JP2005214908A - Acceleration tube for electron beam accelerator - Google Patents
Acceleration tube for electron beam accelerator Download PDFInfo
- Publication number
- JP2005214908A JP2005214908A JP2004024956A JP2004024956A JP2005214908A JP 2005214908 A JP2005214908 A JP 2005214908A JP 2004024956 A JP2004024956 A JP 2004024956A JP 2004024956 A JP2004024956 A JP 2004024956A JP 2005214908 A JP2005214908 A JP 2005214908A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- glass
- acceleration tube
- ring
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 48
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 24
- 239000000853 adhesive Substances 0.000 claims abstract description 32
- 230000001070 adhesive effect Effects 0.000 claims abstract description 31
- 239000000919 ceramic Substances 0.000 claims abstract description 27
- 239000012212 insulator Substances 0.000 claims abstract description 15
- 239000005340 laminated glass Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 abstract description 36
- 238000005219 brazing Methods 0.000 abstract description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000007789 gas Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 230000007723 transport mechanism Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Images
Landscapes
- Particle Accelerators (AREA)
- Electron Sources, Ion Sources (AREA)
Abstract
Description
この発明は電子線照射装置の一部をなす加速器の加速管の構造に関する。電子線照射装置というのは真空中で負高電圧にあるフィラメントを加熱して熱電子を発生させ加速管で加速し、照射窓を経て、大気中にある被処理物に電子線を照射して架橋反応、殺菌作用、塗膜硬化などの処理を行う装置である。大気中にある被処理物を搬送するための搬送機構が照射窓の直下を横切るように設けられる。 The present invention relates to a structure of an accelerator tube of an accelerator forming a part of an electron beam irradiation apparatus. An electron beam irradiation device heats a filament at a negative high voltage in a vacuum to generate thermal electrons, accelerates it with an accelerating tube, irradiates an object to be processed in the atmosphere with an electron beam through an irradiation window. It is an apparatus that performs processing such as crosslinking reaction, bactericidal action, and coating film curing. A transport mechanism for transporting an object to be processed in the atmosphere is provided so as to cross directly under the irradiation window.
電子線が固体に当たるとX線が発生し、それが大気中の酸素を酸化してオゾンを造る。X線やオゾンは有害である。だから照射窓や搬送機構は厳重に重い金属板やコンクリートで造った筐体の中に納められる。固体の被処理物を扱う場合搬送機構は多くの場合無端周回コンベヤである。粉体や粒状物の場合は振動コンベヤなどが用いられる。オゾン臭がついてはいけないような被処理物の場合は窒素やArなどの不活性気体を筐体の中に流して大気中の酸素を置換する。 When an electron beam hits a solid, X-rays are generated, which oxidizes oxygen in the atmosphere and creates ozone. X-rays and ozone are harmful. Therefore, the irradiation window and the transport mechanism are housed in a casing made of a heavy metal plate or concrete. When handling a solid workpiece, the transport mechanism is often an endless conveyor. In the case of powder or granular material, a vibrating conveyor or the like is used. In the case of an object to be treated that does not have an ozone odor, an inert gas such as nitrogen or Ar is flowed into the casing to replace oxygen in the atmosphere.
だから電子線照射装置の構成要素は、高圧電源、真空排気装置、フィラメント、加速管、走査管、照射窓、筐体、搬送装置などである。照射窓というのは真空と大気圧を仕切るために必要な窓である。Tiやアルミの窓箔が窓に張られておりそれによって真空と大気が仕切られる。 Therefore, the constituent elements of the electron beam irradiation apparatus are a high-voltage power supply, a vacuum evacuation apparatus, a filament, an acceleration tube, a scanning tube, an irradiation window, a housing, and a transfer device. The irradiation window is a window necessary for partitioning the vacuum and the atmospheric pressure. Ti and aluminum window foils are stretched around the window, which separates the vacuum from the atmosphere.
加速電圧の違いによって電子線照射装置は2種類に分類される。
3MeV〜300keVの高電圧に加速する場合は、高圧電源部が背の高いものになり加速管が長くビームは細いので左右前後に走査する。ビームを走査するので走査型という。走査のためには走査管が加速管に続いて設けられる。走査管は下が広くなった三角形状の管である。走査管の上部に走査コイルがあってコイルによって交番磁界を発生させローレンツ力によってビームを左右前後に曲げるようになっている。加速管は負の高圧部と大地電圧との間にあり絶縁体のリングと電極のリングを交互に積み重ねたものである。電極には負の高圧部から大地電圧間の電圧を直列の抵抗によって等配分した電圧を与えるようになっている。
There are two types of electron beam irradiation devices depending on the acceleration voltage.
When accelerating to a high voltage of 3 MeV to 300 keV, the high-voltage power supply section is tall and the accelerating tube is long and the beam is narrow, so scanning is performed to the left and right. Since the beam is scanned, it is called a scanning type. For scanning, a scanning tube is provided following the acceleration tube. The scanning tube is a triangular tube with a wide bottom. There is a scanning coil in the upper part of the scanning tube, an alternating magnetic field is generated by the coil, and the beam is bent left and right and back and forth by Lorentz force. The accelerating tube is between the negative high voltage section and the ground voltage, and is formed by alternately stacking insulator rings and electrode rings. The electrode is provided with a voltage obtained by equally distributing the voltage between the ground voltage from the negative high voltage portion by a series resistor.
300keV〜数十keVの低い加速エネルギーの場合は、加速管も小さくて単に真空チャンバの真ん中に負電圧の蛇行するフィラメントを設けチャンバ出口に設けた照射窓(大地電圧)との電位差で加速するものである。それは非走査型またはエリア型とよぶ。この発明は長い加速管をもつ走査型の電子線照射装置の加速管の改良に関する。 In the case of low acceleration energy of 300 keV to several tens of keV, the acceleration tube is also small, and it is accelerated by a potential difference from the irradiation window (ground voltage) provided at the chamber outlet by simply providing a meandering filament with a negative voltage in the middle of the vacuum chamber It is. It is called non-scanning type or area type. The present invention relates to an improvement of an acceleration tube of a scanning electron beam irradiation apparatus having a long acceleration tube.
電子線加速器に用いられる加速管は絶縁環をガラスとし電極はアルミ、チタン等の金属のリングとしてそれを上下に積み重ねるようになっている。電極と絶縁環は接着剤によって接着する。接着剤は電極とガラスを結合するという作用の他に真空を維持するという作用もある。ビームに掛かる電界が真っすぐ軸線方向を向くようにするために電極は等距離に設けられ電極間の電圧は等しくなるようにしている。例えば1段あたりのピッチが20mmで電極数が30段だとすると加速管の全長が600mmとなる。電極間の電圧を例えば20kVとすると、30段で600kVの電圧を電子線に掛けることができる。 The acceleration tube used in the electron beam accelerator has an insulating ring made of glass and an electrode made of a metal ring such as aluminum or titanium, which is stacked up and down. The electrode and the insulating ring are bonded with an adhesive. In addition to the effect of bonding the electrode and the glass, the adhesive also has the effect of maintaining a vacuum. In order to make the electric field applied to the beam straight in the axial direction, the electrodes are provided at equal distances so that the voltages between the electrodes are equal. For example, if the pitch per stage is 20 mm and the number of electrodes is 30, the total length of the acceleration tube is 600 mm. If the voltage between the electrodes is 20 kV, for example, a voltage of 600 kV can be applied to the electron beam in 30 stages.
図1はそのような従来のガラス環と電極の交代する構造の加速管の縦断面図を示す。円盤状の上蓋5には電極導入端子3、3が設けられる。電極導入端子3、3は上蓋の穴を貫いてその下端にフィラメント4を保持している。フィラメントから熱電子が出るようになっている。上蓋5は胴部6の上フランジに螺子で固定される。胴部6は金属の円筒で下フランジから加速管が続いて設けられる。引出電極7によってフィラメントから出た熱電子が加速管の方へ引き出される。
FIG. 1 is a longitudinal sectional view of an accelerating tube having a structure in which such a conventional glass ring and electrode alternate. The disk-shaped
加速管はリング状のガラス絶縁環8と電極9を適数段積み重ねたものであり電子線を加速するための円筒形の空間を形成する。電極9とガラス絶縁環は有機系の接着剤で接着される。外部には分圧抵抗があって電極間に加速電圧を等分配した電圧を印加するようにしている。電極間隔(ピッチ)は20mmであり例えば30段の加速管であれば600mmの長さをもつ。1段に20kV〜30kVを掛けることができる。そのような構造で500keV〜800keVの加速電圧の加速管を構成することができる。500keVを超すと相対論的な領域になり電子は光速にかなり近い速度になる。
The acceleration tube is formed by stacking an appropriate number of stages of ring-shaped
そのような加速管は一般的なものであり、多くの電子線照射装置の加速管に採用されている構造である。そのようなガラス環加速管には製造容易で材料費が安くて低コストであるという利点がある。ガラス環が透明なので外部から加速管の内部を観察できるという便利な点もある。常温である限り接着剤の作用は充分であって機械的な接着強度も充分であり真空を維持するという機能も果たしている。 Such an accelerating tube is a general one and has a structure adopted in an accelerating tube of many electron beam irradiation apparatuses. Such a glass ring accelerating tube has advantages that it is easy to manufacture, has low material costs, and is low in cost. Since the glass ring is transparent, there is also a convenient point that the inside of the accelerating tube can be observed from the outside. As long as it is at room temperature, the action of the adhesive is sufficient, the mechanical adhesive strength is sufficient, and the function of maintaining a vacuum is also achieved.
公知技術を示すべきであるが、電子線照射装置加速管に関しては適当な文献がない。ガラス・接着剤加速管があまりに一般的で改良の試みがなされなかったのであろう。特許文献1は加速管内のエージングをするための新規な工夫を明らかにしている。これは加速管の構造がどういうものであるかということを述べていない。加速管は絶縁部と電極部が重なっており分圧抵抗が電極に適当な分圧を与えているということが図面から読み取れる。加速管自体の発明は殆どなくて従来例を見つけることができなかった。
ガラス環と金属板を接着する接着剤は100℃程度まで接着剤として機能するのであるが100℃以下の温度で軟化し始める。 The adhesive that bonds the glass ring and the metal plate functions as an adhesive up to about 100 ° C., but starts to soften at a temperature of 100 ° C. or lower.
フィラメントに近い電極や絶縁環はフィラメントからの熱輻射を受けて加熱される。放熱が不十分なときはフィラメントに近接した部分の電極板、ガラス環は70℃〜80℃にも昇温することがある。すると接着剤が軟化し始める。それとともにガスが接着剤から発生する。ガスが加速管内の真空度を悪化させる。それは電子線とガス分子との衝突を引き起こし電子線のロスになる。 The electrode and insulating ring close to the filament are heated by receiving heat radiation from the filament. When heat radiation is insufficient, the electrode plate and glass ring in the vicinity of the filament may be heated to 70 ° C to 80 ° C. Then, the adhesive begins to soften. At the same time, gas is generated from the adhesive. Gas deteriorates the degree of vacuum in the accelerating tube. It causes collisions between electron beams and gas molecules, resulting in electron beam loss.
接着剤が軟化しても漏れは起こらず真空はなお維持できるのであるが、接着剤自体が流動性を帯びるようになる。縦方向にリング状の電極・ガラスが積み重ねられている場合はまだよいのであるが、加速管が横方向に設置され電極・ガラスのリングが横に並ぶという配置の場合もある。そのような場合接着剤が流動性を帯びるようになると重みのためにガラスリングや電極リングが下方へずれてくる。そうなると電子線の通路が真っ直ぐでなく彎曲してくるから電子線が電極に衝突したりする。電極に衝突すると所望の電流値が得られないので処理能力が減退する。またそれによってパワー損失が増える。電極がよけいに加熱されて接着剤が昇温して加速管から真空漏れが起こる可能性もある。 Even if the adhesive softens, leakage does not occur and the vacuum can still be maintained, but the adhesive itself becomes fluid. It is still good if the ring-shaped electrodes and glass are stacked in the vertical direction, but there are cases where the accelerator tube is installed in the horizontal direction and the electrodes and glass rings are arranged side by side. In such a case, when the adhesive becomes fluid, the glass ring and the electrode ring are shifted downward due to weight. When this happens, the electron beam path is not straight but curved, and the electron beam collides with the electrode. When a collision occurs with the electrode, a desired current value cannot be obtained, so that the processing capacity is reduced. It also increases power loss. There is also a possibility that the electrode is heated excessively and the temperature of the adhesive rises to cause a vacuum leak from the acceleration tube.
ガラス+接着剤による加速管に変わるものとして、セラミック円板・メタライズによる加速管が提案されている。絶縁体としてセラミック円板を使いそれの両面をメタライズし電極板と鑞付けするものである。しかしそれはメタライズ・鑞付けの技術が難しく、製造コストがかかる。 As an alternative to glass + adhesive accelerated tubes, ceramic discs and metallized accelerated tubes have been proposed. A ceramic disk is used as an insulator, and both sides thereof are metallized and brazed with an electrode plate. However, it is difficult to metallize and braze, and the manufacturing cost is high.
この発明は、電子源(フィラメント側)側の複数段にセラミック絶縁体をメタライズし電極を鑞付けした複数段よりなるセラミック型加速管を採用し、アース側(照射窓側)にガラス絶縁体と電極を接着剤で接合した複数段のガラス型加速管を採用し中間部で加速管を結合し1本の加速管としたものである。
接合する手段としては、上下各々の加速管を別々に製作し、接着剤で接合するか、あるいは金属シールを介した機械的接合をするかである。いずれであってもよい。接着剤による接合を採用すると電極ピッチに狂いは生じない。
The present invention employs a ceramic type acceleration tube composed of a plurality of stages in which ceramic insulators are metallized on a plurality of stages on the electron source (filament side) and brazed electrodes, and a glass insulator and electrodes are disposed on the ground side (irradiation window side). A multi-stage glass-type acceleration tube bonded with an adhesive is used, and the acceleration tube is joined at the middle portion to form a single acceleration tube.
As a means for joining, the upper and lower accelerating pipes are separately manufactured and joined with an adhesive, or mechanically joined through a metal seal. Either may be sufficient. When bonding with an adhesive is employed, there is no deviation in the electrode pitch.
しかし金属板を用いて機械結合する方法であると電極間ピッチに多少の狂いが生じる。それについて述べる。通常電子源部より200keV程度までの加速を行えば充分安定なビームサイズが得られるので、この200keVに相当する程度の加速管段数(5段程度)をセラミック方式で製作し、下流のガラス接着方式加速管とボルトによって接合することが最適な方式となる。 However, the mechanical coupling using a metal plate causes a slight deviation in the pitch between the electrodes. Describe that. Since a sufficiently stable beam size can be obtained by accelerating from the electron source to about 200 keV, the number of accelerating tube stages (about 5 stages) corresponding to this 200 keV is manufactured by the ceramic method, and the downstream glass bonding method. Joining with an accelerating tube and bolts is the optimum method.
電子線照射装置の電子源にはフィラメントを加熱する熱電子発生式の電子銃が搭載される。そのために加速管の電子銃側には放出ガスが少なく、また耐熱温度が高い耐熱温度特性に優れた加速管が特に要求される。一方アース側加速管は温度条件も緩く加熱されることもない。反面アース側から入射するX線による劣化も大きく安価で容易に取り替えが可能な加速管を取り付けることが求められる。
2種の製作方式にて作られた加速管を巧妙に組み合わせることにより課題において記述した効果が得られる。
The electron source of the electron beam irradiation apparatus is equipped with a thermionic electron gun that heats the filament. For this reason, an accelerator tube with a small amount of released gas and a high heat-resistant temperature and excellent heat-resistant temperature characteristics is particularly required on the electron gun side of the accelerator tube. On the other hand, the ground side acceleration tube is not heated gently and is not heated. On the other hand, it is required to install an acceleration tube that is greatly deteriorated by X-rays incident from the ground side and can be easily replaced at low cost.
The effect described in the subject can be obtained by skillfully combining the accelerating tubes made by two kinds of production methods.
図2によって本発明の実施例にかかる電子線照射装置の加速管を説明する。
それは図2のガラス絶縁体型のものと殆ど同じ構造をとるように書いてある。しかし実は上下の部分の絶縁体の材料が異なるし、異なる上下部分に金属フランジを用いて結合している。それだけの差はある。
The acceleration tube of the electron beam irradiation apparatus according to the embodiment of the present invention will be described with reference to FIG.
It is written to have almost the same structure as that of the glass insulator type in FIG. However, the material of the insulators in the upper and lower parts is actually different, and the upper and lower parts are joined using metal flanges. There is a difference.
円盤状の上蓋5には電極導入端子3、3が設けられる。上蓋5の二箇所に開けられた穴にはセラミック製の碍子リング23がはめ込まれてあって、電極導入端子3と上蓋5とは絶縁されている。電極導入端子3、3は上蓋5の穴26を貫いて伸びその下端にフィラメント4を保持している。電流導入端子から電流を流す事によってフィラメント4を加熱しフィラメント4から熱電子が出るようになっている。
The disk-shaped
上蓋5は胴部6の上フランジ32に螺子27で固定される。胴部6は金属円筒である。胴部6と上蓋5とは金属パッキンを介在することによって気密保持するようになっており螺子27で結合される。胴部6の下フランジ33から加速管が続いて設けられる。加速管の1段目電極の内側には無底コップ状の引出し電極29が取り付けられる。ウエネルト電極7と引出し電極29によってフィラメント4から出た熱電子が加速管の方へ引き出される。加速管は上下2つの構造物を組み合わせたものである。
The
フィラメント側の5段分はリング状のセラミック絶縁環38とNi、Tiなどの電極リング39を交互に積み重ねたものである。この図は省略して書いてあるが実際には、20段とか30段とか多段連結する場合が多い。セラミック絶縁環は例えばアルミナ(Al2O3)である。絶縁環38は内周面に溝と段部があって外周部は平坦である。セラミック絶縁環38の内外側面はセラミックのままであるが上下の端面はメタライズしてある。この処理をすると、セラミック板と電極のMo、Tiを鑞付けすることができる。アルミ電極は鑞付けが効かないので使えない。
The five stages on the filament side are obtained by alternately stacking ring-shaped ceramic
重要なことはガラスと高分子接着剤を使わないということである。セラミックの絶縁体にメタライズして金属電極と鑞付けでつけるので100℃程度ではビクともしない。高分子接着剤のように軟化しないし剥離もしない。フィラメントの輻射熱で加熱されても鑞付けは堅牢であるし、また加熱によるガス放出量も少ない。つまり耐熱性に優れたものとなる。反面セラミックが不透明であるから内部を窺う事ができなくなる。便宜のため上半分をセラミック型加速管と仮に呼ぶことにする。 The important thing is not to use glass and polymer adhesive. Since it is metallized on a ceramic insulator and attached to a metal electrode by brazing, it will not be violent at about 100 ° C. It does not soften or peel like a polymer adhesive. Brazing is robust even when heated by the radiant heat of the filament, and the amount of gas released by heating is small. That is, it becomes excellent in heat resistance. On the other hand, since the ceramic is opaque, the inside cannot be crazed. For convenience, the upper half is temporarily called a ceramic-type acceleration tube.
下半分は従来どおりのガラス絶縁環8とアルミ電極9を高分子接着剤で接着し交互に積み重ねたものである。ここでは6段分を図示しているが実際のはもっと数多い。下半分を仮にガラス型加速管と呼ぶことにしよう。下半分はフィラメントから遠いのでフィラメント熱によって加熱されにくい。だから接着剤が輻射熱で加熱されず接着剤からガスが出たり軟化したりしない。電極、ガラスが横滑りすることはない。それに下半分だけでも透明であって内部を肉眼で目視できるというのは便利である。さらに照射窓に近い方はより頻繁に取り替える必要があるが、それがより安価なガラス型であるというのは好都合なことである。
The lower half is a conventional
厳密に上下半分ずつである必要はない。フィラメントから5〜6段目になるともう輻射が弱いのであるから、セラミック型は上6段だけで、それより下は全部ガラス型としてもよい。セラミック型はコスト高になるから、フィラメントの極近くだけに使うようにしてもよい。 It does not have to be exactly half up and down. Since the radiation is already weak at the 5th to 6th stage from the filament, the ceramic mold is only the upper 6th stage, and the lower part may be a glass mold. Since the ceramic mold is expensive, it may be used only near the filament.
電極間隔は上のセラミック型加速管でも下のガラス型加速管でも同様である。例えば20mmピッチとすることができる。60段の加速管なら、30段、30段というように半分ずつをセラミック型、ガラス型に配分してもよい。また上6段だけセラミック、下54段をガラス型としてもよい。 The electrode spacing is the same for the upper ceramic accelerator tube and the lower glass accelerator tube. For example, the pitch can be 20 mm. In the case of a 60-stage accelerating tube, half may be distributed to a ceramic mold and a glass mold, such as 30 stages and 30 stages. Further, only the upper six steps may be ceramic, and the lower 54 steps may be glass.
上方のセラミック型加速管と、下方のガラス型加速管を接着剤で接合することもできる。但し、下半分だけを交換する場合に接着剤を剥すという手間がかかる。 The upper ceramic-type acceleration tube and the lower glass-type acceleration tube can be joined with an adhesive. However, it takes time and effort to remove the adhesive when only the lower half is replaced.
もう一つの手段は、金属フランジを用いることである。ここでは金属フランジを用いて螺子で結合するようにしている。上側のセラミック型加速管は電極を兼ねた上フランジ40で終端されている。最下段のセラミック絶縁環38は上フランジ40に鑞付けされる。上フランジには複数の螺子通し穴がある。下側のガラス型加速管は上端面にリング状の下フランジ42を持っている。下フランジには幾つかの雌螺穴44がある。上下フランジ40、42は中間部分で重ね合わされてボルト43を通し穴から雌螺穴44に通し螺締することによって結合される。
Another means is to use a metal flange. Here, a metal flange is used to couple with a screw. The upper ceramic-type acceleration tube is terminated by an
上下フランジ40、42の合わせ面には円周状の段部がありそこに金属シールが挟まれ押しつぶされている。そのように金属フランジを用いて上下の加速管を結合するようにすると、下半分だけを交換するのが容易である。電子線のためX線が生ずるが、X線は照射窓の付近で発生しそれが加速管の下半をより多く汚染する可能性がある。それでガラス加速管を下半分に採用したときは下半分のガラス加速管だけを交換すればよいのでより便利になる。
There is a circumferential step on the mating surface of the upper and
しかし反面金属フランジをもって両者を結合するとなると繋ぎ目で電極間のピッチが少しずれてくる。そのために電界分布が不均一になる可能性がある。例えば電極間で20kVの電圧を掛けていて30段の電極数が全部で600kVの加速電圧だとする。その場合上半分のセラミック加速管では電極間隔は20mm、下半分のガラス加速管でも電極間隔は20mmとすることができる。しかし二つの金属フランジがはさまる継ぎ目においては、電極間隔が20mm以上に例えば30mmになってしまう。この電極間での電圧はやはり20kVだからそこでの電界が少し弱くなる。 However, if the two are joined with a metal flange, the pitch between the electrodes is slightly shifted at the joint. For this reason, the electric field distribution may be non-uniform. For example, assume that a voltage of 20 kV is applied between the electrodes, and the number of electrodes in 30 stages is an acceleration voltage of 600 kV in total. In this case, the electrode interval can be 20 mm in the upper half ceramic acceleration tube, and the electrode interval can be 20 mm in the lower half glass acceleration tube. However, at the joint where two metal flanges are sandwiched, the electrode spacing is 20 mm or more, for example, 30 mm. Since the voltage between the electrodes is still 20 kV, the electric field there is slightly weakened.
しかし電子線が200keV以上に加速されていればビームは十分加速され速度も速いので電界が多少弱くなってもビームが広がるというおそれがない。だから200kVより後の部分に金属つぎ手を設けることができる。フィラメント側から200kV程度までセラミックとして、そのあとはガラスとすることもできる。だから段間電圧が例えば30kVなら、上から7段目程度をセラミック、それより下をガラスとすることができる。 However, if the electron beam is accelerated to 200 keV or more, the beam is sufficiently accelerated and fast so that there is no fear that the beam will spread even if the electric field is somewhat weakened. Therefore, a metal joint can be provided in a portion after 200 kV. It is also possible to use ceramic from the filament side up to about 200 kV and then glass. Therefore, if the interstage voltage is, for example, 30 kV, the seventh stage from the top can be ceramic, and the lower stage can be glass.
3電流導入端子
4フィラメント
5上蓋
6胴部
7ウエネルト電極
8リング状ガラス絶縁体
9引出しアルミ電極
23碍子リング
26穴
27螺子
29引出し電極
32上フランジ
33下フランジ
34リング
35螺子
38セラミック絶縁環
39ニッケル電極リング
40上フランジ
42下フランジ
43ボルト
44雌螺穴
3 current introduction terminal 4
Claims (1)
A ceramic-type acceleration tube made of metallized ceramic rings and brazed with ring electrodes is laminated on the filament side, and multiple layers of alternately laminated glass insulator rings and ring electrodes are stacked on the filament side. An acceleration tube for an electron beam accelerator, characterized in that a glass-type acceleration tube bonded with an organic adhesive is bonded to the ground side and bonded at an intermediate portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004024956A JP4124131B2 (en) | 2004-02-02 | 2004-02-02 | Accelerator tube for electron beam accelerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004024956A JP4124131B2 (en) | 2004-02-02 | 2004-02-02 | Accelerator tube for electron beam accelerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005214908A true JP2005214908A (en) | 2005-08-11 |
JP4124131B2 JP4124131B2 (en) | 2008-07-23 |
Family
ID=34907469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004024956A Expired - Fee Related JP4124131B2 (en) | 2004-02-02 | 2004-02-02 | Accelerator tube for electron beam accelerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4124131B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100484362C (en) * | 2006-06-01 | 2009-04-29 | 江苏达胜热缩材料有限公司 | Antimagnetic high voltage accelerating tube |
CN100588306C (en) * | 2006-06-01 | 2010-02-03 | 江苏达胜热缩材料有限公司 | High-voltage accelerating tube |
WO2010037832A3 (en) * | 2008-10-01 | 2010-06-10 | Mapper Lithography Ip B.V. | Electrostatic lens structure |
US20180297087A1 (en) * | 2017-04-17 | 2018-10-18 | Varian Semiconductor Equipment Associates, Inc. | System and tool for cleaning a glass surface of an accelerator column |
CN108747910A (en) * | 2018-08-07 | 2018-11-06 | 中广核达胜加速器技术有限公司 | A kind of electron accelerator accelerating tube stickup tooling |
CN110335799A (en) * | 2019-04-25 | 2019-10-15 | 深圳凯禾电子束装置技术有限公司 | Electron beam tube |
CN112004305A (en) * | 2020-08-27 | 2020-11-27 | 中国科学院近代物理研究所 | A kind of electrostatic accelerator high-voltage end cascade vacuum obtaining device and method |
JP2021522651A (en) * | 2018-04-30 | 2021-08-30 | ニュートロン・セラピューティクス・インコーポレイテッドNeutron Therapeutics Inc. | Small Motor Drive Insulated Electrostatic Particle Accelerator |
CN114126183A (en) * | 2021-10-11 | 2022-03-01 | 核工业西南物理研究院 | A detachable ion beam accelerator tube |
CN114885488A (en) * | 2022-04-07 | 2022-08-09 | 无锡爱邦辐射技术有限公司 | Low-energy high-gradient electron accelerating tube |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210058173A (en) | 2019-11-13 | 2021-05-24 | 한국원자력연구원 | Conductive ceramic accelerating tube and thereof manufacturing method |
-
2004
- 2004-02-02 JP JP2004024956A patent/JP4124131B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100484362C (en) * | 2006-06-01 | 2009-04-29 | 江苏达胜热缩材料有限公司 | Antimagnetic high voltage accelerating tube |
CN100588306C (en) * | 2006-06-01 | 2010-02-03 | 江苏达胜热缩材料有限公司 | High-voltage accelerating tube |
WO2010037832A3 (en) * | 2008-10-01 | 2010-06-10 | Mapper Lithography Ip B.V. | Electrostatic lens structure |
JP2012504843A (en) * | 2008-10-01 | 2012-02-23 | マッパー・リソグラフィー・アイピー・ビー.ブイ. | Electrostatic lens structure |
US8198602B2 (en) | 2008-10-01 | 2012-06-12 | Mapper Lithography Ip B.V. | Electrostatic lens structure |
CN102232237B (en) * | 2008-10-01 | 2014-09-24 | 迈普尔平版印刷Ip有限公司 | Electrostatic lens structure |
TWI479530B (en) * | 2008-10-01 | 2015-04-01 | Mapper Lithography Ip Bv | Electrostatic lens structure, electrostatic lens array, charged particle beamlet lithography system and method of manufacturing an insulating structure |
USRE46452E1 (en) | 2008-10-01 | 2017-06-27 | Mapper Lithography Ip B.V. | Electrostatic lens structure |
US20180297087A1 (en) * | 2017-04-17 | 2018-10-18 | Varian Semiconductor Equipment Associates, Inc. | System and tool for cleaning a glass surface of an accelerator column |
US10780459B2 (en) * | 2017-04-17 | 2020-09-22 | Varian Semiconductor Equipment Associates, Inc. | System and tool for cleaning a glass surface of an accelerator column |
US11691184B2 (en) | 2017-04-17 | 2023-07-04 | Varian Semiconductor Equipment Associates, Inc. | System and tool for cleaning a glass surface of an accelerator column |
JP7321536B2 (en) | 2018-04-30 | 2023-08-07 | ニュートロン・セラピューティクス・インコーポレイテッド | Small motor-driven insulated electrostatic particle accelerator |
JP7643747B2 (en) | 2018-04-30 | 2025-03-11 | ニュートロン・セラピューティクス・エルエルシー | A small motor-driven insulated electrostatic particle accelerator |
JP2021522651A (en) * | 2018-04-30 | 2021-08-30 | ニュートロン・セラピューティクス・インコーポレイテッドNeutron Therapeutics Inc. | Small Motor Drive Insulated Electrostatic Particle Accelerator |
US11968774B2 (en) | 2018-04-30 | 2024-04-23 | Neutron Therapeutics Llc | Compact motor-driven insulated electrostatic particle accelerator |
CN108747910A (en) * | 2018-08-07 | 2018-11-06 | 中广核达胜加速器技术有限公司 | A kind of electron accelerator accelerating tube stickup tooling |
CN108747910B (en) * | 2018-08-07 | 2024-03-08 | 中广核达胜加速器技术有限公司 | Electron accelerator accelerating tube pasting tool |
CN110335799A (en) * | 2019-04-25 | 2019-10-15 | 深圳凯禾电子束装置技术有限公司 | Electron beam tube |
CN112004305A (en) * | 2020-08-27 | 2020-11-27 | 中国科学院近代物理研究所 | A kind of electrostatic accelerator high-voltage end cascade vacuum obtaining device and method |
CN114126183A (en) * | 2021-10-11 | 2022-03-01 | 核工业西南物理研究院 | A detachable ion beam accelerator tube |
CN114885488A (en) * | 2022-04-07 | 2022-08-09 | 无锡爱邦辐射技术有限公司 | Low-energy high-gradient electron accelerating tube |
Also Published As
Publication number | Publication date |
---|---|
JP4124131B2 (en) | 2008-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4124131B2 (en) | Accelerator tube for electron beam accelerator | |
US10283311B2 (en) | X-ray source | |
US9048059B2 (en) | Stacked x-ray tube apparatus using spacer | |
EP3157040B1 (en) | High voltage high current vacuum integrated circuit | |
JP5260631B2 (en) | Dielectric barrier discharge lamp | |
US20110156581A1 (en) | Excimer lamp | |
KR101547516B1 (en) | Cylindrical X-ray tube using triode electron emitting device | |
US9824787B2 (en) | Spark gap x-ray source | |
US9242019B2 (en) | UV pipe | |
CN108933072B (en) | Anode and X-ray generating tube, X-ray generating apparatus and radiography system | |
KR100711186B1 (en) | X-ray tube that can be disassembled and assembled using carbon nanotubes as a field emission source | |
KR20170022852A (en) | X-ray source | |
US2460201A (en) | Laminated envelope structure for electron discharge devices | |
WO2008156361A2 (en) | Miniature x-ray source with guiding means for electrons and / or ions | |
US8698097B2 (en) | Radially inwardly directed electron beam source and window assembly for electron beam source or other source of electromagnetic radiation | |
US3662212A (en) | Depressed electron beam collector | |
CN101138066B (en) | cold cathode pressure sensor | |
US12283450B2 (en) | X-ray tube with inner-collimator | |
JP2009245727A (en) | X-ray source | |
JP2013109937A (en) | X-ray tube and manufacturing method of the same | |
US20190341244A1 (en) | Multi-cell excimer lamp | |
JP5864210B2 (en) | Electron tube and manufacturing method thereof | |
KR102389448B1 (en) | X-ray tube having a micro channel plate | |
KR102340337B1 (en) | A manufacturing method of compact cylindrical x-ray tube | |
KR102812179B1 (en) | Assembly type x-ray source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080428 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4124131 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |