファイトるつぼに入れ、このるつぼを断熱材の炭素繊維で覆われたグ
ラファイト誘導加熱円筒管の付いた縦型高周波誘導加熱炉の中央部に設置した。加熱炉を
2x10-1Torrの減圧にした後、窒素ガスを200sccmの流量で流しながら、急速に(約30分
)温度を1400℃まで上げた。この温度に1.5時間保った後、室温まで冷却した。加熱円筒
管の内壁に黒色のシート状物が数mg堆積した。
Next, an example is shown and it demonstrates more concretely.
2.0 g of zinc sulfide powder (purity 99.99%) manufactured by Sigma-Aldrich and 0.1 g of activated carbon powder manufactured by Wako Pure Chemical Industries, Ltd. are placed in a graphite crucible, and the crucible is covered with carbon fiber as a heat insulating material. It was installed in the center of a vertical high-frequency induction furnace with a heated cylindrical tube. Heating furnace
After reducing the pressure to 2 × 10 −1 Torr, the temperature was rapidly raised to 1400 ° C. while flowing nitrogen gas at a flow rate of 200 sccm (about 30 minutes). After maintaining at this temperature for 1.5 hours, it was cooled to room temperature. Several mg of a black sheet was deposited on the inner wall of the heated cylindrical tube.
図1に、堆積物の低倍率走査型電子顕微鏡像の写真を示した。この写真から堆積物の90
%以上がマイクロメートルサイズの直径を有する長いチューブ状からなることが分かる。
代表的なチューブの長さは数百マイクロメートルであるが、ミリメートルオーダーに達し
ているチューブも存在する。
FIG. 1 shows a photograph of a low magnification scanning electron microscope image of the deposit. 90 of the deposits from this photo
It can be seen that more than% consist of long tubes with micrometer-sized diameters.
Typical tube lengths are hundreds of micrometers, but some tubes are on the order of millimeters.
図2に、堆積物の透過型電子顕微鏡像の写真を示した。約70%のチューブは外径が2マイ
クロメートルであり、少量の約1マイクロメートルの外径を有するチューブも含まれてい
る。すべてのチューブは均質で非常に薄い壁からなっている。高分解能透過型電子顕微鏡
で1本のチューブの構造を観察すると層の厚さは約17ナノメートルでほぼ50層からなって
いることが分かった。
FIG. 2 shows a transmission electron microscope image of the deposit. About 70% of the tubes have an outer diameter of 2 micrometers, including a small amount of tubes having an outer diameter of about 1 micrometer. All tubes consist of homogeneous and very thin walls. When the structure of one tube was observed with a high-resolution transmission electron microscope, it was found that the layer thickness was about 17 nanometers and consisted of almost 50 layers.
図3に、堆積物の電子エネルギー損失スペクトルを示した。Sp2混成軌道に基づく炭素
のπ*のピークが見られ、六方晶のグラファイト層からなることが分かった。
FIG. 3 shows the electron energy loss spectrum of the deposit. The peak of carbon π * based on the Sp 2 hybrid orbital was observed, and it was found to be composed of a hexagonal graphite layer.
図4に、陽極として1mm2の断面積を有する棒状アルミニウムを用いて、陽極とサンプル
の間の距離を200、300、400および500μmとして印加電圧を1000Vまで変化させたときの電
流密度と電圧の関係についての電界放出特性を調べた結果を示した。電流密度10μA/cm2
を生じるときの電場を開始電場とすると、開始電場は、陽極とサンプルの距離が200μmの
とき約1.3V/μm、距離が300μmのとき1.25V/μm、距離が400μmのとき1.2V/μm、距離が5
00μmのとき1.0V/μmの値が得られた。また、電流密度10mA/cm2を生じるときの電場を閾
値電場とすると、閾値電場としておよそ1.3〜1.5V/μmの値が得られた。この結果から本
発明のカーボンマイクロチューブは低い開始電圧と閾値電圧を持つ電界放出特性を示すこ
とが分かった。
FIG. 4 shows the current density and voltage when the applied voltage was changed to 1000 V with rod-shaped aluminum having a cross-sectional area of 1 mm 2 as the anode, the distance between the anode and the sample being 200, 300, 400 and 500 μm. The results of investigating the field emission characteristics of the relationship are shown. Current density 10μA / cm 2
The starting electric field is approximately 1.3 V / μm when the distance between the anode and the sample is 200 μm, 1.25 V / μm when the distance is 300 μm, 1.2 V / μm when the distance is 400 μm, Distance is 5
A value of 1.0 V / μm was obtained at 00 μm. Also, assuming that the electric field when the current density is 10 mA / cm 2 is the threshold electric field, a value of about 1.3 to 1.5 V / μm was obtained as the threshold electric field. From this result, it was found that the carbon microtube of the present invention exhibits a field emission characteristic having a low starting voltage and a threshold voltage.
本発明により、壁厚の非常に薄いカーボンマイクロチューブが製造可能となったので、
ドラッグデリバリーシステム、マイクロエレクトロニクス等への応用が期待される。
According to the present invention, a carbon microtube with a very thin wall thickness can be manufactured.
Expected to be applied to drug delivery systems and microelectronics.
Claims (1)
することを特徴とするカーボンマイクロチューブの製造方法。 A method for producing a carbon microtube, comprising heating a mixture of zinc sulfide powder and activated carbon powder to 1350-1500 ° C. for 1-2 hours in an inert gas stream.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047454A JP2005239439A (en) | 2004-02-24 | 2004-02-24 | Carbon microtube manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047454A JP2005239439A (en) | 2004-02-24 | 2004-02-24 | Carbon microtube manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005239439A true JP2005239439A (en) | 2005-09-08 |
Family
ID=35021575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004047454A Pending JP2005239439A (en) | 2004-02-24 | 2004-02-24 | Carbon microtube manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005239439A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006117443A (en) * | 2004-10-19 | 2006-05-11 | National Institute For Materials Science | Crystalline silicon microtube and method for manufacturing the same |
CN101817971A (en) * | 2010-05-27 | 2010-09-01 | 哈尔滨工业大学 | Carbon micro-tube epoxy resin wave-absorbing composite material and preparation method thereof |
JP2013112604A (en) * | 2011-11-29 | 2013-06-10 | Xerox Corp | Graphene nano-sheet and method for producing the same |
CN103387220A (en) * | 2013-07-24 | 2013-11-13 | 哈尔滨工业大学 | Method for preparing sustainable high-yield carbon microtubes |
CN109941984A (en) * | 2019-05-09 | 2019-06-28 | 中国科学院山西煤炭化学研究所 | Preparation method of carbon microtube and carbon microtube |
CN110028066A (en) * | 2019-05-09 | 2019-07-19 | 中国科学院山西煤炭化学研究所 | The preparation method of porous carbon micron tube and porous carbon micron tube |
CN112047322A (en) * | 2020-08-19 | 2020-12-08 | 广东工业大学 | Modified carbon microtube carbonized by silver willow and preparation method and application thereof |
CN115140723A (en) * | 2021-03-30 | 2022-10-04 | 中国石油化工股份有限公司 | Catalyst and method for preparing carbon micro-tube by using same |
-
2004
- 2004-02-24 JP JP2004047454A patent/JP2005239439A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006117443A (en) * | 2004-10-19 | 2006-05-11 | National Institute For Materials Science | Crystalline silicon microtube and method for manufacturing the same |
CN101817971A (en) * | 2010-05-27 | 2010-09-01 | 哈尔滨工业大学 | Carbon micro-tube epoxy resin wave-absorbing composite material and preparation method thereof |
CN101817971B (en) * | 2010-05-27 | 2012-01-11 | 哈尔滨工业大学 | Carbon micro-tube epoxy resin wave-absorbing composite material and preparation method thereof |
JP2013112604A (en) * | 2011-11-29 | 2013-06-10 | Xerox Corp | Graphene nano-sheet and method for producing the same |
CN103387220A (en) * | 2013-07-24 | 2013-11-13 | 哈尔滨工业大学 | Method for preparing sustainable high-yield carbon microtubes |
CN109941984A (en) * | 2019-05-09 | 2019-06-28 | 中国科学院山西煤炭化学研究所 | Preparation method of carbon microtube and carbon microtube |
CN110028066A (en) * | 2019-05-09 | 2019-07-19 | 中国科学院山西煤炭化学研究所 | The preparation method of porous carbon micron tube and porous carbon micron tube |
CN112047322A (en) * | 2020-08-19 | 2020-12-08 | 广东工业大学 | Modified carbon microtube carbonized by silver willow and preparation method and application thereof |
CN115140723A (en) * | 2021-03-30 | 2022-10-04 | 中国石油化工股份有限公司 | Catalyst and method for preparing carbon micro-tube by using same |
CN115140723B (en) * | 2021-03-30 | 2023-09-05 | 中国石油化工股份有限公司 | Catalyst and method for preparing carbon microtubes using the catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7323218B2 (en) | Synthesis of composite nanofibers for applications in lithium batteries | |
US8444891B2 (en) | Carbon nanotube (CNT) extrusion methods and CNT wire and composites | |
Fairchild et al. | Morphology dependent field emission of acid-spun carbon nanotube fibers | |
US7229944B2 (en) | Fiber structures including catalysts and methods associated with the same | |
Park et al. | Growth of nanograins in electrospun ZnO nanofibers | |
JP5698982B2 (en) | Illumination lamp, nanocarbon material composite substrate, and manufacturing method thereof | |
KR101801789B1 (en) | Porous carbon materials and methods of manufacturing the same | |
Zhigalina et al. | Electron microscopy study of new composite materials based on electrospun carbon nanofibers | |
WO2005044723A2 (en) | Carbon nanotubes on carbon nanofiber substrate | |
Liu et al. | Poly (meta-phenylene isophthalamide) nanofibers: Coating and post processing | |
JP2005239439A (en) | Carbon microtube manufacturing method | |
TWI652375B (en) | Method for preparing three-dimensional porous composite material | |
TWI652376B (en) | Three-dimensional porous composite | |
KR20090055299A (en) | Porous Carbon Material and Method of Making the Same | |
US11365123B2 (en) | Method for producing graphene nanospheres | |
Cui et al. | Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition | |
JP5170609B2 (en) | Method for producing silicon carbide nanowire | |
US9031626B2 (en) | Superconducting wire | |
US9031625B2 (en) | Superconducting wire | |
JP2005047763A (en) | Carbon nano and micrometer structure and method for producing the same | |
EP3306685B1 (en) | Nanostructures of concentric layers | |
US9017780B2 (en) | Carbon nanopipes and ductwork with nanometric walls and methods of making the same | |
CN1179617A (en) | Electron emissive film and method | |
US20080213588A1 (en) | Synthesis of composite nanofibers for applications in lithium batteries | |
CN111342054A (en) | Positive electrode for lithium-air battery, method for preparing same, and lithium-air battery comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080603 |