[go: up one dir, main page]

JP2005233513A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2005233513A
JP2005233513A JP2004043309A JP2004043309A JP2005233513A JP 2005233513 A JP2005233513 A JP 2005233513A JP 2004043309 A JP2004043309 A JP 2004043309A JP 2004043309 A JP2004043309 A JP 2004043309A JP 2005233513 A JP2005233513 A JP 2005233513A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchanger
hot water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004043309A
Other languages
Japanese (ja)
Inventor
Yukikatsu Ozaki
幸克 尾崎
Tomohiko Tsuruta
知彦 鶴田
Toru Muramatsu
徹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2004043309A priority Critical patent/JP2005233513A/en
Publication of JP2005233513A publication Critical patent/JP2005233513A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost by reducing the number of fluid channel switching means. <P>SOLUTION: In this heat pump device capable of heating the water for hot water supply by a heat pump cycle using an ejector 3, three heat exchangers 2, 5, 6 are provided, a refrigerant flow channel is switched to allow one of the heat exchangers 2, 6 to act as a radiator radiating the heat of the refrigerant on the basis of an operation mode, and to allow one of the heat exchangers 5, 6 to act as an evaporator for absorbing the heat and evaporating the refrigerant, and the heat exchanger 2, 6 remaining without being used as either the radiator or the evaporator is connected to the radiator in series when it is connected to a high voltage refrigerant side, and connected to the evaporator in parallel when the heat exchanger 5 is connected to low pressure refrigerant side to prevent the refrigerant from flowing. As the plurality of modes can be operated by switching the flow channel switching means (three switching means 7-9), a constitution of refrigeration cycle can be simplified, and the heat pump device of low cost can be provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エジェクタを用いたヒートポンプサイクルにて給湯運転モードと、例えば室内の冷房運転モードとをそれぞれ単独に、または同時に成り立たせるヒートポンプ装置に関するものである。   TECHNICAL FIELD The present invention relates to a heat pump device that enables a hot water supply operation mode and, for example, an indoor cooling operation mode to be established independently or simultaneously in a heat pump cycle using an ejector.

エジェクタを用いて冷凍サイクルのサイクル効率を向上させると共に、給湯運転と室内の冷房・暖房運転とをそれぞれ単独に、または同時に行う運転モードを成り立たせたヒートポンプ装置として、本出願人は先に特許文献1に示すものを出願している。
特開2002−286326号公報
As a heat pump device that improves the cycle efficiency of the refrigeration cycle by using an ejector, and realizes an operation mode in which hot water supply operation and indoor cooling / heating operation are performed individually or simultaneously, the present applicant has previously described patent documents. The application shown in 1 is filed.
JP 2002-286326 A

しかしながら、上記従来技術のヒートポンプ装置は、運転モードの変更に応じて冷媒流路を切り換えるために三方弁を6個使っており、コスト上昇を招くという問題点があった。本発明は、上記従来技術の問題点に鑑みて成されたものであり、その目的は、冷媒流路切換手段の個数を少なくしてコスト低減を図ることのできるヒートポンプ装置を提供することにある。   However, the heat pump device of the above prior art uses six three-way valves to switch the refrigerant flow path according to the change of the operation mode, which causes a problem of increasing the cost. The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a heat pump device capable of reducing the cost by reducing the number of refrigerant flow path switching means. .

本発明は上記目的を達成するために、請求項1ないし請求項7に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、エジェクタ(3)を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、熱交換器(2、5、6)を三つ有して運転モードにより熱交換器(2、6)の中のいずれかが冷媒の熱を放熱する放熱器となり、熱交換器(5、6)の中のいずれかが吸熱して冷媒を蒸発させる蒸発器となるよう冷媒流路を切り換えると共に、放熱器にも蒸発器にも利用しないで残る熱交換器(2、6)が高圧冷媒側に接続される場合は放熱器と直列に接続し、熱交換器(5)が低圧冷媒側に接続される場合は蒸発器と並列に接続して冷媒を流通させないようにすることを特徴としている。   In order to achieve the above object, the present invention employs technical means described in claims 1 to 7. That is, in the invention according to claim 1, in the heat pump device that can heat the water for hot water supply in the heat pump cycle using the ejector (3), the heat exchanger (2, 5, 6) has three. Depending on the operation mode, one of the heat exchangers (2, 6) becomes a radiator that radiates the heat of the refrigerant, and one of the heat exchangers (5, 6) absorbs heat to evaporate the refrigerant. When switching the refrigerant flow path to become an evaporator, and the heat exchanger (2, 6) that remains without being used for either the radiator or the evaporator is connected to the high-pressure refrigerant side, connect it in series with the radiator, When the heat exchanger (5) is connected to the low-pressure refrigerant side, the heat exchanger (5) is connected in parallel with the evaporator so as not to circulate the refrigerant.

また、請求項2に記載の発明では、エジェクタ(3)を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、冷媒の熱を放熱させる放熱専用の温水生成用熱交換器(2)と、吸熱して冷媒を蒸発させる蒸発専用の冷水生成用熱交換器(5)と、冷媒の熱を放熱する放熱器にも吸熱して冷媒を蒸発させる蒸発器にも切り換え可能な空気熱交換器(6)とを設け、運転モードにより温水生成用熱交換器(2)もしくは空気熱交換器(6)のいずれかが冷媒の熱を放熱する放熱器となり、冷水生成用熱交換器(5)もしくは空気熱交換器(6)のいずれかが吸熱して冷媒を蒸発させる蒸発器となるように冷媒流路を切り換えるようにしたことを特徴としている。   Moreover, in the heat pump apparatus which can heat the water for hot-water supply with the heat pump cycle using an ejector (3), the heat exchange for exclusive use of the heat radiation which radiates the heat | fever of a refrigerant | coolant is carried out in the heat pump apparatus which can heat the water for hot water supply. Can be switched to a heat exchanger (5) for exclusive use of cold water that absorbs heat and evaporates the refrigerant, and an evaporator that absorbs heat into the radiator that dissipates the heat of the refrigerant and evaporates the refrigerant An air heat exchanger (6), and depending on the operation mode, either the hot water generating heat exchanger (2) or the air heat exchanger (6) serves as a radiator that dissipates the heat of the refrigerant, thereby generating cold water generating heat. It is characterized in that the refrigerant flow path is switched so that either the exchanger (5) or the air heat exchanger (6) absorbs heat and becomes an evaporator that evaporates the refrigerant.

また、請求項3に記載の発明では、冷凍サイクル内の冷媒を気液分離する気液分離器(4)と、気液分離器(4)より気相冷媒を吸入し加圧して吐出する圧縮機(1)と、圧縮機(1)で加圧された高温冷媒で給湯用水を加熱する温水生成用熱交換器(2)と、気液分離器(4)より供給される液相冷媒でブラインを冷却する冷水生成用熱交換器(5)と、圧縮機(1)で加圧され温水生成用熱交換器(2)を経由した高温冷媒もしくは気液分離器(4)より供給される液相冷媒と空気とを熱交換する空気熱交換器(6)と、圧縮機(1)で加圧され温水生成用熱交換器(2)もしくは温水生成用熱交換器(2)と空気熱交換器(6)とを経由して流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル(3a)、およびノズル(3a)から噴射する高い速度の冷媒流により低圧側に接続される冷水生成用熱交換器(5)もしくは空気熱交換器(6)で蒸発した気相冷媒を吸引し、その吸引した冷媒とノズル(3a)から噴射する冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させて気液分離器(4)に流入させる昇圧部(3c、3d)を有するエジェクタ(3)と、これらの機器への循環流体の流路を切り換える複数の切換手段(7〜10)と、この冷凍サイクルの作動を制御する制御手段(20)とを備え、制御手段(20)は、温水生成モード、冷水生成モード、および温水+冷水生成モードのいずれかから選択された運転モードに応じて、複数の切換手段(7〜10)を切り換え制御して所定の流体循環通路を形成し、選択運転モードを実施することを特徴としている。   In the invention according to claim 3, the gas-liquid separator (4) for gas-liquid separation of the refrigerant in the refrigeration cycle, and the compression for sucking, pressurizing, and discharging the gas-phase refrigerant from the gas-liquid separator (4) A hot water generating heat exchanger (2) that heats hot water supply water with a high-temperature refrigerant pressurized by the compressor (1), and a liquid-phase refrigerant supplied from the gas-liquid separator (4) A cold water generating heat exchanger (5) for cooling the brine and a high-temperature refrigerant or gas-liquid separator (4) pressurized by the compressor (1) and passed through the hot water generating heat exchanger (2). An air heat exchanger (6) that exchanges heat between the liquid refrigerant and air, and a hot water generating heat exchanger (2) or a hot water generating heat exchanger (2) that is pressurized by the compressor (1) and air heat. Nozzle for decompressing and expanding the refrigerant by converting the pressure energy of the high-pressure refrigerant flowing in via the exchanger (6) into velocity energy 3a), and sucking the vapor phase refrigerant evaporated in the cold water generating heat exchanger (5) or the air heat exchanger (6) connected to the low pressure side by the high-speed refrigerant flow injected from the nozzle (3a), While mixing the sucked refrigerant and the refrigerant jetted from the nozzle (3a), the pressure energy is converted into pressure energy to increase the pressure of the refrigerant and flow into the gas-liquid separator (4). ), A plurality of switching means (7 to 10) for switching the flow path of the circulating fluid to these devices, and a control means (20) for controlling the operation of the refrigeration cycle. The means (20) switches the plurality of switching means (7 to 10) according to the operation mode selected from the hot water generation mode, the cold water generation mode, and the hot water + cold water generation mode, and performs predetermined control. Forming a circulation path, it is characterized by carrying out the selected operation mode.

これら請求項1ないし請求項3のいずれかに記載の発明によれば、本発明では減圧手段として冷媒の膨張エネルギーを利用して低圧冷媒を吸引・駆動するエジェクタ(3)を用いることにより、エジェクタ(3)で蒸発器から吸引した低圧冷媒を昇圧し、圧縮機(1)に吸入させる冷媒の圧力を高くすることで圧縮機(1)の消費動力を低減して冷凍サイクルの効率向上が図れる。また、少ない個数の冷媒流路切換手段、より具体的には四つの切換手段(7〜10)を切り換えることで複数モードの運転ができる構成とすることで冷凍サイクルの構成を簡素化して低コストなヒートポンプ装置を提供することができる。   According to the invention described in any one of claims 1 to 3, in the present invention, an ejector (3) that sucks and drives the low-pressure refrigerant by using the expansion energy of the refrigerant is used as the decompression means. By increasing the pressure of the low-pressure refrigerant sucked from the evaporator in (3) and increasing the pressure of the refrigerant sucked into the compressor (1), the power consumption of the compressor (1) can be reduced and the efficiency of the refrigeration cycle can be improved. . Further, the configuration of the refrigeration cycle can be simplified and reduced in cost by adopting a configuration capable of operating in a plurality of modes by switching a small number of refrigerant flow switching means, more specifically, four switching means (7 to 10). A heat pump device can be provided.

また、請求項4に記載の発明では、エジェクタ(3)を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、熱交換器(2、6、13)を三つ有して運転モードにより熱交換器(2、6、13)の中のいずれかが冷媒の熱を放熱する放熱器となり、熱交換器(6、13)の中のいずれかが吸熱して冷媒を蒸発させる蒸発器となるよう冷媒流路を切り換えると共に、放熱器にも蒸発器にも利用しないで残る熱交換器(2、6、13)を高圧冷媒側で放熱器と直列に接続することを特徴としている。   In the invention according to claim 4, in the heat pump device capable of heating water for hot water supply in the heat pump cycle using the ejector (3), the heat exchanger (2, 6, 13) has three. Depending on the operation mode, one of the heat exchangers (2, 6, 13) becomes a heat radiator that dissipates the heat of the refrigerant, and one of the heat exchangers (6, 13) absorbs heat to Switch the refrigerant flow path to become an evaporator to evaporate, and connect the remaining heat exchanger (2, 6, 13) without using it to the radiator or evaporator in series with the radiator on the high-pressure refrigerant side It is a feature.

また、請求項5に記載の発明では、エジェクタ(3)を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、冷媒の熱を放熱させる放熱専用の温水生成用熱交換器(2)と、冷媒の熱を放熱する放熱器にも吸熱して冷媒を蒸発させる蒸発器にも切り換え可能な二つの空気熱交換器(6、13)とを設け、運転モードにより温水生成用熱交換器(2)もしくは空気熱交換器(6、13)のいずれかが冷媒の熱を放熱する放熱器となり、空気熱交換器(6、13)のいずれかが吸熱して冷媒を蒸発させる蒸発器となるように冷媒流路を切り換えるようにしたことを特徴としている。   Further, in the invention according to claim 5, in the heat pump device capable of heating the hot water supply water in the heat pump cycle using the ejector (3), heat exchange for generating hot water exclusively for heat dissipation for dissipating the heat of the refrigerant. Generator (2) and two air heat exchangers (6, 13) that can be switched to a radiator that dissipates the heat of the refrigerant and also an evaporator that absorbs heat and evaporates the refrigerant, and generates hot water depending on the operation mode Either the heat exchanger for heat (2) or the air heat exchanger (6, 13) becomes a heat radiator that dissipates the heat of the refrigerant, and either the air heat exchanger (6, 13) absorbs heat to evaporate the refrigerant The refrigerant flow path is switched so as to be an evaporator.

また、請求項6に記載の発明では、冷凍サイクル内の冷媒を気液分離する気液分離器(4)と、気液分離器(4)より気相冷媒を吸入し加圧して吐出する圧縮機(1)と、圧縮機(1)で加圧された高温冷媒で給湯用水を加熱する温水生成用熱交換器(2)と、圧縮機(1)で加圧され温水生成用熱交換器(2)を経由した高温冷媒もしくは気液分離器(4)より供給される液相冷媒と空気とを熱交換する二つの空気熱交換器(6、13)と、圧縮機(1)で加圧され温水生成用熱交換器(2)と二つの空気熱交換器(6、13)のいずれか一方とを経由して流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル(3a)、およびノズル(3a)から噴射する高い速度の冷媒流により低圧側に接続される二つの空気熱交換器(6、13)のいずれか他方で蒸発した気相冷媒を吸引し、その吸引した冷媒とノズル(3a)から噴射する冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させて気液分離器(4)に流入させる昇圧部(3c、3d)を有するエジェクタ(3)と、これらの機器への循環流体の流路を切り換える複数の切換手段(14、15)と、この冷凍サイクルの作動を制御する制御手段(20)とを備え、制御手段(20)は、給湯モード、暖房モード、冷房モード、および給湯+冷房モードのいずれかから選択された運転モードに応じて、複数の切換手段(14、15)を切り換え制御して所定の流体循環通路を形成し、選択運転モードを実施することを特徴としている。   In the invention according to claim 6, the gas-liquid separator (4) for gas-liquid separation of the refrigerant in the refrigeration cycle, and the compression for sucking, pressurizing, and discharging the gas-phase refrigerant from the gas-liquid separator (4) Machine (1), hot water generating heat exchanger (2) for heating hot water with high-temperature refrigerant pressurized by the compressor (1), and hot water generating heat exchanger pressurized by the compressor (1) Two air heat exchangers (6, 13) for exchanging heat between the high-temperature refrigerant passing through (2) or the liquid-phase refrigerant supplied from the gas-liquid separator (4) and air, and the compressor (1) The pressure energy of the high-pressure refrigerant flowing in via the pressurized hot water generating heat exchanger (2) and one of the two air heat exchangers (6, 13) is converted into velocity energy, and the refrigerant is decompressed and expanded. Connected to the low pressure side by a nozzle (3a) to be discharged and a high-speed refrigerant flow injected from the nozzle (3a) Vapor phase refrigerant evaporated in either one of the two air heat exchangers (6, 13) is sucked, and velocity energy is converted into pressure energy while mixing the sucked refrigerant and the refrigerant injected from the nozzle (3a). And an ejector (3) having a boosting section (3c, 3d) for boosting the pressure of the refrigerant and flowing into the gas-liquid separator (4), and a plurality of switching means for switching the flow path of the circulating fluid to these devices (14, 15) and a control means (20) for controlling the operation of the refrigeration cycle. The control means (20) is selected from one of a hot water supply mode, a heating mode, a cooling mode, and a hot water supply + cooling mode. According to the operated mode, the plurality of switching means (14, 15) are controlled to form a predetermined fluid circulation passage, and the selected operation mode is carried out.

これら請求項4ないし請求項6のいずれかに記載の発明によれば、本発明では減圧手段として冷媒の膨張エネルギーを利用して低圧冷媒を吸引・駆動するエジェクタ(3)を用いることにより、エジェクタ(3)で蒸発器から吸引した低圧冷媒を昇圧し、圧縮機(1)に吸入させる冷媒の圧力を高くすることで圧縮機(1)の消費動力を低減して冷凍サイクルの効率向上が図れる。また、少ない個数の冷媒流路切換手段、より具体的には二つの切換手段(14、15)を切り換えることで複数モードの運転ができる構成とすることで冷凍サイクルの構成を簡素化して低コストなヒートポンプ装置を提供することができる。   According to the invention according to any one of claims 4 to 6, in the present invention, by using the ejector (3) for sucking and driving the low-pressure refrigerant using the expansion energy of the refrigerant as the decompression means, the ejector By increasing the pressure of the low-pressure refrigerant sucked from the evaporator in (3) and increasing the pressure of the refrigerant sucked into the compressor (1), the power consumption of the compressor (1) can be reduced and the efficiency of the refrigeration cycle can be improved. . Further, the configuration of the refrigeration cycle can be simplified and reduced in cost by adopting a configuration in which a plurality of modes can be operated by switching a small number of refrigerant flow switching means, more specifically, two switching means (14, 15). A heat pump device can be provided.

また、請求項7に記載の発明では、冷媒として二酸化炭素(以下、COと略す)を用いたことを特長としている。この請求項7に記載の発明によれば、CO冷媒のように圧縮機(1)からの吐出圧力が高い方がエジェクタ(3)の効果を得易いことによるものである。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。 The invention according to claim 7 is characterized in that carbon dioxide (hereinafter abbreviated as CO 2 ) is used as the refrigerant. According to the seventh aspect of the invention, the higher the discharge pressure from the compressor (1), such as the CO 2 refrigerant, is because the effect of the ejector (3) can be easily obtained. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の第1実施形態におけるヒートポンプ装置の構成を表す模式図である。本実施形態のヒートポンプ装置は、エジェクタ3を用いたヒートポンプサイクルにて、給湯用水を加熱する温水生成モードと、冷房や冷蔵などに用いるブラインを冷却する冷水生成モードとを、それぞれ単独に、または同時に成り立たせるヒートポンプ装置であり、大きく分けて、冷媒の流通するヒートポンプサイクル部と、給湯用水の流通する温水生成部と、ブラインの流通する冷水生成部とで構成されている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of the heat pump apparatus according to the first embodiment of the present invention. The heat pump device according to the present embodiment includes a hot water generation mode for heating hot water supply water and a cold water generation mode for cooling brine used for cooling or refrigeration in a heat pump cycle using the ejector 3 singly or simultaneously. The heat pump device is configured to be roughly divided into a heat pump cycle unit through which a refrigerant circulates, a hot water generation unit through which hot water is circulated, and a cold water generation unit through which brine is circulated.

まず、ヒートポンプサイクル部において、1は気相冷媒を吸入し加圧して吐出する圧縮機であり、2は圧縮機1で加圧された高温冷媒で給湯用の水道水などを加熱する給湯用熱交換器(温水生成用熱交換器、熱交換器)である。3は圧縮機1で加圧された高圧冷媒の減圧手段として冷媒の膨張エネルギーを利用して蒸発器側の冷媒を吸引し、昇圧して吐出するエジェクタであり、4は冷凍サイクル内の冷媒を気液分離して液相冷媒を蓄える気液分離器である。尚、エジェクタ3については後で詳述する。   First, in the heat pump cycle section, 1 is a compressor that sucks in gas phase refrigerant, pressurizes and discharges it, 2 is heat for hot water supply that heats hot water tap water with the high-temperature refrigerant pressurized by the compressor 1. It is an exchanger (heat exchanger for generating hot water, heat exchanger). Reference numeral 3 denotes an ejector that sucks the refrigerant on the evaporator side using the expansion energy of the refrigerant as a means for reducing the pressure of the high-pressure refrigerant pressurized by the compressor 1, and pressurizes and discharges the refrigerant in the refrigeration cycle. It is a gas-liquid separator that stores liquid-phase refrigerant by gas-liquid separation. The ejector 3 will be described in detail later.

5は気液分離器4より供給される液相冷媒で熱交換媒体となるブライン(本実施形態では不凍液)を冷却する給冷用熱交換器(冷水生成用熱交換器、熱交換器)であり、6は圧縮機1で加圧され給湯用熱交換器2を経由した高温冷媒もしくは気液分離器4より供給される液相冷媒と、図示しない送風機(送風手段)にて供給される空気(外気)とを熱交換する室外熱交換器(空気熱交換器、熱交換器)である。そして、これらの機器間を接続する冷媒通路を三方弁(切換手段)7・8と開閉弁(切換手段)9と逆止弁(切換手段)10とで切り換えて、後述する各運転モードに応じた所定の冷媒循環通路を形成する。   Reference numeral 5 denotes a heat exchanger for cooling and cooling (a heat exchanger for generating cold water, a heat exchanger) that cools brine (an antifreeze liquid in the present embodiment) that is a liquid phase refrigerant supplied from the gas-liquid separator 4 and serves as a heat exchange medium. And 6 is a high-temperature refrigerant pressurized by the compressor 1 and supplied from the gas-liquid separator 4 via the hot water supply heat exchanger 2, and air supplied by a blower (blower means) (not shown). It is an outdoor heat exchanger (air heat exchanger, heat exchanger) that exchanges heat with (outside air). Then, the refrigerant passage connecting these devices is switched between the three-way valve (switching means) 7, 8 and the on-off valve (switching means) 9 and the check valve (switching means) 10, and according to each operation mode described later. A predetermined refrigerant circulation passage is formed.

更に詳しく述べると、三方弁7は給湯用熱交換器2の直後に設けられ、給湯用熱交換器2を流通した冷媒をエジェクタ3の高圧冷媒流入部へ供給するか、バイパス路7aを通して室外熱交換器6へ供給するかを切り換えるものである。また、三方弁8は気液分離器4の液相冷媒出口直後に設けられ、液相冷媒を給冷用熱交換器5へ供給するか、室外熱交換器6へ供給するかを切り換えるものである。   More specifically, the three-way valve 7 is provided immediately after the hot water supply heat exchanger 2 to supply the refrigerant flowing through the hot water supply heat exchanger 2 to the high-pressure refrigerant inflow portion of the ejector 3 or through the bypass passage 7a. It is switched whether to supply to the exchanger 6. The three-way valve 8 is provided immediately after the liquid-phase refrigerant outlet of the gas-liquid separator 4 and switches between supplying the liquid-phase refrigerant to the heat exchanger 5 for cooling and supplying or the outdoor heat exchanger 6. is there.

また、電磁弁などの開閉弁9は室外熱交換器6の直後に設けられ、室外熱交換器6を流通した冷媒を、バイパス路10aを通してエジェクタ3の高圧冷媒流入部へ供給するか、低圧冷媒流入部へ供給するかを切り換えるものである。また、逆止弁10はバイパス路10a中に設けられ、バイパス路10aを用いないときにエジェクタ3の高圧冷媒流入部へ流入する高圧冷媒が低圧冷媒側へ回り込まないように阻止するものである。尚、図1中の11・12は、気液分離器4から給冷用熱交換器5または室外熱交換器6へ流れる冷媒流量を調整する固定絞りなどの絞り手段である。   An on-off valve 9 such as a solenoid valve is provided immediately after the outdoor heat exchanger 6, and supplies the refrigerant flowing through the outdoor heat exchanger 6 to the high-pressure refrigerant inflow portion of the ejector 3 through the bypass passage 10a, or low-pressure refrigerant. It switches whether to supply to the inflow part. The check valve 10 is provided in the bypass passage 10a and prevents the high-pressure refrigerant flowing into the high-pressure refrigerant inflow portion of the ejector 3 from flowing into the low-pressure refrigerant side when the bypass passage 10a is not used. Reference numerals 11 and 12 in FIG. 1 denote throttle means such as a fixed throttle that adjusts the flow rate of the refrigerant flowing from the gas-liquid separator 4 to the heat exchanger 5 for cooling / heating or the outdoor heat exchanger 6.

次に、温水生成部おいて、18は給湯用熱交換器2で加熱された高温水を貯湯する貯湯タンクであり、19は貯湯タンク18の下部から冷たい給湯用水を給湯用熱交換器2へ供給して加熱された給湯用水を貯湯タンク18の上部に戻す給湯用水回路の循環ポンプ(循環手段)である。また、貯湯タンク18の下部には給湯用の水道水などが供給される給水路が接続されており、貯湯タンク18の上部には貯湯されていた高温水を台所や風呂などへの給湯や室内ヒータ・床暖房パネル・温蔵庫などの熱源として利用するために供給する給湯路が接続されている。   Next, in the hot water generating unit, 18 is a hot water storage tank for storing hot water heated by the hot water supply heat exchanger 2, and 19 is a hot water supply water from the lower part of the hot water storage tank 18 to the hot water supply heat exchanger 2. This is a circulation pump (circulation means) of a hot water supply water circuit that returns hot water supplied and heated to the upper part of the hot water storage tank 18. In addition, a water supply channel for supplying hot water supply tap water or the like is connected to the lower part of the hot water storage tank 18, and the hot water stored in the hot water storage tank 18 is used to supply hot water to the kitchen or bath or indoors. A hot water supply path to be used for use as a heat source such as a heater, a floor heating panel, and a warm storage is connected.

また、冷水生成部おいて、21は給冷用熱交換器5で冷却されたブラインを貯冷する蓄冷材を収納した貯冷タンクであり、22は貯冷タンク21の上部から冷えていないフラインを給冷用熱交換器5へ供給して冷却されたブラインを貯冷タンク21の下部に戻すブライン回路の循環ポンプ(循環手段)である。また、貯冷タンク21の下部には貯冷されていたブラインを図示しない室内クーラ・床冷房パネル・冷蔵庫などの冷熱源として利用するために供給する給水路が接続されており、貯冷タンク21の上部には放冷を終えたブラインが戻って来る戻り水路が接続されている。   Further, in the cold water generation unit, reference numeral 21 denotes a cold storage tank that stores a cold storage material that cools the brine cooled by the heat supply heat exchanger 5, and 22 denotes a fly line that is not cooled from the upper part of the cold storage tank 21. Is a circulation pump (circulation means) of a brine circuit that supplies the cooled brine to the cooling heat exchanger 5 and returns the cooled brine to the lower part of the cold storage tank 21. In addition, a water supply path for supplying the stored brine as a cooling heat source such as an indoor cooler, a floor cooling panel, and a refrigerator (not shown) is connected to the lower portion of the cold storage tank 21. Connected to the top is a return channel where the brine that has been allowed to cool is returned.

図10は、本発明の実施形態に係るエジェクタ3の構造を示す断面模式図である。エジェクタ3は、圧縮機1で加圧され給湯用熱交換器2もしくは室外熱交換器6を経由して流入する高圧冷媒の圧力エネルギー(圧力ヘッド)を速度エネルギー(速度ヘッド)に変換して冷媒を減圧膨張させるノズル3aと、そのノズル3aから噴射する高い速度の冷媒流により低圧側に接続した給冷用熱交換器5もしくは室外熱交換器6で蒸発した気相冷媒を吸引する吸引部3bと、その吸引した冷媒とノズル3aから噴射する冷媒とを混合させる混合部3cと、速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ3dとを有する。   FIG. 10 is a schematic cross-sectional view showing the structure of the ejector 3 according to the embodiment of the present invention. The ejector 3 converts the pressure energy (pressure head) of the high-pressure refrigerant that is pressurized by the compressor 1 and flows in via the hot water supply heat exchanger 2 or the outdoor heat exchanger 6 into velocity energy (speed head) to generate a refrigerant. And a suction unit 3b for sucking the vapor-phase refrigerant evaporated in the cooling / heating heat exchanger 5 or the outdoor heat exchanger 6 connected to the low pressure side by a high-speed refrigerant flow injected from the nozzle 3a A mixing unit 3c that mixes the sucked refrigerant and the refrigerant injected from the nozzle 3a, and a diffuser 3d that converts the velocity energy into pressure energy to increase the pressure of the refrigerant.

そしてエジェクタ3から流出した冷媒は気液分離器4に流入される。尚、エジェクタ3から噴出する冷媒は、必ずしもディフィーザ3dのみで昇圧されるものではなく、混合部3cにおいても、低圧側で蒸発した気相冷媒を吸引する際に冷媒圧力を上昇させるので、混台部3cとディフィーザ3dとを総称して昇圧部と呼ぶ。また、本実施形態では、混合部3cの断面積はディフューザ3dまで一定であるが、混合部3cの断面積をディフューザ3dに向かうほど大きくなるようにテーパ状としても良い。   The refrigerant that has flowed out of the ejector 3 flows into the gas-liquid separator 4. Note that the refrigerant ejected from the ejector 3 is not necessarily boosted only by the diffuser 3d, and the mixing unit 3c also increases the refrigerant pressure when sucking the vapor-phase refrigerant evaporated on the low-pressure side. The part 3c and the diffuser 3d are collectively referred to as a boosting part. In the present embodiment, the cross-sectional area of the mixing unit 3c is constant up to the diffuser 3d, but the cross-sectional area of the mixing unit 3c may be tapered so as to increase toward the diffuser 3d.

これにより、冷凍サイクルの構成を簡素にすることができるうえ、エジェクタ3の動力回収効果により膨張弁を用いた場合と比べて20%ほど熱交換効率(COP)を向上させることができる。また図10中の3eは、ノズル3aの冷媒上流側で絞り開度を制御することにより高圧冷媒の圧力を制御する可変絞り機構である。これにより、ブライン冷却時と空気吸熱時との異なる最適蒸発圧力に対応することができるようになる。   Thereby, the configuration of the refrigeration cycle can be simplified, and the heat exchange efficiency (COP) can be improved by about 20% compared to the case where the expansion valve is used due to the power recovery effect of the ejector 3. Further, 3e in FIG. 10 is a variable throttle mechanism that controls the pressure of the high-pressure refrigerant by controlling the throttle opening on the refrigerant upstream side of the nozzle 3a. As a result, it is possible to cope with different optimum evaporating pressures during brine cooling and during air heat absorption.

そして、これらの機器からなるヒートポンプ装置の作動を制御する制御手段としての制御装置20は、使用者により図示しない当装置のコントローラで選択された運転モードや設定された条件と、図示しない各センサー等からの情報に基づいて、上述した圧縮機1、可変絞り機構3e、三方弁7・8、開閉弁9、循環ポンプ19・22、図示しない送風機などの各機器の運転状態を決定して制御するための制御信号を出力するものである。   And the control apparatus 20 as a control means which controls the action | operation of the heat pump apparatus which consists of these apparatuses is the operation mode selected by the controller of this apparatus which is not illustrated by the user, the set conditions, each sensor which is not illustrated, etc. Based on the information from the above, the operation state of each device such as the compressor 1, the variable throttle mechanism 3e, the three-way valve 7, 8, the on-off valve 9, the circulation pump 19, 22, the blower (not shown) is determined and controlled. A control signal for output.

次に、上述した第1実施形態の構成においての作動を説明する。本ヒートポンプ装置では、給湯または給湯水を熱源とした暖房などを行う場合の温水生成モードと、冷ブラインを冷熱源として冷房などを行う場合の冷水生成モードと、温水と冷水とを同時に生成する温水+冷水生成モードとが可能となっている。図2〜4は、各運転モードに対応した各機器状態により、冷媒が流通する経路を太線で表わし、冷媒が流通しない経路を点線で表わしている。また、温水生成部と冷水生成部とについては一部のみ記して省略し、稼動しているか否かは温水路または冷水路の白抜き矢印にて表す。以下、各運転モードでの作動を説明する。   Next, the operation in the configuration of the first embodiment described above will be described. In this heat pump device, hot water generation mode when performing heating using hot water or hot water as a heat source, cold water generation mode when performing cooling using cold brine as a cooling source, and hot water that simultaneously generates hot water and cold water. + Cold water generation mode is possible. 2 to 4, the route through which the refrigerant flows is represented by a bold line, and the route through which the refrigerant does not flow is represented by a dotted line, depending on the state of each device corresponding to each operation mode. In addition, only a part of the hot water generating unit and the cold water generating unit is shown and omitted, and whether or not the hot water generating unit is operating is indicated by a white arrow of the hot water channel or the cold water channel. Hereinafter, the operation in each operation mode will be described.

<温水生成モード>
図2は、図1のヒートポンプ装置において温水生成モード時の冷媒の流通経路を表わした模式図である。一方の冷媒流れとして、圧縮機1→給湯用熱交換器2→三方弁7→エジェクタ3→気液分離器4→圧縮機1と循環し、途中の給湯用熱交換器2で供給される給湯用水を加熱する。エジェクタ3内では高圧冷媒がノズル3aの先端から噴き出す勢いで蒸発器(本モードでは室外熱交換器6)から低圧冷媒を吸引し、ノズル噴流と混合し昇圧したのち気液分離器4へ吐出する。気液分離器4で冷媒は気相冷媒と液相冷媒とに分離され、気相冷媒は再度圧縮機1に吸引される。
<Hot water generation mode>
FIG. 2 is a schematic diagram showing a refrigerant flow path in the hot water generation mode in the heat pump apparatus of FIG. 1. As one refrigerant flow, the hot water supplied from the compressor 1 → the hot water heat exchanger 2 → the three-way valve 7 → the ejector 3 → the gas-liquid separator 4 → the compressor 1 and supplied by the hot water heat exchanger 2 in the middle. Heat the water. In the ejector 3, the high-pressure refrigerant is sucked from the tip of the nozzle 3 a at a momentum, and the low-pressure refrigerant is sucked from the evaporator (outdoor heat exchanger 6 in this mode), mixed with the nozzle jet, pressurized, and then discharged to the gas-liquid separator 4. . In the gas-liquid separator 4, the refrigerant is separated into a gas phase refrigerant and a liquid phase refrigerant, and the gas phase refrigerant is again sucked into the compressor 1.

また、もう一方の冷媒流れとして液相冷媒は、気液分離器4→三方弁8→絞り手段11→室外熱交換器6→開閉弁9→エジェクタ3→気液分離器4と循環し、途中の室外熱交換器6で図示しない送風機にて供給される外気と熱交換して吸熱する。尚、給冷用熱交換器5側には三方弁8が閉じているので冷媒は流れないが、給冷用熱交換器5の三方弁8と反対側の配管はエジェクタ3に接続されており常に吸引されているので冷媒が寝込むことはない。   Further, as the other refrigerant flow, the liquid-phase refrigerant circulates through the gas-liquid separator 4 → the three-way valve 8 → the throttle means 11 → the outdoor heat exchanger 6 → the on-off valve 9 → the ejector 3 → the gas-liquid separator 4, and on the way The outdoor heat exchanger 6 exchanges heat with outside air supplied by a blower (not shown) to absorb heat. The refrigerant does not flow because the three-way valve 8 is closed on the cooling heat exchanger 5 side, but the pipe on the opposite side to the three-way valve 8 of the cooling heat exchanger 5 is connected to the ejector 3. Since it is always sucked, the refrigerant never falls asleep.

<冷水生成モード>
図3は、図1のヒートポンプ装置において冷水生成モード時の冷媒の流通経路を表わした模式図である。一方の冷媒流れとして、圧縮機1→給湯用熱交換器2→三方弁7→バイパス路7a→室外熱交換器6→バイパス路10a→逆止弁10→エジェクタ3→気液分離器4→圧縮機1と循環し、途中の給湯用熱交換器2は単なる配管として使う。
<Cold water generation mode>
FIG. 3 is a schematic diagram illustrating a refrigerant flow path in the cold water generation mode in the heat pump apparatus of FIG. 1. As one refrigerant flow, the compressor 1 → the hot water heat exchanger 2 → the three-way valve 7 → the bypass path 7a → the outdoor heat exchanger 6 → the bypass path 10a → the check valve 10 → the ejector 3 → the gas-liquid separator 4 → the compression Circulating with the machine 1, the heat exchanger 2 for hot water supply in the middle is used as a simple pipe.

そのため、図示しない給湯用水の循環ポンプ19は停止しておき、給湯用熱交換器2には水を流さない。このため、圧縮機1から吐出された高温冷媒は給湯用熱交換器2を通るが水と熱交換せず、ほとんど温度変化せずに給湯用熱交換器2から流出して室外熱交換器6で放熱を行う。また、もう一方の冷媒流れとして液相冷媒は、気液分離器4→三方弁8→絞り手段12→給冷用熱交換器5→エジェクタ3→気液分離器4と循環し、途中の給冷用熱交換器5で供給されるブラインを冷却する。尚、このモードにおいて開閉弁9は閉じておく。   Therefore, the hot water circulation pump 19 (not shown) is stopped, and water is not allowed to flow through the hot water heat exchanger 2. For this reason, the high-temperature refrigerant discharged from the compressor 1 passes through the hot water supply heat exchanger 2 but does not exchange heat with water, and flows out of the hot water supply heat exchanger 2 with almost no temperature change, and flows into the outdoor heat exchanger 6. Dissipate heat. Further, as the other refrigerant flow, the liquid-phase refrigerant circulates through the gas-liquid separator 4 → the three-way valve 8 → the throttle means 12 → the heat exchanger 5 for cooling / cooling → the ejector 3 → the gas-liquid separator 4 and The brine supplied by the cooling heat exchanger 5 is cooled. In this mode, the on-off valve 9 is closed.

<温水+冷水生成モード>
図4は、図1のヒートポンプ装置において温水+冷水生成モード時の冷媒の流通経路を表わした模式図である。一方の冷媒流れとして、圧縮機1→給湯用熱交換器2→三方弁7→バイパス路7a→室外熱交換器6→バイパス路10a→逆止弁10→エジェクタ3→気液分離器4→圧縮機1と循環し、途中の給湯用熱交換器2で供給される給湯用水を加熱する。
<Hot water + cold water generation mode>
FIG. 4 is a schematic diagram illustrating a refrigerant flow path in the hot water + cold water generation mode in the heat pump apparatus of FIG. 1. As one refrigerant flow, the compressor 1 → the hot water heat exchanger 2 → the three-way valve 7 → the bypass path 7a → the outdoor heat exchanger 6 → the bypass path 10a → the check valve 10 → the ejector 3 → the gas-liquid separator 4 → the compression It circulates with the machine 1 and heats hot water supplied by the hot water supply heat exchanger 2 on the way.

また、もう一方の冷媒流れとして液相冷媒は、気液分離器4→三方弁8→絞り手段12→給冷用熱交換器5→エジェクタ3→気液分離器4と循環し、途中の給冷用熱交換器5で供給されるブラインを冷却する。尚、このモードにおいて開閉弁9は閉じておく。このように、本モードでは給湯用熱交換器2を放熱器、給冷用熱交換器5を蒸発器として運転する。   Further, as the other refrigerant flow, the liquid-phase refrigerant circulates through the gas-liquid separator 4 → the three-way valve 8 → the throttle means 12 → the heat exchanger 5 for cooling / cooling → the ejector 3 → the gas-liquid separator 4 and The brine supplied by the cooling heat exchanger 5 is cooled. In this mode, the on-off valve 9 is closed. Thus, in this mode, the hot water supply heat exchanger 2 is operated as a radiator, and the cold supply heat exchanger 5 is operated as an evaporator.

このように、本発明では圧縮機1で駆動される流れと、エジェクタ3で駆動される流れとの二つがあり、そこに第3の熱交換器として室外熱交換器6を追加し、この室外熱交換器6を三方弁などの切換手段にて高圧側に接続するか低圧側接続にするかを選択的に切り換えるものである。そして、本発明での室外熱交換器6の位置は、高圧側に配置するとき(冷水生成モード、もしくは温水+冷水生成モード)は給湯用熱交換器2と直列に配置し、低圧側に配置するとき(温水生成モード)は給冷用熱交換器5と並列に配置している。   As described above, in the present invention, there are two flows, ie, a flow driven by the compressor 1 and a flow driven by the ejector 3, and an outdoor heat exchanger 6 is added as a third heat exchanger to the outdoor heat exchanger 6. The heat exchanger 6 is selectively switched between a high pressure side connection and a low pressure side connection by switching means such as a three-way valve. In the present invention, the outdoor heat exchanger 6 is arranged on the high pressure side (cold water generation mode or hot water + cold water generation mode) in series with the hot water supply heat exchanger 2 and on the low pressure side. When performing (warm water production mode), it is arranged in parallel with the heat exchanger 5 for cooling and supplying.

これは例えば、冷水生成モードや温水+冷水生成モード時に給湯用熱交換器2と室外熱交換器6とを並列に接続し、切換手段でいずれかの非使用熱交換器の方に冷媒が流れないようにしたとすると、非使用熱交換器内の温度が低くなり、冷媒がそこで液化して寝込んでしまうという問題がある。しかし本発明では、給湯用熱交換器2と室外熱交換器6とを直列に接続し、非使用熱交換器も単なる配管として冷媒を流通させるため、非使用熱交換器内に冷媒が寝込むことがない。   For example, the hot water supply heat exchanger 2 and the outdoor heat exchanger 6 are connected in parallel in the cold water generation mode or the hot water + cold water generation mode, and the refrigerant flows to one of the unused heat exchangers by the switching means. If not, the temperature in the non-use heat exchanger becomes low, and there is a problem that the refrigerant liquefies there and falls asleep. However, in the present invention, the hot water supply heat exchanger 2 and the outdoor heat exchanger 6 are connected in series, and the unused heat exchanger also circulates the refrigerant as a simple pipe, so that the refrigerant stagnates in the unused heat exchanger. There is no.

また、温水生成モード時に本発明では、低圧側に並列配置した給冷用熱交換器5と室外熱交換器6とにおいて、非使用熱交換器である給冷用熱交換器5は冷媒を流通させないまでもエジェクタ3で給冷用熱交換器5内の冷媒を常に吸引する構成であるため、非使用熱交換器内に冷媒が寝込むことを回避できる。   Further, in the present invention, in the hot water generation mode, in the heat exchanger 5 for cooling / heating and the outdoor heat exchanger 6 arranged in parallel on the low pressure side, the heat exchanger 5 for cooling / cooling which is a non-use heat exchanger circulates the refrigerant. Even if it does not make it, since it is the structure which always attracts | sucks the refrigerant | coolant in the heat exchanger 5 for cooling / cooling with the ejector 3, it can avoid that a refrigerant | coolant stagnates in a non-use heat exchanger.

次に、本実施形態での特徴と、その効果について述べる。まず、エジェクタ3を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、給湯用熱交換器2・給冷用熱交換器5・室外熱交換器6を三つ有しており、運転モードにより給湯用熱交換器2・室外熱交換器6の中のいずれかが冷媒の熱を放熱する放熱器となり、給冷用熱交換器5・室外熱交換器6の中のいずれかが吸熱して冷媒を蒸発させる蒸発器となるよう冷媒流路を切り換えると共に、放熱器にも蒸発器にも利用しないで残る給湯用熱交換器2・室外熱交換器6が高圧冷媒側に接続されている場合は放熱器と直列に接続し、給冷用熱交換器5が低圧冷媒側に接続されている場合は蒸発器と並列に接続して冷媒を流通させないようにしている。   Next, features and effects of this embodiment will be described. First, in a heat pump apparatus capable of heating hot water supply water in a heat pump cycle using the ejector 3, the hot water supply heat exchanger 2, the cooling water heat exchanger 5, and the outdoor heat exchanger 6 are provided. Depending on the operation mode, either the hot water supply heat exchanger 2 or the outdoor heat exchanger 6 becomes a heat radiator that radiates the heat of the refrigerant, and the cooling water heat exchanger 5 or the outdoor heat exchanger 6 The refrigerant flow path is switched so that either of them absorbs heat to become an evaporator that evaporates the refrigerant, and the hot water supply heat exchanger 2 and the outdoor heat exchanger 6 that remain without being used for either the radiator or the evaporator are on the high-pressure refrigerant side. Is connected in series with the radiator, and when the heat exchanger 5 for cooling and supplying is connected to the low-pressure refrigerant side, it is connected in parallel with the evaporator so that the refrigerant is not circulated.

また、エジェクタ3を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、冷媒の熱を放熱させる放熱専用の給湯用熱交換器2と、吸熱して冷媒を蒸発させる蒸発専用の給冷用熱交換器5と、冷媒の熱を放熱する放熱器にも吸熱して冷媒を蒸発させる蒸発器にも切り換え可能な室外熱交換器6とを設け、運転モードにより給湯用熱交換器2もしくは室外熱交換器6のいずれかが冷媒の熱を放熱する放熱器となり、給冷用熱交換器5もしくは室外熱交換器6のいずれかが吸熱して冷媒を蒸発させる蒸発器となるように冷媒流路を切り換えしている。   Moreover, in the heat pump apparatus which can heat the water for hot water supply in the heat pump cycle using the ejector 3, the heat exchanger 2 for exclusive use of the heat radiation that dissipates the heat of the refrigerant, and the evaporation that absorbs the heat and evaporates the refrigerant A dedicated heat exchanger 5 for cooling / heating and an outdoor heat exchanger 6 that can also be switched to an evaporator that absorbs heat from the refrigerant and evaporates the refrigerant by providing heat to the refrigerant are provided. Either the exchanger 2 or the outdoor heat exchanger 6 serves as a radiator that radiates the heat of the refrigerant, and either the heat exchanger 5 for cooling or the outdoor heat exchanger 6 absorbs heat to evaporate the refrigerant; The refrigerant flow path is switched so that

また、冷凍サイクル内の冷媒を気液分離する気液分離器4と、気液分離器4より気相冷媒を吸入し加圧して吐出する圧縮機1と、圧縮機1で加圧された高温冷媒で給湯用水を加熱する給湯用熱交換器2と、圧縮機1で加圧され給湯用熱交換器2を経由した高温冷媒もしくは気液分離器4より供給される液相冷媒と空気とを熱交換する室外熱交換器6と、気液分離器4より供給される液相冷媒でブラインを冷却する給冷用熱交換器5と、圧縮機1で加圧され給湯用熱交換器2もしくは給湯用熱交換器2と室外熱交換器6とを経由して流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル3a、およびノズル3aから噴射する高い速度の冷媒流により低圧側に接続される給冷用熱交換器5もしくは室外熱交換器6で蒸発した気相冷媒を吸引し、その吸引した冷媒とノズル3aから噴射する冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させて気液分離器4に流入させる昇圧部3c・3dを有するエジェクタ3と、これらの機器への循環流体の流路を切り換える複数の三方弁7・8、開閉弁9、逆止弁10と、この冷凍サイクルの作動を制御する制御装置20とを備え、制御装置20は、温水生成モード、冷水生成モード、および温水+冷水生成モードのいずれかから選択された運転モードに応じて、複数の三方弁7・8、開閉弁9を切り換え制御して所定の流体循環通路を形成し、選択運転モードを実施するようになっている。   In addition, a gas-liquid separator 4 that gas-liquid separates the refrigerant in the refrigeration cycle, a compressor 1 that sucks, pressurizes, and discharges gas-phase refrigerant from the gas-liquid separator 4, and a high temperature pressurized by the compressor 1 A hot water supply heat exchanger 2 that heats hot water supply water with a refrigerant, a high-temperature refrigerant that is pressurized by the compressor 1 and that passes through the hot water supply heat exchanger 2 or is supplied from a gas-liquid separator 4 and air. An outdoor heat exchanger 6 for heat exchange, a heat exchanger 5 for cooling water that cools brine with a liquid-phase refrigerant supplied from the gas-liquid separator 4, and a heat exchanger 2 for hot water supply that is pressurized by the compressor 1 or A nozzle 3a for converting pressure energy of high-pressure refrigerant flowing through the hot water supply heat exchanger 2 and the outdoor heat exchanger 6 into velocity energy to decompress and expand the refrigerant, and a high-speed refrigerant flow injected from the nozzle 3a Cooling heat exchanger 5 connected to the low pressure side or outdoor heat exchange The vapor-phase refrigerant evaporated in the vessel 6 is sucked, the velocity energy is converted into pressure energy while mixing the sucked refrigerant and the refrigerant jetted from the nozzle 3a, and the pressure of the refrigerant is increased to the gas-liquid separator 4 Controls the operation of this refrigeration cycle with the ejector 3 having the boosting sections 3c and 3d to be introduced, a plurality of three-way valves 7 and 8, a switching valve 9 and a check valve 10 for switching the flow path of the circulating fluid to these devices. The control device 20 includes a plurality of three-way valves 7 and 8 and an on-off valve according to an operation mode selected from a hot water generation mode, a cold water generation mode, and a hot water + cold water generation mode. 9 is controlled to form a predetermined fluid circulation passage, and the selective operation mode is carried out.

これらによれば、本発明では減圧手段として冷媒の膨張エネルギーを利用して低圧冷媒を吸引・駆動するエジェクタ3を用いることにより、エジェクタ3で蒸発器から吸引した低圧冷媒を昇圧し、圧縮機1に吸入させる冷媒の圧力を高くすることで圧縮機1の消費動力を低減して冷凍サイクルの効率向上が図れる。また、少ない個数の冷媒流路切換手段、より具体的には三方弁7・8と開閉弁9とを切り換えることで複数モードの運転ができる構成とすることで冷凍サイクルの構成を簡素化して低コストなヒートポンプ装置を提供することができる。また、冷媒としてCOを用いている。これは、CO冷媒のように圧縮機1からの吐出圧力が高い方がエジェクタ3の効果を得易いことによるものである。 According to these, in the present invention, by using the ejector 3 that sucks and drives the low-pressure refrigerant by using the expansion energy of the refrigerant as the decompression means, the pressure of the low-pressure refrigerant sucked from the evaporator by the ejector 3 is increased. By increasing the pressure of the refrigerant to be sucked into the compressor, the power consumption of the compressor 1 can be reduced and the efficiency of the refrigeration cycle can be improved. Further, the configuration of the refrigeration cycle can be simplified and reduced by adopting a configuration in which a plurality of modes can be operated by switching a small number of refrigerant flow switching means, more specifically, the three-way valves 7 and 8 and the on-off valve 9. An inexpensive heat pump apparatus can be provided. Also, by using CO 2 as the refrigerant. This is because it is easier to obtain the effect of the ejector 3 when the discharge pressure from the compressor 1 is higher like the CO 2 refrigerant.

(第2実施形態)
次に、本発明の第2実施形態の構成と作動について説明する。図5は、本発明の第2実施形態におけるヒートポンプ装置の構成を表す模式図である。本実施形態のヒートポンプ装置は、エジェクタ3を用いたヒートポンプサイクルにて、給湯用水を加熱する給湯装置の機能と、冷媒の冷温熱を直接室内空調に利用する室内空調装置の機能とを組み合わせたものである。
(Second Embodiment)
Next, the configuration and operation of the second embodiment of the present invention will be described. FIG. 5 is a schematic diagram showing the configuration of the heat pump device according to the second embodiment of the present invention. The heat pump device of the present embodiment is a combination of the function of a hot water supply device that heats hot water supply water and the function of an indoor air conditioner that directly uses the cold / hot heat of the refrigerant for indoor air conditioning in a heat pump cycle using the ejector 3. It is.

上述した第1実施形態と異なるのは、給冷用熱交換器5に代わり、室内の空調に利用する室内熱交換器(空気熱交換器、熱交換器)13を設けている。また、運転モード切換用の切換手段として二つの四方弁14・15を設けている。四方弁14は給湯用熱交換器2からの冷媒を室外熱交換器6へ供給するか、室内熱交換器13へ供給するかを切り換えるものであり、四方弁15はエジェクタ3に対して二つある空気熱交換器6・13のうちどちらか一方を高圧冷媒供給部に接続して、残る他方を低圧冷媒供給部に接続するように切り換えるものである。その他の機器は第1実施形態と同様のため、同じ符号を付して説明を省略する。   The difference from the first embodiment described above is that an indoor heat exchanger (air heat exchanger, heat exchanger) 13 used for indoor air conditioning is provided in place of the cooling heat exchanger 5. Further, two four-way valves 14 and 15 are provided as switching means for switching the operation mode. The four-way valve 14 switches whether the refrigerant from the hot water supply heat exchanger 2 is supplied to the outdoor heat exchanger 6 or the indoor heat exchanger 13, and the four-way valve 15 is provided with respect to the ejector 3. One of the air heat exchangers 6 and 13 is switched so as to be connected to the high-pressure refrigerant supply unit and the other is connected to the low-pressure refrigerant supply unit. Since the other devices are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted.

また、本ヒートポンプ装置は大きく分けて、冷媒の流通するヒートポンプサイクル部と、給湯用水の流通する温水生成部とで構成されているが、温水生成部についても第1実施形態と同様の構成であるため説明を省略する。そして、ヒートポンプサイクル部の構成については、以下の各モードでの作動によって説明する。   In addition, this heat pump device is roughly divided into a heat pump cycle unit through which refrigerant flows and a hot water generation unit through which hot water supply water flows, and the hot water generation unit has the same configuration as in the first embodiment. Therefore, explanation is omitted. And the structure of a heat pump cycle part is demonstrated by the operation | movement in each following mode.

本ヒートポンプ装置では、切換可能な運転モードとして給湯モード・暖房モード・冷房モード・給湯+冷房モードの四つがある。図6〜9は、各運転モードに対応した各機器状態により、冷媒が流通する経路を太線で表わしている。また、二つの空気熱交換器6・13に空気を供給する図示しない送風機が稼動しているか否かは白抜き矢印にて表す。また、温水生成部については一部のみ記して省略し、稼動しているか否かは温水路の白抜き矢印にて表す。以下、各運転モードでの作動を説明する。   In this heat pump apparatus, there are four operation modes that can be switched: a hot water supply mode, a heating mode, a cooling mode, and a hot water supply + cooling mode. 6 to 9 indicate the paths through which the refrigerant flows according to the respective device states corresponding to the respective operation modes by bold lines. Further, whether or not a blower (not shown) that supplies air to the two air heat exchangers 6 and 13 is operating is indicated by a white arrow. Moreover, about a warm water production | generation part, only one part is described and abbreviate | omitted, and it is represented by the white arrow of a warm water channel whether it is operating. Hereinafter, the operation in each operation mode will be described.

<給湯モード>
図6は、図5のヒートポンプ装置において給湯モード時の冷媒の流通経路を表わした模式図である。一方の冷媒流れとして、圧縮機1→給湯用熱交換器2→四方弁14→室内熱交換器13→四方弁15→エジェクタ3→気液分離器4→圧縮機1と循環し、途中の給湯用熱交換器2で供給される給湯用水を加熱し、室内熱交換器13には空気を流しておらず単なる配管として使用する。
<Hot water supply mode>
FIG. 6 is a schematic diagram showing a refrigerant flow path in the hot water supply mode in the heat pump apparatus of FIG. 5. One refrigerant flow circulates as follows: compressor 1 → hot water supply heat exchanger 2 → four-way valve 14 → indoor heat exchanger 13 → four-way valve 15 → ejector 3 → gas-liquid separator 4 → compressor 1 The hot water supplied by the heat exchanger 2 is heated, and the indoor heat exchanger 13 is used as a simple pipe without flowing air.

エジェクタ3内では高圧冷媒がノズル3aの先端から噴き出す勢いで蒸発器(本モードでは室外熱交換器6)から低圧冷媒を吸引し、ノズル噴流と混合し昇圧したのち気液分離器4へ吐出する。気液分離器4で冷媒は気相冷媒と液相冷媒とに分離され、気相冷媒は再度圧縮機1に吸引される。また、もう一方の冷媒流れとして液相冷媒は、気液分離器4→絞り手段11→四方弁14→室外熱交換器6→四方弁15→エジェクタ3→気液分離器4と循環し、途中の室外熱交換器6で図示しない送風機にて供給される外気と熱交換して吸熱する。   In the ejector 3, the high-pressure refrigerant is sucked from the tip of the nozzle 3 a at a momentum, and the low-pressure refrigerant is sucked from the evaporator (outdoor heat exchanger 6 in this mode), mixed with the nozzle jet, pressurized, and then discharged to the gas-liquid separator 4. . In the gas-liquid separator 4, the refrigerant is separated into a gas phase refrigerant and a liquid phase refrigerant, and the gas phase refrigerant is again sucked into the compressor 1. Further, as the other refrigerant flow, the liquid phase refrigerant circulates through the gas-liquid separator 4 → the throttle means 11 → the four-way valve 14 → the outdoor heat exchanger 6 → the four-way valve 15 → the ejector 3 → the gas-liquid separator 4. The outdoor heat exchanger 6 exchanges heat with outside air supplied by a blower (not shown) to absorb heat.

<暖房モード>
図7は、図5のヒートポンプ装置において暖房モード時の冷媒の流通経路を表わした模式図である。一方の冷媒流れとして、圧縮機1→給湯用熱交換器2→四方弁14→室内熱交換器13→四方弁15→エジェクタ3→気液分離器4→圧縮機1と循環し、途中の室内熱交換器13で供給される室内空気を加熱して暖房を行い、給湯用熱交換器2には給湯用水を流しておらず単なる配管として使用する。
<Heating mode>
FIG. 7 is a schematic diagram showing a refrigerant flow path in the heating mode in the heat pump apparatus of FIG. 5. As one refrigerant flow, it circulates with the compressor 1 → the hot water supply heat exchanger 2 → the four-way valve 14 → the indoor heat exchanger 13 → the four-way valve 15 → the ejector 3 → the gas-liquid separator 4 → the compressor 1, The room air supplied by the heat exchanger 13 is heated to perform heating, and the hot water supply heat exchanger 2 does not flow hot water supply water and is used as a simple pipe.

そのため、図示しない給湯用水の循環ポンプ19は停止しておき、給湯用熱交換器2には水を流さない。このため、圧縮機1から吐出された高温冷媒は給湯用熱交換器2を通るが水と熱交換せず、ほとんど温度変化せずに給湯用熱交換器2から流出して室内熱交換器13で放熱を行う。また、もう一方の冷媒流れとして液相冷媒は、気液分離器4→絞り手段11→四方弁14→室外熱交換器6→四方弁15→エジェクタ3→気液分離器4と循環し、途中の室外熱交換器6で図示しない送風機にて供給される外気と熱交換して吸熱する。   Therefore, the hot water circulation pump 19 (not shown) is stopped, and water is not allowed to flow through the hot water heat exchanger 2. For this reason, the high-temperature refrigerant discharged from the compressor 1 passes through the hot water supply heat exchanger 2 but does not exchange heat with water, and flows out of the hot water supply heat exchanger 2 with almost no temperature change, and flows into the indoor heat exchanger 13. Dissipate heat. Further, as the other refrigerant flow, the liquid phase refrigerant circulates through the gas-liquid separator 4 → the throttle means 11 → the four-way valve 14 → the outdoor heat exchanger 6 → the four-way valve 15 → the ejector 3 → the gas-liquid separator 4. The outdoor heat exchanger 6 exchanges heat with outside air supplied by a blower (not shown) to absorb heat.

<冷房モード>
図8は、図5のヒートポンプ装置において冷房モード時の冷媒の流通経路を表わした模式図である。一方の冷媒流れとして、圧縮機1→給湯用熱交換器2→四方弁14→室外熱交換器6→四方弁15→エジェクタ3→気液分離器4→圧縮機1と循環し、途中の室外熱交換器6で放熱を行い、給湯用熱交換器2には給湯用水を流しておらず単なる配管として使用する。また、もう一方の冷媒流れとして液相冷媒は、気液分離器4→絞り手段11→四方弁14→室内熱交換器13→四方弁15→エジェクタ3→気液分離器4と循環し、途中の室内熱交換器13で供給される室内空気から吸熱して冷房を行う。
<Cooling mode>
FIG. 8 is a schematic diagram showing a refrigerant flow path in the cooling mode in the heat pump apparatus of FIG. 5. As one refrigerant flow, it circulates between the compressor 1 → the hot water supply heat exchanger 2 → the four-way valve 14 → the outdoor heat exchanger 6 → the four-way valve 15 → the ejector 3 → the gas-liquid separator 4 → the compressor 1, Heat is dissipated by the heat exchanger 6, and the hot water supply heat exchanger 2 is used as a simple pipe without flowing hot water. Further, as the other refrigerant flow, the liquid phase refrigerant circulates through the gas-liquid separator 4 → the throttle means 11 → the four-way valve 14 → the indoor heat exchanger 13 → the four-way valve 15 → the ejector 3 → the gas-liquid separator 4. The heat is absorbed from the indoor air supplied by the indoor heat exchanger 13 to perform cooling.

<給湯+冷房モード>
図9は、図5のヒートポンプ装置において給湯+冷房モード時の冷媒の流通経路を表わした模式図である。一方の冷媒流れとして、圧縮機1→給湯用熱交換器2→四方弁14→室外熱交換器6→四方弁15→エジェクタ3→気液分離器4→圧縮機1と循環し、途中の給湯用熱交換器2で供給される給湯用水を加熱し、室外熱交換器6には空気を流しておらず単なる配管として使用する。また、もう一方の冷媒流れとして液相冷媒は、気液分離器4→絞り手段11→四方弁14→室内熱交換器13→四方弁15→エジェクタ3→気液分離器4と循環し、途中の室内熱交換器13で供給される室内空気から吸熱して冷房を行う。
<Hot water supply + cooling mode>
FIG. 9 is a schematic diagram showing a refrigerant flow path in the hot water supply + cooling mode in the heat pump apparatus of FIG. One refrigerant flow circulates as follows: compressor 1 → hot water supply heat exchanger 2 → four-way valve 14 → outdoor heat exchanger 6 → four-way valve 15 → ejector 3 → gas-liquid separator 4 → compressor 1 The hot water supplied by the heat exchanger 2 is heated, and the outdoor heat exchanger 6 is used as a simple pipe without flowing air. Further, as the other refrigerant flow, the liquid phase refrigerant circulates through the gas-liquid separator 4 → the throttle means 11 → the four-way valve 14 → the indoor heat exchanger 13 → the four-way valve 15 → the ejector 3 → the gas-liquid separator 4. The heat is absorbed from the indoor air supplied by the indoor heat exchanger 13 to perform cooling.

次に、本実施形態での特徴と、その効果について述べる。まず、エジェクタ3を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、給湯用熱交換器2・室外熱交換器6・室内熱交換器13を三つ有して運転モードにより給湯用熱交換器2・室外熱交換器6・室内熱交換器13の中のいずれかが冷媒の熱を放熱する放熱器となり、室外熱交換器6・室内熱交換器13の中のいずれかが吸熱して冷媒を蒸発させる蒸発器となるよう冷媒流路を切り換えると共に、放熱器にも蒸発器にも利用しないで残る給湯用熱交換器2・室外熱交換器6・室内熱交換器13を高圧冷媒側で放熱器と直列に接続するようにしている。   Next, features and effects of this embodiment will be described. First, in a heat pump device capable of heating hot water supply water in a heat pump cycle using the ejector 3, the apparatus has three hot water supply heat exchangers 2, an outdoor heat exchanger 6, and an indoor heat exchanger 13. Depending on the mode, one of the hot water supply heat exchanger 2, the outdoor heat exchanger 6, and the indoor heat exchanger 13 becomes a radiator that radiates the heat of the refrigerant, and in the outdoor heat exchanger 6 and the indoor heat exchanger 13 The refrigerant flow path is switched so that one of them becomes an evaporator that absorbs heat and evaporates the refrigerant, and the remaining heat exchanger 2 for hot water supply, the outdoor heat exchanger 6 and the indoor heat exchange that are not used as a radiator or an evaporator The vessel 13 is connected in series with the radiator on the high-pressure refrigerant side.

また、エジェクタ3を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、冷媒の熱を放熱させる放熱専用の給湯用熱交換器2と、冷媒の熱を放熱する放熱器にも吸熱して冷媒を蒸発させる蒸発器にも切り換え可能な二つの室外熱交換器6・室内熱交換器13とを設け、運転モードにより給湯用熱交換器2もしくは室外熱交換器6・室内熱交換器13のいずれかが冷媒の熱を放熱する放熱器となり、室外熱交換器6・室内熱交換器13のいずれかが吸熱して冷媒を蒸発させる蒸発器となるように冷媒流路を切り換えるようにしている。   Moreover, in the heat pump apparatus which can heat the water for hot water supply in the heat pump cycle using the ejector 3, the heat exchanger 2 for exclusive use of the heat radiation which radiates the heat of the refrigerant, and the radiator which radiates the heat of the refrigerant Are provided with two outdoor heat exchangers 6 and an indoor heat exchanger 13 that can also be switched to an evaporator that absorbs heat and evaporates the refrigerant. Depending on the operation mode, the heat exchanger 2 for hot water supply or the outdoor heat exchanger 6 One of the heat exchangers 13 becomes a radiator that radiates the heat of the refrigerant, and one of the outdoor heat exchanger 6 and the indoor heat exchanger 13 becomes an evaporator that absorbs heat and evaporates the refrigerant. I try to switch.

また、冷凍サイクル内の冷媒を気液分離する気液分離器4と、気液分離器4より気相冷媒を吸入し加圧して吐出する圧縮機1と、圧縮機1で加圧された高温冷媒で給湯用水を加熱する給湯用熱交換器2と、圧縮機1で加圧され給湯用熱交換器2を経由した高温冷媒もしくは気液分離器4より供給される液相冷媒と空気とを熱交換する二つの室外熱交換器6・室内熱交換器13と、圧縮機1で加圧され給湯用熱交換器2と二つの室外熱交換器6・室内熱交換器13のいずれか一方とを経由して流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル3a、およびノズル3aから噴射する高い速度の冷媒流により低圧側に接続される二つの室外熱交換器6・室内熱交換器13のいずれか他方で蒸発した気相冷媒を吸引し、その吸引した冷媒とノズル3aから噴射する冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させて気液分離器4に流入させる昇圧部3c・3dを有するエジェクタ3と、これらの機器への循環流体の流路を切り換える複数の四方弁14・15と、この冷凍サイクルの作動を制御する制御装置20とを備え、制御装置20は、給湯モード、暖房モード、冷房モード、および給湯+冷房モードのいずれかから選択された運転モードに応じて、複数の四方弁14・15を切り換え制御して所定の流体循環通路を形成し、選択運転モードを実施するようにしている。   In addition, a gas-liquid separator 4 that gas-liquid separates the refrigerant in the refrigeration cycle, a compressor 1 that sucks, pressurizes, and discharges gas-phase refrigerant from the gas-liquid separator 4, and a high temperature pressurized by the compressor 1 A hot water supply heat exchanger 2 that heats hot water supply water with a refrigerant, a high-temperature refrigerant that is pressurized by the compressor 1 and that passes through the hot water supply heat exchanger 2 or is supplied from a gas-liquid separator 4 and air. Two outdoor heat exchangers 6 and an indoor heat exchanger 13 for exchanging heat, a hot water supply heat exchanger 2 pressurized by the compressor 1, and one of the two outdoor heat exchangers 6 and the indoor heat exchanger 13 Nozzle 3a for converting the pressure energy of the high-pressure refrigerant flowing in via the pressure into velocity energy to decompress and expand the refrigerant, and two outdoor heat exchangers connected to the low-pressure side by a high-speed refrigerant flow injected from the nozzle 3a 6. Gas phase cooling evaporated in either of the indoor heat exchangers 13 The pressure boosting units 3c and 3d that convert the velocity energy into pressure energy and increase the pressure of the refrigerant and flow into the gas-liquid separator 4 while mixing the suctioned refrigerant and the refrigerant injected from the nozzle 3a. And a control device 20 that controls the operation of the refrigeration cycle. The control device 20 includes a hot water supply mode, a heating system, and a control device 20 that controls the operation of the refrigeration cycle. A predetermined fluid circulation passage is formed by switching and controlling the four-way valves 14 and 15 according to an operation mode selected from any one of a mode, a cooling mode, and a hot water supply + cooling mode, and a selected operation mode is performed. I am doing so.

これらによれば、本発明では減圧手段として冷媒の膨張エネルギーを利用して低圧冷媒を吸引・駆動するエジェクタ3を用いることにより、エジェクタ3で蒸発器から吸引した低圧冷媒を昇圧し、圧縮機1に吸入させる冷媒の圧力を高くすることで圧縮機1の消費動力を低減して冷凍サイクルの効率向上が図れる。また、少ない個数の冷媒流路切換手段、より具体的には二つの四方弁14・15を切り換えることで複数モードの運転ができる構成とすることで冷凍サイクルの構成を簡素化して低コストなヒートポンプ装置を提供することができる。   According to these, in the present invention, by using the ejector 3 that sucks and drives the low-pressure refrigerant using the expansion energy of the refrigerant as decompression means, the pressure of the low-pressure refrigerant sucked from the evaporator by the ejector 3 is increased. By increasing the pressure of the refrigerant to be sucked into the compressor, the power consumption of the compressor 1 can be reduced and the efficiency of the refrigeration cycle can be improved. In addition, a low-cost heat pump that simplifies the configuration of the refrigeration cycle by adopting a configuration in which a plurality of modes can be operated by switching a small number of refrigerant flow switching means, more specifically, two four-way valves 14 and 15. An apparatus can be provided.

(その他の実施形態)
上述の実施形態では、温水生成部に加熱された高温水を貯湯する貯湯タンク18を構成し、冷水生成部に冷却されたブラインを貯冷する貯冷タンク21を構成しているが、必ずしも貯湯式給湯や貯冷式給冷である必要は無いため、貯湯タンク18や貯冷タンク21が無い構成であっても良い。また、上述の第2実施形態では、冷媒流路を切り換える切換手段として四方弁を用いているが、これに限らず、三方弁を2個組み合わせて循環流体流路を切り換えるものであっても良い。
(Other embodiments)
In the above-described embodiment, the hot water storage tank 18 that stores hot water heated by the hot water generator is configured and the cold storage tank 21 that stores brine cooled by the cold water generator is configured. Since there is no need for the hot water supply or the cold storage type water supply, the hot water storage tank 18 or the cold storage tank 21 may be omitted. In the second embodiment described above, the four-way valve is used as the switching means for switching the refrigerant flow path. However, the present invention is not limited to this, and the circulating fluid flow path may be switched by combining two three-way valves. .

本発明の第1実施形態におけるヒートポンプ装置の構成を表す模式図である。It is a schematic diagram showing the structure of the heat pump apparatus in 1st Embodiment of this invention. 図1のヒートポンプ装置において温水生成モード時の冷媒の流通経路を表わした模式図である。It is the schematic diagram showing the distribution route of the refrigerant | coolant at the time of warm water production | generation mode in the heat pump apparatus of FIG. 図1のヒートポンプ装置において冷水生成モード時の冷媒の流通経路を表わした模式図である。It is the schematic diagram showing the distribution route of the refrigerant | coolant at the time of the cold water production | generation mode in the heat pump apparatus of FIG. 図1のヒートポンプ装置において温水+冷水生成モード時の冷媒の流通経路を表わした模式図である。It is the schematic diagram showing the distribution route of the refrigerant | coolant at the time of warm water + cold water production | generation mode in the heat pump apparatus of FIG. 本発明の第2実施形態におけるヒートポンプ装置の構成を表す模式図である。It is a schematic diagram showing the structure of the heat pump apparatus in 2nd Embodiment of this invention. 図6のヒートポンプ装置において給湯モード時の冷媒の流通経路を表わした模式図である。It is the schematic diagram showing the distribution route of the refrigerant | coolant at the time of the hot-water supply mode in the heat pump apparatus of FIG. 図6のヒートポンプ装置において暖房モード時の冷媒の流通経路を表わした模式図である。It is the schematic diagram showing the distribution route of the refrigerant | coolant at the time of heating mode in the heat pump apparatus of FIG. 図6のヒートポンプ装置において冷房モード時の冷媒の流通経路を表わした模式図である。FIG. 7 is a schematic diagram illustrating a refrigerant flow path in a cooling mode in the heat pump apparatus of FIG. 6. 図6のヒートポンプ装置において給湯+冷房モード時の冷媒の流通経路を表わした模式図である。FIG. 7 is a schematic diagram showing a refrigerant flow path in a hot water supply + cooling mode in the heat pump device of FIG. 6. 本発明に係るエジェクタ3の構造を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the structure of the ejector 3 which concerns on this invention.

符号の説明Explanation of symbols

1…圧縮機
2…給湯用熱交換器(温水生成用熱交換器、熱交換器)
3…エジェクタ
3a…ノズル
3c…混合部(昇圧部)
3d…ディフューザ部(昇圧部)
4…気液分離器
5…給冷用熱交換器(冷水生成用熱交換器、熱交換器)
6…室外熱交換器(空気熱交換器、熱交換器)
7…三方弁(切換手段)
8…三方弁(切換手段)
9…開閉弁(切換手段)
10…逆止弁(切換手段)
13…室内熱交換器(空気熱交換器、熱交換器)
14…四方弁(切換手段)
15…四方弁(切換手段)
20…制御装置(制御手段)
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Heat exchanger for hot water supply (Heat water generation heat exchanger, heat exchanger)
3 ... Ejector 3a ... Nozzle 3c ... Mixing section (pressurizing section)
3d ... Diffuser section (boost section)
4 ... Gas-liquid separator 5 ... Heat exchanger for cooling / heating (heat exchanger for generating cold water, heat exchanger)
6… Outdoor heat exchanger (air heat exchanger, heat exchanger)
7 ... Three-way valve (switching means)
8 ... Three-way valve (switching means)
9: Open / close valve (switching means)
10. Check valve (switching means)
13 ... Indoor heat exchanger (air heat exchanger, heat exchanger)
14 ... Four-way valve (switching means)
15 ... Four-way valve (switching means)
20 ... Control device (control means)

Claims (7)

エジェクタ(3)を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、
熱交換器(2、5、6)を三つ有して運転モードにより前記熱交換器(2、6)の中のいずれかが冷媒の熱を放熱する放熱器となり、前記熱交換器(5、6)の中のいずれかが吸熱して冷媒を蒸発させる蒸発器となるよう冷媒流路を切り換えると共に、
放熱器にも蒸発器にも利用しないで残る前記熱交換器(2、6)が高圧冷媒側に接続される場合は放熱器と直列に接続し、前記熱交換器(5)が低圧冷媒側に接続される場合は蒸発器と並列に接続して冷媒を流通させないようにすることを特徴とするヒートポンプ装置。
In a heat pump device capable of heating water for hot water supply in a heat pump cycle using an ejector (3),
There are three heat exchangers (2, 5, 6), and one of the heat exchangers (2, 6) becomes a radiator that radiates the heat of the refrigerant depending on the operation mode, and the heat exchanger (5 , 6) while switching the refrigerant flow path so as to become an evaporator that absorbs heat and evaporates the refrigerant,
When the heat exchangers (2, 6) that remain without being used for either a radiator or an evaporator are connected to the high-pressure refrigerant side, they are connected in series with the radiator, and the heat exchanger (5) is connected to the low-pressure refrigerant side. When connected to the heat pump device, the heat pump device is connected in parallel with the evaporator so as not to circulate the refrigerant.
エジェクタ(3)を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、
冷媒の熱を放熱させる放熱専用の温水生成用熱交換器(2)と、
吸熱して冷媒を蒸発させる蒸発専用の冷水生成用熱交換器(5)と、
冷媒の熱を放熱する放熱器にも吸熱して冷媒を蒸発させる蒸発器にも切り換え可能な空気熱交換器(6)とを設け、
運転モードにより前記温水生成用熱交換器(2)もしくは前記空気熱交換器(6)のいずれかが冷媒の熱を放熱する放熱器となり、前記冷水生成用熱交換器(5)もしくは前記空気熱交換器(6)のいずれかが吸熱して冷媒を蒸発させる蒸発器となるように冷媒流路を切り換えるようにしたことを特徴とするヒートポンプ装置。
In a heat pump device capable of heating water for hot water supply in a heat pump cycle using an ejector (3),
A heat exchanger (2) for generating hot water dedicated to heat dissipation that dissipates the heat of the refrigerant;
A heat exchanger (5) for producing cold water dedicated to evaporation that absorbs heat and evaporates the refrigerant;
An air heat exchanger (6) that can also be switched to an evaporator that absorbs heat and evaporates the refrigerant by dissipating heat from the refrigerant;
Depending on the operation mode, either the hot water generating heat exchanger (2) or the air heat exchanger (6) becomes a radiator that radiates the heat of the refrigerant, and the cold water generating heat exchanger (5) or the air heat A heat pump device characterized in that the refrigerant flow path is switched so that any of the exchangers (6) absorbs heat to become an evaporator for evaporating the refrigerant.
冷凍サイクル内の冷媒を気液分離する気液分離器(4)と、
前記気液分離器(4)より気相冷媒を吸入し加圧して吐出する圧縮機(1)と、
前記圧縮機(1)で加圧された高温冷媒で給湯用水を加熱する温水生成用熱交換器(2)と、
前記気液分離器(4)より供給される液相冷媒でブラインを冷却する冷水生成用熱交換器(5)と、
前記圧縮機(1)で加圧され前記温水生成用熱交換器(2)を経由した高温冷媒もしくは前記気液分離器(4)より供給される液相冷媒と空気とを熱交換する空気熱交換器(6)と、
前記圧縮機(1)で加圧され前記温水生成用熱交換器(2)もしくは前記温水生成用熱交換器(2)と前記空気熱交換器(6)とを経由して流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル(3a)、および前記ノズル(3a)から噴射する高い速度の冷媒流により低圧側に接続される前記冷水生成用熱交換器(5)もしくは前記空気熱交換器(6)で蒸発した気相冷媒を吸引し、その吸引した冷媒と前記ノズル(3a)から噴射する冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させて前記気液分離器(4)に流入させる昇圧部(3c、3d)を有するエジェクタ(3)と、
これらの機器への循環流体の流路を切り換える複数の切換手段(7〜10)と、
この冷凍サイクルの作動を制御する制御手段(20)とを備え、
前記制御手段(20)は、温水生成モード、冷水生成モード、および温水+冷水生成モードのいずれかから選択された運転モードに応じて、前記複数の切換手段(7〜10)を切り換え制御して所定の流体循環通路を形成し、選択運転モードを実施することを特徴とするヒートポンプ装置。
A gas-liquid separator (4) for gas-liquid separation of the refrigerant in the refrigeration cycle;
A compressor (1) for sucking a gas-phase refrigerant from the gas-liquid separator (4), pressurizing it and discharging it;
A hot water generating heat exchanger (2) for heating hot water supply water with a high-temperature refrigerant pressurized by the compressor (1);
A cold water generating heat exchanger (5) for cooling brine with a liquid-phase refrigerant supplied from the gas-liquid separator (4);
Air heat for exchanging heat between the high-temperature refrigerant pressurized by the compressor (1) and the hot water generation heat exchanger (2) or the liquid refrigerant supplied from the gas-liquid separator (4) and air. An exchanger (6),
The high-pressure refrigerant that is pressurized by the compressor (1) and flows through the hot water generating heat exchanger (2) or the hot water generating heat exchanger (2) and the air heat exchanger (6). A nozzle (3a) that converts pressure energy into velocity energy and decompresses and expands the refrigerant, and the cold water generating heat exchanger (5) connected to the low pressure side by a high-speed refrigerant flow injected from the nozzle (3a) Alternatively, the vapor phase refrigerant evaporated in the air heat exchanger (6) is sucked, and the velocity energy is converted into pressure energy while mixing the sucked refrigerant and the refrigerant jetted from the nozzle (3a) to change the pressure of the refrigerant. An ejector (3) having a boosting section (3c, 3d) for boosting the pressure to flow into the gas-liquid separator (4);
A plurality of switching means (7 to 10) for switching the flow path of the circulating fluid to these devices;
Control means (20) for controlling the operation of the refrigeration cycle,
The control means (20) switches and controls the plurality of switching means (7 to 10) according to an operation mode selected from a hot water generation mode, a cold water generation mode, and a hot water + cold water generation mode. A heat pump device that forms a predetermined fluid circulation passage and performs a selective operation mode.
エジェクタ(3)を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、
熱交換器(2、6、13)を三つ有して運転モードにより前記熱交換器(2、6、13)の中のいずれかが冷媒の熱を放熱する放熱器となり、前記熱交換器(6、13)の中のいずれかが吸熱して冷媒を蒸発させる蒸発器となるよう冷媒流路を切り換えると共に、
放熱器にも蒸発器にも利用しないで残る前記熱交換器(2、6、13)を高圧冷媒側で放熱器と直列に接続することを特徴とするヒートポンプ装置。
In a heat pump device capable of heating water for hot water supply in a heat pump cycle using an ejector (3),
The heat exchanger (2, 6, 13) has three heat exchangers (2, 6, 13), and any one of the heat exchangers (2, 6, 13) becomes a heat radiator that radiates the heat of the refrigerant depending on the operation mode, and the heat exchanger (6, 13) while switching the refrigerant flow path to become an evaporator that absorbs heat and evaporates the refrigerant,
A heat pump device characterized in that the heat exchanger (2, 6, 13) that remains without being used in either a radiator or an evaporator is connected in series with the radiator on the high-pressure refrigerant side.
エジェクタ(3)を用いたヒートポンプサイクルにて給湯用の水を加熱することのできるヒートポンプ装置において、
冷媒の熱を放熱させる放熱専用の温水生成用熱交換器(2)と、
冷媒の熱を放熱する放熱器にも吸熱して冷媒を蒸発させる蒸発器にも切り換え可能な二つの空気熱交換器(6、13)とを設け、
運転モードにより前記温水生成用熱交換器(2)もしくは前記空気熱交換器(6、13)のいずれかが冷媒の熱を放熱する放熱器となり、前記空気熱交換器(6、13)のいずれかが吸熱して冷媒を蒸発させる蒸発器となるように冷媒流路を切り換えるようにしたことを特徴とするヒートポンプ装置。
In a heat pump device capable of heating water for hot water supply in a heat pump cycle using an ejector (3),
A heat exchanger (2) for generating hot water dedicated to heat dissipation that dissipates the heat of the refrigerant;
Two air heat exchangers (6, 13) that can be switched to a radiator that dissipates heat of the refrigerant and also an evaporator that absorbs heat and evaporates the refrigerant are provided,
Depending on the operation mode, either the hot water generating heat exchanger (2) or the air heat exchanger (6, 13) becomes a radiator that radiates the heat of the refrigerant, and any of the air heat exchangers (6, 13) A heat pump device characterized in that the refrigerant flow path is switched so as to become an evaporator that absorbs heat and evaporates the refrigerant.
冷凍サイクル内の冷媒を気液分離する気液分離器(4)と、
前記気液分離器(4)より気相冷媒を吸入し加圧して吐出する圧縮機(1)と、
前記圧縮機(1)で加圧された高温冷媒で給湯用水を加熱する温水生成用熱交換器(2)と、
前記圧縮機(1)で加圧され前記温水生成用熱交換器(2)を経由した高温冷媒もしくは前記気液分離器(4)より供給される液相冷媒と空気とを熱交換する二つの空気熱交換器(6、13)と、
前記圧縮機(1)で加圧され前記温水生成用熱交換器(2)と前記二つの空気熱交換器(6、13)のいずれか一方とを経由して流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル(3a)、および前記ノズル(3a)から噴射する高い速度の冷媒流により低圧側に接続される前記二つの空気熱交換器(6、13)のいずれか他方で蒸発した気相冷媒を吸引し、その吸引した冷媒と前記ノズル(3a)から噴射する冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させて前記気液分離器(4)に流入させる昇圧部(3c、3d)を有するエジェクタ(3)と、
これらの機器への循環流体の流路を切り換える複数の切換手段(14、15)と、
この冷凍サイクルの作動を制御する制御手段(20)とを備え、
前記制御手段(20)は、給湯モード、暖房モード、冷房モード、および給湯+冷房モードのいずれかから選択された運転モードに応じて、前記複数の切換手段(14、15)を切り換え制御して所定の流体循環通路を形成し、選択運転モードを実施することを特徴とするヒートポンプ装置。
A gas-liquid separator (4) for gas-liquid separation of the refrigerant in the refrigeration cycle;
A compressor (1) for sucking a gas-phase refrigerant from the gas-liquid separator (4), pressurizing it and discharging it;
A hot water generating heat exchanger (2) for heating hot water supply water with a high-temperature refrigerant pressurized by the compressor (1);
Two high-temperature refrigerants pressurized by the compressor (1) and passed through the hot water generating heat exchanger (2) or liquid phase refrigerant supplied from the gas-liquid separator (4) and air are heat-exchanged. An air heat exchanger (6, 13);
The pressure energy of the high-pressure refrigerant that is pressurized by the compressor (1) and flows in through the hot water generating heat exchanger (2) and one of the two air heat exchangers (6, 13) is reduced. A nozzle (3a) for converting the energy into velocity energy to decompress and expand the refrigerant, and the two air heat exchangers (6, 13) connected to the low pressure side by a high velocity refrigerant flow injected from the nozzle (3a). Vapor phase refrigerant evaporated on either side is sucked, and the sucked refrigerant and the refrigerant injected from the nozzle (3a) are mixed to convert velocity energy into pressure energy to increase the pressure of the refrigerant to increase the gas pressure. An ejector (3) having a boosting section (3c, 3d) for flowing into the liquid separator (4);
A plurality of switching means (14, 15) for switching the flow path of the circulating fluid to these devices;
Control means (20) for controlling the operation of the refrigeration cycle,
The control means (20) switches and controls the plurality of switching means (14, 15) according to an operation mode selected from any one of a hot water supply mode, a heating mode, a cooling mode, and a hot water supply + cooling mode. A heat pump device that forms a predetermined fluid circulation passage and performs a selective operation mode.
冷媒として二酸化炭素(以下、COと略す)を用いたことを特長とする請求項1ないし請求項6のいずれかに記載のヒートポンプ装置。 The heat pump apparatus according to any one of claims 1 to 6, wherein carbon dioxide (hereinafter abbreviated as CO 2 ) is used as the refrigerant.
JP2004043309A 2004-02-19 2004-02-19 Heat pump device Withdrawn JP2005233513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043309A JP2005233513A (en) 2004-02-19 2004-02-19 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043309A JP2005233513A (en) 2004-02-19 2004-02-19 Heat pump device

Publications (1)

Publication Number Publication Date
JP2005233513A true JP2005233513A (en) 2005-09-02

Family

ID=35016658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043309A Withdrawn JP2005233513A (en) 2004-02-19 2004-02-19 Heat pump device

Country Status (1)

Country Link
JP (1) JP2005233513A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100986A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Refrigerating system
JP2009276048A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
CN103604178A (en) * 2013-10-25 2014-02-26 四川长虹电器股份有限公司 Water heater
KR101594038B1 (en) * 2008-06-04 2016-02-15 이호영 Heat pump type hot water supply system
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
CN112710104A (en) * 2020-09-29 2021-04-27 轨道交通节能北京市工程研究中心有限公司 Combined type refrigeration or heating unit system
CN113883738A (en) * 2021-09-29 2022-01-04 浙江工业大学 Novel solar energy sprays-compression refrigerating system
EP3811004A4 (en) * 2018-06-25 2022-03-23 Technoblock Sinop AS Apparatus and method for transferring heat
CN115823761A (en) * 2023-01-31 2023-03-21 中联云港数据科技股份有限公司 Two-stage refrigeration system
US11725858B1 (en) * 2022-03-08 2023-08-15 Bechtel Energy Technologies & Solutions, Inc. Systems and methods for regenerative ejector-based cooling cycles
CN120252166A (en) * 2025-06-04 2025-07-04 珠海格力电器股份有限公司 Hot water unit, control method and heat pump water heater

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100986A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Refrigerating system
JP2009276048A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
KR101594038B1 (en) * 2008-06-04 2016-02-15 이호영 Heat pump type hot water supply system
CN103604178A (en) * 2013-10-25 2014-02-26 四川长虹电器股份有限公司 Water heater
EP3811004A4 (en) * 2018-06-25 2022-03-23 Technoblock Sinop AS Apparatus and method for transferring heat
CN112710104A (en) * 2020-09-29 2021-04-27 轨道交通节能北京市工程研究中心有限公司 Combined type refrigeration or heating unit system
CN113883738A (en) * 2021-09-29 2022-01-04 浙江工业大学 Novel solar energy sprays-compression refrigerating system
CN113883738B (en) * 2021-09-29 2022-11-11 浙江工业大学 Novel solar energy sprays-compression refrigerating system
US11725858B1 (en) * 2022-03-08 2023-08-15 Bechtel Energy Technologies & Solutions, Inc. Systems and methods for regenerative ejector-based cooling cycles
CN115823761A (en) * 2023-01-31 2023-03-21 中联云港数据科技股份有限公司 Two-stage refrigeration system
CN115823761B (en) * 2023-01-31 2023-04-11 中联云港数据科技股份有限公司 Two-stage refrigeration system
CN120252166A (en) * 2025-06-04 2025-07-04 珠海格力电器股份有限公司 Hot water unit, control method and heat pump water heater

Similar Documents

Publication Publication Date Title
JP3861845B2 (en) Heat pump type hot water supply device combined with cold function
JP6150140B2 (en) Heat exchange device and heat pump device
JP4254217B2 (en) Ejector cycle
JPWO2010119642A1 (en) Heat pump heating system
JP2004131034A (en) Cooling system of movable body
JP2005009775A (en) Vapor compression refrigerator
JP2005233513A (en) Heat pump device
JP2002318028A (en) Heat pump type chiller
JP2005249319A (en) Heat pump hot water supply air-conditioner
JP2005214519A (en) Heat pump type hot water supply cooling device
JP4930214B2 (en) Refrigeration cycle equipment
JP5919036B2 (en) Heat pump type water heater
CN101346592B (en) Heat pump hot water supply device
JP2005249315A (en) Ejector cycle
JP4023320B2 (en) Heater for air conditioner
JP2004198045A (en) Vapor compression type refrigerator
JP2012242020A (en) Heat pump apparatus
JP5617791B2 (en) Refrigeration cycle equipment
JP2004340418A (en) Water-heating air conditioner
KR101093431B1 (en) Heat pump cooling and heating system that generates hot water
JP2002286326A (en) Hot water supply air conditioning apparatus
JP4749228B2 (en) Heat pump water heater
JP2004257627A (en) Heat pump device
JP4753791B2 (en) Heat pump water heater
JP2009300028A (en) Ejector type refrigerating cycle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501