[go: up one dir, main page]

JP2005209959A - Light emitting element storage package and light emitting device - Google Patents

Light emitting element storage package and light emitting device Download PDF

Info

Publication number
JP2005209959A
JP2005209959A JP2004016238A JP2004016238A JP2005209959A JP 2005209959 A JP2005209959 A JP 2005209959A JP 2004016238 A JP2004016238 A JP 2004016238A JP 2004016238 A JP2004016238 A JP 2004016238A JP 2005209959 A JP2005209959 A JP 2005209959A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
emitting device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016238A
Other languages
Japanese (ja)
Inventor
Kiyoshige Miyawaki
清茂 宮脇
Kazuhiro Kawabata
和弘 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004016238A priority Critical patent/JP2005209959A/en
Publication of JP2005209959A publication Critical patent/JP2005209959A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Led Device Packages (AREA)

Abstract

【課題】 発光素子からの光を効率良く外部に反射させるとともに、発光素子からの熱を効率良く外部に伝えるようにすることにより、長期間にわたり正常に作動し得る発光装置を提供すること。
【解決手段】 発光装置は、上面に発光素子5の載置部1aを有するとともに載置部1aに電極パッド1bが形成されたセラミックスから成る基体1と、基体1の上面の外周部に載置部1aを囲繞するように取着された枠体2と、基体1の下面に取着された熱電冷却媒体9とを具備しており、基体1は、セラミックスに含まれる結晶粒の平均粒径が1乃至15μmである。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a light emitting device capable of operating normally over a long period of time by efficiently reflecting the light from the light emitting element to the outside and efficiently transferring the heat from the light emitting element to the outside.
A light emitting device has a base 1 made of ceramics having a mounting portion 1a for a light emitting element 5 on an upper surface and electrode pads 1b formed on the mounting portion 1a, and a mounting on an outer peripheral portion of the upper surface of the base 1. The frame body 2 is attached so as to surround the portion 1a, and the thermoelectric cooling medium 9 is attached to the lower surface of the base body 1. The base body 1 has an average grain size of crystal grains contained in the ceramics. Is 1 to 15 μm.
[Selection] Figure 1

Description

本発明は、発光素子を収納するための発光素子収納用パッケージおよび発光装置に関し、特に発光素子を常時一定の温度で作動させ得る発光素子収納用パッケージおよび発光装置に関する。   The present invention relates to a light emitting element housing package and a light emitting device for housing a light emitting element, and more particularly, to a light emitting element housing package and a light emitting device capable of operating the light emitting element at a constant temperature at all times.

従来の発光ダイオード(LED)等の発光素子15を収納し、発光させるための発光装置を図5に示す。なお、図5に示す発光装置は、発光素子15から発光される近紫外光や青色光等の光を赤色,緑色,青色および黄色等の複数の蛍光体14で長波長変換して白色発光するものである。   FIG. 5 shows a light-emitting device that houses a light-emitting element 15 such as a conventional light-emitting diode (LED) and emits light. 5 emits white light by converting light such as near-ultraviolet light and blue light emitted from the light-emitting element 15 with a plurality of phosphors 14 such as red, green, blue and yellow. Is.

図5において、発光装置は、上面の中央部に発光素子15を載置するための載置部11aを有し、載置部11aおよびその周辺から発光装置の内外を電気的に導通接続するリード端子やメタライズ配線等からなる配線導体(図示せず)が形成された絶縁体からなる基体11と、基体11上面に接着固定され、上側開口が下側開口より大きい貫通孔12aが形成されているとともに、内周面が発光素子15が発光する光を反射する反射面12bとされている枠体12と、枠体12の内側に充填された、発光素子15が発光する光を長波長側に波長変換する蛍光体14を含有した透光性部材13と、載置部11aに載置固定された発光素子15とから主に構成されている。   In FIG. 5, the light emitting device has a mounting portion 11a for mounting the light emitting element 15 at the center of the upper surface, and leads that electrically connect the inside and outside of the light emitting device from the mounting portion 11a and its periphery. A base 11 made of an insulator on which a wiring conductor (not shown) made of a terminal, metallized wiring, or the like is formed, and a through hole 12a that is bonded and fixed to the upper surface of the base 11 and whose upper opening is larger than the lower opening are formed. At the same time, the frame 12 whose inner peripheral surface is a reflecting surface 12b that reflects the light emitted from the light emitting element 15, and the light emitted from the light emitting element 15 filled inside the frame 12 on the long wavelength side. It is mainly composed of a translucent member 13 containing a phosphor 14 for wavelength conversion and a light emitting element 15 mounted and fixed on the mounting portion 11a.

基体11は、酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る。基体11がセラミックスから成る場合、その上面に電極パッド11bとなる配線導体がタングステン(W),モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成される。また、基体11が樹脂から成る場合、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子がモールド成型されて基体11の内部に設置固定される。基体11は、載置部11aに形成された電極パッド11bに、発光素子15の電極(図示せず)が金(Au)−錫(Sn)合金等の金属部材16を介して電気的に接続されている。   The substrate 11 is made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, ceramics such as glass ceramics, or a resin such as epoxy resin. When the substrate 11 is made of ceramics, a wiring conductor to be the electrode pad 11b is formed on the upper surface of the substrate 11 by baking a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn), or the like at a high temperature. When the base 11 is made of a resin, lead terminals made of copper (Cu), iron (Fe) -nickel (Ni) alloy, etc. are molded and fixed inside the base 11. In the base 11, an electrode (not shown) of the light emitting element 15 is electrically connected to an electrode pad 11b formed on the mounting portion 11a through a metal member 16 such as a gold (Au) -tin (Sn) alloy. Has been.

また、枠体12は、上側開口が下側開口より大きい貫通孔12aが形成されるとともに内周面に光を反射する反射面12bが設けられる枠状となっている。具体的には、アルミニウム(Al)やFe−Ni−コバルト(Co)合金等の金属、アルミナセラミックス等のセラミックスまたはエポキシ樹脂等の樹脂から成り、切削加工や金型成型、押し出し成型等の成形技術により作製される。   Further, the frame body 12 has a frame shape in which a through hole 12a having an upper opening larger than the lower opening is formed and a reflection surface 12b for reflecting light is provided on an inner peripheral surface. Specifically, it consists of metals such as aluminum (Al) and Fe-Ni-cobalt (Co) alloys, ceramics such as alumina ceramics or resins such as epoxy resins, and molding technologies such as cutting, die molding, and extrusion molding. It is produced by.

さらに、枠体12の反射面12bは、貫通孔12aの内周面を研磨や切削加工等で平滑化することにより、あるいは、貫通孔12aの内周面にAl等の金属を蒸着法やメッキ法により被着することにより形成される。そして、枠体12は、半田,銀(Ag)ロウ等のロウ材または樹脂接着材等の接合材により、載置部11aを枠体12の内周面で取り囲むように基体11の上面に接合される。   Further, the reflecting surface 12b of the frame body 12 is formed by smoothing the inner peripheral surface of the through hole 12a by polishing or cutting, or by depositing a metal such as Al on the inner peripheral surface of the through hole 12a or by plating. It is formed by depositing by the method. The frame 12 is bonded to the upper surface of the base 11 by a soldering material such as solder, silver (Ag) brazing, or a bonding material such as a resin adhesive so as to surround the mounting portion 11a with the inner peripheral surface of the frame 12. Is done.

そして、載置部11aに配置した配線導体の一部から成る電極パッド11bと発光素子15とを金属部材16を介して、フリップチップボンディングにより電気的に接続し、しかる後、蛍光体14を含有するエポキシ樹脂やシリコーン樹脂等の透光性部材13をディスペンサー等の注入機で発光素子15を覆うように枠体12の内側に充填しオーブンで熱硬化させることで、発光素子15からの光を蛍光体14により長波長側に波長変換し所望の波長スペクトルを有する光を取り出せる発光装置となし得る。   Then, the electrode pad 11b made of a part of the wiring conductor disposed on the mounting portion 11a and the light emitting element 15 are electrically connected through the metal member 16 by flip chip bonding, and then the phosphor 14 is contained. By filling the inside of the frame 12 with a translucent member 13 such as an epoxy resin or a silicone resin so as to cover the light emitting element 15 with an injection machine such as a dispenser and thermally curing it in an oven, light from the light emitting element 15 is emitted. The phosphor 14 can be a light emitting device that can extract light having a desired wavelength spectrum by converting the wavelength to the longer wavelength side.

このような発光装置は、近年、発光装置からの光取出効率をさらに高めることが望まれており、そのため発光素子15に入力する電流値をより大きくする必要がある。しかしながら、現状の発光装置は入力電力を光に変換する効率が非常に低く、入力電力の大部分は熱になっている。その結果、発光素子15の温度が著しく上昇することになり、発光素子15自体の発光効率が低下する。また、発光素子15の温度上昇に伴いシリコーン等からなる透光性部材13の劣化を早めることになる。   In recent years, such a light-emitting device is desired to further increase the light extraction efficiency from the light-emitting device, and therefore, it is necessary to increase the current value input to the light-emitting element 15. However, current light emitting devices have very low efficiency of converting input power into light, and most of the input power is heat. As a result, the temperature of the light emitting element 15 is remarkably increased, and the light emission efficiency of the light emitting element 15 itself is lowered. Further, as the temperature of the light emitting element 15 rises, the deterioration of the translucent member 13 made of silicone or the like is accelerated.

このような問題を回避しながらも発光素子15に流す電流を増加させるには、発光素子15に生じた熱を効率良く外部に放散させる必要がある。そこで、基体11の下面に放熱フィン20を半田,銀(Ag)ロウ等のロウ材または樹脂接着材等の接合材により接合することにより、発光素子15の作動時に発する熱を放熱フィン20を介して外部へ放散されることが提案されている(例えば、下記の特許文献1参照)。
特開2003-338639号公報
In order to increase the current flowing through the light emitting element 15 while avoiding such problems, it is necessary to efficiently dissipate the heat generated in the light emitting element 15 to the outside. Therefore, the heat radiating fin 20 is joined to the lower surface of the base 11 with solder, a brazing material such as silver (Ag) brazing, or a bonding material such as a resin adhesive, so that heat generated during the operation of the light emitting element 15 is transmitted through the radiating fin 20. It has been proposed to be diffused to the outside (see, for example, Patent Document 1 below).
JP2003-338639

しかしながら、放熱フィン20は熱を大気中へ放散することによって発光素子15の熱を放熱するために放熱効率が低く、発光素子15の作動時間とともに放熱フィン20自体の温度が上昇し、それによって放熱フィン20の熱伝導性も低下する傾向がある。よって、長時間にわたって発光素子15を作動させた場合には、放熱フィン20で発光素子15の温度上昇を抑制しきれなくなり、発光素子15の温度が非常に高くなって発光効率が低下し、結果として発光装置からの光取出効率が低下するという問題点を有していた。   However, the heat dissipating fin 20 dissipates heat into the atmosphere to dissipate the heat of the light emitting element 15, so the heat dissipating efficiency is low. The thermal conductivity of the fin 20 also tends to decrease. Therefore, when the light-emitting element 15 is operated for a long time, the temperature increase of the light-emitting element 15 cannot be suppressed by the radiating fin 20, the temperature of the light-emitting element 15 becomes very high, and the light emission efficiency is lowered. As a result, the light extraction efficiency from the light emitting device is lowered.

そこで、放熱フィン20の代わりに、図6に示すように発光素子15を常に一定温度で保持させ得る、熱電冷却素子17を含む熱電冷却媒体19を用いることも考えられる。しかしながら、発光素子15は基体11を介して熱電冷却媒体19に接合されており、熱電冷却媒体19で効率よく熱を除去しても基体11の熱伝導率が低いため、基体11を介して発光素子15の熱を熱電冷却素子17に効率よく伝達できないという問題点があった。   Therefore, instead of the heat radiating fin 20, it may be considered to use a thermoelectric cooling medium 19 including a thermoelectric cooling element 17 that can keep the light emitting element 15 at a constant temperature as shown in FIG. 6. However, the light emitting element 15 is bonded to the thermoelectric cooling medium 19 via the base 11, and even if heat is efficiently removed by the thermoelectric cooling medium 19, the thermal conductivity of the base 11 is low. There was a problem that the heat of the element 15 could not be efficiently transferred to the thermoelectric cooling element 17.

また、基体11は、その上面で発光素子15や蛍光体14から発せられた光を反射させて外部に放射する機能も有しているが、発光素子15や蛍光体14から発せられた光が基体11の上面で反射される際、基体11の上面の光反射率が低いため、光の一部が基体11に吸収されて熱エネルギーとなって基体11の温度が上昇し、基体11の熱伝導率が低下するという問題点も有していた。   The base 11 also has a function of reflecting the light emitted from the light emitting element 15 and the phosphor 14 on its upper surface and radiating the light to the outside, but the light emitted from the light emitting element 15 and the phosphor 14 is emitted. When the light is reflected from the upper surface of the base 11, the light reflectivity of the upper surface of the base 11 is low, so a part of the light is absorbed by the base 11 and becomes thermal energy, and the temperature of the base 11 rises. There was also a problem that the conductivity decreased.

このような問題点を解決するため、基体11の表面に熱伝導の優れた金属膜を形成して基体11の熱伝導率を高めるという方法もあるが、製造工程が多くなるとともに製造コストが非常に高くなるという問題点を有していた。   In order to solve such problems, there is a method of increasing the thermal conductivity of the substrate 11 by forming a metal film having excellent thermal conductivity on the surface of the substrate 11, but the manufacturing process is increased and the manufacturing cost is extremely high. However, it has a problem of becoming higher.

したがって、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、発光素子からの光を効率良く外部に反射させるとともに、発光素子からの熱を効率良く外部に伝えるようにすることにより、長期間にわたり正常に作動し得る発光装置を提供することである。   Accordingly, the present invention has been completed in view of the above-described conventional problems, and an object thereof is to efficiently reflect the light from the light emitting element to the outside and to efficiently transmit the heat from the light emitting element to the outside. Thus, a light-emitting device that can operate normally over a long period of time is provided.

本発明の発光素子収納用パッケージは、上面に発光素子の載置部を有するとともに該載置部に電極パッドが形成されたセラミックスから成る基体と、前記基体の上面の外周部に前記載置部を囲繞するように取着された枠体と、前記基体の下面に取着された熱電冷却媒体とを具備しており、前記基体は、前記セラミックスに含まれる結晶粒の平均粒径が1乃至15μmであることを特徴とする。   The light emitting element storage package according to the present invention includes a base body made of ceramics having a light emitting element mounting portion on the upper surface and electrode pads formed on the mounting portion, and the mounting portion described above on the outer peripheral portion of the upper surface of the base body. And a thermoelectric cooling medium attached to the lower surface of the substrate, and the substrate has an average grain size of 1 to 1 in the ceramic grains. It is characterized by being 15 μm.

本発明の発光装置は、上記本発明の発光素子収納用パッケージと、前記載置部に載置されるとともに電極が前記電極パッドに電気的に接続された前記発光素子とを具備していることを特徴とする。   The light-emitting device of the present invention includes the light-emitting element storage package of the present invention and the light-emitting element that is mounted on the mounting portion and whose electrodes are electrically connected to the electrode pads. It is characterized by.

本発明の発光装置において、好ましくは、前記発光素子は、前記電極が前記電極パッドに金属部材を介して電気的に接続されており、前記金属部材は、その体積が一方の端面が前記電極の主面とされ他方の端面が前記電極パッドの主面とされた柱状体空間の体積の70体積%以上を占めることを特徴とする。   In the light emitting device of the present invention, preferably, in the light emitting element, the electrode is electrically connected to the electrode pad via a metal member, and the volume of the metal member has one end surface of the electrode. The other end surface is a main surface and occupies 70% by volume or more of the volume of the columnar space defined as the main surface of the electrode pad.

本発明の発光素子収納用パッケージは、上面に発光素子の載置部を有するとともに載置部に電極パッドが形成されたセラミックスから成る基体と、基体の上面の外周部に載置部を囲繞するように取着された枠体と、基体の下面に取着された熱電冷却媒体とを具備しており、基体は、セラミックスに含まれる結晶粒の平均粒径が1乃至15μmであることから、基体を構成するセラミックスの結晶粒が非常に高密度になるため、結晶粒間の粒界や気孔が非常に小さいものとなって結晶粒が占める割合が大きくなるので、基体の熱伝導率がきわめて向上し、発光素子の発する熱が基体を介して効率良く熱電冷却媒体や外部に放散することができ、熱に起因する発光素子の発光効率の低下を有効に抑制できる。よって、発光装置の光出力の低下を抑制できる。   The light emitting element storage package according to the present invention surrounds the mounting portion on the upper surface of the base body made of ceramics having a mounting portion of the light emitting element on the upper surface and electrode pads formed on the mounting portion. And the thermoelectric cooling medium attached to the lower surface of the base, and the base has an average grain size of 1 to 15 μm of crystal grains contained in the ceramic. Since the crystal grains of the ceramics constituting the substrate are very dense, the grain boundaries and pores between the crystal grains are very small and the proportion of the crystal grains increases, so the thermal conductivity of the substrate is extremely high. Thus, the heat generated by the light emitting element can be efficiently dissipated to the thermoelectric cooling medium or the outside through the substrate, and the decrease in the light emitting efficiency of the light emitting element due to heat can be effectively suppressed. Therefore, it is possible to suppress a decrease in light output of the light emitting device.

また、結晶粒間の粒界や気孔の少ない高密度の結晶粒によって基体が構成されているため、反射率を高めて発光素子から発光された光が基体の内部に入り込んで熱エネルギーに変換されるのを有効に抑制することができ、その結果、基体の温度上昇を抑制して発光素子の放熱性を向上させることができるとともに、発光装置の放射光強度も高めることができる。   In addition, since the substrate is composed of high-density crystal grains with few grain boundaries and pores between crystal grains, the light emitted from the light-emitting element with increased reflectivity enters the substrate and is converted into thermal energy. As a result, the temperature rise of the substrate can be suppressed to improve the heat dissipation of the light emitting element, and the emitted light intensity of the light emitting device can be increased.

また、基体の表面を高密度に占める結晶粒によって基体の表面に適度に凹凸が形成されるため、発光素子から発光される光を適度に乱反射させて光出力のむらをなくして均一な放射をさせることができる。さらに、発光素子から発光される光を波長変換させるための蛍光体を発光素子を覆うように設ける場合、発光素子から発光される光を基体表面で適度に乱反射させることにより、一部の蛍光体だけでなく、より多くの蛍光体に均一に光を照射させることができる。その結果、蛍光体の波長変換効率を向上させることができ、光出力や輝度、演色性を高めることができる。   In addition, since the surface of the substrate is moderately uneven due to the crystal grains occupying the surface of the substrate at a high density, the light emitted from the light emitting element is appropriately diffusely reflected so as to eliminate unevenness in light output and to emit uniformly. be able to. Furthermore, in the case where a phosphor for converting the wavelength of light emitted from the light emitting element is provided so as to cover the light emitting element, a part of the phosphor is obtained by appropriately reflecting the light emitted from the light emitting element on the surface of the substrate. In addition, more phosphors can be irradiated with light uniformly. As a result, the wavelength conversion efficiency of the phosphor can be improved, and the light output, luminance, and color rendering can be improved.

本発明の発光装置は、上記本発明の発光素子収納用パッケージと、載置部に載置されるとともに電極が電極パッドに電気的に接続された発光素子とを具備していることから、上記本発明の発光素子収納用パッケージの特徴である、放射光強度が高いとともに発光素子の熱を効果的に放散して発光効率の低下を抑制可能な発光装置となる。   The light-emitting device of the present invention includes the light-emitting element storage package of the present invention and a light-emitting element that is mounted on the mounting portion and the electrode is electrically connected to the electrode pad. A light-emitting device that is a feature of the light-emitting element storage package of the present invention has high radiated light intensity and can effectively dissipate heat of the light-emitting element to suppress a decrease in light emission efficiency.

本発明の発光装置は、発光素子の電極が電極パッドに金属部材を介して電気的に接続されており、金属部材は、その体積が一方の端面が電極の主面とされ他方の端面が電極パッドの主面とされた柱状体空間の体積の70体積%以上を占めることから、金属部材を介して発光素子から基体への熱伝導が非常に良好となり、発光素子の発する熱が基体を介して効率良く熱電冷却媒体や外部に放散することができるので、熱に起因する発光素子の発光効率の低下を有効に抑制できる。よって、発光装置の光出力の低下を抑制できる。   In the light emitting device of the present invention, the electrode of the light emitting element is electrically connected to the electrode pad through a metal member, and the volume of the metal member is such that one end surface is the main surface of the electrode and the other end surface is the electrode. Since it occupies 70% by volume or more of the volume of the columnar body space that is the main surface of the pad, the heat conduction from the light emitting element to the base through the metal member becomes very good, and the heat generated by the light emitting element passes through the base. Therefore, it is possible to dissipate efficiently to the thermoelectric cooling medium or the outside, so that it is possible to effectively suppress a decrease in light emission efficiency of the light emitting element due to heat. Therefore, it is possible to suppress a decrease in light output of the light emitting device.

本発明の発光素子収納用パッケージおよび発光装置について図1に示す構造体を例として詳細に説明する。図1は本発明の発光装置の実施の形態の一例を示す断面図である。この図において、1は基体、1bは電極パッド、2は枠体、9は熱電冷却媒体であり、主としてこれらで発光素子5を収納するための発光素子収納用パッケージが構成される。そして、基体1の載置部1aに発光素子5を載置し、発光素子5の電極5aと電極パッドと1bとを電気的に接続し、例えば透光性部材3で発光素子5を被覆したり、透光性の蓋体を枠体2上面に取着したりして発光素子5を封止することにより発光素子5の発光を方向性をもって外部に放射させ得る発光装置が構成される。   The light-emitting element storage package and the light-emitting device of the present invention will be described in detail using the structure shown in FIG. 1 as an example. FIG. 1 is a cross-sectional view showing an example of an embodiment of a light emitting device of the present invention. In this figure, 1 is a substrate, 1b is an electrode pad, 2 is a frame, 9 is a thermoelectric cooling medium, and these mainly constitute a light emitting element housing package for housing the light emitting element 5. Then, the light emitting element 5 is mounted on the mounting portion 1 a of the base 1, the electrode 5 a of the light emitting element 5 is electrically connected to the electrode pad 1 b, and the light emitting element 5 is covered with, for example, the translucent member 3. Alternatively, a light-emitting device capable of emitting light emitted from the light-emitting element 5 to the outside with directionality by sealing the light-emitting element 5 by attaching a translucent lid to the upper surface of the frame 2 is configured.

本発明における基体1は、アルミナセラミックスや窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックスから成り、その上面に電極パッド1bとなる配線導体が形成されている。   The substrate 1 in the present invention is made of ceramics such as alumina ceramics, aluminum nitride sintered body, mullite sintered body, glass ceramics, and the like, and a wiring conductor to be an electrode pad 1b is formed on the upper surface thereof.

電極パッド1bは、W,Mo,Mn,CuまたはAg等の金属粉末から成るメタライズ層から成り、基体1の表面や内部に形成される。または、Fe−Ni−Co合金等のリード端子を基体1に埋設することにより形成されてもよい。さらに、電極パッド1bが形成された絶縁体から成る入出力端子を基体1に設けられた貫通孔に嵌着接合させることによって設けられてもよい。   The electrode pad 1b is made of a metallized layer made of a metal powder such as W, Mo, Mn, Cu, or Ag, and is formed on the surface or inside of the substrate 1. Alternatively, it may be formed by embedding a lead terminal such as an Fe—Ni—Co alloy in the substrate 1. Further, an input / output terminal made of an insulator on which the electrode pad 1b is formed may be provided by being fitted and joined to a through hole provided in the base 1.

また、電極パッド1bの露出する表面には、NiやAu等の耐食性に優れる金属を1乃至20μm程度の厚さで被着させておくのが良く、電極パッド1bの酸化腐食を有効に防止し得るとともに、発光素子5の電極5aとの電気的な接続を行なうための金属部材6との接続を強固にすることができる。したがって、電極パッド1bの露出表面には、例えば、厚さ1乃至10μm程度のNiメッキ層と厚さ0.1乃至3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されているのがより好ましい。   Further, it is preferable to deposit a metal having excellent corrosion resistance such as Ni or Au with a thickness of about 1 to 20 μm on the exposed surface of the electrode pad 1b, effectively preventing oxidative corrosion of the electrode pad 1b. In addition, the connection with the metal member 6 for electrical connection with the electrode 5a of the light emitting element 5 can be strengthened. Therefore, for example, an Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited on the exposed surface of the electrode pad 1b by an electrolytic plating method or an electroless plating method. More preferably.

また、基体1は、セラミックスに含まれる結晶粒の平均粒径が1乃至15μmである。これにより、基体1を構成するセラミックスの結晶粒が非常に高密度になるため、結晶粒間の粒界や気孔が非常に小さいものとなって結晶粒が占める割合が大きくなるので、基体1の熱伝導率がきわめて向上し、発光素子5の発する熱が基体1を介して効率良く熱電冷却媒体9や外部に放散することができ、熱に起因する発光素子5の発光効率の低下を有効に抑制できる。よって、発光装置の光出力の低下を抑制できる。   The substrate 1 has an average grain size of 1 to 15 μm of crystal grains contained in the ceramic. As a result, the crystal grains of the ceramic constituting the substrate 1 have a very high density, so that the grain boundaries and pores between the crystal grains become very small and the proportion of the crystal grains increases. The heat conductivity is remarkably improved, and the heat generated by the light emitting element 5 can be efficiently dissipated to the thermoelectric cooling medium 9 and the outside through the base 1, effectively reducing the light emission efficiency of the light emitting element 5 due to heat. Can be suppressed. Therefore, it is possible to suppress a decrease in light output of the light emitting device.

また、結晶粒間の粒界や気孔の少ない高密度の結晶粒によって基体1が構成されているため、反射率を高めて発光素子5から発光された光が基体1の内部に入り込んで熱エネルギーに変換されるのを有効に抑制することができ、その結果、基体1の温度上昇を抑制して発光素子5の放熱性を向上させることができるとともに、発光装置の放射光強度も高めることができる。   Further, since the base body 1 is composed of high-density crystal grains with few grain boundaries and pores between crystal grains, the light emitted from the light-emitting element 5 with increased reflectivity enters the inside of the base body 1 and heat energy. Can be effectively suppressed, and as a result, the temperature rise of the substrate 1 can be suppressed to improve the heat dissipation of the light emitting element 5, and the emitted light intensity of the light emitting device can be increased. it can.

また、基体1の表面を高密度に占める結晶粒によって基体1の表面に適度に凹凸が形成されるため、発光素子5から発光される光を適度に乱反射させて光出力のむらをなくして均一な放射をさせることができる。さらに、発光素子5から発光される光を波長変換させるための蛍光体4を発光素子5を覆うように設ける場合、発光素子5から発光される光を基体1表面で適度に乱反射させることにより、一部の蛍光体4だけでなく、より多くの蛍光体4に均一に光を照射させることができる。その結果、蛍光体4の波長変換効率を向上させることができ、光出力や輝度、演色性を高めることができる。   In addition, since unevenness is appropriately formed on the surface of the substrate 1 by the crystal grains occupying the surface of the substrate 1 at a high density, the light emitted from the light-emitting element 5 is appropriately irregularly reflected to eliminate unevenness in light output and be uniform. Can emit radiation. Further, when the phosphor 4 for converting the wavelength of the light emitted from the light emitting element 5 is provided so as to cover the light emitting element 5, the light emitted from the light emitting element 5 is appropriately irregularly reflected on the surface of the substrate 1, Not only some of the phosphors 4 but also more phosphors 4 can be irradiated with light uniformly. As a result, the wavelength conversion efficiency of the phosphor 4 can be improved, and the light output, luminance, and color rendering can be improved.

なお、基体1のセラミックスの結晶粒の平均粒径が15μmより大きい場合、基体1の表面の結晶粒が占める割合が小さくなり、結晶粒間から基体1内部に入り込む光が増加して基体1の上面における反射率が低下したり、吸収された光が熱エネルギーに変換されて基体1の温度が上昇し易くなる。その結果、発光素子5から発光された光や蛍光体4から発光された光が基体1の上面で効率よく反射されずに発光装置の光出力が低下したり、発光素子5が高温化して発光効率が低下し易くなる。また、基体1のセラミックスの結晶粒の平均粒径が1μmより小さい場合、基体1の上面の算術平均粗さが小さくなり、発光素子5から発光される光が基体1の上面で正反射し易くなって、全方向へ均一に反射することが困難となって放射光強度にむらが生じやすくなる。   When the average grain size of the ceramic crystal grains of the substrate 1 is larger than 15 μm, the ratio of the crystal grains on the surface of the substrate 1 is reduced, and light entering the interior of the substrate 1 from between the crystal grains is increased. The reflectance on the upper surface is lowered, or the absorbed light is converted into thermal energy, and the temperature of the substrate 1 is likely to rise. As a result, the light emitted from the light emitting element 5 and the light emitted from the phosphor 4 are not efficiently reflected on the upper surface of the substrate 1 and the light output of the light emitting device is reduced, or the light emitting element 5 is heated to emit light. Efficiency tends to decrease. When the average grain size of the ceramic crystal grains of the substrate 1 is smaller than 1 μm, the arithmetic average roughness of the upper surface of the substrate 1 is reduced, and the light emitted from the light emitting element 5 is easily regularly reflected on the upper surface of the substrate 1. Thus, it becomes difficult to uniformly reflect in all directions, and unevenness in the intensity of the emitted light is likely to occur.

このような結晶粒の平均粒径が1乃至15μmの基体1は、セラミックスの原料の平均粒径として1〜3μmのものを用いたり、焼成時のの昇温速度を0.5〜5℃/secとすることにより作製することができる。   As the substrate 1 having an average grain size of 1 to 15 μm, the ceramic raw material having an average grain size of 1 to 3 μm is used, or the heating rate during firing is 0.5 to 5 ° C./sec. It can produce by doing.

基体1は上面に発光素子5が載置される載置部1aを有している。そして、発光素子5の電極5aが金属部材6を介して載置部1a上に形成された電極パッド1bに電気接続される。または、発光素子5はろう材や接着剤を介して載置部1aに載置固定され、発光素子5の電極5aがワイヤボンディングを介して載置部1aの周辺に形成された電極パッド1bに電気的に接続されてもよい。   The base body 1 has a mounting portion 1a on which the light emitting element 5 is mounted. The electrode 5a of the light emitting element 5 is electrically connected to the electrode pad 1b formed on the mounting portion 1a via the metal member 6. Alternatively, the light-emitting element 5 is mounted and fixed on the mounting portion 1a via a brazing material or an adhesive, and the electrode 5a of the light-emitting element 5 is attached to an electrode pad 1b formed around the mounting portion 1a via wire bonding. It may be electrically connected.

この電極パッド1bが基体1の内部や表面に形成された配線層(図示せず)を介して発光素子収納用パッケージの外表面に導出され、ろう材や金属製のリード等を介して外部電気回路基板に接続されることにより、発光素子5と外部電気回路とが電気的に接続される。   The electrode pad 1b is led out to the outer surface of the light emitting element storage package through a wiring layer (not shown) formed on the inside or the surface of the base 1, and external electric power is supplied through a brazing material, a metal lead or the like. By being connected to the circuit board, the light emitting element 5 and the external electric circuit are electrically connected.

金属部材6は、例えば、Au−錫(Sn)半田,Sn−Ag半田,Sn−Ag−Cu半田またはSn−鉛(Pb)等を用いた半田バンプ、またはAuやAg等の金属を用いた金属バンプ等から成り、発光素子5を基体1にフリップチップボンディング方式で実装するためのものである。このようなフリップチップボンディング方式で実装することにより、電極パッド1bを基体1の上面の発光素子5の直下に設けることができるため、ワイヤボンディング方式のように基体1の上面の発光素子5の周辺部に電極パッド1bの領域を設ける必要がなくなる。よって、発光素子5から発光された光がこの基体1の電極パッド1bの領域で吸収されて放射される光出力が低下するのを有効に抑制することができる。   The metal member 6 is made of, for example, solder bumps using Au-tin (Sn) solder, Sn-Ag solder, Sn-Ag-Cu solder, Sn-lead (Pb), or a metal such as Au or Ag. It consists of metal bumps and the like, and is for mounting the light emitting element 5 on the substrate 1 by the flip chip bonding method. By mounting in such a flip chip bonding method, the electrode pad 1b can be provided immediately below the light emitting element 5 on the upper surface of the substrate 1, so that the periphery of the light emitting device 5 on the upper surface of the substrate 1 as in the wire bonding method. It is not necessary to provide the electrode pad 1b in the area. Therefore, it is possible to effectively suppress the light output emitted from the light emitting element 5 from being absorbed and radiated by the region of the electrode pad 1b of the base 1 to be lowered.

また、金属部材6は、図4(a)〜図4(c)に示すように種々の体積、形状でもかまわないが、金属部材6の体積は、一方の端面が電極5aの主面とされ他方の端面が電極パッド1bの主面とされた柱状体空間V(図3参照)の体積の70体積%以上を占めることが好ましい。これにより、金属部材6を介して発光素子5から基体1への熱伝導が非常に良好となり、発光素子5の発する熱が基体1を介して効率良く熱電冷却媒体9や外部に放散することができるので、熱に起因する発光素子5の発光効率の低下を有効に抑制できる。よって、発光装置の光出力の低下を抑制できる。   The metal member 6 may have various volumes and shapes as shown in FIGS. 4A to 4C, but the volume of the metal member 6 is such that one end surface is the main surface of the electrode 5a. It is preferable that the other end surface occupies 70% by volume or more of the volume of the columnar space V (see FIG. 3) which is the main surface of the electrode pad 1b. Thereby, the heat conduction from the light emitting element 5 to the base 1 through the metal member 6 becomes very good, and the heat generated by the light emitting element 5 can be efficiently dissipated through the base 1 to the thermoelectric cooling medium 9 or the outside. Since it can do, the fall of the luminous efficiency of the light emitting element 5 resulting from a heat | fever can be suppressed effectively. Therefore, it is possible to suppress a decrease in light output of the light emitting device.

さらに、基体1の下面には熱電冷却媒体9が半田,Agロウ等のロウ材または樹脂接着材等の接合材で接合されており、この熱電冷却媒体9を介して、発光素子5の作動時に発する熱が外部へ放散されることとなる。   Further, a thermoelectric cooling medium 9 is bonded to the lower surface of the substrate 1 with a bonding material such as solder, a brazing material such as Ag brazing, or a resin adhesive, and the light emitting element 5 is operated via the thermoelectric cooling medium 9. The generated heat is dissipated to the outside.

熱電冷却媒体9は、ペルチェ効果を得ることのできる媒体であり、熱電冷却素子7(ペルチェ素子)または図1に示すような複数の熱電冷却素子7を基板8上に設けたものである。   The thermoelectric cooling medium 9 is a medium capable of obtaining the Peltier effect, and is provided with a thermoelectric cooling element 7 (Peltier element) or a plurality of thermoelectric cooling elements 7 as shown in FIG.

また、発光素子5の周辺部や熱電冷却媒体9の周辺部の雰囲気を、乾燥気体雰囲気,減圧気体雰囲気または減圧乾燥気体雰囲気等にすることにより露点を下げることが好ましい。これにより、発光素子5や熱電冷却媒体9の結露を防止するために発光素子5の周辺部や熱電冷却媒体9の周辺部の温度を発光素子5の周辺部や熱電冷却媒体9の周辺部の露点よりも高く維持しながら、熱電冷却素子7の低温側の温度をより低くして熱電冷却媒体9の放熱性をより向上させることができる。よって、発光素子5の高温化を有効に抑制できるとともに、結露により発光素子5の機能を低下させたり、発光装置周辺の電子部品に結露による水分で特性の低下を生じさせたりするのを有効に防止できる。   In addition, it is preferable to lower the dew point by setting the atmosphere around the light emitting element 5 or the thermoelectric cooling medium 9 to a dry gas atmosphere, a reduced pressure gas atmosphere, a reduced pressure dry gas atmosphere, or the like. Thereby, in order to prevent dew condensation of the light emitting element 5 and the thermoelectric cooling medium 9, the temperature of the peripheral part of the light emitting element 5 and the peripheral part of the thermoelectric cooling medium 9 is changed to the peripheral part of the light emitting element 5 and the peripheral part of the thermoelectric cooling medium 9. While maintaining higher than the dew point, the temperature on the low temperature side of the thermoelectric cooling element 7 can be lowered to further improve the heat dissipation of the thermoelectric cooling medium 9. Therefore, it is possible to effectively suppress the increase in the temperature of the light emitting element 5 and to effectively reduce the function of the light emitting element 5 due to dew condensation or to cause deterioration of characteristics due to moisture due to dew condensation on the electronic components around the light emitting device. Can be prevented.

なお、発光素子収納用パッケージに発光素子5を載置し、枠体2の上面に透光性の蓋体を取着して発光素子5を気密に封止して発光装置を作製する場合、発光装置の内部の発光素子5の周辺部の雰囲気は、例えば、基体1や枠体2、蓋体に1箇所以上の穴部を設け、発光装置の内部を真空引きしたり、乾燥気体を封入した後、穴部を封止することにより、乾燥気体雰囲気,減圧気体雰囲気または減圧乾燥気体雰囲気等にすることができる。この穴部は、基体1や枠体2、蓋体のいずれかに設ける他、基体1および熱冷却媒体9に連通した穴部をそれぞれ設けても良い。   When the light-emitting element 5 is mounted on the light-emitting element storage package, a light-transmitting lid is attached to the upper surface of the frame body 2, and the light-emitting element 5 is hermetically sealed to manufacture a light-emitting device. As for the atmosphere around the light emitting element 5 inside the light emitting device, for example, one or more holes are provided in the base 1, the frame 2, and the lid, and the inside of the light emitting device is evacuated or enclosed with dry gas After that, by sealing the hole, a dry gas atmosphere, a reduced pressure gas atmosphere, a reduced pressure dry gas atmosphere, or the like can be obtained. In addition to providing the hole in any of the base body 1, the frame body 2, and the lid body, a hole section communicating with the base body 1 and the heat cooling medium 9 may be provided.

また、熱電冷却媒体9の下面に放熱フィン10を取着しても良い。さらには図2に示すように放熱フィン10に空洞aを設け、この空洞内に冷却ガスや冷却液を循環させることにより、熱電冷却媒体9の放熱効果をより向上させて発光素子5の高温化をより抑制してもよい。また、熱電冷却素子7の周囲を樹脂等の絶縁物で覆うことにより熱電冷却素子7への結露を防止してもよい。   Further, the radiating fins 10 may be attached to the lower surface of the thermoelectric cooling medium 9. Further, as shown in FIG. 2, the heat radiation fin 10 is provided with a cavity a, and a cooling gas or a coolant is circulated in the cavity, thereby further improving the heat radiation effect of the thermoelectric cooling medium 9 and increasing the temperature of the light emitting element 5. May be further suppressed. Further, dew condensation on the thermoelectric cooling element 7 may be prevented by covering the periphery of the thermoelectric cooling element 7 with an insulator such as a resin.

また、基体1の上面には、金属やセラミックス、樹脂等から成る枠体2が半田やAgろう等のろう材、あるいはエポキシ樹脂等の接着剤等の接合材により取着されている。さらに、枠体2は内周面に発光素子5から発光された光を反射させ得る反射面2bを有している。このような内周面を形成する方法としては、例えば、枠体2をAl,Ag,Au,白金(Pt),チタン(Ti),クロム(Cr)またはCu等の高反射率の金属で切削加工や金型成形等により形成し、その内周面を電解研磨や化学研磨等の研磨加工によって平滑化し反射面2bとする方法が挙げられる。また、耐候性や耐湿性に優れるCu−W合金やSUS(ステンレススチール)合金で枠体2を形成し、この内周面に、Al,AgまたはAu等の金属メッキ、あるいは蒸着等によって金属薄膜を形成してもよい。なお、内周面がAgやCu等の酸化により変色し易い金属からなる場合には、その表面に、紫外領域から可視光領域にわたり透過率の優れる、低融点ガラス、ゾル−ゲルガラス、シリコーン樹脂またはエポキシ樹脂を被着するのが良く、これにより、枠体2の内周面の耐腐食性、耐薬品性または耐候性を向上させることができる。   Further, a frame 2 made of metal, ceramics, resin, or the like is attached to the upper surface of the base 1 with a brazing material such as solder, Ag brazing, or an adhesive such as an epoxy resin. Furthermore, the frame 2 has a reflection surface 2b that can reflect the light emitted from the light emitting element 5 on the inner peripheral surface. As a method for forming such an inner peripheral surface, for example, the frame 2 is cut with a metal having high reflectivity such as Al, Ag, Au, platinum (Pt), titanium (Ti), chromium (Cr), or Cu. There is a method in which the inner peripheral surface is smoothed by a polishing process such as electrolytic polishing or chemical polishing to form the reflecting surface 2b. Further, the frame 2 is formed of Cu-W alloy or SUS (stainless steel) alloy having excellent weather resistance and moisture resistance, and a metal thin film is formed on the inner peripheral surface by metal plating such as Al, Ag or Au, or vapor deposition. May be formed. In the case where the inner peripheral surface is made of a metal that is easily discolored by oxidation such as Ag or Cu, the surface has a low melting point glass, a sol-gel glass, a silicone resin, or an excellent transmittance from the ultraviolet region to the visible light region. It is preferable to deposit an epoxy resin, whereby the corrosion resistance, chemical resistance, or weather resistance of the inner peripheral surface of the frame 2 can be improved.

また、枠体2の内周面の表面の算術平均粗さRaは、0.1μm以下であるのが良く、これにより発光素子5から発光された光を良好に発光装置の上側に反射することができる。Raが0.1μmを超える場合、発光素子5から発光された光を枠体2の内周面で良好に発光装置の上側に反射するのが困難になるとともに発光装置の内部で乱反射し易くなる。その結果、発光装置の内部における光の損失が大きく成り易いとともに、所望の放射角度で光を発光装置の外部に放射することが困難になる。   The arithmetic average roughness Ra of the inner peripheral surface of the frame body 2 is preferably 0.1 μm or less, so that the light emitted from the light emitting element 5 can be reflected well on the upper side of the light emitting device. it can. When Ra exceeds 0.1 μm, it becomes difficult to favorably reflect the light emitted from the light emitting element 5 to the upper side of the light emitting device on the inner peripheral surface of the frame body 2 and to easily diffuse the light inside the light emitting device. As a result, the loss of light inside the light emitting device tends to be large, and it becomes difficult to emit light outside the light emitting device at a desired radiation angle.

本発明の発光素子収納用パッケージは、基体1の載置部1aに発光素子5が載置され、例えば、透光性部材3を枠体2の内側に充填して発光素子5を封止することにより、または、透光性の蓋体を枠体2の上面や内周面に発光素子5を覆うように取着して発光素子5を気密に封止することにより、発光素子5を収容した発光装置となる。   In the light emitting element storage package of the present invention, the light emitting element 5 is mounted on the mounting portion 1 a of the base 1. For example, the light emitting element 5 is sealed by filling the translucent member 3 inside the frame 2. The light-emitting element 5 is accommodated by attaching a translucent lid to the upper surface or inner peripheral surface of the frame 2 so as to cover the light-emitting element 5 and hermetically sealing the light-emitting element 5. Light emitting device.

透光性部材3は、発光素子5との屈折率差が小さく、発光素子5や蛍光体4から発光される光に対する透過率が高いものから成るのがよい。例えば、透光性部材3は、シリコーン樹脂、エポキシ樹脂またはユリア樹脂等の透明樹脂、あるいは低融点ガラスやゾル−ゲルガラス等が挙げられる。これにより、発光素子5と透光性部材3との屈折率差により光の反射損失が発生するのを有効に抑制することができ、発光装置の外部へ高効率で所望の放射強度や角度分布で光を放射することのできる発光装置を提供できる。また、このような透光性部材3は、ディスペンサー等の注入機で発光素子5を覆うように枠体2の内側に充填されオーブン等で熱硬化され形成される。   The translucent member 3 is preferably made of a material having a small refractive index difference from the light emitting element 5 and a high transmittance for light emitted from the light emitting element 5 and the phosphor 4. For example, the translucent member 3 may be a transparent resin such as a silicone resin, an epoxy resin, or a urea resin, or a low-melting glass or a sol-gel glass. Thereby, it is possible to effectively suppress the occurrence of light reflection loss due to the difference in refractive index between the light emitting element 5 and the translucent member 3, and desired radiation intensity and angular distribution with high efficiency to the outside of the light emitting device. A light emitting device that can emit light can be provided. Moreover, such a translucent member 3 is filled inside the frame body 2 so as to cover the light emitting element 5 with an injection machine such as a dispenser, and is thermally cured in an oven or the like.

また、透光性部材3は、発光素子5から発光された光で励起された蛍光体4中の電子の再結合によって青色,赤色、緑色または黄色等に発光する無機系または有機系の蛍光体4が任意の割合でランダムに配合,充填されても良い。これにより、発光装置として所望の発光スペクトルと色とを有する光を出力することができる。   The translucent member 3 is an inorganic or organic phosphor that emits light in blue, red, green, yellow, or the like by recombination of electrons in the phosphor 4 excited by light emitted from the light emitting element 5. 4 may be blended and filled randomly in an arbitrary ratio. Thereby, the light which has a desired emission spectrum and color as a light-emitting device can be output.

さらに、透光性部材3中を水分が浸透して発光素子5やその周辺部に結露が生じるのをより有効に防止するために、透光性部材3の上面または透光性部材3に挟まれるようにして、光透過性かつ気密性に優れたガラス等の透明部材を配置するのがよい。   Further, in order to more effectively prevent moisture from penetrating through the translucent member 3 and causing dew condensation on the light emitting element 5 and its peripheral portion, the translucent member 3 is sandwiched between the upper surface of the translucent member 3 or the translucent member 3. In this way, it is preferable to dispose a transparent member such as glass that is light transmissive and airtight.

透光性の蓋体としては、ガラスや透明樹脂から成り、発光素子5や蛍光体4から発光される光に対する透過率が高いものから成るのがよい。   The translucent lid is preferably made of glass or transparent resin and has a high transmittance with respect to light emitted from the light emitting element 5 or the phosphor 4.

また、透光性の蓋体は、発光素子5から発光された光で励起された蛍光体4中の電子の再結合によって青色,赤色、緑色または黄色等に発光する無機系または有機系の蛍光体4が任意の割合でランダムに配合,充填されても良い。または、表面に蛍光体4が塗布されてもよい。これにより、発光装置として所望の発光スペクトルと色とを有する光を出力することができる。   The translucent lid is an inorganic or organic fluorescent material that emits blue, red, green or yellow light by recombination of electrons in the phosphor 4 excited by the light emitted from the light emitting element 5. The body 4 may be blended and filled randomly at an arbitrary ratio. Alternatively, the phosphor 4 may be applied to the surface. Thereby, the light which has a desired emission spectrum and color as a light-emitting device can be output.

また、蛍光体4は、発光素子5を0.1乃至0.8mmの一定の厚みで層状に覆うように形成されるのがよい。例えば、蛍光体4を含有した透光性部材3を発光素子5の発光部から透光性部材3の表面までの距離が0.1乃至0.8mmとなるように設けることにより、蛍光体4を含有した0.1乃至0.8mmの厚みの蓋体を設けることにより、または、透光性部材3の表面または蓋体の表面に0.1乃至0.8mmの厚みの蛍光体4を含有した透光性部材3の層を設けることにより形成することができる。これにより、発光素子5から発光された光を、一定の厚さの蛍光体4によって高効率に波長変換するとともに、それらの波長変換された光を蛍光体4に妨害されるのを有効に抑制して透光性部材3の外部に効率的に放射することができる。その結果、発光装置の光出力を高めるとともに輝度および演色性等の照明特性を良好なものとすることができる。   The phosphor 4 is preferably formed so as to cover the light emitting element 5 in a layer with a constant thickness of 0.1 to 0.8 mm. For example, the phosphor 4 is contained by providing the translucent member 3 containing the phosphor 4 so that the distance from the light emitting portion of the light emitting element 5 to the surface of the translucent member 3 is 0.1 to 0.8 mm. A layer of translucent member 3 containing phosphor 4 having a thickness of 0.1 to 0.8 mm is provided on the surface of translucent member 3 or on the surface of the lid body by providing a lid body having a thickness of 0.1 to 0.8 mm. It can be formed by providing. Thereby, the light emitted from the light emitting element 5 is wavelength-converted with high efficiency by the phosphor 4 having a certain thickness, and the wavelength-converted light is effectively suppressed from being disturbed by the phosphor 4. Thus, the light can be efficiently emitted to the outside of the translucent member 3. As a result, the light output of the light emitting device can be increased and the illumination characteristics such as luminance and color rendering can be improved.

なお、蛍光体4の層の厚みが0.8mmより大きい場合、発光素子5から発光される光を蛍光体4で良好に波長変換しても、この波長変換された光を発光装置の外部へ効率よく放出することが困難である。すなわち、波長変換された光の進行を蛍光体4により妨害され易くなり、外部への光の放射を良好なものとし難くなる。   When the thickness of the phosphor 4 layer is larger than 0.8 mm, even if the light emitted from the light emitting element 5 is wavelength-converted satisfactorily by the phosphor 4, the wavelength-converted light is efficiently transmitted to the outside of the light emitting device. Difficult to release well. That is, the progress of the wavelength-converted light is likely to be disturbed by the phosphor 4, and it is difficult to improve the light emission to the outside.

一方、蛍光体4の層の厚みが0.1mmより小さい場合、発光素子5から発光された光により照射されて励起する蛍光体4の数が少なくなり、効率よく波長変換することが困難となる。これにより、波長変換されずに放出される視感性の低い波長の光が多くなり、光出力や輝度、演色性等の照明特性を良好なものとし難くなる。   On the other hand, when the thickness of the phosphor 4 layer is smaller than 0.1 mm, the number of the phosphors 4 that are irradiated and excited by the light emitted from the light emitting element 5 is reduced, and it is difficult to efficiently convert the wavelength. As a result, light having a wavelength with low visibility that is emitted without wavelength conversion increases, and it is difficult to improve illumination characteristics such as light output, luminance, and color rendering.

また、発光素子5は、放射するエネルギーのピーク波長が紫外線域から赤外線域までのいずれのものでもよいが、白色光や種々の色の光を視感性よく放出させるという観点から300乃至500nmの近紫外系から青色系で発光する素子であるのがよい。例えば、サファイア基板上にバッファ層,n型層,発光層およびp型層を順次積層した、GaN,GaAlN,InGaNまたはInGaAlN等の窒化ガリウム系化合物半導体、あるいはシリコンカーバイド系化合物半導体やZnSe(セレン化亜鉛)等で発光層が形成されたものが挙げられる。   The light emitting element 5 may have any peak wavelength of energy to be emitted from the ultraviolet region to the infrared region. However, from the viewpoint of emitting white light and light of various colors with good visibility, the light emitting element 5 has a wavelength of about 300 to 500 nm. It is preferable that the element emits light from ultraviolet to blue. For example, a gallium nitride-based compound semiconductor such as GaN, GaAlN, InGaN, or InGaAlN, or a silicon carbide-based compound semiconductor or ZnSe (selenide) in which a buffer layer, an n-type layer, a light-emitting layer, and a p-type layer are sequentially stacked on a sapphire substrate. Zinc) or the like in which the light emitting layer is formed.

本発明の発光装置について以下に実施例を示す。   Examples of the light emitting device of the present invention are shown below.

まず、基体1となる種々の粒径(1、5、10、15、20μm)の結晶粒から成るアルミナセラミックス基体を準備した。また、発光素子5が載置される載置部1aに、発光素子5と外部電気回路基板とを基体1の内部に形成した内部配線を介して電気的に接続するための電極パッド1bを形成した。なお、基体1の上面の電極パッド1bは、Mo−Mn粉末からなるメタライズ層により直径が0.1mmの円形パッドに成形されており、その表面に厚さ3μmのNiメッキ層と厚さ2μmのAuメッキ層とが順次被着されたものであった。また、基体1内部の内部配線は、貫通導体からなる電気接続部、いわゆるスルーホールによって形成された。このスルーホールについても電極パッド1bと同様にMo−Mn粉末からなるメタライズ導体で成形された。なお、基体1の下面には熱電冷却媒体9を取着した。   First, an alumina ceramic base made of crystal grains having various grain sizes (1, 5, 10, 15, 20 μm) to be the base 1 was prepared. In addition, an electrode pad 1b for electrically connecting the light emitting element 5 and the external electric circuit board through an internal wiring formed in the base 1 is formed on the mounting portion 1a on which the light emitting element 5 is mounted. did. The electrode pad 1b on the upper surface of the substrate 1 is formed into a circular pad having a diameter of 0.1 mm by a metallized layer made of Mo—Mn powder, and a Ni plating layer having a thickness of 3 μm and an Au pad having a thickness of 2 μm are formed on the surface. The plating layer was sequentially deposited. Further, the internal wiring inside the substrate 1 was formed by an electrical connection portion made of a through conductor, so-called through hole. This through hole was also formed of a metallized conductor made of Mo-Mn powder in the same manner as the electrode pad 1b. A thermoelectric cooling medium 9 was attached to the lower surface of the substrate 1.

次に、382nmにピーク波長を有する近紫外光を発する厚さ0.08mmの発光素子5を載置部1aの電極パッド1bに、Au−Snから成る金属部材6を介して発光素子5を電気的に接続した。なお、金属部材6は、発光素子5の電極5aと電極パッド1bとの間の柱状体空間Vの体積に対して、体積比を30%,50%,70%,90%としたものを準備した。   Next, the 0.08 mm thick light emitting element 5 that emits near-ultraviolet light having a peak wavelength at 382 nm is electrically connected to the electrode pad 1 b of the mounting portion 1 a via the metal member 6 made of Au—Sn. Connected to. The metal member 6 is prepared with a volume ratio of 30%, 50%, 70%, 90% with respect to the volume of the columnar space V between the electrode 5a and the electrode pad 1b of the light emitting element 5. did.

次に、発光素子5の光によって励起され、黄色発光を行なう蛍光体4を含有するシリコーン樹脂(透光性部材3)をディスペンサーによって、発光素子5の周囲に被覆し熱硬化させてサンプルとしての発光装置を作製し光出力を測定した。   Next, a silicone resin (translucent member 3) containing a phosphor 4 that emits yellow light by being excited by the light of the light emitting element 5 is coated around the light emitting element 5 by a dispenser and thermally cured to obtain a sample. A light emitting device was fabricated and the light output was measured.

なお、蛍光体4は、シリコーン樹脂に対して1/4の充填率(質量%)で均一に分散させた。また、蛍光体4はその粒径が1.5乃至80μmの粒度分布でガーネット構造を有するイットリウム・アルミン酸塩系の黄色発光を行なう蛍光体4を用いた。   The phosphor 4 was uniformly dispersed at a filling rate (mass%) of 1/4 with respect to the silicone resin. The phosphor 4 used was a yttrium-aluminate-based phosphor emitting yellow light having a garnet structure with a particle size distribution of 1.5 to 80 μm.

基体1のセラミックスの結晶粒の平均粒径が20μmの場合、光出力が14mWであった。しかし、基体1のセラミックスの結晶粒の平均粒径が1乃至15μmの場合、光出力はいずれも17mW以上となり、セラミックスの結晶粒の平均粒径が20μmと比して、光出力のエネルギーが20%以上増加した。すなわち、セラミックスの結晶粒の平均粒径が20μmの場合に比し、セラミックスの結晶粒の平均粒径が1乃至15μmの基体1を用いることにより、基体1の内部に入り込む光を有効に抑制するとともに基体1の表面における光散乱によって光照射される蛍光体4の数が増加して光出力が向上したものと考えられる。   When the average grain size of the ceramic crystal grains of the substrate 1 was 20 μm, the light output was 14 mW. However, when the average grain size of the ceramic crystal grains of the substrate 1 is 1 to 15 μm, the light output is 17 mW or more, and the average grain size of the ceramic crystal grains is 20 μm. Increased by more than%. That is, as compared with the case where the average grain size of the ceramic crystal grains is 20 μm, the use of the base 1 having the average grain size of the ceramic crystal grains of 1 to 15 μm effectively suppresses light entering the base 1. At the same time, it is considered that the number of phosphors 4 irradiated with light by light scattering on the surface of the substrate 1 is increased and the light output is improved.

また、発光装置の光出力を高めるために電流値を増加させた場合、セラミックスの結晶粒の平均粒径が1乃至15μmの基体1の方が20μmのものに比べ、順方向電流に対する発光効率の低下を有効に抑制できたことも確認した。   In addition, when the current value is increased to increase the light output of the light emitting device, the substrate 1 having an average crystal grain size of 1 to 15 μm has a higher luminous efficiency with respect to the forward current than 20 μm. It was also confirmed that the decrease could be effectively suppressed.

また、金属部材6の体積比が30%,50%,70%,90%と増加する程、発光素子5から基体1への熱伝達効率が良好であった。70%以上で冷却効率が飽和に達した。   Moreover, the heat transfer efficiency from the light emitting element 5 to the base | substrate 1 was so favorable that the volume ratio of the metal member 6 increased with 30%, 50%, 70%, 90%. Cooling efficiency reached saturation at 70% or more.

なお、本発明は以上の実施の形態の例および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を行なうことは何等支障ない。例えば、枠体2の上面に発光装置より放出される光を任意に集光または拡散させることができる光学レンズや平板状の透光性の蓋体を半田や接着剤等で接合することにより、所望とする角度で光を取り出すことができるとともに発光装置の内部への耐浸水性が改善され長期信頼性が向上する。また、枠体2の内周面は、その断面形状が平坦(直線状)または円弧状(曲線状)であってもよい。円弧状とする場合、発光素子5から発光される光を万遍なく反射させて指向性の高い光を外部に均一に放射することができる。また、光出力を高めるために基体1に発光素子5を複数設けても良い。さらに、枠体2の内周面の角度や、枠体2の上端から透光性部材3の上面までの距離を任意に調整することも可能であり、これにより、補色域を設けることによりさらに良好な演色性を得ることができる。   It should be noted that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention. For example, by joining an optical lens that can arbitrarily collect or diffuse light emitted from the light emitting device to the upper surface of the frame body 2 or a flat light-transmitting lid body with solder or an adhesive, Light can be taken out at a desired angle, and the water resistance to the inside of the light emitting device is improved, thereby improving long-term reliability. Further, the inner peripheral surface of the frame 2 may have a flat (straight) shape or an arc (curved) cross-sectional shape. In the case of the circular arc shape, light emitted from the light emitting element 5 can be uniformly reflected, and highly directional light can be uniformly emitted to the outside. Further, a plurality of light emitting elements 5 may be provided on the base 1 in order to increase the light output. Furthermore, it is also possible to arbitrarily adjust the angle of the inner peripheral surface of the frame body 2 and the distance from the upper end of the frame body 2 to the upper surface of the translucent member 3, thereby further providing a complementary color gamut. Good color rendering can be obtained.

本発明の発光装置について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the light-emitting device of this invention. 本発明の発光装置について実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment about the light-emitting device of this invention. 本発明の発光装置における柱状体空間を説明するための図である。It is a figure for demonstrating the columnar body space in the light-emitting device of this invention. (a)〜(c)は本発明の発光装置における発光素子と基体との接続部の各種例を示す要部拡大断面図である。(A)-(c) is a principal part expanded sectional view which shows the various examples of the connection part of the light emitting element and a base | substrate in the light-emitting device of this invention. 従来の発光装置を示す断面図である。It is sectional drawing which shows the conventional light-emitting device. 従来の発光装置を示す断面図である。It is sectional drawing which shows the conventional light-emitting device.

符号の説明Explanation of symbols

1:基体
1a:載置部
1b:電極パッド
2:枠体
5:発光素子
5a:電極
6:金属部材
7:熱電冷却素子
9:熱電冷却媒体
V:柱状体空間
1: Base 1a: Placement part 1b: Electrode pad 2: Frame 5: Light emitting element 5a: Electrode 6: Metal member 7: Thermoelectric cooling element 9: Thermoelectric cooling medium V: Columnar space

Claims (3)

上面に発光素子の載置部を有するとともに該載置部に電極パッドが形成されたセラミックスから成る基体と、前記基体の上面の外周部に前記載置部を囲繞するように取着された枠体と、前記基体の下面に取着された熱電冷却媒体とを具備しており、前記基体は、前記セラミックスに含まれる結晶粒の平均粒径が1乃至15μmであることを特徴とする発光素子収納用パッケージ。 A base body made of ceramics having a mounting portion of a light emitting element on the upper surface and electrode pads formed on the mounting portion, and a frame attached to surround the mounting portion on the outer peripheral portion of the upper surface of the base body And a thermoelectric cooling medium attached to the lower surface of the substrate, wherein the substrate has an average grain size of 1 to 15 μm of crystal grains contained in the ceramics. Storage package. 請求項1記載の発光素子収納用パッケージと、前記載置部に載置されるとともに電極が前記電極パッドに電気的に接続された前記発光素子とを具備していることを特徴とする発光装置。 A light emitting device comprising: the light emitting element storage package according to claim 1; and the light emitting element mounted on the mounting portion and having an electrode electrically connected to the electrode pad. . 前記発光素子は、前記電極が前記電極パッドに金属部材を介して電気的に接続されており、前記金属部材は、その体積が一方の端面が前記電極の主面とされ他方の端面が前記電極パッドの主面とされた柱状体空間の体積の70体積%以上を占めることを特徴とする請求項2記載の発光装置。 In the light emitting element, the electrode is electrically connected to the electrode pad through a metal member, and the volume of the metal member is such that one end surface is the main surface of the electrode and the other end surface is the electrode. The light-emitting device according to claim 2, wherein the light-emitting device occupies 70% by volume or more of the volume of the columnar space defined as the main surface of the pad.
JP2004016238A 2004-01-23 2004-01-23 Light emitting element storage package and light emitting device Pending JP2005209959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016238A JP2005209959A (en) 2004-01-23 2004-01-23 Light emitting element storage package and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016238A JP2005209959A (en) 2004-01-23 2004-01-23 Light emitting element storage package and light emitting device

Publications (1)

Publication Number Publication Date
JP2005209959A true JP2005209959A (en) 2005-08-04

Family

ID=34901461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016238A Pending JP2005209959A (en) 2004-01-23 2004-01-23 Light emitting element storage package and light emitting device

Country Status (1)

Country Link
JP (1) JP2005209959A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072130A1 (en) * 2005-12-22 2007-06-28 Acol Technologies Sa Peltier cooling systems with high aspect ratio
JP2007227868A (en) * 2006-01-30 2007-09-06 Kyocera Corp Light emitting device and lighting device
KR101055095B1 (en) * 2010-03-09 2011-08-08 엘지이노텍 주식회사 Light emitting device
WO2012144819A3 (en) * 2011-04-19 2013-01-10 남경 주식회사 Led package having a thermoelectric device, and method for manufacturing same
TWI382564B (en) * 2006-02-20 2013-01-11 Ind Tech Res Inst Light-emitting diode package structure and manufacturing method thereof
KR20170020074A (en) * 2015-08-13 2017-02-22 엘지이노텍 주식회사 The light-
WO2020044999A1 (en) * 2018-08-27 2020-03-05 ソニー株式会社 Wavelength conversion element and light source module, and projection type display device
US11640104B2 (en) 2020-06-15 2023-05-02 Panasonic Intellectual Property Management Co., Ltd. Light source device having a sealing member, method of manufacturing the light source device, and projector including the light source device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072130A1 (en) * 2005-12-22 2007-06-28 Acol Technologies Sa Peltier cooling systems with high aspect ratio
JP2007227868A (en) * 2006-01-30 2007-09-06 Kyocera Corp Light emitting device and lighting device
TWI382564B (en) * 2006-02-20 2013-01-11 Ind Tech Res Inst Light-emitting diode package structure and manufacturing method thereof
US8546835B2 (en) 2010-03-09 2013-10-01 Lg Innotek Co., Ltd. Light emitting device
CN102194950A (en) * 2010-03-09 2011-09-21 Lg伊诺特有限公司 Light emitting device
KR101055095B1 (en) * 2010-03-09 2011-08-08 엘지이노텍 주식회사 Light emitting device
WO2012144819A3 (en) * 2011-04-19 2013-01-10 남경 주식회사 Led package having a thermoelectric device, and method for manufacturing same
KR20170020074A (en) * 2015-08-13 2017-02-22 엘지이노텍 주식회사 The light-
KR102501878B1 (en) * 2015-08-13 2023-02-21 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package
WO2020044999A1 (en) * 2018-08-27 2020-03-05 ソニー株式会社 Wavelength conversion element and light source module, and projection type display device
JPWO2020044999A1 (en) * 2018-08-27 2021-08-26 ソニーグループ株式会社 Wavelength conversion element and light source module and projection type display device
JP7405084B2 (en) 2018-08-27 2023-12-26 ソニーグループ株式会社 Wavelength conversion element, light source module, and projection display device
US11868033B2 (en) 2018-08-27 2024-01-09 Sony Group Corporation Wavelength conversion element and light source module and projection display device
US11640104B2 (en) 2020-06-15 2023-05-02 Panasonic Intellectual Property Management Co., Ltd. Light source device having a sealing member, method of manufacturing the light source device, and projector including the light source device

Similar Documents

Publication Publication Date Title
JP3881653B2 (en) Light emitting device
JP6604543B2 (en) Light emitting device
US20190252583A1 (en) Method of manufacturing light emitting device
US7872410B2 (en) Light emitting device and light emitter
JP4587675B2 (en) Light emitting element storage package and light emitting device
JP4443188B2 (en) Light emitting element storage package and light emitting device
JP3921200B2 (en) Light emitting device
JP4172770B2 (en) Light emitting element storage package and light emitting device
JP4009208B2 (en) Light emitting device
JP4480407B2 (en) Light emitting element storage package and light emitting device
JP2004327632A (en) Light emitting element storage package and light emitting device
JP2007109887A (en) Semiconductor light emitting device
JP2005209959A (en) Light emitting element storage package and light emitting device
JP3905078B2 (en) Light emitting device
JP3906199B2 (en) Light emitting device
JP2006229259A (en) Light emitting device
JP4206334B2 (en) Light emitting device
JP4146782B2 (en) Light emitting element storage package and light emitting device
JP4614679B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2007173875A (en) Light emitting device
JP4160916B2 (en) Manufacturing method of light emitting element storage package
JP4000109B2 (en) Light emitting device
JP4484499B2 (en) Light emitting device
JP2005191138A (en) Light emitting device
JP2005294796A (en) Light emitting element storage package, light emitting device, and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124