[go: up one dir, main page]

JP2005225772A5 - - Google Patents

Download PDF

Info

Publication number
JP2005225772A5
JP2005225772A5 JP2004033696A JP2004033696A JP2005225772A5 JP 2005225772 A5 JP2005225772 A5 JP 2005225772A5 JP 2004033696 A JP2004033696 A JP 2004033696A JP 2004033696 A JP2004033696 A JP 2004033696A JP 2005225772 A5 JP2005225772 A5 JP 2005225772A5
Authority
JP
Japan
Prior art keywords
group
composite
integer
microparticles
block copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004033696A
Other languages
Japanese (ja)
Other versions
JP4644430B2 (en
JP2005225772A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2004033696A external-priority patent/JP4644430B2/en
Priority to JP2004033696A priority Critical patent/JP4644430B2/en
Priority to US10/575,549 priority patent/US7410699B2/en
Priority to EP04772937A priority patent/EP1672025B1/en
Priority to PCT/JP2004/013255 priority patent/WO2005035651A1/en
Priority to KR1020067006483A priority patent/KR100977697B1/en
Priority to CA2542049A priority patent/CA2542049C/en
Publication of JP2005225772A publication Critical patent/JP2005225772A/en
Publication of JP2005225772A5 publication Critical patent/JP2005225772A5/ja
Publication of JP4644430B2 publication Critical patent/JP4644430B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、黒鉛やダイヤモンドを除く、炭素原子数30〜120からなる閉殻構造の炭素化合物がブロックコポリマーに由来する構造物(またはポリマーミセル)内に封入された微小粒子の複合体、該微小粒子にさらに金属の超微小粒子が内包されている微粒子の複合体、並びにこれらの複合体の使用に関する。 The present invention relates to a composite of fine particles in which a closed shell carbon compound having 30 to 120 carbon atoms, excluding graphite and diamond, is enclosed in a structure (or polymer micelle) derived from a block copolymer, and the fine particles further complexes of fine small particles ultrafine particles are enclosed in metal, and to the use of these complexes.

さらに、フルオロアルキル鎖が末端に付加されたアクリロイルモルホリンオリゴマーまたはN、N−ジメチルアクリルアミドオリゴマー等の水溶液中にフラーレンを加えて十分に攪拌すると、可溶化されたフラーレンの量が約100μg/mlとなる自己組織化物(自己アセンブリー)が得られるこが報告されている(非特許文献1参照)。また、本発明者らはC60フラーレンを、親水性ポリマー鎖セグメントとしポリ(エチレングリコール)鎖を有し、かつ、機能性ポリマー鎖として第三級アミノ基を側鎖に担持する特定のブロックコポリマーの水溶液中に加え、十分に攪拌することにより、C60フラーレンを水に対して可溶化できることを報告した(非特許文献2参照。)。
特開平7−048302号公報 特開平8−143478号公報 Journal of Colloid and Interface Science,263,(2003),1−3 第52回(2003年)高分子討論会 高分子学会予稿集 112頁
Furthermore, when fullerene is added to an aqueous solution of an acryloylmorpholine oligomer or N, N-dimethylacrylamide oligomer having a fluoroalkyl chain added at the end and sufficiently stirred, the amount of solubilized fullerene becomes about 100 μg / ml. and this self-organization product (self assembly) is obtained has been reported (see non-Patent Document 1). The present inventors also have specific block copolymers in which C 60 fullerene is used as a hydrophilic polymer chain segment and has a poly (ethylene glycol) chain, and a tertiary amino group is supported on a side chain as a functional polymer chain. It was reported that C 60 fullerene can be solubilized in water by adding it to an aqueous solution and thoroughly stirring (see Non-Patent Document 2).
JP-A-7-048302 JP-A-8-143478 Journal of Colloid and Interface Science, 263, (2003), 1-3 52nd (2003) Polymer Symposium Proceedings of the Society of Polymer Science, Japan, 112 pages

他方、かような炭素化合物を封入した構造物(またはポリマーミセル)を形成しうるブロックコポリマーは、親水性ポリマー鎖セグメントとして、ポリ(エチレングリコール)に由来するセグメントを含み、そして第三級アミノ基および/または第二級アミノ基を側鎖に担持した反復単位を含有するポリマー鎖セグメントとを含み、本発明の目的、例えば、C30〜C120フラーレンを効率よく水に対して可溶化しうるものであれば如何なる分子であってもよい。しかし、好ましくは、一般式(A): On the other hand, a block copolymer capable of forming a structure (or polymer micelle) encapsulating such a carbon compound includes a segment derived from poly (ethylene glycol) as a hydrophilic polymer chain segment, and a tertiary amino group And / or a polymer chain segment containing a repeating unit carrying a secondary amino group on a side chain, and the object of the present invention, for example, C 30 -C 120 fullerene can be efficiently solubilized in water Any molecular species can be used. However, preferably the general formula (A):

[式中、R1は水素原子またはC1-6アルキル基を表し、R2およびR3は独立してC1-6アルキル基を表すか、またはR2およびR3は、それらが結合する窒素原子と一緒になって、さらなる窒素原子1もしくは2個、酸素または硫黄原子1個を含んでいてもよい5もしくは6員の複素環を形成してもよく、
X′は−O−または−NH−を表し、そして
p′は2〜6の整数であり;
LはC1-6アルキレンまたは原子価結合を表し、
は水素原子、ヒドロキシル基、カルボキシル基、アミノ基、アセタール化ホルミル基またはホルミル(もしくはアルデヒド)基を表し、
mは1〜10,000の整数であり、
nは10〜20,000の整数であり、そして
p′は2〜6の整数である]
で表されるブロックコポリマーを、本発明で都合よく使用できる。
[Wherein R 1 represents a hydrogen atom or a C 1-6 alkyl group, R 2 and R 3 independently represent a C 1-6 alkyl group, or R 2 and R 3 are bonded to each other. Together with the nitrogen atom may form a 5- or 6-membered heterocycle which may contain an additional 1 or 2 nitrogen atoms, 1 oxygen or sulfur atom,
X ′ represents —O— or —NH—, and p ′ is an integer of 2 to 6;
L represents C 1-6 alkylene or a valence bond,
Y represents a hydrogen atom, a hydroxyl group, a carboxyl group, an amino group, an acetalized formyl group or a formyl (or aldehyde) group,
m is an integer from 1 to 10,000;
n is an integer from 10 to 20,000, and p 'is an integer from 2 to 6]
Can be conveniently used in the present invention.

炭素化合物を封入した構造物(またはポリマーミセル)は、上記のようなブロックコポリマーにより該炭素化合物の表面が充分に被覆され、そして該炭素化合物を水に対して可溶化するように構成されている物体を意味する。限定されるものでないが、このような構造物は、炭素化合物をコアとして封入しうるようにブロックコポリマーの第三級アミノ基および/または第二級アミノ基を側鎖に担持した反復単位を含有するポリマー鎖セグメントで内部もしくは中心部を構成し、そしてポリ(エチレングリコール)鎖セグメントが外部を覆うように、水性媒体中でブロックコポリマー分子が会合した分子集合体であることが好ましい(なお、このような分子集合体を、本明細書では、ポリマーミセルとも称することもある。)。上記および本明細書において使用する、水性媒体は、水、水と混和しうる有機溶媒(例えば、エタノール、アセトン、N,N−メチルホルムアミド(DMF)、メチルスルホキシド(DMSO)、アセトニトリル、等)と水の混合溶液、水または該混合溶液に、さらに、緩衝剤および/または浸透圧調整剤を含んでいてもよい、溶液を意味することができる。 The structure (or polymer micelle) encapsulating the carbon compound is configured such that the surface of the carbon compound is sufficiently covered with the block copolymer as described above, and the carbon compound is solubilized in water. Means an object. Although not limited, such a structure contains a repeating unit carrying a tertiary amino group and / or a secondary amino group of a block copolymer in a side chain so that a carbon compound can be encapsulated as a core. It is preferably a molecular assembly in which block copolymer molecules are associated with each other in an aqueous medium so that the polymer chain segment forms an inner part or a central part, and the poly (ethylene glycol) chain segment covers the outer part. Such molecular assemblies may also be referred to herein as polymer micelles). Used in the above and herein, the aqueous medium, water, an organic solvent miscible with water (e.g., ethanol, acetone, N, N-di-methyl formamide (DMF), di-methyl sulfoxide (DMSO), acetonitrile, etc. And a mixed solution of water and water, or a solution that may further contain a buffer and / or an osmotic pressure adjusting agent in the mixed solution.

かかる製造方法において使用できる、双極性非プロトン性溶媒としては、上記のように高い溶解度を提供できるものであれば、種類を問うことなく使用できるが、好ましくは、DMFおよびDMSOを挙げることができる。まず、このような溶媒中にフラーレンを初めとする炭素化合物とブロックコポリマーと溶解させる。溶解させる順序は、炭素化合物、次いでブロックコポリマーを、その逆に、ブロックコポリマー、次いで炭素化合物を、それぞれ順に溶解させるか、あるいは両者を同時に溶解させてもよい。溶解に際し、必要に応じて溶媒の沸点まで加温してもよいが、室温で処理してもよい。また、溶解および混合する際に、溶液を超音波処理してもよい。こうして得られる溶液は必要に応じて、不溶物を濾過により除去した後、室温で一定時間(数時間ないし一晩)静置する。その後、所望の分画分子量の透析膜を介して、水、好ましくは蒸留水に対して透析する。透析は、通常、非処理溶液に対して約10倍以上の水に対して2時間、3回以上行い、最後は終夜で透析する。また、分画分子量12000−14000の透析膜を使用するのが好ましく、さらに、透析膜は、使用前に蒸留水を用いて十分に膨潤させておくのがよい。上記の操作は、いずれも室温で実施できるが、必要により、冷却下(例えば、0〜5℃)、または加温下(40〜80℃)で行うこともできる。こうして、炭素化合物がポリマーミセル内に封入された微小粒子の複合体であって、室温、例えば25℃の蒸留水に対する溶解度が、500μg/ml以上の複合体が、効率よく得られる。炭素化合物およびブロックコポリマーの混合液中での濃度は、使用溶媒に溶解できる限り、限定されないが、通常、溶液の体積当り、炭素化合物は、0.001wt%〜10wt% の範囲ないで、ブロックコポリマーは、0.001wt%〜2wt%の範囲内で使用するのが好都合である。 As the dipolar aprotic solvent that can be used in such a production method, any solvent can be used as long as it can provide high solubility as described above. Preferably, DMF and DMSO can be mentioned. . First, a carbon compound including fullerene and a block copolymer are dissolved in such a solvent. The dissolving order may be to dissolve the carbon compound and then the block copolymer, and conversely, the block copolymer and then the carbon compound, respectively, or may be dissolved simultaneously. Upon dissolution, the solution may be heated to the boiling point of the solvent as necessary, but may be treated at room temperature. Also, the solution may be sonicated during dissolution and mixing. The solution thus obtained is allowed to stand at room temperature for a certain time (several hours to overnight) after removing insolubles by filtration, if necessary. Thereafter, it is dialyzed against water, preferably distilled water, through a dialysis membrane having a desired molecular weight cut off. Dialysis is usually between 2:00 to around 10 times more water relative to the untreated solution, and more than three times, and finally dialyzed overnight. Moreover, it is preferable to use a dialysis membrane having a molecular weight cut off of 12000 to 14000, and the dialysis membrane should be sufficiently swollen with distilled water before use. All of the above operations can be performed at room temperature, but can be performed under cooling (for example, 0 to 5 ° C.) or under heating (40 to 80 ° C.) as necessary. Thus, a composite of fine particles in which a carbon compound is encapsulated in a polymer micelle and having a solubility in distilled water at room temperature, for example, 25 ° C., of 500 μg / ml or more can be efficiently obtained. The concentration of the carbon compound and the block copolymer in the mixed solution is not limited as long as it can be dissolved in the solvent used, but the carbon compound is usually not in the range of 0.001 wt% to 10 wt% per volume of the solution. Is conveniently used in the range of 0.001 wt% to 2 wt%.

したがって、上述した、該炭素化合物の閉殻構造内に金属元素もしくはそのイオン形態にある金属の超微小粒子が内包されていることも特徴とする微小粒子の複合体、も別の態様の本発明として提供される。かような金属は、水性媒体に対して可溶化できることにより有用性が高まる技術分野、例えば、医療、診断、食品、の技術分野で使用されているものであれば、如何なるものであってもよい.したがって、疾病もしくは生体の何らかの器官の傷害の検診または診断において使用する造影剤として使用されている金属、例えば、ガドリニウム(Gd)、ユウロピウム(Eu)、テルビウム(Tb)およびエルビウム(Er)からなる群より選ばれる元素に由来する常性金属、その他、亜鉛、銅、マグネシウム、鉄、白金、等の酸化物を提供しうる元素に由来する金属、等が本発明にいう金属として使用される。これらの金属は、イオンの形態であることもできる。また、これらの金属は超微小粒子に状態で炭素化合物に内包されることができるが、超微小粒子とは、典型的には、上記のフラーレンに内包されうるサイズのものをいう。このような、金属が内包されたフラーレンは、一部は市販されており、それらをそのまま使用できるが、それ自体公知の方法、上記特許文献2に記載されているように、例えば、目的とする金属の酸化物を、グラファイトとともに、高温高圧下でレーザー蒸発させること等により得ることができる。 Therefore, the above-mentioned composite of microparticles characterized in that a metal element or an ultrafine particle of a metal in its ionic form is encapsulated in the closed shell structure of the carbon compound described above, and the present invention in another aspect. Offered as. Such a metal may be any metal as long as it is used in a technical field whose usefulness is enhanced by being able to be solubilized in an aqueous medium, for example, in the medical, diagnostic, and food technical fields. . Therefore, the metal that is used as a contrast medium for use in screening or diagnosis of injury any organ disease or organism, e.g., Gad linear um (Gd), a europium (Eu), terbium (Tb) and erbium (Er) normal magnetic metal derived from elements selected from the group consisting, other, zinc, copper, magnesium, iron, platinum, metals derived from the elements capable of providing an oxide etc., etc. is used as a metal in the present invention The These metals can also be in the form of ions. These metals can be encapsulated in the carbon compound in the form of ultrafine particles. The ultrafine particles typically have a size that can be encapsulated in the fullerene. Such fullerenes encapsulating metal are partly commercially available and can be used as they are. However, as described in a method known per se, Patent Document 2, for example, the purpose is A metal oxide can be obtained by laser evaporation together with graphite under high temperature and high pressure.

精製したポリマーの分子量はPEG/PAMA=4,500/5,500であった。
<複合体の製造例1> 透析法による水中でのフラーレンの分散安定化
60フラーレン:アセタール−PEG−PAMAブロックコポリマー(PEG/PAMA=4,500/5,500)の混合比(F:P)が1:0、1:0.5、1:1となるように溶媒ジメチルホルムアミド(DMF)25mL中にフラーレン1mg、ブロックコポリマー13.8mgを加え(F:P=1:1の場合)、6時間超音波処理を行った後、一晩静置した。その後、蒸留水で一晩膨潤させた分画分子量12000−14000の透析膜中に溶液を入れ、透析を行った(水交換3回)。こうして得られた30mLのフラーレン内包微小粒子の溶液の溶媒を凍結乾燥により除去し、その後蒸留水5mL加え、再分散させた。その後、再度DLS測定を行った。
The molecular weight of the purified polymer was PEG / PAMA = 4,500 / 5,500.
Dispersion stabilizer C 60 fullerenes of the fullerene in water by dialysis method <Production Example 1 of the complex>: mixing ratio of acetal -PEG- PA MA block copolymer (PEG / PAMA = 4,500 / 5,500 ) (F: Add 1 mg of fullerene and 13.8 mg of block copolymer to 25 mL of solvent dimethylformamide (DMF) so that P) becomes 1: 0, 1: 0.5, 1: 1 (when F: P = 1: 1) After sonication for 6 hours, the mixture was allowed to stand overnight. Then, the solution was put into a dialysis membrane having a molecular weight cut off of 12000-14000 which was swollen overnight with distilled water, and dialyzed (3 times of water exchange). The solvent of the 30 mL fullerene-containing microparticle solution thus obtained was removed by lyophilization, and then 5 mL of distilled water was added and redispersed. Thereafter, DLS measurement was performed again.

こうして濃縮後の溶液はフラーレン特有の黒褐色を呈した。ブロックコポリマー非存在下では濃縮によって濁度を生ずるものの、本発明に従う複合体では凍結乾燥後にも極めて容易に水中に分散溶解した。混合比がF:P=1:1、1:0.5のものを再度DLS測定を行ってみたところ、濃縮再分散を行う前よりはフォトンカウントが増加したが、以前測定した値に比べて十分なフォトンカウント得ることができなかった。このようにこの条件で調製したフラーレン粒子は光散乱で検出できる粒径(およそ3nm)以下のほぼ分子状分散に近い形で分散している。
<複合体の製造例2> バブリング蒸発法による水中でのC60フラーレンの分散安定化 フラーレン1mgを塩化メチレン溶媒25mLに混ぜ、超音波をかけることで塩化メチレン中に溶解させた。その後、アセタール−PEG−PAMAブロックコポリマー(PEG/PAMA=4,500/5,500)139mgを溶媒に入れ、超音波を2時間かけた後、一晩静置した。
Soluble liquid after the concentration thus exhibited a blackish brown fullerene-specific. In the absence of the block copolymer, turbidity is produced by concentration, but the complex according to the present invention was very easily dispersed and dissolved in water even after lyophilization. When DLS measurement was performed again for a mixture ratio of F: P = 1: 1, 1: 0.5, the photon count increased compared to before the concentration redispersion, but compared with the value measured previously. it was not possible to obtain a sufficient photon count. Thus, the fullerene particles prepared under these conditions are dispersed in a form close to a molecular dispersion having a particle size (approximately 3 nm) or less that can be detected by light scattering.
<Production Example 2 of Composite> Dispersion Stabilization of C 60 Fullerene in Water by Bubbling Evaporation Method 1 mg of fullerene was mixed with 25 mL of methylene chloride solvent and dissolved in methylene chloride by applying ultrasonic waves. Thereafter, 139 mg of acetal-PEG- PA MA block copolymer (PEG / PAMA = 4,500 / 5,500) was put in a solvent, subjected to ultrasonic waves for 2 hours, and then allowed to stand overnight.

このようにして調製した塩化メチレン溶液をアルゴンバブリングをしている蒸留水40mLに滴下していった。こうして調製した溶液は、実施例1に記載のものと同様に、淡黄色の透明溶液を与える微小粒子の複合体を提供した。得られた水中分散安定化フラーレン複合体の溶液のDLS測定を行った結果、粒径170nm程度のナノ粒子が形成されていることが確認できた。
<複合体の製造例> 高濃度フラーレン水溶液の製造例
60フラーレン100mgを150mのDMF溶液に室温下で混合し、超音波処理を3時間施した。その後、溶液を0.45μm(ミリポア社製)の疎水性フィルターで溶媒に不溶な物質を除去し、次いで溶媒に対してポリマー濃度が5mg/mlになるようにアセタール−PEG−PAMAブロックコポリマー(PEG/PAMA=5,000/5,900)を加えて一晩静置した。その後、蒸留水に一晩膨潤させた分画分子量12000−14000の透析膜製のバッグに溶液を入れ、DMF:蒸留水(150:2000)2リットルに対して透析を行った(水交換:5回、2、4、6、8、10時間目に交換、24時間後に回収)。
The methylene chloride solution thus prepared was added dropwise to 40 mL of distilled water with argon bubbling. The solution thus prepared provided a microparticle complex that gave a pale yellow transparent solution, similar to that described in Example 1. As a result of DLS measurement of the solution of the obtained dispersion-supported fullerene complex in water, it was confirmed that nanoparticles having a particle size of about 170 nm were formed.
<Production Example of Composite> Production Example of High Concentration Fullerene Aqueous Solution 100 mg of C 60 fullerene was mixed with 150 mL of DMF solution at room temperature, and subjected to ultrasonic treatment for 3 hours. Thereafter, the solution was removed with a 0.45 μm (Millipore) hydrophobic filter to remove substances insoluble in the solvent, and then the acetal-PEG- PA MA block copolymer (with a polymer concentration of 5 mg / ml with respect to the solvent). PEG / PAMA = 5,000 / 5,900) was added and allowed to stand overnight. Thereafter, the solution was put into a bag made of a dialysis membrane having a molecular weight cut off of 12000-14000 which was swollen overnight in distilled water, and dialyzed against 2 liters of DMF: distilled water (150: 2000) (water exchange: 5 Times, 2, 4, 6, 8, 10 hours, exchange after 24 hours).

その後、透析処理済の溶液を凍結乾燥し、粉末にした後、そのサンプルを400μの蒸留水を用いて再溶解させ、UV−Visスペクトル測定を行い、フラーレンの吸光度から溶解度を算出したところ、2.9mg/mという高濃度でフラーレンを水中に可溶化することができた。
<フラーレン封入微小粒子の複合体の活性酸素の消去作用の確認>
スピントラップ剤である5,5−ジメチルー1−ピロリン N−オキシド(DMPO)をMilliQで2倍希釈したものを30μMilliQで調製した100mM リン酸緩衝化溶液(PBS)で調製した5mM ヒポキサンチン(HPX)を50μ、9.625mM ジエチレントリアミンーN,N,N',N",N"−五酢酸(DTPA)を20μサンプル(1.PBS,2.フラーレン溶液)各50μ,0.4U/m キサンチンオキシシダーゼ(XOD)の50mを順に容器に入れ、XOD添加90秒後にESRを用いてスペクトル測定を行った。
When subsequently, a solution of dialysis processed lyophilized, after the powder, the sample is redissolved with distilled water 400 [mu] L, performs UV-Vis spectrum measurement, was calculated solubility absorbance of fullerene, Fullerene could be solubilized in water at a high concentration of 2.9 mg / mL .
<Confirmation of active oxygen scavenging action of fullerene encapsulated microparticle composite>
A spin trapping agent 5,5-dimethyl-1-pyrroline N- oxide 30μ what was diluted 2-fold (DMPO) in MiIIiQ L, 5 mM hypoxanthine prepared in 100mM phosphate buffered solution prepared in MiIIiQ (PBS) (HPX) to 50μ L, 9.625mM diethylenetriamine over N, N, N ', N ", N" - pentaacetic acid (DTPA) and 20 [mu] L samples (. 1.PBS, 2 fullerene solution) each 50μ L, 0. 50 mL of 4 U / mL L xanthine oxysidase (XOD) was put into a container in order, and spectrum measurement was performed using ESR 90 seconds after XOD addition.

緩和時間測定( 1 測定)は、まず、Null法を用いて 1 nullポイントを求め、その値によって 1 を推測し、測定条件をそれぞれ設定して測定した。 In the relaxation time measurement ( T 1 measurement), first, a T 1 null point was obtained using the Null method, T 1 was estimated based on the value, and measurement conditions were set for each measurement.

緩和時間短縮効果を表す指標が緩和度(または緩和能、relaxivility(R))であり、造影剤濃度をC(m mol/)、造影前の縦緩和時間(つまり、溶媒の縦緩和時間)をT10、造影剤投与後の緩和時間(サンプル存在下での緩和時間)を 1 Ρ
すると、Rは次式で定義される。
Index relaxivity representing the relaxation time-shortening effect is (or relaxivity, relaxiv ili ty (R)) , the contrast agent concentration C (m mol / L), the longitudinal relaxation time of the pre-contrast (i.e., longitudinal relaxation of the solvent R) is defined by the following equation, where T 10 is the time) and T 1 is the relaxation time after administration of the contrast agent (the relaxation time in the presence of the sample).

ここで、緩和時間の逆数である1/T1は緩和速度(relaxation rate)と呼ばれ、その名のとおり緩和の速さを示す指標である。また、緩和度(R)は造影剤が組織に分布して単位濃度になった場合にどれだけ緩和速度が速くなるかを示している。すなわち、Rが大きければ大きいほど造影剤の緩和速度促進効果(緩和時間短縮効果)大きいことを意味する。 Here, 1 / T 1, which is the reciprocal of the relaxation time, is called a relaxation rate and is an index indicating the speed of relaxation as the name suggests. The degree of relaxation (R) indicates how much the relaxation rate is increased when the contrast agent is distributed in the tissue to a unit concentration. That is, the larger R is, the greater the relaxation rate promoting effect (relaxation time shortening effect) of the contrast agent is .

それぞれのサンプルの濃度および 1 、使用溶媒の緩和時間を基に緩和度Rを算出し、比較検討を行った。結果を表1に示す。表1からGd@C82/ポリマーの複合体は有意にR値が高く、MRI用造影剤として有望である。 A relaxation degree R was calculated based on the concentration and T 1 of each sample and the relaxation time of the solvent used, and a comparative study was performed. The results are shown in Table 1. From Table 1, the Gd @ C 82 / polymer complex has a significantly high R value and is promising as a contrast agent for MRI.

Claims (14)

炭素原子数30〜120の炭素原子から本質的になる閉殻構造の炭素化合物がポリマー鎖により被覆された微小粒子の複合体であって、
該微小粒子が、第三級アミノ基および/または第二級アミノ基を側鎖に担持した反復単位を含有するポリマー鎖セグメントおよびポリ(エチレングリコール)鎖セグメントを含んでなるブロックコポリマーに由来し、かつ、前者のセグメントをコアとし、後者のセグメントをシェルとする構造物内に該炭素化合物が封入されたものであることを特徴とする微小粒子の複合体。
A composite of fine particles in which a carbon compound having a closed shell structure consisting essentially of carbon atoms having 30 to 120 carbon atoms is coated with a polymer chain,
The microparticles are derived from a block copolymer comprising a polymer chain segment and a poly (ethylene glycol) chain segment containing repeating units bearing tertiary amino groups and / or secondary amino groups on the side chains; A composite of microparticles, wherein the carbon compound is enclosed in a structure having the former segment as a core and the latter segment as a shell.
25℃の蒸留水における溶解度が0.5mg/ml以上である請求項1記載の微小粒子の複合体。 Solubility in distilled water at 25 ° C. is 0 . It is 5 mg / ml or higher, according to claim 1 conjugate of microparticles according. 第三級アミノ基および/または第二級アミノ基を側鎖に担持した反復単位を含有するポリマー鎖セグメントが、一般式(A):
Figure 2005225772
[式中、R1aは水素原子またはC1-6アルキル基を表し、R2aおよびR3aは独立してC1-6アルキル基を表すか、またはR2aおよびR3aは、それらが結合する窒素原子と一緒になって、さらなる窒素原子1もしくは2個、酸素または硫黄原子1個を含んでいてもよい5もしくは6員の複素環を形成してもよく、
Xは−O−または−NH−を表し、そして
pは2〜6の整数である。]で表されるモノマーに由来し、そして25℃の蒸留水における溶解度が0.5mg/ml以上である請求項1に記載の微小粒子の複合体。
A polymer chain segment containing a repeating unit carrying a tertiary amino group and / or a secondary amino group on the side chain is represented by the general formula (A):
Figure 2005225772
[Wherein, R 1a represents a hydrogen atom or a C 1-6 alkyl group, R 2a and R 3a independently represent a C 1-6 alkyl group, or R 2a and R 3a are bonded to each other. Together with the nitrogen atom may form a 5- or 6-membered heterocycle which may contain an additional 1 or 2 nitrogen atoms, 1 oxygen or sulfur atom,
X represents -O- or -NH-, and p is an integer of 2-6. ] And the solubility in distilled water at 25 ° C. is 0 . It is 5 mg / ml or more, a complex of fine particles according to claim 1.
ブロックコポリマーが、一般式(A−1):
Figure 2005225772
[式中、R1は水素原子またはC1-6アルキル基を表し、R2およびR3は独立してC1-6アルキル基を表すか、またはR2およびR3は、それらが結合する窒素原子と一緒になって、さらなる窒素原子1もしくは2個、酸素または硫黄原子1個を含んでいてもよい5もしくは6員の複素環を形成してもよく、
X′は−O−または−NH−を表し、そして
p′は2〜6の整数であり;
LはC1-6アルキレンまたは原子価結合を表し、
は水素原子、ヒドロキシル基、カルボキシル基、アミノ基、アセタール化ホルミル基またはホルミル(もしくはアルデヒド)基を表し、
mは1〜10,000の整数であり、
nは10〜20,000の整数であり、そして
p′は2〜6の整数である]で表される請求項1〜3のいずれか1項に記載の微小粒子の複合体。
The block copolymer has the general formula (A-1):
Figure 2005225772
[Wherein R 1 represents a hydrogen atom or a C 1-6 alkyl group, R 2 and R 3 independently represent a C 1-6 alkyl group, or R 2 and R 3 are bonded to each other. Together with the nitrogen atom may form a 5- or 6-membered heterocycle which may contain an additional 1 or 2 nitrogen atoms, 1 oxygen or sulfur atom,
X ′ represents —O— or —NH—, and p ′ is an integer of 2 to 6;
L represents C 1-6 alkylene or a valence bond,
Y represents a hydrogen atom, a hydroxyl group, a carboxyl group, an amino group, an acetalized formyl group or a formyl (or aldehyde) group,
m is an integer from 1 to 10,000;
The complex of microparticles according to any one of claims 1 to 3, wherein n is an integer of 10 to 20,000, and p 'is an integer of 2 to 6.
炭素化合物が炭素原子のみからなるC30-120フラーレンである請求項1〜4のいずれか1項に記載の微小粒子の複合体。 The composite of microparticles according to any one of claims 1 to 4, wherein the carbon compound is C 30-120 fullerene composed of only carbon atoms. 炭素原子数30〜120の炭素原子から本質的になる閉殻構造の炭素化合物および第三級アミノ基および/または第二級アミノ基を側鎖に担持した反復単位を含有するポリマー鎖セグメントおよびポリ(エチレングリコール)鎖セグメントを含んでなるブロックコポリマーを双極性非プロトン性溶媒に溶解、混合し、次いで分画分子量が12000〜14000である透析膜を介して水性溶媒に対して透析することにより、形成された該炭素化合物がブロックコポリマー由来の構造物内に封入された微小粒子を取得すること、を特徴とする請求項1に記載の微小粒子の複合体の製造方法。   A closed chain carbon compound consisting essentially of carbon atoms having 30 to 120 carbon atoms and a polymer chain segment containing a repeating unit having a tertiary amino group and / or a secondary amino group supported on a side chain and poly ( Formed by dissolving and mixing a block copolymer comprising an ethylene glycol) chain segment in a dipolar aprotic solvent and then dialyzing against an aqueous solvent through a dialysis membrane having a molecular weight cut off of 12000 to 14000. 2. The method for producing a composite of microparticles according to claim 1, wherein the carbon particles obtained are encapsulated in a structure derived from a block copolymer. 請求項1〜5のいずれかの1項に記載の微小粒子の複合体を有効成分とする活性酸素消去剤。   The active oxygen scavenger which uses the composite of the microparticles of any one of Claims 1-5 as an active ingredient. 食品、医療または皮膚科学的もしくは化粧品の分野で使用するものである請求項7記載の活性酸素消去剤。   The active oxygen scavenger according to claim 7, which is used in the fields of food, medicine, dermatology or cosmetics. 炭素原子数30〜120の炭素原子から本質的になる閉殻構造の炭素化合物がポリマー鎖により被覆された微小粒子の複合体であって、
該微小粒子が、第三級アミノ基および/または第二級アミノ基を側鎖に担持した反復単位を含有するポリマー鎖セグメントおよびポリ(エチレングリコール)鎖セグメントを含んでなるブロックコポリマーに由来し、かつ、前者のセグメントをコアとし、後者のセグメントをシェルとする構造物内に該炭素化合物が封入されており、かつ該炭素化合物の閉殻構造内に金属元素もしくはそのイオン形態にある金属の超微小粒子が内包されたものであることを特徴とする微小粒子の複合体。
A composite of fine particles in which a carbon compound having a closed shell structure consisting essentially of carbon atoms having 30 to 120 carbon atoms is coated with a polymer chain,
The microparticles are derived from a block copolymer comprising a polymer chain segment and a poly (ethylene glycol) chain segment containing repeating units bearing tertiary amino groups and / or secondary amino groups on the side chains; Further, the carbon compound is enclosed in a structure having the former segment as a core and the latter segment as a shell, and a metal element or an ionic form of a metal in the closed shell structure of the carbon compound. A complex of microparticles, characterized in that it contains small particles.
金属元素もしくはそのイオン形態にある金属が常磁性金属である請求項9に記載の微小粒子の複合体。   The composite of fine particles according to claim 9, wherein the metal element or the metal in its ionic form is a paramagnetic metal. 性金属が、ガドリニウム、ユウロピウム、テルビウムおよびエルビウムからなる群より選ばれる元素に由来するものである請求項10に記載の微小粒子の複合体。 Normal magnetic metal is, Gad linear um, europium, composite microparticle according to claim 10 is derived from elements selected from the group consisting of terbium and erbium. 第三級アミノ基および/または第二級アミノ基を側鎖に担持した反復単位を含有するポリマー鎖セグメントが、一般式(A):
Figure 2005225772
[式中、R1aは水素原子またはC1-6アルキル基を表し、R2aおよびR3aは独立してC1-6アルキル基を表すか、またはR2aおよびR3aは、それらが結合する窒素原子と一緒になって、さらなる窒素原子1もしくは2個、酸素または硫黄原子1個を含んでいてもよい5もしくは6員の複素環を形成してもよく、
Xは−O−または−NH−を表し、そして
pは2〜6の整数である。]で表されるモノマーに由来する請求項9〜11のいずれかの1項に記載の微小粒子の複合体。
A polymer chain segment containing a repeating unit carrying a tertiary amino group and / or a secondary amino group on the side chain is represented by the general formula (A):
Figure 2005225772
[Wherein, R 1a represents a hydrogen atom or a C 1-6 alkyl group, R 2a and R 3a independently represent a C 1-6 alkyl group, or R 2a and R 3a are bonded to each other. Together with the nitrogen atom may form a 5- or 6-membered heterocycle which may contain an additional 1 or 2 nitrogen atoms, 1 oxygen or sulfur atom,
X represents -O- or -NH-, and p is an integer of 2-6. The composite of microparticles according to any one of claims 9 to 11, which is derived from a monomer represented by the formula:
ブロックコポリマーが、一般式(A−1):
Figure 2005225772
[式中、R1は水素原子またはC1-6アルキル基を表し、R2およびR3は独立してC1-6アルキル基を表すか、またはR2およびR3は、それらが結合する窒素原子と一緒になって、さらなる窒素原子1もしくは2個、酸素または硫黄原子1個を含んでいてもよい5もしくは6員の複素環を形成してもよく、
X′は−O−または−NH−を表し、そして
p′は2〜6の整数であり;
LはC1-6アルキレンまたは原子価結合を表し、
は水素原子、ヒドロキシル基、カルボキシル基、アミノ基、アセタール化ホルミル基またはホルミル(もしくはアルデヒド)基を表し、
mは1〜10,000の整数であり、
nは10〜20,000の整数であり、そして
p′は2〜6の整数である]で表される請求項12に記載の微小粒子の複合体。
The block copolymer has the general formula (A-1):
Figure 2005225772
[Wherein R 1 represents a hydrogen atom or a C 1-6 alkyl group, R 2 and R 3 independently represent a C 1-6 alkyl group, or R 2 and R 3 are bonded to each other. Together with the nitrogen atom may form a 5- or 6-membered heterocycle which may contain an additional 1 or 2 nitrogen atoms, 1 oxygen or sulfur atom,
X ′ represents —O— or —NH—, and p ′ is an integer of 2 to 6;
L represents C 1-6 alkylene or a valence bond,
Y represents a hydrogen atom, a hydroxyl group, a carboxyl group, an amino group, an acetalized formyl group or a formyl (or aldehyde) group,
m is an integer from 1 to 10,000;
The composite of microparticles according to claim 12, wherein n is an integer of 10 to 20,000, and p ′ is an integer of 2 to 6.
請求項11または12に記載の微小粒子の複合体を有効成分とする造影剤。   A contrast agent comprising the composite of fine particles according to claim 11 or 12 as an active ingredient.
JP2004033696A 2003-10-10 2004-02-10 Composite of microparticles encapsulating carbon compounds Expired - Fee Related JP4644430B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004033696A JP4644430B2 (en) 2004-02-10 2004-02-10 Composite of microparticles encapsulating carbon compounds
KR1020067006483A KR100977697B1 (en) 2003-10-10 2004-09-06 Finely particulate composite containing carbon compound encapsulated therein
EP04772937A EP1672025B1 (en) 2003-10-10 2004-09-06 Finely particulate composite containing carbon compound encapsulated therein
PCT/JP2004/013255 WO2005035651A1 (en) 2003-10-10 2004-09-06 Finely particulate composite containing carbon compound encapsulated therein
US10/575,549 US7410699B2 (en) 2003-10-10 2004-09-06 Finely particulate composite containing carbon compound encapsulated in a polymer micelle of a block copolymer
CA2542049A CA2542049C (en) 2003-10-10 2004-09-06 Finely particulate composite containing carbon compound encapsulated therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033696A JP4644430B2 (en) 2004-02-10 2004-02-10 Composite of microparticles encapsulating carbon compounds

Publications (3)

Publication Number Publication Date
JP2005225772A JP2005225772A (en) 2005-08-25
JP2005225772A5 true JP2005225772A5 (en) 2007-02-15
JP4644430B2 JP4644430B2 (en) 2011-03-02

Family

ID=35000770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033696A Expired - Fee Related JP4644430B2 (en) 2003-10-10 2004-02-10 Composite of microparticles encapsulating carbon compounds

Country Status (1)

Country Link
JP (1) JP4644430B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700744B2 (en) * 2006-05-17 2015-04-15 和光純薬工業株式会社 Fullerene-containing aqueous solution and process for producing the same
JP4899154B2 (en) * 2006-09-21 2012-03-21 独立行政法人産業技術総合研究所 Hollow nanocarbon aggregate and singlet oxygen scavenger, cosmetic agent, skin cancer inhibitor and anti-fading agent
JP4874751B2 (en) * 2006-09-27 2012-02-15 株式会社イオンテクノセンター Nanodiamonds for biomarkers used in MR imaging
EP2123288B1 (en) 2007-02-09 2011-05-04 National University Corporation Nara Institute of Science and Technology C70 fullerene-containing liposome, method for producing the same, and use of the same
CN101792515B (en) * 2010-04-02 2011-11-09 上海理工大学 Preparation method for grafting maleic anhydride onto plasma activated carbon nano tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235235A (en) * 1996-02-29 1997-09-09 Res Inst For Prod Dev Fullerene-binding water-soluble polymer photosensitizer for photodynamic therapy
JP2002241307A (en) * 2001-02-19 2002-08-28 Yasuhiko Tabata Active oxygen generator for ultrasonic therapy containing photosensitizer
JP4094277B2 (en) * 2001-11-09 2008-06-04 独立行政法人科学技術振興機構 Preparation of metal nanoparticles using shell-crosslinked micelles as templates
JP4746834B2 (en) * 2003-10-10 2011-08-10 独立行政法人科学技術振興機構 A complex of fine particles encapsulating carbon compounds

Similar Documents

Publication Publication Date Title
Li et al. Macromolecular ligands for gadolinium MRI contrast agents
Li et al. Facile one-pot synthesis of Fe3O4@ Au composite nanoparticles for dual-mode MR/CT imaging applications
Moessmer et al. Solution behavior of poly (styrene)-B lock-poly (2-vinylpyridine) micelles containing gold nanoparticles
Brown et al. pH-dependent synthesis and stability of aqueous, elemental bismuth glyconanoparticle colloids: potentially biocompatible X-ray contrast agents
Oberoi et al. Cisplatin-loaded core cross-linked micelles: comparative pharmacokinetics, antitumor activity, and toxicity in mice
Chen et al. Facile synthesis of novel albumin-functionalized flower-like MoS 2 nanoparticles for in vitro chemo-photothermal synergistic therapy
Akakuru et al. Metal-free organo-theranostic nanosystem with high nitroxide stability and loading for image-guided targeted tumor therapy
Muddineti et al. Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer
CN109663550B (en) Substance-encapsulated microcapsule and preparation method thereof
CN112263686A (en) A nano-enzyme diagnostic and therapeutic agent for acute kidney injury and its preparation method and application
WO2014058079A1 (en) Electrostatic-bonding-type vesicle including metal microparticles
Callewaert et al. Tuning the composition of biocompatible Gd nanohydrogels to achieve hypersensitive dual T 1/T 2 MRI contrast agents
JP2008517878A (en) Method of forming shape-retaining aggregates of gel particles and use thereof
US20150231246A1 (en) Composition for forming pluronic-based hydrogel with improved stability
Zhang et al. Chitosan coated gold nanorod chelating gadolinium for MRI-visible photothermal therapy of cancer
Du et al. Dopamine multivalent-modified polyaspartic acid for MRI-guided near-infrared photothermal therapy
KR100977697B1 (en) Finely particulate composite containing carbon compound encapsulated therein
Wen et al. Redox-responsive MXene-SS-PEG nanomaterials for delivery of doxorubicin
JP2005225772A5 (en)
CN109939125B (en) A kind of antioxidant and its preparation method and application
Stone et al. A versatile stable platform for multifunctional applications: synthesis of a nitroDOPA–PEO–alkyne scaffold for iron oxide nanoparticles
JP4644430B2 (en) Composite of microparticles encapsulating carbon compounds
CN111803466B (en) A kind of preparation method and application of polypyrrole nanoparticles with controllable particle size
EP3479846B1 (en) Hydrogel-based nanoemulsion for selectively labeling cancer lesion, and preparation method therefor
Lam et al. Surface engineering of SPIONs: role of phosphonate ligand multivalency in tailoring their efficacy