[go: up one dir, main page]

JP2005214442A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005214442A
JP2005214442A JP2004018096A JP2004018096A JP2005214442A JP 2005214442 A JP2005214442 A JP 2005214442A JP 2004018096 A JP2004018096 A JP 2004018096A JP 2004018096 A JP2004018096 A JP 2004018096A JP 2005214442 A JP2005214442 A JP 2005214442A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
gas
intermediate pressure
bypass circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004018096A
Other languages
Japanese (ja)
Inventor
Kunimori Sekigami
邦衛 関上
Masahisa Otake
雅久 大竹
Koji Sato
晃司 佐藤
Hiroshi Mukoyama
洋 向山
Ichiro Kamimura
一朗 上村
Chiaki Shikichi
千明 式地
Minoru Sugimoto
実 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Air Conditioners Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004018096A priority Critical patent/JP2005214442A/en
Publication of JP2005214442A publication Critical patent/JP2005214442A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of effectively maintaining a function of an intermediate pressure refrigerant bypass circuit for bypassing intermediate pressure gas refrigerant in an intermediate receiver into an intermediate pressure part in a compression stroke of a compressor. <P>SOLUTION: This refrigerator is provided with the compressor, a high pressure gas cooler for cooling high pressure side gas refrigerant, a first throttle device, the intermediate receiver for adjusting amount of refrigerant in refrigerating cycle, a second throttle device, an evaporator using outside air as heat source, and a refrigerating cycle device forming a closed circuit by connecting air-liquid separators sequentially in series. The refrigerating cycle device is provided with the intermediate pressure refrigerant bypass circuit for bypassing intermediate pressure gas refrigerant in the intermediate receiver into the intermediate pressure part in the compression stroke of the compressor. The intermediate pressure refrigerant bypass circuit is provided with a check valve for preventing refrigerant from flowing into the intermediate reciever from the compressor and a refrigerant temperature sensor for detecting refrigerant temperature on an intermediate receiver side of the check valve. Opening of the valve on at least one side of the first throttle device and the second throttle device is controlled in such a way that gas refrigerant temperature detected by the refrigerant temperature sensor becomes higher than ambient air temperature detected by an air temperature sensor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷凍装置に関し、特に、中間圧力のガス冷媒を圧縮機の圧縮工程中にバイパスする所謂ガスインジェクションの作用を有効に維持する手段に関する。   The present invention relates to a refrigeration apparatus, and more particularly to a means for effectively maintaining the action of so-called gas injection for bypassing a medium-pressure gas refrigerant during a compression process of a compressor.

近年、オゾン層破壊の問題及び給湯装置における給湯の高温化ニーズへの対応のために、二酸化炭素などの超臨界冷凍サイクルで冷凍運転される自然冷媒が注目を浴びている。また、このような超臨界サイクル冷凍運転を行う冷凍装置として、特許文献1に記載されているものが知られている。また、このような超臨界冷凍サイクルのように圧縮比が大きくなると、圧縮効率の低下や吐出ガス冷媒温度の上昇という問題があるため2段圧縮方式が用いられている。   In recent years, natural refrigerants that are refrigerated in a supercritical refrigeration cycle, such as carbon dioxide, have attracted attention in order to meet the problem of ozone depletion and the need for high temperature hot water supply in hot water supply devices. Moreover, what is described in patent document 1 is known as a freezing apparatus which performs such supercritical cycle freezing operation. In addition, when the compression ratio is increased as in such a supercritical refrigeration cycle, there are problems such as a decrease in compression efficiency and an increase in discharge gas refrigerant temperature, and therefore a two-stage compression method is used.

このような冷凍装置の一例としては、例えば非特許文献1の図1及び図2に示すようなものがある。すなわち、図1の冷凍装置は、高段側圧縮機、高圧ガス冷却器、第1絞り弁、中間レシーバ、第2絞り弁、蒸発器、低段側圧縮機、高段側圧縮機を順次直列に接続して閉回路を構成した冷凍サイクル装置により、超臨界冷凍サイクルで運転するように構成されている。また、中間レシーバのガス部分を高段側圧縮機のシリンダに接続し、中間圧ガス冷媒を低段側圧縮機の吐出ガスに混合して高段側圧縮機に吸入させ、冷凍サイクルの成績係数の向上を図っている。
また、同文献の図2の冷凍装置は、ガスインジェクションポートを備えた1段圧縮機、高圧ガス冷却器、第1絞り弁、中間レシーバ、第2絞り弁、蒸発器、前記1段圧縮機を順次直列に接続して閉回路を構成した冷凍サイクル装置により、超臨界冷凍サイクルで運転するように構成されている。また、中間レシーバのガス部分を圧縮機のガスインジェクションポートに接続して、中間圧ガス冷媒を圧縮機の圧縮工程の途中に吸入させて、冷凍サイクルの成績係数の向上を図っている。
As an example of such a refrigeration apparatus, there is one as shown in FIG. 1 and FIG. That is, the refrigeration apparatus of FIG. 1 is a series of a high-stage compressor, a high-pressure gas cooler, a first throttle valve, an intermediate receiver, a second throttle valve, an evaporator, a low-stage compressor, and a high-stage compressor. The refrigeration cycle apparatus connected to the refrigeration cycle and configured as a closed circuit is configured to operate in a supercritical refrigeration cycle. Also, the gas part of the intermediate receiver is connected to the cylinder of the high-stage compressor, the intermediate-pressure gas refrigerant is mixed with the discharge gas of the low-stage compressor, and sucked into the high-stage compressor, and the coefficient of performance of the refrigeration cycle We are trying to improve.
The refrigeration apparatus shown in FIG. 2 of the same document includes a first stage compressor having a gas injection port, a high pressure gas cooler, a first throttle valve, an intermediate receiver, a second throttle valve, an evaporator, and the first stage compressor. A refrigeration cycle apparatus that is sequentially connected in series to form a closed circuit is configured to operate in a supercritical refrigeration cycle. Further, the gas part of the intermediate receiver is connected to the gas injection port of the compressor, and the intermediate pressure gas refrigerant is sucked in the middle of the compression process of the compressor to improve the coefficient of performance of the refrigeration cycle.

J.C.Goosmann and F.R.Zumbro、"Recent Improvements in CO2 Equipment" The American Society of Refrigerating Engineers 発行、"REFRIGERATING EBGINEERING"、1928年7月、第16巻、第1号、第1頁〜。J.C.Goosmann and F.R.Zumbro, “Recent Improvements in CO2 Equipment”, published by The American Society of Refrigerating Engineers, “REFRIGERATING EBGINEERING”, July 1928, Vol. 16, No. 1, p.

一般に、このような冷凍装置において、中間レシーバの圧力如何によっては、中間レシーバのガス部分から圧縮機の圧縮工程の途中にガス冷媒が流通しないことがある。しかしながら、上記従来技術においては、このような問題に関し、何らの対策が講じられていない。   In general, in such a refrigeration apparatus, depending on the pressure of the intermediate receiver, the gas refrigerant may not flow from the gas portion of the intermediate receiver during the compression process of the compressor. However, in the prior art described above, no measures are taken for such a problem.

本発明は、このような従来技術の課題を解決するためになされたものであって、中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路の機能を有効に維持できるようにした冷凍装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and is an intermediate pressure refrigerant bypass circuit that bypasses the intermediate pressure gas refrigerant in the intermediate receiver to the intermediate pressure portion of the compression process of the compressor. An object of the present invention is to provide a refrigeration apparatus capable of effectively maintaining the function.

本発明は上記課題を解決するものであって、第1の課題解決手段に係る冷凍装置は、圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路には、圧縮機から中間レシーバへの冷媒流れを阻止する逆止弁と、この逆止弁と中間レシーバとの間の冷媒温度を検出する冷媒温度センサーと、中間圧冷媒バイパス回路の周囲空気温度を検出する空気温度センサーとを設け、さらに、この冷媒温度センサーの検出するガス冷媒温度が空気温度センサーの検出する周囲空気温度より高温になるように第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御してなることを特徴とする。   The present invention solves the above-mentioned problem, and a refrigeration apparatus according to a first problem-solving means includes a compressor, a high-pressure gas cooler that cools a high-pressure side gas refrigerant, a first expansion device, and a refrigerant in a refrigeration cycle. An intermediate receiver for adjusting the amount, a second expansion device, an evaporator using outside air as a heat source, and a refrigeration cycle device in which a gas-liquid separator is sequentially connected in series to form a closed circuit. The intermediate pressure refrigerant bypass circuit for bypassing the intermediate pressure gas refrigerant in the intermediate receiver to the intermediate pressure portion of the compression process of the compressor is provided, and the refrigerant flow from the compressor to the intermediate receiver is supplied to the intermediate pressure refrigerant bypass circuit. A check valve for blocking, a refrigerant temperature sensor for detecting the refrigerant temperature between the check valve and the intermediate receiver, and an air temperature sensor for detecting the ambient air temperature of the intermediate pressure refrigerant bypass circuit are provided. Further, the opening degree of at least one of the first throttle device and the second throttle device is controlled so that the gas refrigerant temperature detected by the refrigerant temperature sensor is higher than the ambient air temperature detected by the air temperature sensor. It is characterized by that.

また、第2の課題解決手段に係る冷凍装置は、第1の課題解決手段のように中間圧冷媒バイパス回路の周囲空気温度を空気温度センサーで検出するのではなく、中間圧冷媒バイパス回路の周囲空気温度を予測値としたものである。すなわち、第2の課題解決手段に係る冷凍装置は、圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路には、圧縮機から中間レシーバへの冷媒流れを阻止する逆止弁と、この逆止弁と中間レシーバとの間の冷媒温度を検出する冷媒温度センサーとを設け、さらに、この冷媒温度センサーの検出するガス冷媒温度が予測される中間圧冷媒バイパス回路の周囲空気温度より高温になるように第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御してなることを特徴とする。   Further, the refrigeration apparatus according to the second problem solving means does not detect the ambient air temperature of the intermediate pressure refrigerant bypass circuit with the air temperature sensor as in the first problem solving means, but instead surrounds the intermediate pressure refrigerant bypass circuit. The air temperature is a predicted value. That is, the refrigeration apparatus according to the second problem solving means includes a compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, and a second throttle device. A refrigerating cycle device in which an evaporator using outside air as a heat source and a gas-liquid separator are sequentially connected in series to form a closed circuit, and the refrigerating cycle device compresses the intermediate-pressure gas refrigerant in the intermediate receiver An intermediate pressure refrigerant bypass circuit that bypasses the intermediate pressure portion of the compressor compression process, the intermediate pressure refrigerant bypass circuit includes a check valve that blocks refrigerant flow from the compressor to the intermediate receiver, and the check valve And a refrigerant temperature sensor for detecting a refrigerant temperature between the intermediate receiver and the intermediate pressure refrigerant bypass circuit where a gas refrigerant temperature detected by the refrigerant temperature sensor is predicted. Characterized by comprising controlling at least one of the valve opening degree of the first throttle device and the second throttling device so that the temperature higher than the temperature.

また、第3の課題解決手段に係る冷凍装置は、圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路における入口側冷媒温度を検出する冷媒温度センサー及び出口側の冷媒温度を検出する冷媒温度センサー、並びに、中間圧冷媒バイパス回路の周囲空気温度を検出する空気温度センサーを設け、中間圧冷媒バイパス回路の入口側冷媒温度センサーの検出する冷媒温度が空気温度センサーの検出する空気温度より高くなるように、かつ、入口側冷媒温度センサーの検出する冷媒温度が出口側冷媒温度センサーの検出する冷媒温度より高くなるように第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御するように構成されていることを特徴とする。   The refrigeration apparatus according to the third problem solving means includes a compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, and a second throttle device. A refrigerating cycle device in which an evaporator using outside air as a heat source and a gas-liquid separator are sequentially connected in series to form a closed circuit, and the refrigerating cycle device compresses the intermediate-pressure gas refrigerant in the intermediate receiver An intermediate pressure refrigerant bypass circuit that bypasses the intermediate pressure portion of the compressor compression process, a refrigerant temperature sensor that detects an inlet side refrigerant temperature in the intermediate pressure refrigerant bypass circuit, and a refrigerant temperature sensor that detects an outlet side refrigerant temperature, In addition, an air temperature sensor for detecting the ambient air temperature of the intermediate pressure refrigerant bypass circuit is provided, and the cooling detected by the inlet side refrigerant temperature sensor of the intermediate pressure refrigerant bypass circuit is provided. The first throttling device and the first throttle device and the first throttle device so that the temperature is higher than the air temperature detected by the air temperature sensor and the refrigerant temperature detected by the inlet side refrigerant temperature sensor is higher than the refrigerant temperature detected by the outlet side refrigerant temperature sensor. The two-throttle device is configured to control at least one valve opening degree.

また、第4の課題解決手段に係る冷凍装置は、第3の課題解決手段のように中間圧冷媒バイパス回路の周囲空気温度を空気温度センサーで検出するのではなく、中間圧冷媒バイパス回路の周囲空気温度を予測値としたものである。すなわち、第4の課題解決手段に係る冷凍装置は、圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路における入口側冷媒温度を検出する冷媒温度センサー及び出口側の冷媒温度を検出する冷媒温度センサーを設け、入口側冷媒温度センサーの検出する冷媒温度が予測される中間圧冷媒バイパス回路の周囲空気温度より高くなるように、かつ、入口側冷媒温度センサーの検出する冷媒温度が出口側冷媒温度センサーの検出する冷媒温度より高くなるように、第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御するように構成されていることを特徴とする。   Further, the refrigeration apparatus according to the fourth problem solving means does not detect the ambient air temperature of the intermediate pressure refrigerant bypass circuit with the air temperature sensor as in the third problem solving means, but the surroundings of the intermediate pressure refrigerant bypass circuit. The air temperature is a predicted value. That is, the refrigeration apparatus according to the fourth problem solving means includes a compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, and a second throttle device. A refrigerating cycle device in which an evaporator using outside air as a heat source and a gas-liquid separator are sequentially connected in series to form a closed circuit, and the refrigerating cycle device compresses the intermediate-pressure gas refrigerant in the intermediate receiver An intermediate pressure refrigerant bypass circuit that bypasses the intermediate pressure portion of the compressor compression process, a refrigerant temperature sensor that detects an inlet side refrigerant temperature in the intermediate pressure refrigerant bypass circuit, and a refrigerant temperature sensor that detects an outlet side refrigerant temperature Provided, the refrigerant temperature detected by the inlet side refrigerant temperature sensor is higher than the ambient air temperature of the intermediate pressure refrigerant bypass circuit, and the inlet side refrigerant temperature is It is configured to control the valve opening degree of at least one of the first throttle device and the second throttle device so that the refrigerant temperature detected by the sensor is higher than the refrigerant temperature detected by the outlet side refrigerant temperature sensor. Features.

また、第5の課題解決手段に係る冷凍装置は、圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路における入口側及び出口側の冷媒圧力を検出する圧力センサーを設け、入口側圧力センサーの検出する入口側冷媒圧力が出口側圧力センサーの検出する出口側冷媒圧力より高くなるように、第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御するように構成されていることを特徴とする。   The refrigeration apparatus according to the fifth problem solving means includes a compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, and a second throttle device. A refrigerating cycle device in which an evaporator using outside air as a heat source and a gas-liquid separator are sequentially connected in series to form a closed circuit, and the refrigerating cycle device compresses the intermediate-pressure gas refrigerant in the intermediate receiver An intermediate pressure refrigerant bypass circuit that bypasses the intermediate pressure portion of the compressor compression process is provided, and a pressure sensor that detects refrigerant pressure on the inlet side and the outlet side in the intermediate pressure refrigerant bypass circuit is provided, and the inlet side pressure sensor detects The valve opening degree of at least one of the first throttle device and the second throttle device is controlled so that the inlet side refrigerant pressure is higher than the outlet side refrigerant pressure detected by the outlet side pressure sensor. Characterized in that it is configured urchin.

また、上記第1及び第2の課題解決手段に係る冷凍サイクル装置において、前記冷凍サイクル装置は、冷媒として二酸化炭素が充填され、超臨界サイクルで運転されるようにしてもよい。   In the refrigeration cycle apparatus according to the first and second problem solving means, the refrigeration cycle apparatus may be filled with carbon dioxide as a refrigerant and operated in a supercritical cycle.

また、上記第1及び第2の課題解決手段に係る冷凍装置において、冷凍サイクル装置を、高圧ガス冷却器により給湯水を加熱するように構成されている給湯装置としてもよい。   In the refrigeration apparatus according to the first and second problem solving means, the refrigeration cycle apparatus may be a hot water supply apparatus configured to heat hot water supply using a high-pressure gas cooler.

上記第1の課題解決手段に係る冷凍装置は、中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路に逆止弁を設け、さらに、中間圧冷媒バイパス回路内における逆止弁上流側のガス冷媒の温度が空気温度センサーにより検出される周囲空気温度より高くなるように第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御するので、中間圧冷媒バイパス回路に中間圧ガス冷媒が流通していることを維持することができる。なお、中間圧冷媒バイパス回路内に冷媒が流通していない場合は、入口側冷媒温度センサーの検出する冷媒温度と周囲空気温度と同一となる。また、中間圧冷媒バイパス回路における中間レシーバから圧縮機への中間圧ガス冷媒のバイパスを維持し、かつ、中間圧冷媒バイパス回路内における冷媒の逆流を防止することができる。   The refrigeration apparatus according to the first problem solving means includes an intermediate pressure refrigerant bypass circuit that bypasses the intermediate pressure gas refrigerant in the intermediate receiver to the intermediate pressure portion of the compression process of the compressor, and the intermediate pressure refrigerant bypass circuit includes the intermediate pressure refrigerant bypass circuit. The first throttle device and the second throttle device are provided so that the temperature of the gas refrigerant upstream of the check valve in the intermediate pressure refrigerant bypass circuit is higher than the ambient air temperature detected by the air temperature sensor. Therefore, it is possible to maintain the intermediate-pressure gas refrigerant flowing through the intermediate-pressure refrigerant bypass circuit. When no refrigerant is circulating in the intermediate pressure refrigerant bypass circuit, the refrigerant temperature detected by the inlet side refrigerant temperature sensor and the ambient air temperature are the same. Further, it is possible to maintain the bypass of the intermediate pressure gas refrigerant from the intermediate receiver to the compressor in the intermediate pressure refrigerant bypass circuit, and to prevent the reverse flow of the refrigerant in the intermediate pressure refrigerant bypass circuit.

また、上記第2の課題解決手段に係る冷凍装置は、中間圧冷媒バイパス回路の周囲空気温度を、第1の課題解決手段のような空気温度センサーによる検出値ではなく予測値としたものであるので、空気温度センサーを不要とすることで装置を簡略化しながら、中間圧冷媒バイパス回路における中間レシーバから圧縮機への中間圧ガス冷媒のバイパスを維持し、かつ、中間圧冷媒バイパス回路内における冷媒の逆流を防止することができる。   In the refrigeration apparatus according to the second problem solving means, the ambient air temperature of the intermediate pressure refrigerant bypass circuit is set as a predicted value, not a detection value by an air temperature sensor as in the first problem solving means. Therefore, while simplifying the apparatus by eliminating the need for an air temperature sensor, the bypass of the intermediate pressure gas refrigerant from the intermediate receiver to the compressor in the intermediate pressure refrigerant bypass circuit is maintained, and the refrigerant in the intermediate pressure refrigerant bypass circuit Can be prevented.

また、上記第3の課題解決手段に係る冷凍装置は、入口側冷媒温度センサーの検出する冷媒温度が中間圧冷媒バイパス回路の周囲空気温度を検出する空気温度センサーの検出する空気温度より高くなるように、かつ、入口側冷媒温度センサーの検出する冷媒温度が出口側冷媒温度センサーの検出する冷媒温度より高くなるように第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御するので、中間圧冷媒バイパス回路における中間レシーバから圧縮機への中間圧ガス冷媒のバイパスを維持することができる。   In the refrigeration apparatus according to the third problem solving means, the refrigerant temperature detected by the inlet side refrigerant temperature sensor is higher than the air temperature detected by the air temperature sensor detecting the ambient air temperature of the intermediate pressure refrigerant bypass circuit. And the opening degree of at least one of the first throttle device and the second throttle device is controlled so that the refrigerant temperature detected by the inlet side refrigerant temperature sensor is higher than the refrigerant temperature detected by the outlet side refrigerant temperature sensor. The bypass of the intermediate pressure gas refrigerant from the intermediate receiver to the compressor in the intermediate pressure refrigerant bypass circuit can be maintained.

また、上記第4の課題解決手段に係る冷凍装置は、中間圧冷媒バイパス回路の周囲空気温度を、第3の課題解決手段のような空気温度センサーによる検出値ではなく予測値としたものであるので、空気温度センサーを不要とすることで装置を簡略化しながら、中間圧冷媒バイパス回路における中間レシーバから圧縮機への中間圧ガス冷媒のバイパスを維持することができる。   In the refrigeration apparatus according to the fourth problem solving means, the ambient air temperature of the intermediate pressure refrigerant bypass circuit is set as a predicted value, not a detection value by an air temperature sensor as in the third problem solving means. Therefore, it is possible to maintain the bypass of the intermediate pressure gas refrigerant from the intermediate receiver to the compressor in the intermediate pressure refrigerant bypass circuit while simplifying the apparatus by eliminating the need for the air temperature sensor.

また、各冷凍サイクル装置において、二酸化炭素冷媒を充填して超臨界サイクルで運転すると、可燃性、毒性のない安全な冷媒を使用しながら高圧側のガス冷媒温度が高くなる冷凍サイクルで運転を行うことができる。   Also, in each refrigeration cycle device, when operating in a supercritical cycle with carbon dioxide refrigerant filled, operation is performed in a refrigeration cycle in which the gas refrigerant temperature on the high pressure side increases while using a flammable and non-toxic safe refrigerant. be able to.

また、上記冷凍サイクル装置において、高圧ガス冷却器により水を加熱するように構成すると、超臨界冷凍サイクルを利用した高温の暖房用温水や、高温の給湯水を供給することができる。   Moreover, in the said refrigeration cycle apparatus, if it comprises so that water may be heated with a high pressure gas cooler, the hot water for high temperature using a supercritical refrigeration cycle and the hot water supply water can be supplied.

以下、各実施例について図面に基づき説明する。   Hereinafter, each embodiment will be described with reference to the drawings.

図1〜図3に基づき本発明の実施例1を説明する。
図1は実施例1に係る冷凍装置の冷媒回路図である。図2は同冷凍装置における超臨界冷凍サイクルのモリエル線図である。図3は同冷凍装置の蒸発器及び気液分離器周りの構成図である。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a refrigerant circuit diagram of the refrigeration apparatus according to the first embodiment. FIG. 2 is a Mollier diagram of a supercritical refrigeration cycle in the refrigeration apparatus. FIG. 3 is a configuration diagram around the evaporator and the gas-liquid separator of the refrigeration apparatus.

図1に示すように、実施例1に係る冷凍サイクル装置は、圧縮機1、高温の高圧側ガス冷媒を冷却するとともに室内空気、暖房用温水、給湯水などの被加熱流体を加熱する高圧ガス冷却器2、第1絞り装置3、冷凍サイクル内の冷媒量を調節する中間レシーバ4、第2絞り装置5、外気から熱を汲み上げる蒸発器6、気液分離器7を順次直列に接続して閉回路を形成している。また、この冷凍装置は、冷媒回路内に二酸化炭素が冷媒として充填さ、超臨界冷凍サイクルで運転される装置として構成されている。   As shown in FIG. 1, the refrigeration cycle apparatus according to Embodiment 1 is a high-pressure gas that cools a compressor 1, a high-temperature high-pressure gas refrigerant, and heats a heated fluid such as room air, warm water for heating, and hot water. The cooler 2, the first expansion device 3, the intermediate receiver 4 that adjusts the amount of refrigerant in the refrigeration cycle, the second expansion device 5, the evaporator 6 that pumps heat from the outside air, and the gas-liquid separator 7 are sequentially connected in series. A closed circuit is formed. In addition, this refrigeration apparatus is configured as an apparatus that is operated in a supercritical refrigeration cycle in which a refrigerant circuit is filled with carbon dioxide as a refrigerant.

圧縮機1は、密閉ケーシング11内に低段側圧縮機部12、高段側圧縮機部13、電動機などを収納し、密閉ケーシング11内に低段側圧縮機部12から吐出された中間圧のガス冷媒を充満させ、高段側圧縮機部13はこの中間圧ガス冷媒を吸入して吐出するように形成した所謂内部中間圧ドーム型2段圧縮機である。また、この2段圧縮機1はインバータにより回転数可変に形成されている。また、外気温度が低下したときに、この超臨界冷凍サイクルによる加熱負荷が増大するため2段圧縮機1は高速化され、逆に、外気温度が上昇したときに低速化されるように制御される。   The compressor 1 houses a low-stage compressor section 12, a high-stage compressor section 13, an electric motor, and the like in a hermetic casing 11, and an intermediate pressure discharged from the low-stage compressor section 12 in the hermetic casing 11. The high-stage compressor section 13 is a so-called internal intermediate pressure dome type two-stage compressor formed so as to suck and discharge the intermediate pressure gas refrigerant. The two-stage compressor 1 is formed by an inverter so that the rotational speed can be varied. Further, when the outside air temperature is lowered, the heating load by the supercritical refrigeration cycle is increased, so that the two-stage compressor 1 is speeded up, and conversely, when the outside air temperature rises, the speed is slowed down. The

高圧ガス冷却器2は、高段側圧縮機部13から吐出された吐出ガスを冷却する熱交換器である。この冷凍サイクル装置は超臨界冷凍サイクル装置を形成しているので、この高圧ガス冷却器2では冷媒は凝縮されない。なお、高圧ガス冷却器2は、温水暖房装置の場合暖房用温水を加熱し、温風暖房装置の場合室内空気を加熱し、給湯装置の場合給湯水を加熱するように構成される。   The high-pressure gas cooler 2 is a heat exchanger that cools the discharge gas discharged from the high-stage compressor unit 13. Since this refrigeration cycle apparatus forms a supercritical refrigeration cycle apparatus, the high-pressure gas cooler 2 does not condense the refrigerant. The high-pressure gas cooler 2 is configured to heat warm water for heating in the case of a hot water heater, to heat indoor air in the case of a hot air heater, and to heat hot water in the case of a hot water heater.

第1絞り装置3及び第2絞り装置5としてはそれぞれ電動膨張弁が用いられている。中間レシーバ4は、冷凍サイクル内の冷媒量を調節するものであって、第1絞り装置3及び第2絞り装置5の開度制御により圧力が臨界点以下となるように制御される。これにより中間レシーバ4内に超臨界冷凍サイクルの余剰冷媒が液冷媒として貯留される。   As the first expansion device 3 and the second expansion device 5, electric expansion valves are used, respectively. The intermediate receiver 4 adjusts the amount of refrigerant in the refrigeration cycle, and is controlled so that the pressure becomes a critical point or less by the opening control of the first expansion device 3 and the second expansion device 5. Thereby, the surplus refrigerant of the supercritical refrigeration cycle is stored in the intermediate receiver 4 as a liquid refrigerant.

蒸発器6は、外気を熱源として熱交換する熱交換器であって、低圧液冷媒が蒸発することにより外気から熱を汲み上げて冷媒自身が蒸発する。また、この蒸発器6は、蒸発器6中間の冷媒温度を検出する冷媒温度センサー61と、蒸発器6出口の冷媒温度を検出する冷媒温度センサー62とを有している。なお、この両冷媒温度センサー61、62が検出する冷媒温度の温度差により、蒸発器6出口における冷媒の過熱度が検出される。また、前記第1絞り装置3及び第2絞り装置5の少なくとも一方は、蒸発器6出口の冷媒が過熱状態となるように開度制御される。
また、この蒸発器6は、冷媒が上部から下方に向かって流れるように、熱交換パイプ65が上方から下方に向かって蛇行するように形成されている(図3参照)。なお、図1及び図3において、符号63は冷媒入口であり、符号64は冷媒出口である。
The evaporator 6 is a heat exchanger that exchanges heat using outside air as a heat source, and the refrigerant itself evaporates by drawing up heat from the outside air as the low-pressure liquid refrigerant evaporates. Further, the evaporator 6 includes a refrigerant temperature sensor 61 that detects the refrigerant temperature in the middle of the evaporator 6 and a refrigerant temperature sensor 62 that detects the refrigerant temperature at the outlet of the evaporator 6. In addition, the superheat degree of the refrigerant | coolant in the evaporator 6 exit is detected by the temperature difference of the refrigerant | coolant temperature which both these refrigerant | coolant temperature sensors 61 and 62 detect. The opening degree of at least one of the first expansion device 3 and the second expansion device 5 is controlled so that the refrigerant at the outlet of the evaporator 6 is overheated.
Further, the evaporator 6 is formed such that the heat exchange pipe 65 meanders from the upper side to the lower side so that the refrigerant flows from the upper side to the lower side (see FIG. 3). 1 and 3, reference numeral 63 denotes a refrigerant inlet, and reference numeral 64 denotes a refrigerant outlet.

また、上気超臨界冷凍サイクルには、中間レシーバ4のガス部41と圧縮機1の密閉ケーシング11内とを接続することにより、中間レシーバ4内の中間圧ガス冷媒を圧縮機1の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路8が形成されている。なお、この中間圧冷媒バイパス回路8には流量調整用のキャピラリーチューブ81と圧縮機1から中間レシーバ4への冷媒流れを阻止する逆止弁82が設けられている。また、この中間圧冷媒バイパス回路8におけるキャピラリーチューブ81と逆止弁82との間には、その位置における中間圧冷媒バイパス回路8内の冷媒温度を検出する冷媒温度センサー83が設けられている。さらに、この冷凍装置には、中間圧冷媒バイパス回路8の周囲空気温度を検出する空気温度センサー(図示せず)が設けられている。そして、冷媒温度センサー83が検出する冷媒温度が空気温度センサー(図示せず)により検出される中間圧冷媒バイパス回路8の周囲空気温度より高くなるように、第1絞り装置3及び第2絞り装置5の少なくとも一方が制御されている。   Further, by connecting the gas section 41 of the intermediate receiver 4 and the inside of the closed casing 11 of the compressor 1 to the upper air supercritical refrigeration cycle, the intermediate pressure gas refrigerant in the intermediate receiver 4 is compressed in the compressor 1. An intermediate pressure refrigerant bypass circuit 8 for bypassing to the intermediate pressure portion is formed. The intermediate pressure refrigerant bypass circuit 8 is provided with a capillary tube 81 for adjusting the flow rate and a check valve 82 for blocking the refrigerant flow from the compressor 1 to the intermediate receiver 4. Further, a refrigerant temperature sensor 83 for detecting the refrigerant temperature in the intermediate pressure refrigerant bypass circuit 8 at that position is provided between the capillary tube 81 and the check valve 82 in the intermediate pressure refrigerant bypass circuit 8. Further, this refrigeration apparatus is provided with an air temperature sensor (not shown) for detecting the ambient air temperature of the intermediate pressure refrigerant bypass circuit 8. Then, the first throttling device 3 and the second throttling device are set so that the refrigerant temperature detected by the refrigerant temperature sensor 83 is higher than the ambient air temperature of the intermediate pressure refrigerant bypass circuit 8 detected by the air temperature sensor (not shown). At least one of 5 is controlled.

また、超臨界冷凍サイクルには、圧縮機1の圧縮工程中間のガス冷媒を蒸発器6にバイパスすることにより蒸発器6を除霜するためのデフロスト回路9が設けられている。なお、このデフロスト回路9には、デフロスト回路9を開閉するための開閉弁91が設けられている。この開閉弁91は通常運転中は閉塞され、除霜運転時に開放される。   Further, the supercritical refrigeration cycle is provided with a defrost circuit 9 for defrosting the evaporator 6 by bypassing the gas refrigerant in the middle of the compression process of the compressor 1 to the evaporator 6. The defrost circuit 9 is provided with an on / off valve 91 for opening and closing the defrost circuit 9. This on-off valve 91 is closed during normal operation and opened during defrosting operation.

気液分離器7は、円筒状などの適宜形状の密閉容器であって、この容器の下部に冷媒入口71を備え、上部に冷媒出口72を備えている。また、この気液分離器7は、図3に示すように、蒸発器6の冷媒出口64に対し冷媒入口71が所定ヘッド差H1高くなる位置に設けられている。また、気液分離器7の冷媒入口71と蒸発器6の冷媒出口64とを接続する配管73、すなわち、気液分離器7から蒸発器6への液冷媒の戻り配管73の断面積を、大径の配管を使用するなどして圧縮機吸入配管14の断面積より大きく構成している。   The gas-liquid separator 7 is an airtight container having an appropriate shape such as a cylindrical shape, and includes a refrigerant inlet 71 at a lower part of the container and a refrigerant outlet 72 at an upper part. Further, as shown in FIG. 3, the gas-liquid separator 7 is provided at a position where the refrigerant inlet 71 is higher than the refrigerant outlet 64 of the evaporator 6 by a predetermined head difference H1. In addition, the pipe 73 connecting the refrigerant inlet 71 of the gas-liquid separator 7 and the refrigerant outlet 64 of the evaporator 6, that is, the cross-sectional area of the return pipe 73 of the liquid refrigerant from the gas-liquid separator 7 to the evaporator 6, The cross-sectional area of the compressor suction pipe 14 is made larger by using a large-diameter pipe.

以上のように構成された超臨界冷凍サイクルの作動について、図2のモリエル線図に基づいて説明する。このモリエル線図上の各点を表示する符合は、図1の冷媒回路に付された回路上の各符号の位置における冷媒の状態を示すように対応して示す。   The operation of the supercritical refrigeration cycle configured as described above will be described based on the Mollier diagram of FIG. The symbols for indicating each point on the Mollier diagram are correspondingly shown to indicate the state of the refrigerant at the position of each symbol on the circuit attached to the refrigerant circuit of FIG.

まず、通常運転時における冷凍サイクルについて説明する。なお、この説明にはモリエル線図の各点を表示する符合を併記する。
2段圧縮機1の低段側圧縮機部12では、気液分離器7出口側の低圧ガス冷媒a1が吸入されて圧縮される。低段側圧縮機部12で圧縮された中間圧ガス冷媒b1が密閉ケーシング11内に吐出される。この密閉ケーシング11内には、中間レシーバ4において気液分離された中間圧ガス冷媒g1が中間レシーバ4のガス部から送られてくるので、前述の低段側圧縮機部12の吐出ガスb1と混合されたガス冷媒c1となる。高段側圧縮機部13は、この混合冷媒c1を吸入して高圧冷媒d1となって2段圧縮機1から吐出される。
First, the refrigeration cycle during normal operation will be described. In this description, symbols for displaying each point on the Mollier diagram are also shown.
In the low-stage compressor section 12 of the two-stage compressor 1, the low-pressure gas refrigerant a1 on the outlet side of the gas-liquid separator 7 is sucked and compressed. The intermediate-pressure gas refrigerant b <b> 1 compressed by the low-stage compressor unit 12 is discharged into the sealed casing 11. Since the intermediate-pressure gas refrigerant g1 separated from the gas and liquid in the intermediate receiver 4 is sent into the sealed casing 11 from the gas section of the intermediate receiver 4, the discharge gas b1 of the low-stage compressor section 12 and It becomes the mixed gas refrigerant c1. The high-stage compressor section 13 sucks the mixed refrigerant c1 and becomes a high-pressure refrigerant d1 and is discharged from the two-stage compressor 1.

2段圧縮機1から吐出された高圧冷媒d1は高圧ガス冷却器2で暖房用温水、給湯水又は室内空気を加熱することにより冷却される。冷却された高圧ガス冷媒e1は、第1絞り装置3により膨張され臨界点以下の圧力の気液混合冷媒f1となって中間レシーバ4に流入する。この気液混合冷媒f1は中間レシーバ4内で気液分離される。中間レシーバ4内で気液分離された中間圧ガス冷媒g1は前述のように中間圧冷媒バイパス回路8を通って2段圧縮機1の密閉ケーシング11内に流れ込む。   The high-pressure refrigerant d1 discharged from the two-stage compressor 1 is cooled by heating the hot water for heating, the hot water supply water, or the room air with the high-pressure gas cooler 2. The cooled high-pressure gas refrigerant e1 is expanded by the first expansion device 3 and becomes a gas-liquid mixed refrigerant f1 having a pressure equal to or lower than the critical point and flows into the intermediate receiver 4. This gas-liquid mixed refrigerant f1 is gas-liquid separated in the intermediate receiver 4. The intermediate-pressure gas refrigerant g1 that has been gas-liquid separated in the intermediate receiver 4 flows into the sealed casing 11 of the two-stage compressor 1 through the intermediate-pressure refrigerant bypass circuit 8 as described above.

一方、中間レシーバ4で気液分離された液冷媒h1は、第2絞り装置5で減圧され、低圧の気液混合冷媒i1となって、蒸発器6に流入する。蒸発器6に流入した低圧の気液混合冷媒i1は、外気と熱交換して(外気から熱を汲み上げて)蒸発し、低圧ガス冷媒j1となって気液分離器7に流入する。また、気液分離器7を流出した低圧ガス冷媒j1、すなわち、低圧ガス冷媒a1は前述のように低段側圧縮機部12に吸入される。   On the other hand, the liquid refrigerant h <b> 1 separated by the intermediate receiver 4 is decompressed by the second expansion device 5, becomes a low-pressure gas-liquid mixed refrigerant i <b> 1, and flows into the evaporator 6. The low-pressure gas-liquid mixed refrigerant i1 that has flowed into the evaporator 6 exchanges heat with the outside air (pumps heat from the outside air), evaporates, and flows into the gas-liquid separator 7 as the low-pressure gas refrigerant j1. Further, the low-pressure gas refrigerant j1 that has flowed out of the gas-liquid separator 7, that is, the low-pressure gas refrigerant a1, is sucked into the low-stage compressor section 12 as described above.

このような超臨界冷凍サイクルにおいて、第1絞り装置3及び第2絞り装置5の少なくとも一方は、蒸発器6の出口冷媒が過熱状態となるように制御される。また、このとき冷媒の過熱度は、蒸発器6の中間部に設けた冷媒温度センサー61の検出する冷媒温度と蒸発器6の出口側に設けた冷媒温度センサー62が検出する冷媒温度との差温が一定となるように制御することにより、蒸発器6出口側の冷媒が一定の過熱度を有するように制御される。   In such a supercritical refrigeration cycle, at least one of the first throttling device 3 and the second throttling device 5 is controlled such that the outlet refrigerant of the evaporator 6 is overheated. At this time, the degree of superheat of the refrigerant is the difference between the refrigerant temperature detected by the refrigerant temperature sensor 61 provided in the middle part of the evaporator 6 and the refrigerant temperature detected by the refrigerant temperature sensor 62 provided on the outlet side of the evaporator 6. By controlling the temperature to be constant, the refrigerant on the outlet side of the evaporator 6 is controlled to have a certain degree of superheat.

さらに、第1絞り装置3及び第2絞り装置5の少なくとも一方は、中間圧冷媒バイパス回路8内における逆止弁82上流側のガス冷媒の温度が空気温度センサーにより検出される周囲空気温度より高くなるように弁開度制御される。これにより、中間圧冷媒バイパス回路8において中間レシーバ4から圧縮機1の圧縮工程中間への中間圧ガス冷媒のバイパスが維持される。   Further, at least one of the first throttling device 3 and the second throttling device 5 is such that the temperature of the gas refrigerant upstream of the check valve 82 in the intermediate pressure refrigerant bypass circuit 8 is higher than the ambient air temperature detected by the air temperature sensor. The valve opening degree is controlled to be Thereby, in the intermediate pressure refrigerant bypass circuit 8, the bypass of the intermediate pressure gas refrigerant from the intermediate receiver 4 to the middle of the compression process of the compressor 1 is maintained.

また、上記冷凍サイクル装置において、蒸発器6の除霜が必要になった場合は、デフロスト回路9の開閉弁91を開き、第1絞り装置3及び第2絞り装置5の少なくとも一方の開度を調節することにより、低段側圧縮機部12から吐出された中間圧ガス冷媒を2段圧縮機1からデフロスト回路9を介して蒸発器6に送り込むことができる。これにより、中間圧ガス冷媒の有する潜熱により着霜した蒸発器6を加熱して除霜することができる。なお、高段側圧縮機部13から吐出された冷媒は、高圧ガス冷却器2、第1絞り装置3、中間レシーバ4のガス部41、キャピラリーチューブ81、逆止弁82、中間圧冷媒バイパス回路8を介してデフロスト回路9に流れ込むが、第1絞り装置3の開度を調節することにより少量とすることができる。また、中間レシーバ4内の液冷媒も第2絞り装置5の開度を調節することにより蒸発器6側への冷媒流れを防止することができる。   In the refrigeration cycle apparatus, when the evaporator 6 needs to be defrosted, the opening / closing valve 91 of the defrost circuit 9 is opened, and the opening degree of at least one of the first expansion device 3 and the second expansion device 5 is set. By adjusting, the intermediate-pressure gas refrigerant discharged from the low-stage compressor section 12 can be sent from the two-stage compressor 1 to the evaporator 6 via the defrost circuit 9. Thereby, the evaporator 6 frosted by the latent heat which an intermediate pressure gas refrigerant has can be heated and defrosted. The refrigerant discharged from the high-stage compressor unit 13 is the high-pressure gas cooler 2, the first throttling device 3, the gas unit 41 of the intermediate receiver 4, the capillary tube 81, the check valve 82, and the intermediate-pressure refrigerant bypass circuit. 8 flows into the defrost circuit 9, but the amount can be reduced by adjusting the opening degree of the first expansion device 3. Also, the liquid refrigerant in the intermediate receiver 4 can be prevented from flowing into the evaporator 6 by adjusting the opening of the second expansion device 5.

また、上記冷凍サイクル装置において、冬季長時間運転を停止していたときは、外気に触れる蒸発器6や気液分離器7において冷媒が凝縮液化する。なお、気液分離器7で凝縮液化した冷媒は、気液分離器7の冷媒入口71が蒸発器6の冷媒出口64に対し所定高さH1だけ高く形成されていることにより、蒸発器6に戻される。また、気液分離器7内から蒸発器6へ戻った液冷媒や蒸発器6で液化した液冷媒は蒸発器6内に貯留されている。この状態で起動した場合、蒸発器6から液冷媒が流出するが、この液冷媒は気液分離器7で気液分離されるので、圧縮機1には液冷媒が戻ることがない。同様に、蒸発器6を除霜運転した後に通常の運転に戻るときは蒸発器6から液冷媒が流出するが、気液分離器7により気液分離されるので、圧縮機1に液冷媒の戻る心配がない。   Further, in the refrigeration cycle apparatus, when the operation is stopped for a long time in winter, the refrigerant is condensed and liquefied in the evaporator 6 and the gas-liquid separator 7 that come into contact with the outside air. Note that the refrigerant condensed and liquefied by the gas-liquid separator 7 is formed in the evaporator 6 because the refrigerant inlet 71 of the gas-liquid separator 7 is formed higher than the refrigerant outlet 64 of the evaporator 6 by a predetermined height H1. Returned. The liquid refrigerant returned from the gas-liquid separator 7 to the evaporator 6 and the liquid refrigerant liquefied by the evaporator 6 are stored in the evaporator 6. When activated in this state, liquid refrigerant flows out of the evaporator 6, but this liquid refrigerant is gas-liquid separated by the gas-liquid separator 7, so that the liquid refrigerant does not return to the compressor 1. Similarly, when the evaporator 6 is defrosted and returns to normal operation, the liquid refrigerant flows out of the evaporator 6, but is separated into gas and liquid by the gas-liquid separator 7. There is no worry about going back.

実施例1に係る冷却装置は、以上のように構成されているので、次のような効果を奏する。
(1) 実施例1に係る冷凍装置は、冷凍サイクル装置内の冷媒量を調節する中間レシーバ4が中間圧状態となる第1絞り装置3と第2絞り装置5との間に設けられているので、低圧側回路に液冷媒を貯留させることなく冷凍サイクル装置内の冷媒量の調節を行うことができる。したがって、通常運転時においては、蒸発器6出口を湿り状態とする必要がない、また、長期間の停止により冷媒が寝込んでいるような場合における起動時や、除霜運転直後の通常運転への切換時のような過渡期を除いて、蒸発器6から液冷媒が流出する運転を防止することが可能になる。また、中間圧力下、中間レシーバ4で余剰冷媒を貯留するため、低圧側に余剰冷媒を貯留する場合に比し冷媒を貯留する中間レシーバ4の容積を小容量化することができる。
Since the cooling device according to the first embodiment is configured as described above, the following effects can be obtained.
(1) In the refrigeration apparatus according to the first embodiment, the intermediate receiver 4 that adjusts the amount of refrigerant in the refrigeration cycle apparatus is provided between the first expansion device 3 and the second expansion device 5 that are in an intermediate pressure state. Therefore, the amount of refrigerant in the refrigeration cycle apparatus can be adjusted without storing liquid refrigerant in the low-pressure side circuit. Therefore, during normal operation, the outlet of the evaporator 6 does not need to be in a moist state, and when starting up in the case where the refrigerant is sleeping due to a long-term stop, or to normal operation immediately after the defrosting operation. Except for a transition period such as when switching, it is possible to prevent the liquid refrigerant from flowing out of the evaporator 6. Further, since the excess refrigerant is stored in the intermediate receiver 4 under the intermediate pressure, the volume of the intermediate receiver 4 that stores the refrigerant can be reduced as compared with the case where the excess refrigerant is stored on the low pressure side.

(2) また、実施例1においては、蒸発器6出口の冷媒が過熱状態となるように第1絞り装置3及び第2絞り装置5の少なくとも一方を制御することにより、中間レシーバ4に余剰冷媒を貯留させながら圧縮機1への液戻りを防止した冷媒制御を行うことができる。   (2) In the first embodiment, excess refrigerant is supplied to the intermediate receiver 4 by controlling at least one of the first throttling device 3 and the second throttling device 5 so that the refrigerant at the outlet of the evaporator 6 is overheated. The refrigerant can be controlled while preventing the liquid from returning to the compressor 1 while storing the refrigerant.

(3) また、蒸発器6中間の冷媒温度を検出する冷媒温度センサー61と蒸発器出口の冷媒温度を検出する冷媒温度センサー62とを有し、両冷媒温度センサー61、62により検出される温度差に基づき蒸発器出口の過熱度を検出するようにしているので、通常運転時の蒸発器6出口における冷媒の過熱度を確実に検知することができる。   (3) The refrigerant temperature sensor 61 that detects the refrigerant temperature in the middle of the evaporator 6 and the refrigerant temperature sensor 62 that detects the refrigerant temperature at the evaporator outlet, and the temperatures detected by the refrigerant temperature sensors 61 and 62. Since the superheat degree at the outlet of the evaporator is detected based on the difference, it is possible to reliably detect the superheat degree of the refrigerant at the outlet of the evaporator 6 during normal operation.

(4) また、中間レシーバ4内の中間圧ガス冷媒を圧縮機1の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路8を設けているので、バイパスされる中間圧ガス冷媒が中間圧から圧縮されるため、圧縮仕事量が軽減され、システムの成績係数が向上する。   (4) Since the intermediate pressure refrigerant bypass circuit 8 for bypassing the intermediate pressure gas refrigerant in the intermediate receiver 4 to the intermediate pressure portion of the compression process of the compressor 1 is provided, the intermediate pressure gas refrigerant to be bypassed is intermediate pressure. Therefore, the compression work is reduced and the coefficient of performance of the system is improved.

(5)また、中間レシーバ4内の中間圧ガス冷媒を圧縮機1の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路8を備えるとともに、この中間圧冷媒バイパス回路8には、圧縮機1から中間レシーバ4への冷媒流れを阻止する逆止弁82と、この逆止弁82の中間レシーバ側の冷媒温度を検出する冷媒温度センサー83を設け、さらに、中間圧冷媒バイパス回路8内のガス冷媒の温度が空気温度センサー(図示せず)で検出される周囲空気温度より高温になるように第1絞り装置3及び第2絞り装置5の少なくとも一方の弁開度を制御するので、中間圧冷媒バイパス回路8に中間圧ガス冷媒が流通していることを維持することができる。
なお、中間圧冷媒バイパス回路8内に冷媒が流通していない場合は、冷媒温度センサー83の検出する冷媒温度と周囲空気温度とが同一となる。また、中間圧冷媒バイパス回路8内に逆止弁82が設けられているので、中間圧冷媒バイパス回路8内を冷媒が逆流することが防止される。
(5) Further, the intermediate pressure refrigerant bypass circuit 8 for bypassing the intermediate pressure gas refrigerant in the intermediate receiver 4 to the intermediate pressure portion of the compression process of the compressor 1 is provided. The intermediate pressure refrigerant bypass circuit 8 includes a compressor. 1 is provided with a check valve 82 for blocking refrigerant flow from the intermediate receiver 4 to the intermediate receiver 4 and a refrigerant temperature sensor 83 for detecting the refrigerant temperature on the intermediate receiver side of the check valve 82. Since the valve opening degree of at least one of the first throttling device 3 and the second throttling device 5 is controlled so that the temperature of the gas refrigerant is higher than the ambient air temperature detected by an air temperature sensor (not shown). It is possible to maintain that the intermediate-pressure gas refrigerant is circulating in the pressurized refrigerant bypass circuit 8.
When the refrigerant is not circulating in the intermediate pressure refrigerant bypass circuit 8, the refrigerant temperature detected by the refrigerant temperature sensor 83 and the ambient air temperature are the same. In addition, since the check valve 82 is provided in the intermediate pressure refrigerant bypass circuit 8, the refrigerant is prevented from flowing back through the intermediate pressure refrigerant bypass circuit 8.

(6) この場合において、圧縮機1は、2段圧縮機に構成され、低段側圧縮機部の吐出ガスを密閉ケーシング11内に吐出する所謂内部中間圧ドーム型圧縮機であるので、中間圧冷媒バイパス回路8を容易に形成することができる。   (6) In this case, the compressor 1 is a so-called internal intermediate pressure dome type compressor that is configured as a two-stage compressor and discharges the discharge gas of the low-stage compressor section into the hermetic casing 11. The pressure refrigerant bypass circuit 8 can be easily formed.

(7) また、実施例1に係る冷凍装置では、気液分離器7が蒸発器出口側に設けられており、特に、気液分離器7で分離された液冷媒が蒸発器6に戻るように形成されているので、前述の運転開始時などの過渡期においても圧縮機1へ液戻りすることがない。   (7) In the refrigeration apparatus according to the first embodiment, the gas-liquid separator 7 is provided on the evaporator outlet side, and in particular, the liquid refrigerant separated by the gas-liquid separator 7 returns to the evaporator 6. Therefore, the liquid does not return to the compressor 1 even in a transition period such as the start of operation described above.

(8) また、気液分離器7の冷媒入口71が蒸発器6の冷媒出口64に比し高い位置となるように、気液分離器7が設けられているので、運転中及び運転停止中において、気液分離器7にガス冷媒とともに流入した液冷媒又は気液分離器7で液化した液冷媒は気液分離され重力により蒸発器6に戻される。したがって、気液分離器7から蒸発器6へ冷媒を戻すための動力が不要となり、その構成が簡略化される。また、運転停止時に何も運転することなく気液分離器7の液冷媒が必ず蒸発器6に戻されているので、起動時等の過渡期における圧縮機1への液戻りを確実に防止することができる。また、気液分離器7に液冷媒がない状態から再起動されるため、吐出温度の上昇が早く、立ち上がり時間が短縮される。   (8) Further, since the gas-liquid separator 7 is provided so that the refrigerant inlet 71 of the gas-liquid separator 7 is higher than the refrigerant outlet 64 of the evaporator 6, the gas-liquid separator 7 is in operation and is not operating. The liquid refrigerant flowing into the gas-liquid separator 7 together with the gas refrigerant or the liquid refrigerant liquefied by the gas-liquid separator 7 is separated into gas and liquid and returned to the evaporator 6 by gravity. Therefore, power for returning the refrigerant from the gas-liquid separator 7 to the evaporator 6 becomes unnecessary, and the configuration is simplified. Further, since the liquid refrigerant in the gas-liquid separator 7 is always returned to the evaporator 6 without performing any operation when the operation is stopped, the liquid return to the compressor 1 in the transition period such as the start-up is surely prevented. be able to. Further, since the gas-liquid separator 7 is restarted from the state where there is no liquid refrigerant, the discharge temperature rises quickly and the rise time is shortened.

(9) また、蒸発器6の冷媒出口64と気液分離器7の冷媒入口71とを接続する配管73、すなわち、気液分離器7から蒸発器6への液冷媒の戻り配管73の断面積を、圧縮機吸入配管14の断面積より大きく構成しているので、戻り配管73を気液分離器7の一部として考えることができ、それだけ気液分離器7の容積を小さくすることができる。   (9) In addition, the pipe 73 connecting the refrigerant outlet 64 of the evaporator 6 and the refrigerant inlet 71 of the gas-liquid separator 7, that is, the disconnection of the liquid refrigerant return pipe 73 from the gas-liquid separator 7 to the evaporator 6 is disconnected. Since the area is larger than the cross-sectional area of the compressor suction pipe 14, the return pipe 73 can be considered as a part of the gas-liquid separator 7, and the volume of the gas-liquid separator 7 can be reduced accordingly. it can.

(10) また、中間レシーバ4の容積を、運転条件の変化による冷凍サイクル装置内の余剰冷媒を貯留し得る大きさとしているので、常に最適の冷媒量の状態で冷凍サイクルを運転することができ、運転成績係数を向上させることができる。   (10) Further, since the volume of the intermediate receiver 4 is set to a size capable of storing surplus refrigerant in the refrigeration cycle apparatus due to changes in operating conditions, the refrigeration cycle can always be operated with the optimum refrigerant amount. The driving performance coefficient can be improved.

(11) また、上記冷凍サイクル装置に充填する冷媒を二酸化炭素としているので、可燃性、毒性のない安全な冷媒を使用しながら高圧側のガス冷媒温度が高くなる超臨界冷凍サイクルでの運転を行うことができる。   (11) Since the refrigerant to be filled in the refrigeration cycle apparatus is carbon dioxide, operation in a supercritical refrigeration cycle in which the gas refrigerant temperature on the high-pressure side increases while using a flammable and non-toxic safe refrigerant. It can be carried out.

(12) また、上記冷凍サイクル装置を高圧ガス冷却器2により暖房用温水、給湯水などの水を加熱する装置として構成した場合は、高温の暖房用温水や高温の給湯水を供給することができる。   (12) When the refrigeration cycle apparatus is configured as an apparatus that heats water such as warm water for heating and hot water using the high-pressure gas cooler 2, high-temperature hot water for heating and high-temperature hot water can be supplied. it can.

次に、実施例2を図4及び図5に基づき説明する。なお、図4は実施例2に係る冷凍装置の冷媒回路図である。また、図5は同冷凍装置の冷凍サイクル装置による超臨界冷凍サイクルのモリエル線図である。
実施例2は、実施例1における圧縮機1を他の形式に変更可能であることを示すとともに、中間圧冷媒バイパス回路8における冷媒のバイパスを有効に維持する手段の他の例を示している。また、実施例1と異なり、蒸発器6と気液分離器7との間に高圧ガス冷媒と低圧冷媒とを熱交換する熱交換器103を設けている。
なお、その他の構成は、実施例1と同一である。また、図6において、実施例1と同一の要素には実施例1と同一の符号を付すことにより、その説明を省略する。
Next, Example 2 will be described with reference to FIGS. FIG. 4 is a refrigerant circuit diagram of the refrigeration apparatus according to the second embodiment. FIG. 5 is a Mollier diagram of a supercritical refrigeration cycle by the refrigeration cycle apparatus of the refrigeration apparatus.
The second embodiment shows that the compressor 1 in the first embodiment can be changed to another type, and shows another example of a means for effectively maintaining the refrigerant bypass in the intermediate pressure refrigerant bypass circuit 8. . Further, unlike the first embodiment, a heat exchanger 103 for exchanging heat between the high pressure gas refrigerant and the low pressure refrigerant is provided between the evaporator 6 and the gas-liquid separator 7.
Other configurations are the same as those of the first embodiment. In FIG. 6, the same elements as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.

すなわち、この実施例2においては、実施例1における2段圧縮機1に代えてガスインジェクションポート102を備えた1段圧縮機100を使用している。この1段圧縮機100は1段の圧縮機構であるが圧縮機100の圧縮工程の中間圧力部に中間圧ガス冷媒を導入可能とするガスインジェクションポート102を備え、さらに、密閉ケーシング101内には高圧ガス冷媒を導入している。   That is, in the second embodiment, a first-stage compressor 100 having a gas injection port 102 is used instead of the two-stage compressor 1 in the first embodiment. This one-stage compressor 100 is a one-stage compression mechanism, but includes a gas injection port 102 that allows an intermediate-pressure gas refrigerant to be introduced into an intermediate pressure portion of a compression process of the compressor 100. High pressure gas refrigerant is introduced.

また、この実施例2においては、中間圧冷媒バイパス回路8が中間レシーバ4のガス部41とガスインジェクションポート102との間に設けられている。
そして、中間圧冷媒バイパス回路8における冷媒のバイパスを有効に維持する手段としては、中間圧冷媒バイパス回路8の入口側及び出口側に、中間圧冷媒バイパス回路8内の冷媒温度を検出する入口側冷媒温度センサー104と、出口側冷媒温度センサー105と、中間圧冷媒バイパス回路8の周囲空気温度を検出する空気温度センサー(図示せず)とを設ける。さらに、入口側冷媒温度センサー104の検出する冷媒温度が空気温度センサーの検出する空気温度より高くなり、かつ、入口側冷媒温度センサー104の検出する冷媒温度が出口側冷媒温度センサー105の検出する冷媒温度より高くなるように第1絞り装置3及び第2絞り装置5の少なくとも一方の弁開度を制御するように構成している。
なお、熱交換器103は、蒸発器6出口の低圧冷媒と高圧ガス冷却器2出口側の高圧ガス冷媒とを熱交換させるように構成したものである。
In the second embodiment, the intermediate pressure refrigerant bypass circuit 8 is provided between the gas portion 41 of the intermediate receiver 4 and the gas injection port 102.
As means for effectively maintaining the bypass of the refrigerant in the intermediate pressure refrigerant bypass circuit 8, the inlet side for detecting the refrigerant temperature in the intermediate pressure refrigerant bypass circuit 8 is provided on the inlet side and the outlet side of the intermediate pressure refrigerant bypass circuit 8. A refrigerant temperature sensor 104, an outlet side refrigerant temperature sensor 105, and an air temperature sensor (not shown) for detecting the ambient air temperature of the intermediate pressure refrigerant bypass circuit 8 are provided. Further, the refrigerant temperature detected by the inlet side refrigerant temperature sensor 104 is higher than the air temperature detected by the air temperature sensor, and the refrigerant temperature detected by the inlet side refrigerant temperature sensor 104 is detected by the outlet side refrigerant temperature sensor 105. The valve opening degree of at least one of the first expansion device 3 and the second expansion device 5 is controlled so as to be higher than the temperature.
The heat exchanger 103 is configured to exchange heat between the low-pressure refrigerant at the outlet of the evaporator 6 and the high-pressure gas refrigerant at the outlet of the high-pressure gas cooler 2.

次に、上記のように構成された実施例2について、図5のモリエル線図に基づいて説明する。このモリエル線図上の各点を表示する符合は、図4の冷媒回路に付された回路上の位置における冷媒の状態を示すように対応して示す。   Next, Embodiment 2 configured as described above will be described based on the Mollier diagram of FIG. The symbols for indicating each point on the Mollier diagram are shown corresponding to the state of the refrigerant at the position on the circuit attached to the refrigerant circuit of FIG.

まず、通常運転時における冷凍サイクルについて説明する。なお、この説明にはモリエル線図の各点を表示する符合を併記する。
圧縮機100では、気液分離器7出口側の低圧ガス冷媒a2が吸入されて圧縮される。一方中間レシーバ4において気液分離された中間圧ガス冷媒h2が圧縮機100のガスインジェクションポート102から圧縮機100内の圧縮工程途中に導入される。したがって、圧縮機100で中間圧まで圧縮されたガス冷媒b2はガスインジェクションポート102から導入される中間圧ガス冷媒h2と混合して混合冷媒c2となる。さらに、この混合冷媒c2は圧縮されて、密閉ケーシング101内に吐出される。また、この密閉ケーシング101内から高圧ガス冷媒d2となって冷媒回路内に吐出される。
First, the refrigeration cycle during normal operation will be described. In this description, symbols for displaying each point on the Mollier diagram are also shown.
In the compressor 100, the low-pressure gas refrigerant a2 on the outlet side of the gas-liquid separator 7 is sucked and compressed. On the other hand, the intermediate-pressure gas refrigerant h <b> 2 that has been gas-liquid separated in the intermediate receiver 4 is introduced from the gas injection port 102 of the compressor 100 during the compression process in the compressor 100. Therefore, the gas refrigerant b2 compressed to the intermediate pressure by the compressor 100 is mixed with the intermediate pressure gas refrigerant h2 introduced from the gas injection port 102 to become the mixed refrigerant c2. Further, the mixed refrigerant c <b> 2 is compressed and discharged into the sealed casing 101. Further, the high-pressure gas refrigerant d2 is discharged from the sealed casing 101 into the refrigerant circuit.

圧縮機100から吐出された高圧ガス冷媒d2は、高圧ガス冷却器2で暖房用温水、給湯水又は室内空気を加熱することにより冷却される。高圧ガス冷却器2で冷却された高圧ガス冷媒e2は熱交換器103でさらに冷却される。高圧ガス冷却器2で冷却された高圧ガス冷媒f2は、第1絞り装置3により膨張され臨界点以下の圧力の気液混合冷媒g2となって中間レシーバ4に流入する。この気液混合冷媒g2は中間レシーバ4内で気液分離される。中間レシーバ4内で気液分離された中間圧ガス冷媒h2は前述のように中間圧冷媒バイパス回路8を通って圧縮機100の密閉ケーシング101内に流れ込む。   The high-pressure gas refrigerant d <b> 2 discharged from the compressor 100 is cooled by heating the hot water for hot water, hot water or indoor air with the high-pressure gas cooler 2. The high-pressure gas refrigerant e2 cooled by the high-pressure gas cooler 2 is further cooled by the heat exchanger 103. The high-pressure gas refrigerant f2 cooled by the high-pressure gas cooler 2 is expanded by the first throttling device 3 and flows into the intermediate receiver 4 as a gas-liquid mixed refrigerant g2 having a pressure below the critical point. This gas-liquid mixed refrigerant g2 is gas-liquid separated in the intermediate receiver 4. The intermediate-pressure gas refrigerant h2 that has been gas-liquid separated in the intermediate receiver 4 flows into the sealed casing 101 of the compressor 100 through the intermediate-pressure refrigerant bypass circuit 8 as described above.

一方、中間レシーバ4で気液分離された液冷媒i2は、第2絞り装置5で減圧され、低圧の気液混合冷媒j2となって蒸発器6に流入する。蒸発器6に流入した低圧の気液混合冷媒j2は、外気と熱交換して外気から熱を汲み上げて蒸発し、湿り低圧冷媒k2となって熱交換器103に流入する。熱交換器103に流入した湿り低圧冷媒k2は、高圧ガス冷媒e2と熱交換して加熱され、過熱された低圧ガス冷媒l2となって気液分離器7に流入する。また、気液分離器7に流入した低圧ガス冷媒l2、すなわち、低圧ガス冷媒a2は、気液分離器7を流出して圧縮機100に吸入される。   On the other hand, the liquid refrigerant i2 that has been gas-liquid separated by the intermediate receiver 4 is decompressed by the second expansion device 5 and flows into the evaporator 6 as a low-pressure gas-liquid mixed refrigerant j2. The low-pressure gas-liquid mixed refrigerant j2 that has flowed into the evaporator 6 exchanges heat with the outside air, pumps heat from the outside air, evaporates, and flows into the heat exchanger 103 as a wet low-pressure refrigerant k2. The wet low-pressure refrigerant k2 flowing into the heat exchanger 103 is heated by exchanging heat with the high-pressure gas refrigerant e2, and becomes superheated low-pressure gas refrigerant l2 and flows into the gas-liquid separator 7. Further, the low-pressure gas refrigerant 12 that has flowed into the gas-liquid separator 7, that is, the low-pressure gas refrigerant a 2, flows out of the gas-liquid separator 7 and is sucked into the compressor 100.

このような超臨界冷凍サイクルにおいて、第1絞り装置3及び第2絞り装置5の少なくとも一方は、実施例1の場合と同様に、蒸発器6の出口冷媒が過熱状態となるように制御される。また、このとき冷媒の過熱度は、蒸発器6の中間部に設けた冷媒温度センサー61の検出する冷媒温度と蒸発器6の出口側に設けた冷媒温度センサー62が検出する冷媒温度との差温が一定となるように制御することにより、蒸発器6出口側の冷媒が一定の過熱度を有するように制御される。   In such a supercritical refrigeration cycle, at least one of the first throttling device 3 and the second throttling device 5 is controlled so that the outlet refrigerant of the evaporator 6 is overheated, as in the case of the first embodiment. . At this time, the degree of superheat of the refrigerant is the difference between the refrigerant temperature detected by the refrigerant temperature sensor 61 provided in the middle part of the evaporator 6 and the refrigerant temperature detected by the refrigerant temperature sensor 62 provided on the outlet side of the evaporator 6. By controlling the temperature to be constant, the refrigerant on the outlet side of the evaporator 6 is controlled to have a certain degree of superheat.

さらに、第1絞り装置3及び第2絞り装置5の少なくとも一方は、入口側冷媒温度センサー104の検出する冷媒温度が空気温度センサーの検出する空気温度より高くなり、かつ、入口側冷媒温度センサー104の検出する冷媒温度が出口側冷媒温度センサー105の検出する冷媒温度より高くなるように弁開度制御される。これにより、中間圧冷媒バイパス回路8における中間レシーバ4から圧縮機100への中間圧ガス冷媒のバイパスを維持することができる。
なお、中間圧冷媒バイパス回路8内に冷媒が流通していない場合は、中間圧冷媒バイパス回路8内の冷媒が周囲空気と熱交換し、入口側冷媒温度センサー104の検出する冷媒温度と出口側冷媒温度センサー105の検出する冷媒温度とが同一となる。なお、仮に、中間圧冷媒バイパス回路8内を圧縮機100から中間レシーバ4へ冷媒が逆流する場合は、前述の所定の方向に流れている場合における入口側冷媒温度センサー104の検出する冷媒温度と出口側冷媒温度センサー105の検出する冷媒温度との関係が逆の関係になる。
Further, at least one of the first throttle device 3 and the second throttle device 5 has a refrigerant temperature detected by the inlet side refrigerant temperature sensor 104 higher than the air temperature detected by the air temperature sensor, and the inlet side refrigerant temperature sensor 104. The opening degree of the valve is controlled so that the refrigerant temperature detected by the refrigerant is higher than the refrigerant temperature detected by the outlet side refrigerant temperature sensor 105. Thereby, the bypass of the intermediate pressure gas refrigerant from the intermediate receiver 4 to the compressor 100 in the intermediate pressure refrigerant bypass circuit 8 can be maintained.
When no refrigerant is circulating in the intermediate pressure refrigerant bypass circuit 8, the refrigerant in the intermediate pressure refrigerant bypass circuit 8 exchanges heat with the ambient air, and the refrigerant temperature detected by the inlet side refrigerant temperature sensor 104 and the outlet side. The refrigerant temperature detected by the refrigerant temperature sensor 105 is the same. If the refrigerant flows back from the compressor 100 to the intermediate receiver 4 in the intermediate pressure refrigerant bypass circuit 8, the refrigerant temperature detected by the inlet-side refrigerant temperature sensor 104 when the refrigerant flows in the predetermined direction described above is used. The relationship with the refrigerant temperature detected by the outlet side refrigerant temperature sensor 105 is reversed.

また、上記冷凍サイクル装置において、蒸発器6の除霜が必要になった場合は、デフロスト回路9の開閉弁91を開き、第1絞り装置3を開放するとともに第2絞り装置5の開度を調節することにより、圧縮機100から吐出された高圧ガス冷媒が高圧ガス冷却器2、第1絞り装置3、中間レシーバ4のガス部41、キャピラリーチューブ81、中間圧冷媒バイパス回路8及びデフロスト回路9を介し、中間圧のガス冷媒となって蒸発器6に送り込まれる。これにより蒸発器6を加熱して除霜することができる。   In the above refrigeration cycle apparatus, when defrosting of the evaporator 6 is necessary, the opening / closing valve 91 of the defrost circuit 9 is opened, the first expansion device 3 is opened, and the opening of the second expansion device 5 is increased. By adjusting, the high-pressure gas refrigerant discharged from the compressor 100 becomes the high-pressure gas cooler 2, the first throttling device 3, the gas part 41 of the intermediate receiver 4, the capillary tube 81, the intermediate-pressure refrigerant bypass circuit 8 and the defrost circuit 9. Then, the refrigerant is sent to the evaporator 6 as an intermediate-pressure gas refrigerant. Thereby, the evaporator 6 can be heated and defrosted.

また、上記冷凍サイクル装置において、冬季長時間運転を停止していたときや、除霜運転した後に通常の運転を行うときは、蒸発器6から液冷媒が流出するが、実施例1の場合と同様に気液分離器7により気液分離されるので、圧縮機1に液冷媒の戻る心配がない。   In the refrigeration cycle apparatus, when the operation is stopped for a long time in winter or when the normal operation is performed after the defrosting operation, the liquid refrigerant flows out from the evaporator 6. Similarly, since gas-liquid separation is performed by the gas-liquid separator 7, there is no fear that the liquid refrigerant returns to the compressor 1.

実施例2に係る冷却装置は以上のように構成されているので、実施例1の場合と同様に、前述の(1)〜(4)、及び(7)〜(12)の効果を奏することができる。   Since the cooling device according to the second embodiment is configured as described above, the effects (1) to (4) and (7) to (12) described above are achieved as in the case of the first embodiment. Can do.

また、実施例2の場合は、中間圧冷媒バイパス回路8の入口側及び出口側に、中間圧冷媒バイパス回路8内の冷媒温度を検出する入口側冷媒温度センサー104と、出口側冷媒温度センサー105と、中間圧冷媒バイパス回路8の周囲空気温度を検出する空気温度センサー(図示せず)を設ける。さらに、入口側冷媒温度センサー104の検出する冷媒温度が空気温度センサーの検出する空気温度より高くなり、かつ、入口側冷媒温度センサー104の検出する冷媒温度が出口側冷媒温度センサー105の検出する冷媒温度より高くなるように第1絞り装置3及び第2絞り装置5の少なくとも一方の弁開度を制御しているので、中間圧冷媒バイパス回路8による中間レシーバ4から圧縮機1への中間圧ガス冷媒のバイパスを維持することができる。   In the case of the second embodiment, the inlet side refrigerant temperature sensor 104 that detects the refrigerant temperature in the intermediate pressure refrigerant bypass circuit 8 and the outlet side refrigerant temperature sensor 105 on the inlet side and outlet side of the intermediate pressure refrigerant bypass circuit 8. And an air temperature sensor (not shown) for detecting the ambient air temperature of the intermediate pressure refrigerant bypass circuit 8 is provided. Further, the refrigerant temperature detected by the inlet side refrigerant temperature sensor 104 is higher than the air temperature detected by the air temperature sensor, and the refrigerant temperature detected by the inlet side refrigerant temperature sensor 104 is detected by the outlet side refrigerant temperature sensor 105. Since the valve opening degree of at least one of the first throttle device 3 and the second throttle device 5 is controlled to be higher than the temperature, the intermediate pressure gas from the intermediate receiver 4 to the compressor 1 by the intermediate pressure refrigerant bypass circuit 8 is controlled. Refrigerant bypass can be maintained.

次に、実施例3を図6に基づき説明する。なお、図6は実施例3に係る冷凍装置の冷媒回路図である。また、図6において、実施例2と同一の要素には実施例2と同一の符号を付すことにより、その説明を省略する。
実施例3は、実施例2における中間圧冷媒バイパス回路8における冷媒のバイパスを有効に維持する手段を他の例に変更したものである。すなわち、実施例3では、中間圧冷媒バイパス回路8における入口側及び出口側の冷媒圧力を検出する圧力センサー201、202を設け、入口側圧力センサー201の検出する冷媒圧力が出口側圧力センサー202の検出する冷媒圧力より高くなるように、第1絞り装置3及び第2絞り装置5の少なくとも一方の弁開度を制御するようにしている。
Next, Example 3 will be described with reference to FIG. FIG. 6 is a refrigerant circuit diagram of the refrigeration apparatus according to the third embodiment. In FIG. 6, the same elements as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment, and the description thereof is omitted.
In the third embodiment, the means for effectively maintaining the bypass of the refrigerant in the intermediate pressure refrigerant bypass circuit 8 in the second embodiment is changed to another example. That is, in the third embodiment, the pressure sensors 201 and 202 for detecting the refrigerant pressure on the inlet side and the outlet side in the intermediate pressure refrigerant bypass circuit 8 are provided, and the refrigerant pressure detected by the inlet side pressure sensor 201 is The valve opening degree of at least one of the first throttling device 3 and the second throttling device 5 is controlled so as to be higher than the detected refrigerant pressure.

このように構成すると、中間圧冷媒バイパス回路8において入口側(中間レシーバ4側)から出口側(圧縮機1側)に冷媒が流れるので、中間圧冷媒バイパス回路8に中間圧ガス冷媒が流通していることを維持することができる。なお、中間圧冷媒バイパス回路8内に冷媒が流通していない場合は、入口側圧力センサー201の検出する冷媒圧力と出口側圧力センサー202の検出する冷媒圧力とが同一となる。また、中間圧冷媒バイパス回路8内を冷媒が逆流する場合は出口側圧力センサー202の検出する冷媒圧力が入口側圧力センサー201の検出する冷媒圧力より高くなる。   With this configuration, since the refrigerant flows from the inlet side (intermediate receiver 4 side) to the outlet side (compressor 1 side) in the intermediate pressure refrigerant bypass circuit 8, the intermediate pressure gas refrigerant flows through the intermediate pressure refrigerant bypass circuit 8. Can be maintained. When the refrigerant is not circulating in the intermediate pressure refrigerant bypass circuit 8, the refrigerant pressure detected by the inlet side pressure sensor 201 and the refrigerant pressure detected by the outlet side pressure sensor 202 are the same. When the refrigerant flows back through the intermediate pressure refrigerant bypass circuit 8, the refrigerant pressure detected by the outlet side pressure sensor 202 becomes higher than the refrigerant pressure detected by the inlet side pressure sensor 201.

(変形例)
なお、上述の実施例1及び実施例2においては、中間圧冷媒バイパス回路8の周囲空気温度を空気温度センサーにより検出していたが、これに代え、予め外気温度の変化を予測して外気温度より高くなる所定の温度を定めておく。そして、入口側冷媒温度センサー104の検出する冷媒温度が予測される中間圧冷媒バイパス回路8の周囲空気温度より高くなるように、かつ、入口側冷媒温度センサー104の検出する冷媒温度が出口側冷媒温度センサー105の検出する冷媒温度より高くなるように、第1絞り装置3及び第2絞り装置5の少なくとも一方の弁開度を制御するようにしてもよい。
(Modification)
In the first embodiment and the second embodiment described above, the ambient air temperature of the intermediate pressure refrigerant bypass circuit 8 is detected by the air temperature sensor. Instead of this, a change in the outside air temperature is predicted in advance and the outside air temperature is predicted. A predetermined temperature that is higher is determined. The refrigerant temperature detected by the inlet-side refrigerant temperature sensor 104 is such that the refrigerant temperature detected by the inlet-side refrigerant temperature sensor 104 is higher than the estimated ambient air temperature of the intermediate pressure refrigerant bypass circuit 8. You may make it control the valve opening degree of at least one of the 1st expansion device 3 and the 2nd expansion device 5 so that it may become higher than the refrigerant | coolant temperature which the temperature sensor 105 detects.

このようにすれば、空気温度センサーが不要となるので、装置を簡略化しながら中間圧冷媒バイパス回路8における中間レシーバ4から圧縮機1への中間圧ガス冷媒のバイパスを維持し、かつ、中間圧冷媒バイパス回路8内における冷媒の逆流を防止することができる。   This eliminates the need for an air temperature sensor, thus maintaining the bypass of the intermediate-pressure gas refrigerant from the intermediate receiver 4 to the compressor 1 in the intermediate-pressure refrigerant bypass circuit 8 while simplifying the apparatus, and maintaining the intermediate pressure. The reverse flow of the refrigerant in the refrigerant bypass circuit 8 can be prevented.

以上詳述した冷凍装置は、広く一般の冷凍装置に利用できるが、特に、外気を熱源とするヒートポンプ式家庭用エアコン、業務用エアコン(パッケージエアコン)、外気熱源のヒートポンプ式温水暖房装置、外気熱源のヒートポンプ式給湯装置などに利用されるものである。   The refrigeration apparatus described in detail above can be widely used for general refrigeration apparatuses. In particular, a heat pump type home air conditioner that uses outside air as a heat source, a commercial air conditioner (packaged air conditioner), a heat pump type hot water heating apparatus that uses an outside air heat source, and an outside air heat source. It is used for the heat pump type hot-water supply apparatus of No ..

本発明の実施例1に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating device concerning Example 1 of the present invention. 同冷凍装置における超臨界冷凍サイクルのモリエル線図である。It is a Mollier diagram of the supercritical refrigeration cycle in the same refrigeration apparatus. 同冷凍装置の蒸発器及び気液分離器周りの構成図である。It is a block diagram around the evaporator and gas-liquid separator of the freezing apparatus. 本発明の実施例2に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus which concerns on Example 2 of this invention. 同冷凍装置における超臨界冷凍サイクルのモリエル線図である。It is a Mollier diagram of the supercritical refrigeration cycle in the same refrigeration apparatus. 本発明の実施例3に係る冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus which concerns on Example 3 of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 高圧ガス冷却器
3 第1絞り装置
4 中間レシーバ
5 第2絞り装置
6 蒸発器
7 気液分離器
8 中間圧冷媒バイパス回路
9 デフロスト回路
11 密閉ケーシング
12 低段側圧縮機部
13 高段側圧縮機部
14 圧縮機吸入配管
41 ガス部
61 冷媒温度センサー
62 冷媒温度センサー
63 冷媒入口
64 冷媒出口
81 キャピラリーチューブ
82 逆止弁
83 冷媒温度センサー
100 圧縮機
102 ガスインジェクションポート
104 入口側冷媒温度センサー
105 出口側冷媒温度センサー
201 入口側圧力センサー
202 出口側圧力センサー
DESCRIPTION OF SYMBOLS 1 Compressor 2 High pressure gas cooler 3 1st expansion device 4 Intermediate receiver 5 2nd expansion device 6 Evaporator 7 Gas-liquid separator 8 Intermediate pressure refrigerant bypass circuit 9 Defrost circuit 11 Sealed casing 12 Low stage compressor part 13 High Stage side compressor section 14 Compressor intake pipe 41 Gas section 61 Refrigerant temperature sensor 62 Refrigerant temperature sensor 63 Refrigerant inlet 64 Refrigerant outlet 81 Capillary tube 82 Check valve 83 Refrigerant temperature sensor 100 Compressor 102 Gas injection port 104 Inlet side refrigerant temperature Sensor 105 Outlet side refrigerant temperature sensor 201 Inlet side pressure sensor 202 Outlet side pressure sensor

Claims (7)

圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路には、圧縮機から中間レシーバへの冷媒流れを阻止する逆止弁と、この逆止弁と中間レシーバとの間の冷媒温度を検出する冷媒温度センサーと、中間圧冷媒バイパス回路の周囲空気温度を検出する空気温度センサーとを設け、さらに、この冷媒温度センサーの検出するガス冷媒温度が空気温度センサーの検出する周囲空気温度より高くなるように第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御してなることを特徴とする冷凍装置。   A compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, a second throttle device, an evaporator that uses outside air as a heat source, and a gas-liquid separator. A refrigeration cycle apparatus that is sequentially connected in series to form a closed circuit, and further, the refrigeration cycle apparatus bypasses the intermediate pressure gas refrigerant in the intermediate receiver to an intermediate pressure portion of a compressor compression process. The intermediate pressure refrigerant bypass circuit is provided with a bypass circuit. The intermediate pressure refrigerant bypass circuit includes a check valve for blocking refrigerant flow from the compressor to the intermediate receiver, and a refrigerant temperature for detecting a refrigerant temperature between the check valve and the intermediate receiver. A sensor and an air temperature sensor for detecting the ambient air temperature of the intermediate pressure refrigerant bypass circuit, and the gas refrigerant temperature detected by the refrigerant temperature sensor is detected by the air temperature sensor. Refrigerating apparatus characterized by comprising controlling at least one of the valve opening degree of the first throttle device and the second throttle device so as to be higher than the ambient air temperature to. 圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路には、圧縮機から中間レシーバへの冷媒流れを阻止する逆止弁と、この逆止弁と中間レシーバとの間の冷媒温度を検出する冷媒温度センサーとを設け、さらに、この冷媒温度センサーの検出するガス冷媒温度が予測される中間圧冷媒バイパス回路の周囲空気温度より高くなるように第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御してなることを特徴とする冷凍装置。   A compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, a second throttle device, an evaporator that uses outside air as a heat source, and a gas-liquid separator. A refrigeration cycle apparatus that is sequentially connected in series to form a closed circuit, and further, the refrigeration cycle apparatus bypasses the intermediate pressure gas refrigerant in the intermediate receiver to an intermediate pressure portion of a compressor compression process. The intermediate pressure refrigerant bypass circuit is provided with a bypass circuit. The intermediate pressure refrigerant bypass circuit includes a check valve for blocking refrigerant flow from the compressor to the intermediate receiver, and a refrigerant temperature for detecting a refrigerant temperature between the check valve and the intermediate receiver. And a first throttling device and a second throttling device so that the gas refrigerant temperature detected by the refrigerant temperature sensor is higher than the estimated ambient air temperature of the intermediate pressure refrigerant bypass circuit. Refrigerating apparatus characterized by comprising controlling at least one of the valve opening of the device. 圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路における入口側冷媒温度を検出する冷媒温度センサー及び出口側の冷媒温度を検出する冷媒温度センサー、並びに、中間圧冷媒バイパス回路の周囲空気温度を検出する空気温度センサーを設け、中間圧冷媒バイパス回路の入口側冷媒温度センサーの検出する冷媒温度が空気温度センサーの検出する空気温度より高くなるように、かつ、入口側冷媒温度センサーの検出する冷媒温度が出口側冷媒温度センサーの検出する冷媒温度より高くなるように第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御するように構成されていることを特徴とする冷凍装置。   A compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, a second throttle device, an evaporator that uses outside air as a heat source, and a gas-liquid separator. A refrigeration cycle apparatus that is sequentially connected in series to form a closed circuit, and further, the refrigeration cycle apparatus bypasses the intermediate pressure gas refrigerant in the intermediate receiver to an intermediate pressure portion of a compressor compression process. A refrigerant temperature sensor for detecting an inlet side refrigerant temperature in the intermediate pressure refrigerant bypass circuit, a refrigerant temperature sensor for detecting an outlet side refrigerant temperature, and an ambient air temperature of the intermediate pressure refrigerant bypass circuit are provided. An air temperature sensor is provided, and the refrigerant temperature detected by the inlet side refrigerant temperature sensor of the intermediate pressure refrigerant bypass circuit is the air temperature detected by the air temperature sensor. At least one of the first throttle device and the second throttle device so that the refrigerant temperature detected by the inlet-side refrigerant temperature sensor is higher than the refrigerant temperature detected by the outlet-side refrigerant temperature sensor. A refrigeration apparatus configured to control the refrigeration. 圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路における入口側冷媒温度を検出する冷媒温度センサー及び出口側の冷媒温度を検出する冷媒温度センサーを設け、入口側冷媒温度センサーの検出する冷媒温度が予測される中間圧冷媒バイパス回路の周囲空気温度より高くなるように、かつ、入口側冷媒温度センサーの検出する冷媒温度が出口側冷媒温度センサーの検出する冷媒温度より高くなるように、第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御するように構成されていることを特徴とする冷凍装置。   A compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, a second throttle device, an evaporator that uses outside air as a heat source, and a gas-liquid separator. A refrigeration cycle apparatus that is sequentially connected in series to form a closed circuit, and further, the refrigeration cycle apparatus bypasses the intermediate pressure gas refrigerant in the intermediate receiver to an intermediate pressure portion of a compressor compression process. A bypass circuit is provided, and a refrigerant temperature sensor for detecting the inlet side refrigerant temperature and a refrigerant temperature sensor for detecting the outlet side refrigerant temperature in the intermediate pressure refrigerant bypass circuit are provided, and the refrigerant temperature detected by the inlet side refrigerant temperature sensor is predicted. The refrigerant temperature detected by the inlet side refrigerant temperature sensor is higher than the ambient air temperature of the intermediate pressure refrigerant bypass circuit, and the outlet side refrigerant temperature sensor To be higher than the refrigerant temperature detected by the server, the refrigeration apparatus characterized by being configured to control at least one valve opening degree of the first throttle device and the second throttling device. 圧縮機、高圧側ガス冷媒を冷却する高圧ガス冷却器、第1絞り装置、冷凍サイクル内の冷媒量を調節する中間レシーバ、第2絞り装置、外気を熱源とする蒸発器、気液分離器を順次直列に接続して閉回路を形成した冷凍サイクル装置を備え、さらに、この冷凍サイクル装置は、前記中間レシーバ内の中間圧ガス冷媒を圧縮機の圧縮工程の中間圧力部にバイパスする中間圧冷媒バイパス回路を備えるとともに、この中間圧冷媒バイパス回路における入口側及び出口側の冷媒圧力を検出する圧力センサーを設け、入口側圧力センサーの検出する入口側冷媒圧力が出口側圧力センサーの検出する出口側冷媒圧力より高くなるように、第1絞り装置及び第2絞り装置の少なくとも一方の弁開度を制御するように構成されていることを特徴とする冷凍装置。   A compressor, a high-pressure gas cooler that cools the high-pressure side gas refrigerant, a first throttle device, an intermediate receiver that adjusts the amount of refrigerant in the refrigeration cycle, a second throttle device, an evaporator that uses outside air as a heat source, and a gas-liquid separator. A refrigeration cycle apparatus that is sequentially connected in series to form a closed circuit, and further, the refrigeration cycle apparatus bypasses the intermediate pressure gas refrigerant in the intermediate receiver to an intermediate pressure portion of a compressor compression process. In addition to the bypass circuit, a pressure sensor for detecting the refrigerant pressure on the inlet side and the outlet side in the intermediate pressure refrigerant bypass circuit is provided, and the outlet side pressure detected by the outlet side pressure sensor is detected by the inlet side pressure sensor. A refrigeration apparatus configured to control a valve opening degree of at least one of the first throttling device and the second throttling device so as to be higher than the refrigerant pressure. . 前記冷凍サイクル装置は、冷媒として二酸化炭素が充填され、超臨界サイクルで運転されることを特徴とする請求項1〜5の何れか1項記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 5, wherein the refrigeration cycle apparatus is filled with carbon dioxide as a refrigerant and is operated in a supercritical cycle. 前記冷凍サイクル装置は、高圧ガス冷却器により水を加熱するように構成されていることを特徴とする請求項6記載の冷凍装置。   The refrigeration apparatus according to claim 6, wherein the refrigeration cycle apparatus is configured to heat water by a high-pressure gas cooler.
JP2004018096A 2004-01-27 2004-01-27 Refrigerator Pending JP2005214442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018096A JP2005214442A (en) 2004-01-27 2004-01-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018096A JP2005214442A (en) 2004-01-27 2004-01-27 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005214442A true JP2005214442A (en) 2005-08-11

Family

ID=34902702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018096A Pending JP2005214442A (en) 2004-01-27 2004-01-27 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005214442A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
WO2009046740A1 (en) * 2007-10-10 2009-04-16 Carrier Corporation Refrigerating system and method for controlling the same
JP2013053758A (en) * 2011-08-31 2013-03-21 Mitsubishi Heavy Ind Ltd Supercritical cycle and heat pump hot-water supplier using the same
CN103335458A (en) * 2013-07-04 2013-10-02 天津商业大学 Secondary throttling double-stage compression refrigeration system
CN103348197A (en) * 2011-07-05 2013-10-09 松下电器产业株式会社 Refrigeration cycle device
CN105485989A (en) * 2015-12-14 2016-04-13 珠海格力电器股份有限公司 Two-stage compression air conditioning system and air supply control method thereof
CN106247666A (en) * 2016-08-24 2016-12-21 广东美芝制冷设备有限公司 Refrigerating plant
CN112400087A (en) * 2019-06-12 2021-02-23 开利公司 Two-stage single gas cooler HVAC cycle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
US10254025B2 (en) 2007-10-10 2019-04-09 Carrier Corporation Refrigerating system and method for controlling the same
WO2009046740A1 (en) * 2007-10-10 2009-04-16 Carrier Corporation Refrigerating system and method for controlling the same
CN103348197A (en) * 2011-07-05 2013-10-09 松下电器产业株式会社 Refrigeration cycle device
CN103348197B (en) * 2011-07-05 2016-02-10 松下知识产权经营株式会社 Refrigerating circulatory device
JP2013053758A (en) * 2011-08-31 2013-03-21 Mitsubishi Heavy Ind Ltd Supercritical cycle and heat pump hot-water supplier using the same
EP2752628A4 (en) * 2011-08-31 2015-04-22 Mitsubishi Heavy Ind Ltd SUPERCRITICAL CYCLE AND HOT WATER HEATING WATER DELIVERY INSTALLATION USING THIS CYCLE
CN103335458A (en) * 2013-07-04 2013-10-02 天津商业大学 Secondary throttling double-stage compression refrigeration system
WO2017101658A1 (en) * 2015-12-14 2017-06-22 珠海格力电器股份有限公司 Two-stage compression air conditioning system and air replenishment control method therefor
CN105485989A (en) * 2015-12-14 2016-04-13 珠海格力电器股份有限公司 Two-stage compression air conditioning system and air supply control method thereof
US10309705B2 (en) 2015-12-14 2019-06-04 Gree Electric Appliances, Inc. Of Zhuhai Two-stage compression air conditioning system and method of controlling gas replenishment thereof
CN106247666A (en) * 2016-08-24 2016-12-21 广东美芝制冷设备有限公司 Refrigerating plant
CN112400087A (en) * 2019-06-12 2021-02-23 开利公司 Two-stage single gas cooler HVAC cycle
CN112400087B (en) * 2019-06-12 2022-05-10 开利公司 Two-stage single gas cooler HVAC cycle
US11927371B2 (en) 2019-06-12 2024-03-12 Carrier Corporation Two stage single gas cooler HVAC cycle

Similar Documents

Publication Publication Date Title
GB2518559B (en) Binary refrigeration apparatus
US9341393B2 (en) Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state
EP2905559B1 (en) Cascade refrigeration equipment
JP6292480B2 (en) Refrigeration equipment
US7730729B2 (en) Refrigerating machine
EP2765369B1 (en) Refrigeration cycle device
JP4363997B2 (en) Refrigeration equipment
EP3546850B1 (en) Refrigeration device
CN111919073B (en) Refrigerating device
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP2015064169A (en) Hot water generator
JP4317793B2 (en) Cooling system
JP2005214575A (en) Refrigerator
JP2005214444A (en) Refrigerator
JP2007232265A (en) Refrigeration equipment
JP2005214442A (en) Refrigerator
CN114270108B (en) Heat source unit and refrigerating device
JP4720641B2 (en) Refrigeration equipment
CN110494702B (en) Refrigeration cycle device
CN115244345A (en) Heat pump system and method for controlling the same
JP2009293887A (en) Refrigerating device
JP2006125843A (en) Cooling cycle and refrigerator
JP4618313B2 (en) Refrigeration equipment
JP5062079B2 (en) Refrigeration equipment
JP2006098044A (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929