[go: up one dir, main page]

JP2005208607A - Manufacturing method for laminated polarizing plate, laminated polarizing plate obtained by the method, and image display apparatus using the laminated polarizing plate - Google Patents

Manufacturing method for laminated polarizing plate, laminated polarizing plate obtained by the method, and image display apparatus using the laminated polarizing plate Download PDF

Info

Publication number
JP2005208607A
JP2005208607A JP2004368073A JP2004368073A JP2005208607A JP 2005208607 A JP2005208607 A JP 2005208607A JP 2004368073 A JP2004368073 A JP 2004368073A JP 2004368073 A JP2004368073 A JP 2004368073A JP 2005208607 A JP2005208607 A JP 2005208607A
Authority
JP
Japan
Prior art keywords
polarizing plate
resin
film
image display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004368073A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hieda
嘉弘 稗田
Yuzo Akata
祐三 赤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004368073A priority Critical patent/JP2005208607A/en
Publication of JP2005208607A publication Critical patent/JP2005208607A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated polarizing plate manufacturing method with which the occurrence of a projection and a swelled part on a cut surface can be prevented in manufacturing the laminated polarizing plate which is excellent in self-sustainability. <P>SOLUTION: The laminated polarizing plate is manufactured by laminating a polarizing plate and a resin film, and then, cutting the laminated body with dicing equipment. A film having a light transmissivity of ≥80%, and also, having a glass transfer temperature of ≥100°C is used as the resin film. It is preferable to use an epoxy-based resin film as the resin film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層型偏光板の製造方法およびそれにより得られた積層型偏光板並びにそれを用いた画像表示装置に関する。   The present invention relates to a method for producing a laminated polarizing plate, a laminated polarizing plate obtained thereby, and an image display device using the same.

液晶表示装置において、偏光板は、液晶セルの両面に貼り合わされるのが一般的である。しかしながら、このように偏光板が貼着された液晶セルをビデオカメラやデジタルカメラ等のビューファインダ若しくはプロジェクタ等に適用した際に、以下のような問題が発生する。   In a liquid crystal display device, a polarizing plate is generally bonded to both surfaces of a liquid crystal cell. However, when the liquid crystal cell with the polarizing plate attached in this way is applied to a viewfinder such as a video camera or a digital camera, or a projector, the following problems occur.

前記ビューファインダやプロジェクタ等は、液晶セルの背面から光源を照射して、照明された画像を、前記液晶セルの前方に配置した拡大レンズ系によって拡大投影する形態をとっている。このため、前記拡大レンズの焦点は、一般に、液晶セル内部に配置されたカラーフィルターに合わせられているが、液晶セルに密接していることから、結果的に、偏光板も拡大レンズ系の焦点深度内に入ってしまうことが多い。すると、偏光板にゴミ等の異物が付着していると、拡大レンズ系の焦点深度内にこの異物までもが入ってしまうため、この異物の輪郭も投影されてしまい、表示品位の低下が顕著となってしまうのである。特に、偏光板は、偏光フィルムと透明保護層とを貼り合わせて製造することが一般的であるため、その製造時に偏光板内に異物が混入したり、また、液晶セルへの貼着時に、液晶セルと偏光板との界面に異物が混入するおそれがある。   The viewfinder, projector, or the like takes a form in which a light source is irradiated from the back surface of the liquid crystal cell and an illuminated image is enlarged and projected by a magnifying lens system disposed in front of the liquid crystal cell. Therefore, the focal point of the magnifying lens is generally adjusted to the color filter disposed inside the liquid crystal cell. However, since the focal point of the magnifying lens system is close to the liquid crystal cell, as a result It often goes into depth. Then, if foreign matter such as dust adheres to the polarizing plate, even this foreign matter enters within the focal depth of the magnifying lens system, so the outline of this foreign matter is also projected, and the display quality is significantly reduced. It will become. In particular, since the polarizing plate is generally produced by bonding a polarizing film and a transparent protective layer, foreign matter is mixed in the polarizing plate during the production, or when adhering to the liquid crystal cell, There is a possibility that foreign matter may enter the interface between the liquid crystal cell and the polarizing plate.

近年、このような問題を解決するために、液晶セルの外部に十分な距離をおいて偏光板を配置する方法が新たに開示されている(例えば、特許文献1参照)。このように液晶セルから十分に離れた部位に偏光板を配置すれば、拡大レンズ系の焦点を液晶セルに合わせても、偏光板に焦点があうことはない。このために、偏光板の製造時に、その内部に異物が混入しても、前記異物が焦点深度に入ることはなく、表示品位に影響を与えることを防止できる。
特開平6−258637号公報
In recent years, in order to solve such a problem, a method of disposing a polarizing plate with a sufficient distance outside the liquid crystal cell has been newly disclosed (for example, see Patent Document 1). Thus, if the polarizing plate is disposed at a position sufficiently away from the liquid crystal cell, the polarizing plate will not be focused even if the magnification lens system is focused on the liquid crystal cell. For this reason, even when a foreign substance is mixed inside the polarizing plate, the foreign substance does not enter the depth of focus, and it is possible to prevent the display quality from being affected.
JP-A-6-258637

しかしながら、前記特許文献1に記載の形態とすると、次のような問題が生じてしまう。すなわち、偏光板は、剛性に乏しく、自立性がなく、それ単独で液晶セルから十分の距離をおいて配置することが困難である。このため、液晶セル基板の外部にさらにカバー部材を配置して、その上に偏光板を貼着することが必須となる。しかし、このような構造にすると、液晶表示装置の製造工程が複雑となり、大型化、高コスト化、画面サイズの縮小化等の問題が生じる。このような問題は、液晶表示装置に限らず、他の表示装置においても生じる。   However, if it is set as the form of the said patent document 1, the following problems will arise. That is, the polarizing plate has poor rigidity and is not self-supporting, and it is difficult to arrange the polarizing plate at a sufficient distance from the liquid crystal cell. For this reason, it is essential to dispose a cover member on the outside of the liquid crystal cell substrate and attach a polarizing plate thereon. However, such a structure complicates the manufacturing process of the liquid crystal display device and causes problems such as an increase in size, cost, and a reduction in screen size. Such a problem occurs not only in the liquid crystal display device but also in other display devices.

そこで、本発明は、それ単独であっても、液晶セル等の表示装置に対し、一定の距離をおいて配置可能な積層型偏光板を製造可能な製造方法およびそれにより得られた積層板偏光板並びにそれを用いた画像表示装置の提供を、その目的とする。   Accordingly, the present invention provides a production method capable of producing a laminated polarizing plate that can be arranged at a certain distance from a display device such as a liquid crystal cell, and a laminated plate polarization obtained thereby. It is an object of the present invention to provide a board and an image display device using the same.

前記目的を達成するために、本発明の製造方法は、積層型偏光板の製造方法であって、偏光板フィルムと、光透過率が80%以上であり且つガラス転移温度が100℃以上である樹脂フィルムとを積層して積層体フィルムを形成する積層工程と、前記積層体フィルムをダイサー切断して積層型偏光板に分割するダイサー切断工程とを含む製造方法である。   In order to achieve the above object, the manufacturing method of the present invention is a manufacturing method of a laminated polarizing plate, and has a polarizing film, a light transmittance of 80% or more, and a glass transition temperature of 100 ° C. or more. It is a manufacturing method including a laminating step of laminating a resin film to form a laminate film, and a dicer cutting step of dicing the laminate film to divide it into laminated polarizing plates.

また、本発明の積層型偏光板は、偏光板と樹脂フィルムとが積層された積層型偏光板であって、前記本発明の製造方法により得られた積層型偏光板である。   The laminated polarizing plate of the present invention is a laminated polarizing plate in which a polarizing plate and a resin film are laminated, and is a laminated polarizing plate obtained by the production method of the present invention.

そして、本発明の画像表示装置は、画像表示素子と偏光板とを含む画像表示装置であって、前記偏光板が、前記本発明の積層型偏光板であり、前記積層型偏光板が、前記画像表示素子と一定の距離をおいて配置されている画像表示装置である。   The image display device of the present invention is an image display device including an image display element and a polarizing plate, wherein the polarizing plate is the laminated polarizing plate of the present invention, and the laminated polarizing plate is The image display device is arranged at a certain distance from the image display element.

前記目的を達成するために、本発明者等は、まず、偏光板の自立性について一連の研究を重ねた。その結果、偏光板フィルムに、光透過率が80%以上であり且つガラス転移温度が100℃以上である樹脂フィルムを積層すれば、透明性を維持した状態で偏光板の剛性を向上することができ、その結果、自立性を付与できることを見出した。つぎに、前記積層体フィルムは、偏光板の用途に応じて、様々な形状および大きさに切断する必要があるが、従来の切断方法を、前記積層体フィルムの切断に適用すると、切断面に問題が生じる。すなわち、従来の偏光板の切断には専らレーザ照射が採用されていたが、偏光板をレーザで切断すると、レーザの熱により偏光板が劣化し、また、その切断面にささくれのような突起物が発生したり、前記切断面が隆起する。前記突起物は、洗浄処理等をしても除去が困難である。また、このような突起物や隆起が生じた偏光板を、製品の筐体に取り付ける際に、前記突起物が前記筐体中に混入したり、前記隆起によって取り付け不良が発生する。この問題は、本発明の前記積層体フィルムにも生じる。そこで、本発明者等は、この問題を解決するために、切断方法を中心に、さらに研究を重ねたところ、ダイサーによって、前記積層体フィルムを切断すれば、前述のような突起物や隆起の発生を防止できることを見出した。なお、従来の偏光板をダイサー方式で切断した場合は、依然として、その切断面に突起物および隆起が発生する。しかしながら、前記積層体フィルムに、ダイサー切断を適用すると、突起および隆起は生じない。ただし、この理由は不明である。このように、本発明の製造方法によれば、切断面において突起物および隆起の発生を防止可能であるため、前記製造方法により得られた本発明の積層型偏光板は、製品の筐体に取り付ける際に、前記突起物の混入や取り付け不良等の問題も防止できる。しかも、本発明の製造方法により得られた積層型偏光板は、自立性に優れるため、例えば、デジタルカメラ等のビューファインダおよびプロジェクタに使用される液晶表示装置において、それ単独で、液晶セルと一定の距離をおいて配置可能である。また、本発明において、ダイサー切断を採用した効果として、レーザ照射ではガスが発生するのに対し、ダイサー切断ではガス発生が防止され、後工程の洗浄処理の程度を軽減できる点がある。なお、ダイサー方式による切断とは、一般に金属もしくは樹脂面中にダイアモンド等の砥粒を含むブレードを高速回転させながら切断する方法であり、水を使用する湿式法と水を使用しない乾式法とがある。   In order to achieve the above object, the present inventors first made a series of studies on the self-supporting property of the polarizing plate. As a result, if a resin film having a light transmittance of 80% or more and a glass transition temperature of 100 ° C. or more is laminated on the polarizing film, the rigidity of the polarizing film can be improved while maintaining transparency. As a result, it was found that self-reliance can be imparted. Next, the laminate film needs to be cut into various shapes and sizes according to the use of the polarizing plate. However, when the conventional cutting method is applied to the cutting of the laminate film, Problems arise. In other words, conventional laser irradiation was used exclusively for cutting a polarizing plate, but when the polarizing plate was cut with a laser, the polarizing plate deteriorated due to the heat of the laser, and a protrusion such as a whisper on the cut surface. Or the cut surface is raised. The protrusions are difficult to remove even after washing. In addition, when the polarizing plate on which such protrusions or protrusions are generated is attached to the housing of the product, the protrusions are mixed into the housing, or attachment failure occurs due to the protrusions. This problem also occurs in the laminate film of the present invention. In order to solve this problem, the present inventors have conducted further research focusing on the cutting method. When the laminate film is cut by a dicer, the above-described protrusions and bumps are formed. It was found that the occurrence can be prevented. In addition, when the conventional polarizing plate is cut by the dicer method, protrusions and protrusions still occur on the cut surface. However, when Dicer cutting is applied to the laminate film, no protrusions and bumps are generated. However, the reason for this is unknown. As described above, according to the manufacturing method of the present invention, it is possible to prevent the occurrence of protrusions and bulges on the cut surface. Therefore, the laminated polarizing plate of the present invention obtained by the manufacturing method is applied to a product casing. At the time of attachment, problems such as mixing of projections and poor attachment can be prevented. Moreover, since the laminated polarizing plate obtained by the production method of the present invention is excellent in self-supporting property, for example, in a liquid crystal display device used in a viewfinder and a projector such as a digital camera, it is independent from the liquid crystal cell. Can be arranged with a distance of. In addition, in the present invention, the effect of employing dicer cutting is that gas is generated by laser irradiation, whereas gas generation is prevented by dicer cutting, and the degree of cleaning processing in the subsequent process can be reduced. In addition, cutting by the dicer method is a method of cutting a blade containing abrasive grains such as diamond in a metal or resin surface while rotating at high speed, and there are a wet method using water and a dry method not using water. is there.

以下、本発明の製造方法について、例を挙げて説明する。本発明の製造方法は、前述のように、偏光板フィルムと、光透過率が80%以上であり且つガラス転移温度が100℃以上である樹脂フィルムとを積層して積層体フィルムを形成する積層工程と、前記積層体フィルムをダイサー切断して積層型偏光板に分割するダイサー切断工程とを含む製造方法である。前記樹脂フィルムにおいて、前記光透過率の好ましい範囲は、80〜100%であり、より好ましくは85〜100%であり、前記ガラス転移温度は、100〜400℃の範囲が好ましく、より好ましくは150〜400℃の範囲である。   Hereinafter, the production method of the present invention will be described with examples. As described above, the production method of the present invention is a laminate in which a polarizing plate film and a resin film having a light transmittance of 80% or more and a glass transition temperature of 100 ° C. or more are laminated to form a laminate film. It is a manufacturing method including the process and the dicer cutting process of dicing the said laminated body film and dividing | segmenting into a lamination type polarizing plate. The said resin film WHEREIN: The preferable range of the said light transmittance is 80 to 100%, More preferably, it is 85 to 100%, The said glass transition temperature has the preferable range of 100 to 400 degreeC, More preferably, it is 150. It is the range of -400 degreeC.

前記偏光板フィルムとしては、特に制限されず、後述するような従来公知の偏光板が使用できる。一方、前記樹脂フィルムは、透過率が80%以上であり、かつ、そのガラス転移温度が100℃以上であれば特に制限されないが、透明性や耐衝撃性、耐熱性に優れるものが好ましい。なお、具体例については後述する。前記ガラス転移温度は、例えば、ティー・エイ・インスツルメント・ジャパン社製の粘弾性測定装置ARESを用いて、−30℃から200℃までの粘弾性測定の結果からtanδのピーク値により決定できる。   It does not restrict | limit especially as said polarizing plate film, A conventionally well-known polarizing plate as mentioned later can be used. On the other hand, the resin film is not particularly limited as long as it has a transmittance of 80% or more and a glass transition temperature of 100 ° C. or higher, but a resin film having excellent transparency, impact resistance, and heat resistance is preferable. A specific example will be described later. The glass transition temperature can be determined from the peak value of tan δ from the result of viscoelasticity measurement from −30 ° C. to 200 ° C., for example, using a viscoelasticity measuring apparatus ARES manufactured by TA Instruments Japan. .

前記樹脂フィルムの厚みは、特に制限されないが、例えば、0.05mm〜1.5mmであることが好ましい。   The thickness of the resin film is not particularly limited, but is preferably 0.05 mm to 1.5 mm, for example.

前記偏光板フィルムと前記樹脂フィルムの積層方法は、特に制限されず、従来公知の方法によって行うことができる。また、接着剤若しくは粘着剤により積層する場合、その種類等は、特に制限されず、後述のものが使用できる。   The lamination method of the polarizing plate film and the resin film is not particularly limited, and can be performed by a conventionally known method. Moreover, when laminating | stacking with an adhesive agent or an adhesive, the kind in particular is not restrict | limited, The below-mentioned thing can be used.

つぎに、ダイサー方式による切断(ダイシング)について説明する。前記ダイシングに用いるダイシング装置としては、特に制限されず、例えば、半導体ウエハ、各種ガラス、プラスチック、半導体パッケージ、基板材料などの切断用ダイシング装置(ダイサー)などが使用可能である。前記ダイシング装置には、前述のとおり、水を使用する湿式のものと水を使用しない乾式のものがあるが、どちらも使用可能である。また、シングルダイサーと、デュアルダイサーのような複数のブレードが装着可能なダイサーとがあるが、どちらも使用可能である。前記ダイシング装置への前記積層体の固定方法は、特に制限されない。例えば、粘着テープおよびダイシングリングの双方により固定する方法や専用の固定用冶具に吸着で固定する方法などがある。前記粘着テープとしては、例えば、通常の感圧型のものや放射線硬化型のものが使用可能である。特に、ダイシング前は粘着力が強く、ダイシング後は放射線照射により粘着力を大幅に弱めることができるものが好ましい。前記粘着テープの厚みは、特に制限されないが、例えば、30〜1000μmの範囲であり、後述のテープを切りこむ深さを確保する点などより、好ましくは、100〜300μmの範囲である。   Next, cutting (dicing) by the dicer method will be described. The dicing apparatus used for the dicing is not particularly limited, and for example, a cutting dicing apparatus (dicer) for cutting a semiconductor wafer, various glasses, plastics, a semiconductor package, a substrate material, or the like can be used. As described above, the dicing apparatus includes a wet type using water and a dry type not using water, both of which can be used. There are a single dicer and a dicer to which a plurality of blades such as a dual dicer can be mounted, both of which can be used. The method for fixing the laminate to the dicing apparatus is not particularly limited. For example, there are a method of fixing with both an adhesive tape and a dicing ring, and a method of fixing to a dedicated fixing jig by suction. As the adhesive tape, for example, a normal pressure sensitive type or a radiation curable type can be used. In particular, it is preferable that the adhesive strength is strong before dicing and that the adhesive strength can be significantly reduced by irradiation after dicing. The thickness of the pressure-sensitive adhesive tape is not particularly limited, but is, for example, in the range of 30 to 1000 μm, and preferably in the range of 100 to 300 μm from the viewpoint of securing a depth for cutting a tape described later.

前記ダイシング装置に装着されるダイシングブレードとしては、特に制限されず、例えば、半導体ウエハ、各種ガラス、プラスチック、半導体パッケージ、基板の切断用のものが使用可能である。前記ダイシングブレードの厚みは、特に制限されないが、例えば、30〜1000μmの範囲であり、切断の安定性や切断効率の点などから、好ましくは、30〜500μmの範囲であり、より好ましくは、80〜300μmの範囲である。前記ダイシングブレードの粗さは、特に制限されないが、寿命、切断面の平滑性、目詰まりなどの点から、例えば、#200〜#1000の範囲である。ダイシング時の前記ダイシングブレードの回転数は、例えば、10000〜60000rpmの範囲であり、切断面の凹凸、切断速度などの点から、好ましくは、30000〜60000rpmの範囲である。回転方向も、特に制限されず、いわゆるアップモード、ダウンモードやそれらを組み合わせた方法でも問題はない。   The dicing blade mounted on the dicing apparatus is not particularly limited, and for example, a semiconductor wafer, various types of glass, plastic, a semiconductor package, and a substrate for cutting a substrate can be used. The thickness of the dicing blade is not particularly limited, but is, for example, in the range of 30 to 1000 μm, preferably in the range of 30 to 500 μm, more preferably in the range of 30 to 500 μm from the viewpoint of cutting stability and cutting efficiency. It is in the range of ˜300 μm. The roughness of the dicing blade is not particularly limited, but is, for example, in the range of # 200 to # 1000 from the viewpoints of life, smoothness of the cut surface, clogging, and the like. The number of rotations of the dicing blade at the time of dicing is, for example, in the range of 10,000 to 60000 rpm, and preferably in the range of 30000 to 60000 rpm from the viewpoint of unevenness of the cut surface, cutting speed, and the like. The direction of rotation is not particularly limited, and there is no problem even in a so-called up mode, down mode, or a combination thereof.

ダイシング速度は、例えば、10〜300mm/秒の範囲であり、切断効率と切断面の安定性などの点から、好ましくは、50〜200mm/秒の範囲である。   The dicing speed is, for example, in the range of 10 to 300 mm / second, and preferably in the range of 50 to 200 mm / second from the viewpoints of cutting efficiency and stability of the cut surface.

前述の湿式ダイサーを用いる場合、ダイシング時には、冷却と洗浄の目的で水をかけながら切断するが、その際の水量は、装置、条件によって最適に調整される。   When the above-described wet dicer is used, during dicing, cutting is performed while water is applied for the purpose of cooling and cleaning, and the amount of water at that time is optimally adjusted depending on the apparatus and conditions.

前記粘着テープを用いる場合、前記テープまで切りこむことが好ましい。前記テープを切りこむ深さは、例えば、0μmを超えて200μm以下の範囲であり、切断品質の安定性などの点から、好ましくは、30〜120μmの範囲である。   When using the adhesive tape, it is preferable to cut into the tape. The depth of cutting the tape is, for example, in the range of more than 0 μm and not more than 200 μm, and preferably in the range of 30 to 120 μm from the viewpoint of the stability of the cutting quality.

通常、ダイシングにおいては、1ラインを1回で切断するが、1ラインを複数回で切断することも可能である。この場合、切断面がより平滑になったり、切断したラインのゴミを除去できるという利点がある。なお、この場合には、デュアルダイサーを使用するとより効率的に切断することが可能となる。1回目の切断深さと2回目の切断深さは、任意に設定できる。1回目の切断で積層体のすべてを切断し、2回目の切断も同じラインを切断してクリーニングすることも可能であるし、1回目の切断と2回目の切断とで深さを変えて切断の負荷を低減することも可能である。また、切断の順序も任意に設定できる。そして、同じラインでの切断方向や切断速度の変更も可能である。   Normally, in dicing, one line is cut once, but one line can be cut a plurality of times. In this case, there is an advantage that the cut surface becomes smoother and dust on the cut line can be removed. In this case, if a dual dicer is used, cutting can be performed more efficiently. The first cutting depth and the second cutting depth can be arbitrarily set. It is possible to cut all of the laminate in the first cut, and in the second cut, the same line can be cut and cleaned, and the depth is changed between the first cut and the second cut. It is also possible to reduce the load. Moreover, the order of cutting can also be set arbitrarily. The cutting direction and cutting speed on the same line can be changed.

前記積層体から切り出す積層型偏光板の形状および大きさは、特に制限されず、例えば、それが使用される画像表示装置の形状および大きさに合せて決定してもよい。切断形状としては、例えば、四角形があり、積層体フィルム中の偏光板における吸収軸方向と垂直軸方向(若しくは偏光軸と垂直方向)とに切り出しを行えばよい。例えば、ビデオカメラやデジタルカメラのビューファインダに使用する液晶表示装置に適用する積層型偏光板の場合、200mm×200mmの四角形積層体フィルムから、例えば、製品サイズが10mm×11mmの積層型偏光板を少なくとも200個得ることができる。   The shape and size of the laminated polarizing plate cut out from the laminate are not particularly limited, and may be determined according to, for example, the shape and size of the image display device in which it is used. As the cut shape, for example, there is a quadrangle, and the cut may be performed in the absorption axis direction and the vertical axis direction (or the direction perpendicular to the polarization axis) of the polarizing plate in the laminate film. For example, in the case of a laminated polarizing plate applied to a liquid crystal display device used in a viewfinder of a video camera or a digital camera, for example, a laminated polarizing plate having a product size of 10 mm × 11 mm is obtained from a 200 mm × 200 mm square laminated film. At least 200 can be obtained.

積層型偏光板を切断した後は、必要に応じて洗浄処理を施すことが好ましい。洗浄の種類は、特に制限されないが、例えば、湿式の場合、水等の液体洗浄、空気を吹き付ける空気洗浄(エアーブロー)などがあげられ、これらを組み合わせて行ってもよい。余分な水を除去するために、再度、エアーブローを行ってもよい。   After cutting the laminated polarizing plate, it is preferable to perform a cleaning treatment as necessary. The type of cleaning is not particularly limited. For example, in the case of a wet process, liquid cleaning such as water, air cleaning that blows air (air blow), and the like may be used, and these may be combined. In order to remove excess water, air blow may be performed again.

前述のように、一枚の粘着テープ等のダイシング用基材上においてダイシングを行い、複数の積層型偏光板を形成した場合、これらの複数の積層型偏光板の他方の表面(ダイシング用基材とは反対の面)に対し、粘着剤を介して一枚の表面保護シートを貼付してもよい。また、このように一枚の表面保護シートを貼付した後、前記積層型偏光板の反対側の表面の前記ダイシング用基材を剥離し、この表面に、代わりに一枚の表面保護シートを貼ってもよい。   As described above, when dicing is performed on a dicing substrate such as a single adhesive tape to form a plurality of laminated polarizing plates, the other surface of these laminated polarizing plates (the dicing substrate) A surface protective sheet may be attached to the opposite surface) via an adhesive. In addition, after pasting a single surface protective sheet in this way, the dicing substrate on the surface opposite to the laminated polarizing plate is peeled off, and a single surface protective sheet is pasted on this surface instead. May be.

図1の平面図に、一枚の表面保護シートの上に、四角形に切断した本発明の積層型偏光板を、複数個配置した例を示す。同図において、矢印AおよびBは、偏光板の偏光軸若しくはこれと直交する吸収軸を示し、aおよびbは、前記積層型偏光板21の切断面を示す。図示のように、表面保護シート22上に、偏光軸方向と吸収軸方向とに切り出した積層型偏光板21が、複数個、等間隔に配置されている。なお、本発明において、前記積層型偏光板相互の配列距離(ピッチ)は、特に制限されない。   The top view of FIG. 1 shows an example in which a plurality of laminated polarizing plates of the present invention cut into a square are arranged on a single surface protective sheet. In the figure, arrows A and B indicate the polarization axis of the polarizing plate or an absorption axis perpendicular thereto, and a and b indicate the cut surfaces of the laminated polarizing plate 21. As illustrated, a plurality of laminated polarizing plates 21 cut out in the polarization axis direction and the absorption axis direction are arranged on the surface protection sheet 22 at equal intervals. In the present invention, the arrangement distance (pitch) between the laminated polarizing plates is not particularly limited.

つぎに、本発明の製造方法において、前記偏光板フィルムとしては従来公知のものが使用でき、一般に、偏光子(偏光フィルム)の片面または両面に透明保護層が配置されたものが使用できる。前記偏光子としては特に制限されず、従来公知の偏光フィルムが使用できる。具体的には、例えば、従来公知の方法により、各種フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて染色し、架橋、延伸、乾燥することによって調製したもの等が使用できる。この中でも、自然光を入射させると直線偏光を透過するフィルムが好ましく、光透過率や偏光度に優れるものが好ましい。前記二色性物質を吸着させる各種フィルムとしては、例えば、PVA系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム、セルロース系フィルム等の親水性高分子フィルム等があげられ、これらの他にも、例えば、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン配向フィルム等も使用できる。これらの中でも、好ましくはPVA系フィルムである。また、前記偏光フィルムの厚みは、例えば、5〜80μmの範囲であるが、これには限定されない。   Next, in the production method of the present invention, a conventionally known polarizing plate film can be used, and in general, a polarizing plate (polarizing film) having a transparent protective layer disposed on one side or both sides thereof can be used. The polarizer is not particularly limited, and a conventionally known polarizing film can be used. Specifically, for example, a film prepared by adsorbing a dichroic substance such as iodine or a dichroic dye to various films by using a conventionally known method, crosslinking, stretching, and drying are used. it can. Among these, a film that transmits linearly polarized light when natural light is incident is preferable, and a film that is excellent in light transmittance and degree of polarization is preferable. Examples of the various films for adsorbing the dichroic substance include hydrophilic polymer films such as PVA films, partially formalized PVA films, ethylene / vinyl acetate copolymer partially saponified films, and cellulose films. In addition to these, polyene oriented films such as PVA dehydrated products and polyvinyl chloride dehydrochlorinated products can also be used. Among these, PVA film is preferable. Moreover, although the thickness of the said polarizing film is the range of 5-80 micrometers, for example, it is not limited to this.

前記透明保護層は、特に制限されず、従来公知の透明フィルムを使用できるが、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。このような透明保護層の材質の具体例としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルアクリレートやポリメチルメタクリレートのアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマー等が挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系またはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマー、塩化ビニルポリマー、ナイロンや芳香族ポリアミド系ポリマー、イミド系ポリマー、スルフォン系ポリマー、ポリエーテルスルフォン系ポリマー、ポリエーテルエーテルケトン系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、前記各種ポリマーのブレンド物等があげられる。これらの中でも、トリアセチルセルロースなどのセルロース系ポリマーが好ましい。透明保護フィルムの厚さは特に限定はないが、一般的に500μm以下であり、1〜300μmが好ましく、より好ましくは5〜200μmである。   The transparent protective layer is not particularly limited, and a conventionally known transparent film can be used. For example, a transparent protective layer having excellent transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like is preferable. Specific examples of the material for such a transparent protective layer include, for example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, and acrylic polymers such as polymethyl acrylate and polymethyl methacrylate. Examples thereof include polymers, styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin), and polycarbonate polymers. In addition, polyethylene, polypropylene, polyolefin having a cyclo or norbornene structure, polyolefin polymer such as ethylene / propylene copolymer, vinyl chloride polymer, nylon or aromatic polyamide polymer, imide polymer, sulfone polymer, polyether sulfone Polymers, polyether ether ketone polymers, vinylidene chloride polymers, vinyl alcohol polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers, blends of the above-mentioned various polymers, and the like. Among these, cellulose polymers such as triacetylcellulose are preferable. Although the thickness of a transparent protective film does not have limitation in particular, Generally it is 500 micrometers or less, 1-300 micrometers is preferable, More preferably, it is 5-200 micrometers.

前記偏光子と透明保護層とは、例えば、接着剤により積層され、かつ一体化される。前記接着剤としては、例えば、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系接着剤、水系ポリエステル系接着剤等が使用できる。   The polarizer and the transparent protective layer are laminated and integrated with, for example, an adhesive. Examples of the adhesive include isocyanate adhesives, polyvinyl alcohol adhesives, gelatin adhesives, vinyl latex adhesives, and water-based polyester adhesives.

前記偏光板フィルムの表面には、例えば、ハードコート処理、反射防止処理、スティッキング防止処理、拡散処理、アンチグレア処理、反射防止つきアンチグレア処理、帯電防止処理、汚染防止処理等の種々の処理を目的に応じて施してもよい。   For the purpose of various treatments such as hard coat treatment, antireflection treatment, anti-sticking treatment, diffusion treatment, antiglare treatment, antiglare treatment with antireflection, antistatic treatment, and antifouling treatment on the surface of the polarizing film. It may be given accordingly.

前記ハードコート処理は、偏光板フィルム表面の傷つき防止などを目的とし、例えば、アクリル系、シリコーン系等の紫外線硬化型樹脂により、硬度やすべり特性に優れる硬化皮膜をフィルムの表面に形成する方法によって行うことができる。前記反射防止処理は、光学フィルム表面での外光の反射防止を目的とし、従来公知の反射防止膜(物理光学薄膜、塗工薄膜)等の形成により行うことができる。   The hard coat treatment is intended to prevent scratches on the surface of the polarizing film, for example, by a method of forming a cured film having excellent hardness and slip properties on the surface of the film with an ultraviolet curable resin such as acrylic or silicone. It can be carried out. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the optical film, and can be performed by forming a conventionally known antireflection film (physical optical thin film, coating thin film) or the like.

また、アンチグレア処理は、光学フィルム表面で外光が反射して偏光板透過光の視認性を阻害することの防止等を目的とする。例えば、サンドブラスト方式、エンボス加工方式等によるフィルムの疎面化や、フィルム形成材料に透明微粒子を配合する成膜方法等によって、フィルム表面へ微細凹凸構造を付与すればよい。前記表面微細凹凸の形成に使用する微粒子としては、平均粒径が、例えば、0.5〜50μmであり、シリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等の無機系材料から構成された透明微粒子等が使用できる。表面微細凹凸構造を形成する場合、微粒子の使用量は、樹脂100重量部に対して、一般的に2〜50重量部程度であり、好ましくは5〜25重量部である。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであっても良い。   The anti-glare treatment is intended to prevent the external light from being reflected on the surface of the optical film and preventing the visibility of the light transmitted through the polarizing plate from being impaired. For example, a fine concavo-convex structure may be imparted to the film surface by thinning the film by a sandblasting method, an embossing method, or the like, or by a film forming method in which transparent fine particles are blended in a film forming material. The fine particles used for forming the fine surface irregularities have an average particle size of, for example, 0.5 to 50 μm, and are inorganic such as silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, and antimony oxide. Transparent fine particles composed of a system material can be used. When forming a fine surface relief structure, the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, per 100 parts by weight of the resin. The antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.

つぎに、本発明の製造方法において使用できる樹脂フィルムとしては、前述のように透明性や耐衝撃性、耐熱性に優れるものが好ましく、例えば、エポキシ系樹脂、ポリエステル系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート(PC)系樹脂、ポリエチレンナフタレート(PEN)系樹脂、ポリエチレンテレフタレート(PET)系樹脂、トリアセチルセルロース(TAC)系樹脂、ポリノルボルネン系樹脂(例えば、商品名アートン(ARTON)樹脂;JSR社製)、ポリイミド系樹脂、ポリエーテルイミド系樹脂、ポリアミド系樹脂、ポリスルホン系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルスルホン系樹脂等があげられる。これらの樹脂は、単独で使用して前記樹脂フィルムを製造してもよいし、二種類以上併用して前記樹脂フィルムを製造してもよい。この中でも、アクリル系樹脂若しくはエポキシ系樹脂が好ましい。   Next, as the resin film that can be used in the production method of the present invention, those having excellent transparency, impact resistance, and heat resistance as described above are preferable. For example, epoxy resin, polyester resin, acrylic resin, methacrylic resin, Resin, polycarbonate (PC) resin, polyethylene naphthalate (PEN) resin, polyethylene terephthalate (PET) resin, triacetyl cellulose (TAC) resin, polynorbornene resin (for example, trade name ARTON resin) Manufactured by JSR), polyimide resins, polyetherimide resins, polyamide resins, polysulfone resins, polyphenylene sulfide resins, polyethersulfone resins, and the like. These resins may be used alone to produce the resin film, or two or more of them may be used in combination to produce the resin film. Among these, acrylic resins or epoxy resins are preferable.

前記エポキシ系樹脂としては、得られる樹脂フィルムの柔軟性や強度等の物性などの点より、エポキシ当量100〜1000、軟化点120℃以下であることが好ましい。さらに塗工性やフィルム状への展開性等に優れるエポキシ系樹脂含有液を得ること等の観点から、例えば、塗工時の温度において、特に常温において液体状態を示す二液混合型のものを使用することが好ましい。   The epoxy resin preferably has an epoxy equivalent of 100 to 1000 and a softening point of 120 ° C. or less from the viewpoint of physical properties such as flexibility and strength of the obtained resin film. Furthermore, from the viewpoint of obtaining an epoxy-based resin-containing liquid that is excellent in coating property and developability to a film, for example, a two-component mixed type that exhibits a liquid state at a coating temperature, particularly at room temperature. It is preferable to use it.

前記エポキシ系樹脂としては、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、それらに水を添加したビスフェノール型;フェノールノボラック型やクレゾールノボラック型等のノボラック型;トリグリシジルイソシアヌレート型やヒダントイン型等の含窒素環型;脂環式型;脂肪族型;ナフタレン型等の芳香族型;グリシジルエーテル型、ビフェニル型等の低吸水率タイプ;ジシクロ型、エステル型、エーテルエステル型や、これらの変性型等があげられる。これらの樹脂は、単独で使用してもよいし、二種類以上を併用してもよい。この中でも、変色防止性などの点より、ビスフェノールA型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート型エポキシ樹脂が好ましく、特に、脂環式エポキシ樹脂が好ましい。   Examples of the epoxy resin include bisphenol A type, bisphenol F type, bisphenol S type, bisphenol type obtained by adding water thereto; novolak type such as phenol novolak type and cresol novolak type; triglycidyl isocyanurate type and hydantoin type Such as nitrogen-containing ring type; alicyclic type; aliphatic type; aromatic type such as naphthalene type; low water absorption type such as glycidyl ether type and biphenyl type; dicyclo type, ester type, ether ester type, etc. Examples include modified types. These resins may be used alone or in combination of two or more. Among these, bisphenol A type epoxy resins, alicyclic epoxy resins, and triglycidyl isocyanurate type epoxy resins are preferable, and alicyclic epoxy resins are particularly preferable from the viewpoint of discoloration prevention.

また、前記エポキシ系樹脂は、光学的等方性に優れることから、位相差が5nm以下であることが好ましく、特に好ましくは1nmである。なお、エポキシ系樹脂以外の樹脂についても、同様に、光学的等方性に優れることが好ましく、具体的には、位相差が5nm以下であることが好ましく、特に好ましくは1nm以下である。   Moreover, since the said epoxy resin is excellent in optical isotropy, it is preferable that a phase difference is 5 nm or less, Most preferably, it is 1 nm. Similarly, resins other than epoxy resins are preferably excellent in optical isotropy. Specifically, the phase difference is preferably 5 nm or less, and particularly preferably 1 nm or less.

また、エポキシ系樹脂には、例えば、硬化剤、硬化促進剤、および必要に応じて従来から用いられている老化防止剤、変性剤、界面活性剤、染料、顔料、変色防止剤や紫外線吸収剤等の従来公知の各種添加物を適宜に配合してもよい。例えば、ビスフェノールA型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート型等のエポキシ樹脂に、酸無水物硬化剤とリン系硬化触媒とを配合すれば、これにより硬化できる。   Epoxy resins include, for example, curing agents, curing accelerators, and anti-aging agents, modifiers, surfactants, dyes, pigments, anti-discoloring agents and ultraviolet absorbers that have been conventionally used as necessary. Various conventionally known additives such as these may be appropriately blended. For example, when an acid anhydride curing agent and a phosphorus curing catalyst are blended with an epoxy resin such as a bisphenol A type epoxy resin, an alicyclic epoxy resin, or a triglycidyl isocyanurate type, it can be cured.

前記硬化剤は、特に制限されず、使用するエポキシ系樹脂の種類に応じて適宜決定される。例えば、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、ヘキサヒドロフタル酸やメチルヘキサヒドロフタル酸等の有機酸系化合物類;エチレンジアミン、プロピレンジアミン、ジエチレントリアミン、トリエチレンテトラミンやそれらのアミンアダクト、メタフェニレンジアミン、ジアミノジフェニルメタンやジアミノジフェニルスルホン等のアミン系化合物類;ジシアンジアミドやポリアミド等のアミド系化合物類;ジヒドラジット等のヒドラジド系化合物類;メチルイミダゾール、2−エチル−4−メチルイミダゾール、エチルイミダゾール、イソプロピルイミダゾール、2,4−ジメチルイミダゾール、フェニルイミダゾール、ウンデシルイミダゾール、ヘプタデシルイミダゾールや2−フェニル−4−メチルイミダゾール等のイミダゾール系化合物類;メチルイミダゾリン、2−エチル−4−メチルイミダゾリン、エチルイミダゾリン、イソプロピルイミダゾリン、2,4−ジメチルイミダゾリン、フェニルイミダゾリン、ウンデシルイミダゾリン、ヘプタデシルイミダゾリンや2−フェニル−4−メチルイミダゾリン等のイミダゾリン系化合物;フェノール系化合物;尿素系化合物類;ポリスルフィド系化合物類;酸無水物系化合物類等があげられる。これらは、一種類でもよいし、二種類以上を併用してもよく、この中でも、変色防止に優れることから、酸無水物系化合物類を使用することが好ましい。   The said hardening | curing agent is not restrict | limited in particular, According to the kind of epoxy resin to be used, it determines suitably. For example, organic acid compounds such as tetrahydrophthalic acid, methyltetrahydrophthalic acid, hexahydrophthalic acid and methylhexahydrophthalic acid; ethylenediamine, propylenediamine, diethylenetriamine, triethylenetetramine and their amine adducts, metaphenylenediamine, diamino Amine compounds such as diphenylmethane and diaminodiphenyl sulfone; amide compounds such as dicyandiamide and polyamide; hydrazide compounds such as dihydragit; methylimidazole, 2-ethyl-4-methylimidazole, ethylimidazole, isopropylimidazole, 2, 4-dimethylimidazole, phenylimidazole, undecylimidazole, heptadecylimidazole, 2-phenyl-4-methylimidazole, etc. Imidazole compounds: methyl imidazoline, 2-ethyl-4-methyl imidazoline, ethyl imidazoline, isopropyl imidazoline, 2,4-dimethyl imidazoline, phenyl imidazoline, undecyl imidazoline, heptadecyl imidazoline, 2-phenyl-4-methyl imidazoline, etc. Imidazoline compounds; phenol compounds; urea compounds; polysulfide compounds; acid anhydride compounds and the like. These may be used alone or in combination of two or more. Among them, it is preferable to use acid anhydride compounds because they are excellent in preventing discoloration.

前記酸無水物系化合物類としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、無水ナジック酸、無水グルタル酸、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、ジクロロコハク酸無水物、ベンゾフェノンテトラカルボン酸無水物、クロレンディック酸無水物、トリヒドロキシエチルイソシアヌレート酸無水物等があげられる。この中でも、無色ないし淡黄色で、分子量が約140〜約200のものが好ましく、具体例としては、トリヒドロキシエチルイソシアヌレート変性された無水フタル酸、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物等があげられる。   Examples of the acid anhydride compounds include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, nadic anhydride, glutaric anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride. , Hexahydrophthalic acid anhydride, methyl hexahydrophthalic acid anhydride, methyl nadic acid anhydride, dodecenyl succinic acid anhydride, dichlorosuccinic acid anhydride, benzophenone tetracarboxylic acid anhydride, chlorendic acid anhydride, trihydroxyethyl And isocyanurate anhydride. Among these, colorless to light yellow and those having a molecular weight of about 140 to about 200 are preferable. Specific examples include trihydroxyethyl isocyanurate-modified phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride. And methylhexahydrophthalic anhydride.

前記エポキシ系樹脂と硬化剤との配合割合は、例えば、硬化剤として酸無水物系硬化剤を用いる場合、エポキシ系樹脂のエポキシ基1当量に対して酸無水物当量を0.5〜1.5当量となるように配合することが好ましく、さらに好ましくは0.7〜1.2当量である。このような範囲であれば、硬化後において、より優れた色相や耐湿性を示す。なお、他の硬化剤を単独で又は2種以上を併用して使用する場合にも、その配合比率は前記の当量比に準じる。   The blending ratio of the epoxy resin and the curing agent is, for example, when an acid anhydride curing agent is used as the curing agent, the acid anhydride equivalent is 0.5 to 1 with respect to 1 equivalent of the epoxy group of the epoxy resin. It is preferable to mix | blend so that it may become 5 equivalent, More preferably, it is 0.7-1.2 equivalent. If it is such a range, the more excellent hue and moisture resistance will be shown after hardening. In addition, also when using another hardening | curing agent individually or in combination of 2 or more types, the compounding ratio is based on the said equivalent ratio.

前記硬化促進剤としては、例えば、第三級アミン類、イミダゾール類、第四級アンモニウム塩類、有機金属塩類、リン化合物類や尿素系化合物類等があげられ、これらは、一種類でもよいし、二種類以上を併用してもよい。この中でも、特に第三級アミン類、イミダゾール類やリン化合物類が好ましい。   Examples of the curing accelerator include tertiary amines, imidazoles, quaternary ammonium salts, organometallic salts, phosphorus compounds, urea compounds, and the like. Two or more types may be used in combination. Among these, tertiary amines, imidazoles and phosphorus compounds are particularly preferable.

前記硬化促進剤の配合量は、エポキシ系樹脂100重量部に対して0.05〜7.0重量部であることが好ましく、さらに好ましくは0.2〜4.0重量部である。このような範囲であれば、十分な硬化促進効果を得ることができ、かつ、変色も十分に防止できる。   It is preferable that the compounding quantity of the said hardening accelerator is 0.05-7.0 weight part with respect to 100 weight part of epoxy resins, More preferably, it is 0.2-4.0 weight part. If it is such a range, sufficient hardening promotion effect can be acquired and discoloration can fully be prevented.

前記老化防止剤は特に制限されず、従来公知の物を使用でき、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等があげられる。   The anti-aging agent is not particularly limited, and conventionally known materials can be used, and examples thereof include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.

前記変性剤は特に制限されず、従来公知の物を使用でき、例えば、グリコール類、シリコーン類やアルコール類等があげられる。   The modifying agent is not particularly limited, and conventionally known ones can be used, and examples thereof include glycols, silicones and alcohols.

前記エポキシ系樹脂に、さらに、界面活性剤を添加してもよい。前記界面活性剤を添加することで、流延法により、空気に触れながらエポキシ系樹脂フィルムを成形する際に、フィルムの表面をより平滑することができる。前記界面活性剤は、例えば、シリコーン系、アクリル系、フッ素系等があげられ、特にシリコーン系が好ましい。   A surfactant may be further added to the epoxy resin. By adding the surfactant, the surface of the film can be smoothed when the epoxy resin film is formed while being in contact with air by the casting method. Examples of the surfactant include silicones, acrylics, and fluorines, and silicones are particularly preferable.

前記樹脂フィルムの作製方法は、特に制限されず、従来公知の方法で作製することができ、例えば、キャスティング法、流延法、射出法、押し出成型法、ロール塗工法等があげられる。   The method for producing the resin film is not particularly limited, and can be produced by a conventionally known method. Examples thereof include a casting method, a casting method, an injection method, an extrusion molding method, and a roll coating method.

前記樹脂フィルムに、例えば、ガスバリア層、ハードコート層等を形成してもよい。これらの層の形成材料、形成方法ならびにその厚みは特に制限されない。前記形成材料の例としては、ガスバリア層としてはポリビニルアルコールやその部分ケン化物が好ましく、ハードコート層としては熱硬化型または放射線硬化型(例えば、UV、EB等)の3次元架橋型アクリル系樹脂が好ましい。   For example, a gas barrier layer, a hard coat layer, or the like may be formed on the resin film. The material for forming these layers, the forming method and the thickness thereof are not particularly limited. As an example of the forming material, polyvinyl alcohol or a partially saponified product thereof is preferable as the gas barrier layer, and a thermosetting or radiation curable (for example, UV, EB, etc.) three-dimensional cross-linked acrylic resin is used as the hard coat layer. Is preferred.

本発明において、前記偏光板フィルムと前記樹脂フィルムとを積層し、接着剤若しくは粘着剤等により一体化することが好ましい。この場合に、使用できる接着剤または粘着剤としては、特に制限されないが、例えば、アクリル系、ビニルアルコール系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系等のポリマー製接着剤または粘着剤、ゴム系接着剤または粘着剤等があげられる。また、グルタルアルデヒド、メラミン、シュウ酸等のビニルアルコール系ポリマーの水溶性架橋剤等から構成される接着剤または粘着剤等も使用できる。前記接着剤または粘着剤は、例えば、湿度や熱の影響によっても剥がれ難く、光透過率や偏光度にも優れる。この中でも、透明性や耐久性の点より、アクリル系接着剤または粘着剤がもっとも好ましく用いられる。なお、接着剤または粘着剤は、例えば、熱架橋タイプ、光(紫外線、電子線)架橋タイプ等、その種類には限定されない。なお、これらの接着剤および粘着剤は、その他の用途にも使用可能であり、例えば、本発明の積層型偏光板と表面保護シートを積層する際にも使用可能である。   In this invention, it is preferable to laminate | stack the said polarizing plate film and the said resin film, and to integrate with an adhesive agent or an adhesive. In this case, the adhesive or pressure-sensitive adhesive that can be used is not particularly limited, but for example, an acrylic or vinyl alcohol-based, silicone-based, polyester-based, polyurethane-based, polyether-based polymer adhesive or pressure-sensitive adhesive, Examples thereof include rubber adhesives and pressure-sensitive adhesives. In addition, an adhesive or pressure-sensitive adhesive composed of a water-soluble crosslinking agent of vinyl alcohol polymer such as glutaraldehyde, melamine, or oxalic acid can be used. For example, the adhesive or pressure-sensitive adhesive is hardly peeled off due to the influence of humidity or heat, and is excellent in light transmittance and polarization degree. Among these, acrylic adhesives or pressure-sensitive adhesives are most preferably used from the viewpoint of transparency and durability. The adhesive or the pressure-sensitive adhesive is not limited to the type such as a thermal crosslinking type, a light (ultraviolet ray, electron beam) crosslinking type, or the like. These adhesives and pressure-sensitive adhesives can be used for other purposes, for example, when the laminated polarizing plate of the present invention and a surface protective sheet are laminated.

前記アクリル系接着剤または粘着剤は、透明なアクリル系重合体を主剤とし、必要応じて、適宜添加剤を加えたものであってもよく、無機フィラーなどで複合化したものでも良い。前記アクリル系重合体は、アクリル酸アルキルエステルおよびメタクリル酸アルキルエステルの少なくとも一方を主成分とし、偏光板の保護フィルムとの密着性を上げるために、水酸基、カルボキシル基、アミノ基、アミド基、スルホン酸基、リン酸基などの極性基を有する上記主成分と共重合が可能な改質用単量体を加え、これらを常法により重合処理することにより得られるものであり、耐熱性の調整を目的として、必要により適宜架橋処理が施される。   The acrylic adhesive or pressure-sensitive adhesive may have a transparent acrylic polymer as a main ingredient, and may be appropriately added with additives as necessary, or may be combined with an inorganic filler or the like. The acrylic polymer is mainly composed of at least one of acrylic acid alkyl ester and methacrylic acid alkyl ester, and has a hydroxyl group, a carboxyl group, an amino group, an amide group, a sulfone group in order to improve adhesion to the protective film of the polarizing plate. It is obtained by adding a modifying monomer that can be copolymerized with the main component having a polar group such as an acid group and a phosphoric acid group, and polymerizing them by a conventional method, and adjusting the heat resistance. For the purpose, a crosslinking treatment is appropriately performed as necessary.

前記アクリル酸アルキルエステル若しくはメタクリル酸アルキルエステルとしては、アルキル基の炭素数が、例えば、1〜18、好ましくは4〜12である直鎖状または分岐状のアクリル酸アルキルエステル若しくはメタクリル酸アルキルエステルがあげられる。例えば、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸イソオクチル、アクリル酸イソノニル、アクリル酸アリル、アクリル酸ラウリル、アクリル酸ステアリル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸イソオクチル、メタクリル酸イソノニル、メタクリル酸アリル、メタクリル酸ラウリル、メタクリル酸ステアリル等があげられ、これらは、一種類でもよいし、二種類以上を併用してもよい。これらアクリル酸アルキルエステル若しくはメタクリル酸アルキルエステルと共重合可能なモノエチレン不飽和単量体は、偏光板との密着性を上げるために、下記の極性基を有する単量体を併用してもよい。   The acrylic acid alkyl ester or methacrylic acid alkyl ester is, for example, a linear or branched acrylic acid alkyl ester or methacrylic acid alkyl ester whose alkyl group has 1 to 18 carbon atoms, preferably 4 to 12 carbon atoms. can give. For example, butyl acrylate, isobutyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, isononyl acrylate, allyl acrylate, lauryl acrylate, stearyl acrylate, butyl methacrylate, isobutyl methacrylate, methacrylic acid Examples include hexyl, 2-ethylhexyl methacrylate, isooctyl methacrylate, isononyl methacrylate, allyl methacrylate, lauryl methacrylate, stearyl methacrylate, and the like. These may be used alone or in combination of two or more. . Monoethylenically unsaturated monomers copolymerizable with these acrylic acid alkyl esters or methacrylic acid alkyl esters may be used in combination with monomers having the following polar groups in order to increase adhesion to the polarizing plate. .

前記極性基を有する単量体としては、例えば、アクリル酸やメタクリル酸、カルボキシエチルアクリレートやカルボキシペンチルアクリレート、イタコン酸やマレイン酸、フマール酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;スチレンスルホン酸、アリルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、2−メタクリルアミド−2−メチルプロパンスルホン酸、アクリルアミドプロパンスルホン酸、メタクリルアミドプロパンスルホン酸、スルホプロピルアクリレート、スルホプロピルメタクリレート、アクリロイルオキシナフタレンスルホン酸、メタクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2−ヒドロキシエチルアクリロイルホスフェート等の燐酸基含有モノマー;アクリルアミド、N,N−ジメチルアクリルアミド、N−ブチルアクリルアミド、N−メチロールアクリルアミド、N−メチロールプロパンアクリルアミド、メタクリルアミド、N,N−ジメチルメタクリルアミド、N−ブチルメタクリルアミド、N−メチロールメタクリルアミド、N−メチロールプロパンメタクリルアミド等の(N−置換)アミド系モノマー;アクリル酸アミノエチル、アクリル酸N,N−ジメチルアミノエチル、アクリル酸t−ブチルアミノエチル、メタクリル酸アミノエチル、メタクリル酸N,N−ジメチルアミノエチル、メタクリル酸t−ブチルアミノエチル等のアルキルアミノアルキル系モノマー;アクリル酸メトキシエチル、アクリル酸エトキシエチル、メタクリル酸メトキシエチル、メタアクリル酸エトキシエチル等のアルコキシアルキル系モノマー;N−アクリロイルオキシメチレンスクシンイミド、N−アクリロイル−6−オキシヘキサメチレンスクシンイミド、N−アクリロイル−8−オキシオクタメチレンスクシンイミド、N−メタクリロイルオキシメチレンスクシンイミド、N−メタクリロイル−6−オキシヘキサメチレンスクシンイミド、N−メタクリロイル−8−オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマー;酢酸ビニル、プロピオン酸ビニル、N−ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、N−ビニルカルボン酸アミド類、スチレン、α−メチルスチレン、N−ビニルカプロラクタム等のビニル系モノマー;アクリロニトリル、メタクリロニトリル等のシアノアクリレート系モノマー;アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有アクリル系モノマー;アクリル酸ポリエチレングリコール、アクリル酸ポリプロピレングリコール、アクリル酸メトキシエチレングリコール、アクリル酸メトキシポリプロピレングリコール、メタクリル酸ポリエチレングリコール、メタクリル酸ポリプロピレングリコール、メタクリル酸メトキシエチレングリコール、メタクリル酸メトキシポリプロピレングリコール等のグリコール系アクリルエステルモノマー;アクリル酸テトラヒドロフルフリル、フッ素アクリレート、シリコーンアクリレート、メタクリル酸テトラヒドロフルフリル、フッ素メタクリレート、シリコーンメタクリレート、2−メトキシエチルアクリレート等のアクリル酸エステル系モノマー等があげられる。   Examples of the monomer having a polar group include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride, anhydrous Acid anhydride monomers such as itaconic acid; styrenesulfonic acid, allylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid, acrylamidepropanesulfonic acid, methacrylamidepropanesulfonic acid Sulfonic acid group-containing monomers such as sulfopropyl acrylate, sulfopropyl methacrylate, acryloyloxynaphthalenesulfonic acid, methacryloyloxynaphthalenesulfonic acid; 2-hydroxyethylacrylo Phosphoric acid group-containing monomers such as ruphosphate; acrylamide, N, N-dimethylacrylamide, N-butylacrylamide, N-methylolacrylamide, N-methylolpropaneacrylamide, methacrylamide, N, N-dimethylmethacrylamide, N-butylmethacrylamide N-substituted amide monomers such as N-methylol methacrylamide, N-methylol propane methacrylamide; aminoethyl acrylate, N, N-dimethylaminoethyl acrylate, t-butylaminoethyl acrylate, amino methacrylate Alkylaminoalkyl monomers such as ethyl, N, N-dimethylaminoethyl methacrylate, t-butylaminoethyl methacrylate; methoxyethyl acrylate, ethoxyethyl acrylate, methacryl Alkoxyalkyl monomers such as methoxyethyl and ethoxyethyl methacrylate; N-acryloyloxymethylenesuccinimide, N-acryloyl-6-oxyhexamethylenesuccinimide, N-acryloyl-8-oxyoctamethylenesuccinimide, N-methacryloyloxymethylenesuccinimide Succinimide monomers such as N-methacryloyl-6-oxyhexamethylenesuccinimide and N-methacryloyl-8-oxyoctamethylenesuccinimide; vinyl acetate, vinyl propionate, N-vinylpyrrolidone, methylvinylpyrrolidone, vinylpyridine, vinylpiperidone, vinyl Pyrimidine, vinyl piperazine, vinyl pyrazine, vinyl pyrrole, vinyl imidazole, vinyl oxazole, vinyl mole Vinyl monomers such as holine, N-vinylcarboxylic acid amides, styrene, α-methylstyrene, N-vinylcaprolactam; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy groups such as glycidyl acrylate and glycidyl methacrylate Containing acrylic monomer: polyethylene glycol acrylate, polypropylene glycol acrylate, methoxyethylene glycol acrylate, methoxypolypropylene glycol acrylate, polyethylene glycol methacrylate, polypropylene glycol methacrylate, methoxyethylene glycol methacrylate, methoxypolypropylene glycol methacrylate, etc. Glycol-based acrylic ester monomer; tetrahydrofurfuryl acrylate, fluorine acrylate DOO, silicone acrylate, tetrahydrofurfuryl methacrylate, fluorine methacrylate, silicone methacrylate, acrylic ester monomers such as 2-methoxyethyl acrylate.

前記アクリル酸アルキルエステル若しくはメタクリル酸アルキルエステルと、モノエチレン性不飽和単量体とを共重合した場合、主成分となるアクリル酸アルキルエステル若しくはメタクリル酸アルキルエステルの配合割合は、例えば、60〜95重量%、好ましくは80〜95重量%であり、モノエチレン性不飽和単量体の配合割合は、前記アクリル酸アルキルエステル若しくはメタクリル酸アルキルエステルと合わせて100重量%となるように適宜設定すればよく、例えば、40〜5重量%、好ましくは20〜5重量%となるようにする。このような範囲で使用することにより、偏光板との密着性に優れ、衝撃力緩和特性の良好な割れ防止接着剤を得ることができる。   When the acrylic acid alkyl ester or methacrylic acid alkyl ester is copolymerized with a monoethylenically unsaturated monomer, the blending ratio of the acrylic acid alkyl ester or methacrylic acid alkyl ester as the main component is, for example, 60 to 95. % By weight, preferably 80 to 95% by weight, and the blending ratio of the monoethylenically unsaturated monomer may be appropriately set so as to be 100% by weight together with the alkyl acrylate ester or the alkyl methacrylate ester. For example, it is 40 to 5% by weight, preferably 20 to 5% by weight. By using it in such a range, it is possible to obtain an anti-cracking adhesive having excellent adhesion to the polarizing plate and good impact force relaxation characteristics.

アクリル系重合体は、従来公知の手法を用いて調製することが出来る。例えば、上記主成分と極性基含有モノマー成分の2種以上の各単量体との混合物を、溶液重合方式、乳化重合方式、塊状重合方式、懸濁重合方式等により調製することができる。なお、その際、必要に応じて重合開始剤を使用してもよく、例えば、熱重合開始剤、光重合開始剤等があげられる。   The acrylic polymer can be prepared using a conventionally known method. For example, a mixture of the main component and two or more monomers of the polar group-containing monomer component can be prepared by a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, a suspension polymerization method, or the like. In this case, a polymerization initiator may be used as necessary, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator.

前記熱重合開始剤としては、例えば、過酸化ベンゾイル、t−ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシビバレート、(3,5,5−トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシド等の有機過酸化物;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン1−カルボニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、ジメチル2,2’−アゾビス(2−メチルプロピオネート)、4,4’−アゾビス(4−シアノバレリック酸)、2,2’−アゾビス(2−ヒドロキシメチルプロピオニトリル)、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等のアゾ系化合物等があげられる。   Examples of the thermal polymerization initiator include benzoyl peroxide, t-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, and di (2-ethoxyethyl) peroxide. Organic peroxides such as oxydicarbonate, t-butylperoxyneodecanoate, t-butylperoxybivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane 1-carbonitrile), 2,2′-azobis (2, 4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethyl-4-methyl) Xylvaleronitrile), dimethyl 2,2′-azobis (2-methylpropionate), 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2-hydroxymethylpropionitrile) ), 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the like.

前記光重合開始剤としては、例えば、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン、α−ヒドロキシ−α,α’−ジメチルアセトフェノン、メトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)−フェニル]−2−モルホリノプロパン−1等のアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニゾインメチルエーテル等のベンゾインエーテル系化合物;2−メチル−2−ヒドロキシプロピオフェノン等のα−ケトール系化合物;ベンジルジメチルケタール等のケタール系化合物;2−ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド系化合物;1−フェノン−1,1−プロパンジオン−2−(ο−エトキシカルボニル)オキシム等の光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’−ジメチル−4−メトキシベンゾフェノン等のベンゾフェノン系化合物等があげられる。   Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α′-dimethylacetophenone, methoxyacetophenone, and 2,2-dimethoxy. Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinopropane-1; benzoin Benzoin ether compounds such as ethyl ether, benzoin isopropyl ether and anisoin methyl ether; α-ketol compounds such as 2-methyl-2-hydroxypropiophenone; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfonyl Aromatic sulfonyl chloride compounds such as loride; Photoactive oxime compounds such as 1-phenone-1,1-propanedione-2- (ο-ethoxycarbonyl) oxime; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl And benzophenone compounds such as -4-methoxybenzophenone.

これらの重合開始剤の使用量は、単量体100重量部あたり、例えば、0.005〜5重量部の範囲内で、その種類に応じて適宜決定することができる。前記光重合開始剤を使用する場合、例えば、0.005〜1重量部、特に0.05〜0.5重量部であることが好ましい。このような範囲であれば、単量体と光重合開始剤との反応性がより一層優れるため、接着剤層と偏光板フィルムもしくは樹脂フィルムとの接着性により一層優れ、かつ色相にも極めて優れる接着剤若しくは粘着剤が得られる。熱重合開始剤を使用する場合、上記同様の理由により、例えば、0.01〜5重量部、特に0.05〜3重量部であることが好ましい。   The usage-amount of these polymerization initiators can be suitably determined according to the kind within the range of 0.005-5 weight part per 100 weight part of monomers, for example. When using the said photoinitiator, it is preferable that it is 0.005-1 weight part, for example, 0.05-0.5 weight part especially. In such a range, the reactivity between the monomer and the photopolymerization initiator is further improved, so that the adhesiveness between the adhesive layer and the polarizing plate film or the resin film is further improved, and the hue is extremely excellent. An adhesive or pressure-sensitive adhesive is obtained. When using a thermal polymerization initiator, for the same reason as described above, for example, 0.01 to 5 parts by weight, particularly 0.05 to 3 parts by weight is preferable.

前記重合反応を行うにあたり、前記重合開始剤とともに、交叉結合剤(内部架橋剤)として、分子内にアクリロイル基若しくはメタクリロイル基を2個またはそれ以上有する多官能のアクリレート若しくはメタクリレートを必要により添加して、衝撃力緩和部材の凝集力などを高めてせん断強さを増加させてもよい。このような多官能のアクリレート若しくはメタクリレートは、例えば、ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、(ポリ)プロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ペンタエリスリトールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート、ヘキサンジオールジメタクリレート、(ポリ)エチレングリコールジメタクリレート、(ポリ)プロピレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ペンタエリスリトールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールヘキサメタクリレートなどがあげられる。   In performing the polymerization reaction, a polyfunctional acrylate or methacrylate having two or more acryloyl groups or methacryloyl groups in the molecule as a cross-linking agent (internal cross-linking agent) is added together with the polymerization initiator as necessary. The shear strength may be increased by increasing the cohesive force of the impact force relaxation member. Such polyfunctional acrylates or methacrylates are, for example, hexanediol diacrylate, ethylene glycol diacrylate, (poly) propylene glycol diacrylate, neopentyl glycol diacrylate, pentaerythritol diacrylate, trimethylolpropane triacrylate, pentaerythritol. Triacrylate, dipentaerythritol hexaacrylate, epoxy acrylate, polyester acrylate, urethane acrylate, hexanediol dimethacrylate, (poly) ethylene glycol dimethacrylate, (poly) propylene glycol dimethacrylate, neopentyl glycol dimethacrylate, pentaerythritol dimethacrylate, Trimethylolpropane tri Methacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexa methacrylate.

前記多官能のアクリレート若しくはメタクリレートの使用量は、単量体100重量部あたり、例えば、0.01〜10重量部、好ましくは0.05〜5重量部の範囲内で、2官能の場合は多めに、3官能やそれ以上の多官能の場合は少なめにすることが好ましい。このような範囲とすることで、光重合後において優れた架橋度を示し、かつ接着剤層と偏光板フィルムもしくは樹脂フィルムとの接着性に優れる。   The polyfunctional acrylate or methacrylate is used in an amount of, for example, 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight per 100 parts by weight of the monomer. In addition, in the case of trifunctional or higher polyfunctionality, it is preferable to reduce the number. By setting it as such a range, the outstanding crosslinking degree is shown after photopolymerization, and it is excellent in the adhesiveness of an adhesive bond layer, a polarizing plate film, or a resin film.

前記重合反応は、重合開始剤の種類に応じて、例えば、紫外線等の光重合法、熱重合法で行うことができる。粘着シートへの加工性や接着物性等の観点からすると、光重合法によるのが特に好ましい。光重合法としては、例えば、窒素ガスなどの不活性ガスで置換した酸素のない雰囲気中で行うか、または紫外線透過性フィルムによる被覆で空気と遮断した状態で行うことが好ましい。   The polymerization reaction can be performed by, for example, a photopolymerization method such as ultraviolet rays or a thermal polymerization method, depending on the type of the polymerization initiator. From the viewpoint of processability to the pressure-sensitive adhesive sheet and physical properties of the adhesive, the photopolymerization method is particularly preferable. The photopolymerization method is preferably performed, for example, in an oxygen-free atmosphere substituted with an inert gas such as nitrogen gas, or in a state where it is shielded from air by coating with an ultraviolet transmissive film.

光重合法において、紫外線は、波長範囲が約180〜460nmの電磁放射線であるが、これより長波長または短波長の電磁放射線であってもよい。紫外線源には、例えば、水銀アーク、炭素アーク、低圧水銀ランプ、中・高圧水銀ランプ、メタルハライドランプ、ケミカルランプ、ブラックライトランプなどの照射装置を使用することができる。紫外線の強度としては、被照射体までの距離または電圧の調整により、適宜設定することができる。照射時間(生産性)との兼ね合いで、通常は0.5〜10J/cm2の積算光量を用いるのが望ましい。さらに、接着剤の塗工厚さが、0.2mm以上の場合、その重合熱により接着剤がうねり、平滑性が損なわれることがあるが、光重合の際に冷却することで、接着剤のうねりを抑制できる。 In the photopolymerization method, ultraviolet rays are electromagnetic radiation having a wavelength range of about 180 to 460 nm, but electromagnetic radiation having longer or shorter wavelengths may be used. As the ultraviolet ray source, for example, an irradiation device such as a mercury arc, a carbon arc, a low pressure mercury lamp, a medium / high pressure mercury lamp, a metal halide lamp, a chemical lamp, or a black light lamp can be used. The intensity of the ultraviolet light can be appropriately set by adjusting the distance to the irradiated object or the voltage. In consideration of irradiation time (productivity), it is usually desirable to use an integrated light amount of 0.5 to 10 J / cm 2 . Furthermore, when the coating thickness of the adhesive is 0.2 mm or more, the adhesive swells due to the heat of polymerization, and the smoothness may be impaired. By cooling during photopolymerization, Swelling can be suppressed.

前記接着剤または粘着剤には、さらに、必要により透明性の良好な可塑剤を1種または2種以上配合してもよい。その配合量は、前記の単量体(もしくは、その重合体)100重量部あたり、例えば、5〜300重量部であり、10〜200重量部が好ましい。   If necessary, the adhesive or pressure-sensitive adhesive may further contain one or more plasticizers having good transparency. The blending amount is, for example, 5 to 300 parts by weight, preferably 10 to 200 parts by weight, per 100 parts by weight of the monomer (or polymer thereof).

このような可塑剤としては、例えば、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジ−2−エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジブチルベンジル、フタル酸ジオクチル、ブチルフタリルブチルグリコレート等のフタル酸系化合物、アジピン酸ジイソブチル、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ジブトキシエチル等のアジピン酸系化合物、セバシン酸ジブチル、セバシン酸ジ−2−エチルヘキシル等のセバシン酸系化合物、リン酸トリエチレン、リン酸トリフェニル、リン酸トリクレジル、リン酸トリキシレニル、リン酸クレジルフェニル等のリン酸化合物、ジオクチルセバケート、メチルアセチルリシノレート等の脂肪酸系化合物、ジイソデシル−4,5−エポキシテトラヒドロフタレート等のエポキシ系化合物、トリメリット酸トリブチル、トリメリット酸トリ−2−エチルヘキシル、トリメリット酸トリn−オクチル、トリメリット酸トリイソデシル等のトリメリット酸系化合物、その他オレイン酸ブチル、塩素化パラフィン、ポリプロピレングリコール、ポリテトラメチレングリコール、またはポリブテン、ポリイソブチレン等のポリオキシアルキレングリコールがあげられる。   Examples of such plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diheptyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, dibutylbenzyl phthalate, and dioctyl phthalate. Phthalic acid compounds such as butylphthalylbutyl glycolate, diisobutyl adipate, diisononyl adipate, diisodecyl adipate, dibutoxyethyl adipate, dibutyl sebacate, di-2-ethylhexyl sebacate, etc. Sebacic acid compounds such as triethylene phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresylphenyl phosphate, and other fatty acid compounds such as dioctyl sebacate and methylacetylricinolate , Epoxy compounds such as diisodecyl-4,5-epoxytetrahydrophthalate, trimellitic compounds such as tributyl trimellitic acid, tri-2-ethylhexyl trimellitic acid, tri-n-octyl trimellitic acid, triisodecyl trimellitic acid Other examples include butyl oleate, chlorinated paraffin, polypropylene glycol, polytetramethylene glycol, or polyoxyalkylene glycols such as polybutene and polyisobutylene.

さらに接着剤または粘着剤には、透明性を損なわない範囲で必要に応じて、例えば、近赤外線(800−1100nm)またはネオン光(570−590nm)の吸収特性を有する顔料、染料等の色素、粘着付与剤、酸化防止剤、老化防止剤、紫外線吸収剤、シランカップリング剤、天然物、合成物の樹脂類、アクリル系のオリゴマー、ガラス繊維、ガラスビーズなどの各種添加剤を配合してもよい。また微粒子を含有させて光拡散性を示す接着剤としてもよい。   Furthermore, the adhesive or the pressure-sensitive adhesive may be, for example, a pigment having a near-infrared (800-1100 nm) or neon light (570-590 nm) absorption property or a pigment such as a dye, as long as the transparency is not impaired. Various additives such as tackifiers, antioxidants, anti-aging agents, UV absorbers, silane coupling agents, natural products, synthetic resins, acrylic oligomers, glass fibers, glass beads, etc. Good. Moreover, it is good also as an adhesive agent which contains microparticles | fine-particles and shows light diffusibility.

本発明の製造方法において、前記表面保護シートは、例えば、機械的強度に優れ、耐熱性に優れる樹脂を含むシートが好ましい。前記樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルアクリレート、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーが挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマー、塩化ビニルポリマー、ナイロン、芳香族ポリアミド系ポリマー、イミド系ポリマー、スルフォン系ポリマー、ポリエーテルスルフォン系ポリマー、ポリエーテルエーテルケトン系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブレンド物等もあげられる。中でもポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系が好ましい。   In the production method of the present invention, the surface protective sheet is preferably a sheet containing a resin having excellent mechanical strength and excellent heat resistance, for example. Examples of the resin include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl acrylate and polymethyl methacrylate, polystyrene, acrylonitrile and styrene. Examples thereof include styrene polymers such as polymers (AS resins) and polycarbonate polymers. Polyethylene, polypropylene, polyolefin having a cyclo or norbornene structure, polyolefin polymer such as ethylene / propylene copolymer, vinyl chloride polymer, nylon, aromatic polyamide polymer, imide polymer, sulfone polymer, polyether sulfone Examples thereof include a polymer, a polyether ether ketone polymer, a vinylidene chloride polymer, a vinyl alcohol polymer, a vinyl butyral polymer, an arylate polymer, a polyoxymethylene polymer, an epoxy polymer, or a blend of the aforementioned polymers. Of these, polyesters such as polyethylene terephthalate and polyethylene naphthalate are preferred.

つぎに、本発明の積層型偏光板の切断面において、隆起は、10μm以下であることが好ましく、突起物の長さは、50μm以下であることが好ましく、より好ましくは、隆起が5μm以下であり、突起物の長さが30μm以下であり、最も好ましいのは、隆起および突起物が無いこと(測定限界以下)である。なお、前記隆起および突起物の長さは、例えば、後述の実施例において記載した方法で測定できる。   Next, in the cut surface of the laminated polarizing plate of the present invention, the protrusion is preferably 10 μm or less, and the length of the protrusion is preferably 50 μm or less, more preferably the protrusion is 5 μm or less. Yes, the length of the protrusion is 30 μm or less, and the most preferable is the absence of bumps and protrusions (below the measurement limit). In addition, the length of the said protrusion and protrusion can be measured by the method described in the below-mentioned Example, for example.

つぎに、本発明の画像表示装置について説明する。本発明の画像表示装置は、画像表示素子と前記本発明の積層型偏光板とを有し、前記積層型偏光板が、前記画像表示素子に対し、一定の距離をおいて配置されたものである。前記画像表示素子と前記積層型偏光板との間には、なにも存在しない、すなわち空隙であることが好ましい。前記画像表示素子としては、液晶セルが好ましいが、本発明は、これに制限されず、例えば、有機エレクトロルミネッセンス(EL)ディスプレイ、プラズマディスプレイパネル(PDP)、電界放出ディスプレイ(FED)等の自発光型表示装置にも使用できる。また、液晶表示装置としては、例えば、ビデオカメラやデジタルカメラのビューファインダ用の液晶表示装置、プロジェクター用の液晶表示装置などがある。   Next, the image display apparatus of the present invention will be described. The image display device of the present invention has an image display element and the laminated polarizing plate of the present invention, and the laminated polarizing plate is disposed at a certain distance from the image display element. is there. It is preferable that nothing exists between the image display element and the laminated polarizing plate, that is, a gap. As the image display element, a liquid crystal cell is preferable, but the present invention is not limited to this. For example, self-luminous light such as an organic electroluminescence (EL) display, a plasma display panel (PDP), and a field emission display (FED). It can also be used for type display devices. Examples of the liquid crystal display device include a liquid crystal display device for a viewfinder of a video camera and a digital camera, and a liquid crystal display device for a projector.

図2の断面図に、本発明の液晶表示装置の一例を示す。図示のように、この装置は、液晶セル31と本発明の積層型偏光板32とを含み、前記液晶セル31と前記積層型偏光板32とが離間した状態であり、前記積層型偏光板32は、偏光板303と樹脂フィルム302とが積層されたものである。図中の矢印300は、接眼方向を示す。   An example of the liquid crystal display device of the present invention is shown in the sectional view of FIG. As shown in the figure, this apparatus includes a liquid crystal cell 31 and the laminated polarizing plate 32 of the present invention, and the liquid crystal cell 31 and the laminated polarizing plate 32 are separated from each other. Is a laminate of a polarizing plate 303 and a resin film 302. An arrow 300 in the figure indicates the eyepiece direction.

液晶表示装置を形成する前記液晶セルの種類は、任意で選択でき、例えば、薄膜トランジスタ型に代表されるアクティブマトリクス駆動型のもの、ツイストネマチック(TN)型やスーパーツイストネマチック(STN)型に代表される単純マトリクス駆動型のもの等、種々のタイプの液晶セルが使用できる。これらの中でも、本発明の積層型偏光板は、特にTNセル、VA(Vertical Alignment)セル、OCB(Optically Aligned Birefringence)セル、IPS(In Plane Switching)セルに対し、使用することが好ましい。   The type of the liquid crystal cell forming the liquid crystal display device can be arbitrarily selected. For example, it is represented by an active matrix driving type represented by a thin film transistor type, a twisted nematic (TN) type, or a super twisted nematic (STN) type. Various types of liquid crystal cells such as simple matrix drive type can be used. Among these, the laminated polarizing plate of the present invention is particularly preferably used for TN cells, VA (Vertical Alignment) cells, OCB (Optically Aligned Birefringence) cells, and IPS (In Plane Switching) cells.

また、前記液晶セルは、通常、対向する液晶セル基板の間隙に液晶が注入された構造であって、前記液晶セル基板としては、特に制限されず、例えば、ガラス基板、プラスチック基板が使用できる。なお、前記プラスチック基板の材質としては、特に制限されず、従来公知の材料があげられる。   In addition, the liquid crystal cell has a structure in which liquid crystal is usually injected into a gap between opposing liquid crystal cell substrates, and the liquid crystal cell substrate is not particularly limited, and for example, a glass substrate or a plastic substrate can be used. The material for the plastic substrate is not particularly limited, and conventionally known materials can be used.

以下、実施例および比較例を用いて本発明をさらに具体的に説明する。ただし、本発明は、以下の実施例等に限定されない。また、積層型偏光板の特性は以下の方法で評価した。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples. The characteristics of the laminated polarizing plate were evaluated by the following methods.

(1)切断面の隆起の測定
10mm×11mmの積層型偏光板について、中央部と切断面付近の厚みをマイクロメーターで測定し、その差を隆起とした。
(1) Measurement of the raised surface of the cut surface For the 10 mm × 11 mm laminated polarizing plate, the thickness of the central portion and the vicinity of the cut surface was measured with a micrometer, and the difference was taken as the raised shape.

(2)切断面の突起物の測定
レーザー顕微鏡または光学顕微鏡を使用して、積層型偏光板の切断面(図1においてa、b)に発生した突起物の長さを上側から観察し、測定した。
(2) Measurement of protrusion on cut surface Using a laser microscope or an optical microscope, the length of the protrusion generated on the cut surface (a, b in FIG. 1) of the laminated polarizing plate is observed from above and measured. did.

(3)表面汚染の測定
積層型偏光板の偏光板側表面および樹脂フィルム側表面を、それぞれ目視により観察した。そして、汚れがあるものを「×」、汚れがないものを「○」と評価した。
(3) Measurement of surface contamination The polarizing plate side surface and the resin film side surface of the laminated polarizing plate were observed visually. And the thing with a dirt was evaluated as "x", and the thing without a dirt was evaluated as "(circle)".

(偏光板フィルムの作製)
まず、ポリビニルアルコールフィルム(厚み80μm)をヨウ素水溶液中で5倍に延伸し、乾燥させて偏光子を作製した。ついで、トリアセチルセルロースフィルム(TACフィルム)の片面に、反射率が1%以下のUVウレタンハードコート層と、物理光学薄膜(AR層)とをこの順序で形成した。そして、この処理済のTACフィルムを前記偏光子の片面に、未処理のTACフィルムを前記偏光子の他方の面に、それぞれ接着剤を介して積層し、偏光板フィルムを作製した(厚み195μm、光透過率45%)。
(Preparation of polarizing film)
First, a polyvinyl alcohol film (thickness 80 μm) was stretched 5 times in an aqueous iodine solution and dried to prepare a polarizer. Subsequently, a UV urethane hard coat layer having a reflectance of 1% or less and a physical optical thin film (AR layer) were formed in this order on one side of a triacetyl cellulose film (TAC film). Then, the treated TAC film was laminated on one side of the polarizer, and the untreated TAC film was laminated on the other side of the polarizer via an adhesive, respectively, to produce a polarizing film (thickness: 195 μm, Light transmittance 45%).

(樹脂フィルム作製)
3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート100重量部に、硬化剤としてメチルテトラヒドロ無水フタル酸120重量部、硬化促進剤としてテトラ−n−ブチルホスホニウムO,O−ジエチルホスホロジチオエート2重量部をそれそれ添加して攪拌混合し、流延法を用いてプレフィルムを形成した。さらに、前記プレフィルムを180℃で30分間熱硬化させて、エポキシフィルムを作製した(厚み700μm、380mm×280mm)。ついで、前記エポキシフィルムの片面にアクリルウレタンUV樹脂を塗工し、保護層(厚み3μm)を形成することによって、樹脂フィルムを得た。この樹脂フィルムの光透過率は、91.7%であり、ガラス転移温度は、180℃であった。
(Production of resin film)
100 parts by weight of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 120 parts by weight of methyltetrahydrophthalic anhydride as a curing agent, and tetra-n-butylphosphonium O, O-diethyl phosphoroyl as a curing accelerator 2 parts by weight of dithioate was added to each, and mixed by stirring, and a prefilm was formed using a casting method. Further, the prefilm was thermally cured at 180 ° C. for 30 minutes to produce an epoxy film (thickness 700 μm, 380 mm × 280 mm). Subsequently, an acrylic urethane UV resin was applied to one side of the epoxy film to form a protective layer (thickness 3 μm), thereby obtaining a resin film. The light transmittance of this resin film was 91.7%, and the glass transition temperature was 180 ° C.

(粘着剤作製)
ブチルアクリレート100重量部と、アクリル酸5.0重量部と、2−ヒドロキシエチルアクリレート0.075重量部と、アゾビスイソニトリル0.3重量部と、酢酸エチル250重量部とを混合し、攪拌しながら約60℃で6時間反応させて、重量平均分子量163万のアクリル系ポリマー溶液を得た。前記アクリル系ポリマー溶液に、そのポリマー固形分100重量部に対して、イソシアネート系多官能性化合物(商品名コロネートL;日本ポリウレタン工業製)0.6重量部と、シランカップリング剤(商品名KBM403;信越化学製)0.08重量部とを添加して、粘着剤溶液を調製した。なお、得られた粘着剤溶液の90°ピール剥離強さは、10N/25mmであった。
(Adhesive preparation)
100 parts by weight of butyl acrylate, 5.0 parts by weight of acrylic acid, 0.075 parts by weight of 2-hydroxyethyl acrylate, 0.3 parts by weight of azobisisonitrile and 250 parts by weight of ethyl acetate are mixed and stirred. However, the reaction was carried out at about 60 ° C. for 6 hours to obtain an acrylic polymer solution having a weight average molecular weight of 1,630,000. In the acrylic polymer solution, 0.6 parts by weight of an isocyanate polyfunctional compound (trade name Coronate L; manufactured by Nippon Polyurethane Industry) and a silane coupling agent (trade name KBM403) with respect to 100 parts by weight of the polymer solid content. ; Manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.08 part by weight were added to prepare an adhesive solution. The 90 ° peel peel strength of the obtained adhesive solution was 10 N / 25 mm.

(表面保護シート作製)
PETフィルム(厚み50μm)上に、前記粘着剤を厚み10μmになるように塗工して乾燥させ、表面保護シートを得た。
(Surface protection sheet production)
On the PET film (thickness 50 micrometers), the said adhesive was apply | coated so that it might become thickness 10 micrometers, and it was made to dry, and the surface protection sheet was obtained.

(積層体作製)
前記偏光板の未処理TACフィルム側を、前記粘着剤(厚み23μm)を介して前記樹脂フィルムのエポキシフィルム側と貼り合せた。この積層体の両面に前記表面保護シートを前記粘着剤により貼り合せた。
(Laminate production)
The untreated TAC film side of the polarizing plate was bonded to the epoxy film side of the resin film via the adhesive (thickness 23 μm). The said surface protection sheet was bonded together by the said adhesive on both surfaces of this laminated body.

(切断方法)
前記積層体の偏光板の処理済TACフィルム側に、ダイシングテープ(厚み170μm、商品名エレップホルダーNBD5170K;日東電工社製)を貼り付け、ダイシングテープ側をダイシング用固定治具に装着した。
(Cutting method)
A dicing tape (thickness 170 μm, trade name ELEP Holder NBD5170K; manufactured by Nitto Denko Corporation) was attached to the treated TAC film side of the polarizing plate of the laminate, and the dicing tape side was mounted on a dicing fixture.

つぎに、ダイサー(DAD341ダイサー;ディスコ社製)と、砥石(ブレード、厚み0.15mm、商品名Z1100LS3 #600;ディスコ社製)とを使用して、回転数20000rpm、速度10mm/秒の条件で、積層体の切断を行った。なお、前記積層体の下に位置するダイシングテープは、厚み170μmのうち100μmまで切断した。そして、150mm×150mmの積層体から、10mm×11mmの積層型偏光板を約110個作製した。   Next, using a dicer (DAD341 dicer; manufactured by Disco) and a grindstone (blade, thickness 0.15 mm, trade name Z1100LS3 # 600; manufactured by Disco) under the conditions of a rotational speed of 20000 rpm and a speed of 10 mm / sec. Then, the laminate was cut. In addition, the dicing tape located under the said laminated body cut | disconnected to 100 micrometers among thickness 170 micrometers. Then, about 110 10 mm × 11 mm laminated polarizing plates were produced from the 150 mm × 150 mm laminated body.

(洗浄およびUV照射方法)
前記ダイシングテープ上の切断された積層型偏光板を、スピナー洗浄し(DCS140;ディスコ社製)、ついで、前記ダイシングテープ側からブラックライトを2分間照射して、前記積層型偏光板とダイシングテープとの密着性を低減させ、最終的に、前記ダイシングテープから、積層型偏光板を剥離した。
(Washing and UV irradiation method)
The laminated polarizing plate cut on the dicing tape is subjected to spinner cleaning (DCS140; manufactured by Disco Corporation), and then irradiated with black light from the dicing tape side for 2 minutes to obtain the laminated polarizing plate and the dicing tape. The laminated polarizing plate was finally peeled from the dicing tape.

ダイサー(DFD651ダイサー;ディスコ社製)と、砥石(ブレード、厚み200μm、商品名Z1110LS3#400;ディスコ社製)とを使用して、回転数50000rpm、速度100mm/秒の条件で、積層体の切断を行ったこと以外は、実施例1と同様にして、積層型偏光板を作製した。   Using a dicer (DFD651 dicer; manufactured by Disco) and a grindstone (blade, thickness 200 μm, trade name Z1110LS3 # 400; manufactured by Disco), cutting the laminate under the conditions of a rotational speed of 50000 rpm and a speed of 100 mm / sec. A laminated polarizing plate was produced in the same manner as in Example 1 except that the above was performed.

樹脂フィルムの厚みを300μmとし、ダイサー(DFD651ダイサー;ディスコ社製)と、砥石(ブレード、厚み200μm、商品名Z1110LS3#400;ディスコ社製)とを使用して、回転数50000rpm、速度150mm/秒の条件で、積層体の切断を同一ライン2回の切断で行ったこと以外は、実施例1と同様にして、積層型偏光板を作製した。なお、前記同一ライン2回の切断において、1回目の切断深さと2回目の切断深さは、ともに前記ダイシングテープを50μm切りこむ深さとした。また、切断順序は、X軸方向→Y軸方向→X軸方向→Y軸方向の順とした。なお、X軸方向とは、偏光軸若しくは吸収軸であり、Y軸方向とは、X軸方向と垂直な方向である。   Using a dicer (DFD651 dicer; manufactured by Disco) and a grindstone (blade, thickness 200 μm, trade name Z1110LS3 # 400; manufactured by Disco), the thickness of the resin film is 300 μm, and the rotational speed is 50000 rpm and the speed is 150 mm / second. A laminated polarizing plate was produced in the same manner as in Example 1 except that the laminate was cut twice on the same line under the above conditions. In the same cutting twice, the first cutting depth and the second cutting depth were both set to the depth of cutting the dicing tape by 50 μm. Further, the cutting order was the order of X-axis direction → Y-axis direction → X-axis direction → Y-axis direction. The X-axis direction is a polarization axis or an absorption axis, and the Y-axis direction is a direction perpendicular to the X-axis direction.

樹脂フィルムとして市販のアクリル板(厚み1mm、商品名アクリライト;三菱レイヨン社製)を使用したこと以外は、実施例1と同様にして、積層型偏光板を作製した。前記市販のアクリル板の光透過率は、93%であり、ガラス転移温度は、105℃であった。   A laminated polarizing plate was produced in the same manner as in Example 1 except that a commercially available acrylic plate (thickness 1 mm, trade name Acrylite; manufactured by Mitsubishi Rayon Co., Ltd.) was used as the resin film. The commercially available acrylic plate had a light transmittance of 93% and a glass transition temperature of 105 ° C.

(比較例1)
前記エポキシ系樹脂フィルムに代えて、PETフィルム(厚み38μm)(商品名T−600;三菱化学社製)を使用したこと以外は、実施例1と同様にして、積層型偏光板を作製した。前記PETフィルムの光透過率は、92%であり、ガラス転移温度は、90℃であった。
(Comparative Example 1)
A laminated polarizing plate was produced in the same manner as in Example 1 except that a PET film (thickness 38 μm) (trade name T-600; manufactured by Mitsubishi Chemical Corporation) was used instead of the epoxy resin film. The PET film had a light transmittance of 92% and a glass transition temperature of 90 ° C.

(比較例2)
ダイサーに代えて、CO2レーザ(商品名LC−100A;ローランド社製)を使用して、積層体の切断を行ったこと以外は、実施例1と同様にして、積層型偏光板を作製した。なお、前記切断は、25W、切断速度60mm/秒で、2回レーザを照射することで行った。
(Comparative Example 2)
A laminated polarizing plate was produced in the same manner as in Example 1 except that the laminate was cut using a CO 2 laser (trade name LC-100A; manufactured by Roland) instead of the dicer. . In addition, the said cutting | disconnection was performed by irradiating a laser twice with 25W and the cutting speed of 60 mm / sec.

前記実施例1〜4および比較例1、2で得られた積層型偏光板について、その端面(切断面)の隆起および突起物の長さを測定した。その結果を下記表1に示す。下記表1に示すように、実施例1〜4では、比較例1、2に比べて、切断面の隆起および切断面における突起物の発生を低減できた。また、全実施例では、表面汚染はなかったが、レーザ切断した比較例2では、表面汚染が発生した。   With respect to the laminated polarizing plates obtained in Examples 1 to 4 and Comparative Examples 1 and 2, the ridges of the end surfaces (cut surfaces) and the lengths of the protrusions were measured. The results are shown in Table 1 below. As shown in Table 1 below, in Examples 1 to 4, compared to Comparative Examples 1 and 2, the bulge of the cut surface and the generation of protrusions on the cut surface could be reduced. In all the examples, there was no surface contamination, but in Comparative Example 2 which was laser cut, surface contamination occurred.

(表1)
切断面の隆起(μm) 突起物の長さ(μm) 表面汚染
実施例1 <5 10 ○
実施例2 <5 25 ○
実施例3 <5 20 ○
実施例4 <5 30 ○
比較例1 10 100 ○
比較例2 35 70 ×
(Table 1)
Bump of cut surface (μm) Length of protrusion (μm) Surface contamination Example 1 <5 10 ○
Example 2 <525
Example 3 <520
Example 4 <530
Comparative Example 1 10 100 ○
Comparative Example 2 35 70 ×

本発明の製造方法によれば、切断面の隆起および切断面における突起物の発生を抑制でき、また、十分な剛性を有する自立性の積層型偏光板を得ることができる。本発明の製造方法により得られた積層型偏光板は、あらゆる画像表示装置に適用可能であるが、そのなかでも、ビデオカメラやデジタルカメラ等のビューファインダ用液晶表示装置、プロジェクタ用液晶表示装置に、好ましく使用される。   According to the manufacturing method of the present invention, it is possible to suppress the rise of the cut surface and the generation of protrusions on the cut surface, and it is possible to obtain a self-supporting laminated polarizing plate having sufficient rigidity. The laminated polarizing plate obtained by the production method of the present invention can be applied to any image display device, and among them, a liquid crystal display device for a viewfinder such as a video camera or a digital camera, and a liquid crystal display device for a projector. Are preferably used.

本発明の積層型偏光板の一例を示す平面図である。It is a top view which shows an example of the laminated polarizing plate of this invention. 本発明の液晶表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the liquid crystal display device of this invention.

符号の説明Explanation of symbols

21 積層型偏光板
22 表面保護シート
31 液晶セル
32 積層型偏光板
302 樹脂フィルム
303 偏光板
300 接眼方向
A 垂直軸
B 吸収軸
DESCRIPTION OF SYMBOLS 21 Laminated polarizing plate 22 Surface protection sheet 31 Liquid crystal cell 32 Laminated polarizing plate 302 Resin film 303 Polarizing plate 300 Eyepiece direction A Vertical axis B Absorption axis

Claims (21)

積層型偏光板の製造方法であって、偏光板フィルムと、光透過率が80%以上であり且つガラス転移温度が100℃以上である樹脂フィルムとを積層して積層体フィルムを形成する積層工程と、前記積層体フィルムをダイサー切断して積層型偏光板に分割するダイサー切断工程とを含む積層型偏光板の製造方法。   A method for producing a laminated polarizing plate, comprising a step of laminating a polarizing plate film and a resin film having a light transmittance of 80% or more and a glass transition temperature of 100 ° C. or more to form a laminate film. And a dicer cutting step of dicing the laminate film to divide the laminate film into laminated polarizing plates. 前記樹脂フィルムが、エポキシ系樹脂、ポリイミド系樹脂、ポリエステル系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート(PC)系樹脂、ポリエチレンナフタレート(PEN)系樹脂、ポリエチレンテレフタレート(PET)系樹脂、トリアセチルセルロース(TAC)、ノルボルネン系樹脂、ポリエーテルイミド系樹脂、ポリアミド系樹脂、ポリスルホン系樹脂、ポリフェニレンサルファイド系樹脂およびポリエーテルスルホン系樹脂からなる群から選択される少なくとも1つの樹脂を含む請求項1記載の製造方法。   The resin film is an epoxy resin, polyimide resin, polyester resin, acrylic resin, methacrylic resin, polycarbonate (PC) resin, polyethylene naphthalate (PEN) resin, polyethylene terephthalate (PET) resin, 2. The resin composition comprises at least one resin selected from the group consisting of acetylcellulose (TAC), norbornene resin, polyetherimide resin, polyamide resin, polysulfone resin, polyphenylene sulfide resin, and polyethersulfone resin. The manufacturing method as described. 前記樹脂フィルムが、エポキシ系樹脂フィルムおよびアクリル系樹脂フィルムの少なくとも一方である請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the resin film is at least one of an epoxy resin film and an acrylic resin film. 前記樹脂フィルムの位相差が、5nm以下である請求項1から3のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the phase difference of the resin film is 5 nm or less. 前記樹脂フィルムの光透過率が、80〜100%の範囲である請求項1から4のいずれかに記載の製造方法。   The light transmittance of the said resin film is the range of 80 to 100%, The manufacturing method in any one of Claim 1 to 4. 前記樹脂フィルムのガラス転移温度が、100〜400℃の範囲である請求項1から5のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, wherein a glass transition temperature of the resin film is in a range of 100 to 400 ° C. 前記樹脂フィルムの厚みが、0.05〜1.5mmの範囲である請求項1から6のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the resin film has a thickness in a range of 0.05 to 1.5 mm. 前記ダイサー切断工程において、その切断方向が、前記偏光板フィルムにおける偏光軸方向および吸収軸方向の少なくとも一方の方向である請求項1から7のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein in the dicer cutting step, the cutting direction is at least one of a polarization axis direction and an absorption axis direction in the polarizing film. 前記ダイサー切断工程におけるダイサー切断の条件が、ダイシングブレード厚み30〜1000μm、ダイシングブレードの粗さ♯200〜♯1000、ダイシングブレードの回転数10000〜60000rpmおよびダイシング速度10〜300mm/秒からなる群から選択される少なくとも一つの条件である請求項1から8のいずれかに記載の製造方法。   The dicer cutting conditions in the dicer cutting step are selected from the group consisting of a dicing blade thickness of 30 to 1000 μm, a dicing blade roughness # 200 to # 1000, a dicing blade rotation speed of 10,000 to 60000 rpm, and a dicing speed of 10 to 300 mm / sec. The production method according to claim 1, wherein the at least one condition is satisfied. 前記ダイサー切断工程において、前記積層体フィルムを粘着シートでダイシング装置に固定し、この状態でダイサー切断する請求項1から9のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 9, wherein in the dicer cutting step, the laminate film is fixed to a dicing apparatus with an adhesive sheet, and the dicer is cut in this state. 前記ダイサー切断工程において、前記積層型偏光板が使用される画像表示装置の形状およびサイズに合わせてダイサー切断する請求項1から10のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein in the dicer cutting step, dicer cutting is performed in accordance with the shape and size of an image display device in which the laminated polarizing plate is used. 前記画像表示装置が、ビューファインダ用液晶表示装置若しくはプロジェクタ用液晶表示装置である請求項11記載の製造方法。   The manufacturing method according to claim 11, wherein the image display device is a viewfinder liquid crystal display device or a projector liquid crystal display device. 偏光板と樹脂フィルムとが積層された積層型偏光板であって、請求項1から12のいずれかに記載の方法により製造された積層型偏光板。   It is a laminated polarizing plate by which the polarizing plate and the resin film were laminated | stacked, Comprising: The laminated polarizing plate manufactured by the method in any one of Claims 1-12. 切断面の隆起が、10μm以下である請求項13記載の積層型偏光板。   The laminated polarizing plate according to claim 13, wherein the cut surface has a raised portion of 10 μm or less. 切断面の突起物の長さが、50μm以下である請求項13または14記載の積層型偏光板。   The multilayer polarizing plate according to claim 13 or 14, wherein the length of the protrusion on the cut surface is 50 µm or less. その用途が、ビューファインダ用液晶表示装置のための用途若しくはプロジェクタ用液晶表示装置のための用途である請求項13から15のいずれかに記載の積層型偏光板。   The multilayer polarizing plate according to any one of claims 13 to 15, which is used for a viewfinder liquid crystal display device or a projector liquid crystal display device. 画像表示素子と偏光板とを含む画像表示装置であって、前記偏光板が、請求項13から15のいずれかに記載の積層型偏光板であり、前記積層型偏光板が、前記画像表示素子と一定の距離をおいて配置されている画像表示装置。   An image display device including an image display element and a polarizing plate, wherein the polarizing plate is the laminated polarizing plate according to any one of claims 13 to 15, and the laminated polarizing plate is the image display element. And an image display device arranged at a certain distance. 前記画像表示素子と前記偏子板との間が、空隙である請求項17記載の画像表示装置。   The image display device according to claim 17, wherein a gap is provided between the image display element and the eccentric plate. 前記画像表示素子が、液晶セルである請求項17または18記載の画像表示装置。   The image display device according to claim 17 or 18, wherein the image display element is a liquid crystal cell. ビューファインダ用若しくはプロジェクタ用である請求項19記載の画像表示装置。   The image display device according to claim 19, which is for a viewfinder or a projector. 前記ビューファインダが、ビデオカメラ若しくはデジタルカメラのビューファインダである請求項20記載の画像表示装置。   The image display device according to claim 20, wherein the viewfinder is a viewfinder of a video camera or a digital camera.
JP2004368073A 2003-12-25 2004-12-20 Manufacturing method for laminated polarizing plate, laminated polarizing plate obtained by the method, and image display apparatus using the laminated polarizing plate Ceased JP2005208607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368073A JP2005208607A (en) 2003-12-25 2004-12-20 Manufacturing method for laminated polarizing plate, laminated polarizing plate obtained by the method, and image display apparatus using the laminated polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003431173 2003-12-25
JP2004368073A JP2005208607A (en) 2003-12-25 2004-12-20 Manufacturing method for laminated polarizing plate, laminated polarizing plate obtained by the method, and image display apparatus using the laminated polarizing plate

Publications (1)

Publication Number Publication Date
JP2005208607A true JP2005208607A (en) 2005-08-04

Family

ID=34914177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368073A Ceased JP2005208607A (en) 2003-12-25 2004-12-20 Manufacturing method for laminated polarizing plate, laminated polarizing plate obtained by the method, and image display apparatus using the laminated polarizing plate

Country Status (1)

Country Link
JP (1) JP2005208607A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268597A (en) * 2006-03-31 2007-10-18 Pioneer Electronic Corp Laminate cutting method
WO2009008329A1 (en) * 2007-07-06 2009-01-15 Nitto Denko Corporation Polarization plate
WO2009069726A1 (en) * 2007-11-30 2009-06-04 Namiki Seimitsu Houseki Kabushiki Kaisha Light polarizer, light polarizer manufacturing method, and optical isolator
WO2009136604A1 (en) * 2008-05-07 2009-11-12 日東電工株式会社 Polarizing plate and manufacturing method thereof
WO2017110332A1 (en) * 2015-12-25 2017-06-29 日東電工株式会社 Polarizing film with pressure-sensitive adhesive layer, and image display device
JP2020064313A (en) * 2015-04-17 2020-04-23 日東電工株式会社 Polarizer
CN113185930A (en) * 2020-01-29 2021-07-30 日东电工株式会社 Masking material
JP2022121430A (en) * 2020-09-14 2022-08-19 日東電工株式会社 Polarizing plate, polarizing plate with retardation layer and image display device including polarizing plate or polarizing plate with retardation layer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268597A (en) * 2006-03-31 2007-10-18 Pioneer Electronic Corp Laminate cutting method
WO2009008329A1 (en) * 2007-07-06 2009-01-15 Nitto Denko Corporation Polarization plate
US8817373B2 (en) 2007-07-06 2014-08-26 Nitto Denko Corporation Microcrack free polarization plate
WO2009069726A1 (en) * 2007-11-30 2009-06-04 Namiki Seimitsu Houseki Kabushiki Kaisha Light polarizer, light polarizer manufacturing method, and optical isolator
WO2009136604A1 (en) * 2008-05-07 2009-11-12 日東電工株式会社 Polarizing plate and manufacturing method thereof
JP2020064313A (en) * 2015-04-17 2020-04-23 日東電工株式会社 Polarizer
WO2017110332A1 (en) * 2015-12-25 2017-06-29 日東電工株式会社 Polarizing film with pressure-sensitive adhesive layer, and image display device
CN113185930A (en) * 2020-01-29 2021-07-30 日东电工株式会社 Masking material
JP2022121430A (en) * 2020-09-14 2022-08-19 日東電工株式会社 Polarizing plate, polarizing plate with retardation layer and image display device including polarizing plate or polarizing plate with retardation layer
JP7509823B2 (en) 2020-09-14 2024-07-02 日東電工株式会社 Polarizing plate, method for manufacturing polarizing plate, polarizing plate with retardation layer, and image display device including said polarizing plate or said polarizing plate with retardation layer

Similar Documents

Publication Publication Date Title
JP4233999B2 (en) Laminated polarizing plate and manufacturing method thereof
JP5093900B2 (en) Laminated polarizing plate and manufacturing method thereof
JP2006215488A (en) Lamination type polarizing plate, manufacturing method of the same and image display device using the same
US7208206B2 (en) Glass crack prevention laminate and liquid crystal display device
JP5332599B2 (en) Polarizing plate, manufacturing method thereof, and composite polarizing plate using the same
KR101931471B1 (en) Method for manufacturing a polarizing plate
KR100718400B1 (en) Transparent laminate, pen-input image display device and image display method
KR101249080B1 (en) Optical film cutting method and optical film
US20050153079A1 (en) Method of manufacturing laminated polarizing plate, laminated polarizing plate obtained by the method, and image display including the same
KR101679859B1 (en) Liquid crystal display device and polarizing plate used in the same
TWI514040B (en) Liquid crystal display device
JP6741477B2 (en) Polarizing film, polarizing film with adhesive layer, and image display device
JP2010133987A (en) Optical film laminate and display device using the same
CN101663602B (en) Optical film laminate, method for producing same, and display device using same
KR20190109267A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layer
TW201734515A (en) Set of polarizing plates and liquid crystal panel
JP2005208607A (en) Manufacturing method for laminated polarizing plate, laminated polarizing plate obtained by the method, and image display apparatus using the laminated polarizing plate
CN107924008A (en) Polarization plates and image display device
JP4485188B2 (en) Laminated sheet and image display device
WO2024195610A1 (en) Method for manufacturing adhesive-layer-attached optical laminate
WO2024195611A1 (en) Method for manufacturing release liner with surface protection film, and method for manufacturing optical laminate with pressure-sensitive adhesive layer
TW202335859A (en) Protective film, polarizing plate, method for manufacturing polarizing plate, and method for manufacturing image display device
WO2024247660A1 (en) Method for manufacturing layered optical film
WO2024247658A1 (en) Adhesive composition for laminated optical film and laminated optical film
WO2024247659A1 (en) Multilayer optical film and method for producing multilayer optical film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20090917