JP2005206664A - Semiconductor sealing resin composition - Google Patents
Semiconductor sealing resin composition Download PDFInfo
- Publication number
- JP2005206664A JP2005206664A JP2004013396A JP2004013396A JP2005206664A JP 2005206664 A JP2005206664 A JP 2005206664A JP 2004013396 A JP2004013396 A JP 2004013396A JP 2004013396 A JP2004013396 A JP 2004013396A JP 2005206664 A JP2005206664 A JP 2005206664A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- resin
- semiconductor
- epoxy
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 96
- 239000011342 resin composition Substances 0.000 title claims abstract description 83
- 238000007789 sealing Methods 0.000 title claims abstract description 25
- 239000003822 epoxy resin Substances 0.000 claims abstract description 38
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000002245 particle Substances 0.000 claims abstract description 32
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 24
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 5
- 238000005538 encapsulation Methods 0.000 claims description 7
- 229910000679 solder Inorganic materials 0.000 abstract description 30
- 229920005989 resin Polymers 0.000 abstract description 28
- 239000011347 resin Substances 0.000 abstract description 28
- 239000000203 mixture Substances 0.000 abstract description 10
- 238000005304 joining Methods 0.000 abstract description 3
- 238000004806 packaging method and process Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 24
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000004593 Epoxy Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229930185605 Bisphenol Natural products 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- -1 vinyl ether compound Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical group C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical group C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 1
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000001998 small-angle neutron scattering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 125000006839 xylylene group Chemical group 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83192—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Wire Bonding (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明は、半導体装置において配線回路基板と半導体素子との間の空隙を封止するための半導体封止用樹脂組成物(以下、単に樹脂組成物という場合がある)およびその半導体封止用樹脂組成物で封止されてなる半導体装置に関するものである。 The present invention relates to a semiconductor sealing resin composition (hereinafter sometimes simply referred to as a resin composition) for sealing a gap between a printed circuit board and a semiconductor element in a semiconductor device, and the semiconductor sealing resin The present invention relates to a semiconductor device sealed with a composition.
最近の半導体装置の高機能化、軽薄短小化に伴う要求として、半導体素子をフェイスダウン構造で配線回路基板に搭載するフリップチップ実装が行われている。一般にフリップチップ実装においては、半導体素子を保護するために半導体素子と配線回路基板の空隙を熱硬化性樹脂組成物で封止している。 As a recent demand for higher performance, lighter, thinner, and smaller semiconductor devices, flip chip mounting has been performed in which semiconductor elements are mounted on a printed circuit board with a face-down structure. Generally, in flip chip mounting, a gap between a semiconductor element and a printed circuit board is sealed with a thermosetting resin composition in order to protect the semiconductor element.
フリップチップ実装方式においては、互いの線膨張係数が異なる半導体素子と配線回路基板とをダイレクトに電気接続することから、接続部分の信頼性が問題となっている。 In the flip-chip mounting method, since the semiconductor element and the printed circuit board having different linear expansion coefficients are directly electrically connected, the reliability of the connection portion is a problem.
この対策としては、半導体素子と配線回路基板との空隙に液状樹脂材料を充填し硬化させて樹脂硬化体を形成し、電気接続部に集中する応力を上記樹脂硬化体にも分散させることにより接続信頼性を向上させる方法が採られている。従来のハンダバンプを用いたフリップチップ方式における液状材料の充填方法では、まず半導体素子を配線回路基板に実装しハンダ溶融工程による金属接合を形成した後、半導体素子と配線回路基板との空隙に毛細管現象により液状樹脂材料を注入している(例えば、特許文献1参照)。 As a countermeasure, fill the gap between the semiconductor element and the printed circuit board with a liquid resin material and cure it to form a cured resin body, and then disperse the stress concentrated on the electrical connection part to the cured resin body. A method for improving reliability is employed. In the conventional method of filling a liquid material in a flip chip method using solder bumps, a semiconductor element is first mounted on a printed circuit board, a metal bond is formed by a solder melting process, and then a capillary phenomenon is formed in the gap between the semiconductor element and the printed circuit board. The liquid resin material is injected by (see, for example, Patent Document 1).
さらに近年、毛細管現象を利用した液状材料の注入方式よりも、より工程の簡略化を試みた、ハンダ接合性を有する熱硬化性樹脂組成物を用いた上記半導体装置の製造が提案されている(例えば、特許文献2参照)。このハンダ接合性を有する熱硬化性樹脂組成物を用いた半導体装置の製造においては、該熱硬化性樹脂組成物は半導体素子あるいは配線回路基板上に先塗布されチップ実装とともに界面樹脂封止がなされ、その後ハンダリフローを行うことにより金属結合が形成されるため、上記液状樹脂材料を用いた半導体装置の製造と比べフラックスの塗布およびその洗浄、液状樹脂注入などの工程が削減できるため半導体装置の生産性を向上することができる。
しかしながら、上記製造方式では熱硬化性樹脂組成物を半導体素子あるいは配線回路基板上に先塗布した後、ハンダ接合がなされるため、熱硬化性樹脂組成物中にシリカなどの無機充填剤が含有されている場合においては、該無機充填剤がハンダ接合面において立体障害となるため十分なハンダ接合性が得られなかった。また、ハンダ接合の障害とならないように、単に粒子サイズの小さな無機充填剤を樹脂組成物に含有させただけでは、無機充填剤の嵩密度が高すぎるため、樹脂組成物との相溶性が悪く、粘度が高くなり、ウエハ上に供給できないという問題が発生する。 However, in the above manufacturing method, since the thermosetting resin composition is pre-applied on a semiconductor element or a printed circuit board and then soldered, the inorganic composition such as silica is contained in the thermosetting resin composition. In such a case, the inorganic filler becomes a steric hindrance on the solder joint surface, so that sufficient solder joint property cannot be obtained. Also, in order not to hinder solder bonding, simply adding an inorganic filler having a small particle size to the resin composition causes the bulk density of the inorganic filler to be too high, so the compatibility with the resin composition is poor. The viscosity becomes high, and there arises a problem that it cannot be supplied onto the wafer.
また、充分なハンダ接合性を得るために熱硬化性樹脂組成物にシリカを含有させない場合では、樹脂組成物の熱膨張係数が大きくなり、半導体素子と封止樹脂層との熱膨張収縮差により発生する応力などの種々の負荷が接続用電極にかかる。かかる負荷による繰り返し歪みなどにより接続用電極が破断し、接続用電極部の断線に至るという問題がある。 Further, in the case where silica is not contained in the thermosetting resin composition in order to obtain sufficient solder bonding properties, the thermal expansion coefficient of the resin composition increases, and due to the thermal expansion and contraction difference between the semiconductor element and the sealing resin layer. Various loads such as generated stress are applied to the connection electrode. There is a problem that the connection electrode is broken due to repeated strain caused by such a load and the connection electrode portion is disconnected.
従って、本発明は、フリップチップ実装に好適に使用される、優れたハンダ接合性および作業性が得られ、樹脂封止後の優れた電気接続信頼性をもたらす半導体封止用樹脂組成物、ならびに該組成物を用いて樹脂封止された半導体装置を提供することを目的とする。 Accordingly, the present invention provides a resin composition for encapsulating a semiconductor, which is preferably used for flip chip mounting, provides excellent solderability and workability, and provides excellent electrical connection reliability after resin encapsulation, and It is an object of the present invention to provide a semiconductor device sealed with a resin using the composition.
すなわち、本発明は、
(1)80℃で測定される粘度が5000Pa・s以下であり、
(A)1分子中に2個以上のエポキシ基を有するエポキシ樹脂、
(B)硬化剤、および
(C)平均粒径dmaxが3〜50nmでかつ半値幅が平均粒径dmaxの1.5倍以下であるシリカ粒子
を含有してなる半導体封止用樹脂組成物、
(2)前記シリカ粒子が前記エポキシ樹脂に分散されていることを特徴とする前記(1)記載の半導体封止用樹脂組成、
(3)半導体封止用樹脂組成物の硬化物のTgの温度で測定される熱膨張係数が70×10−6/K以下であることを特徴とする前記(1)または(2)記載の半導体封止用樹脂組成物、ならびに
(4)前記(1)〜(3)いずれか記載の半導体封止用樹脂組成物により封止されてなる半導体装置
に関する。
That is, the present invention
(1) The viscosity measured at 80 ° C. is 5000 Pa · s or less,
(A) an epoxy resin having two or more epoxy groups in one molecule;
(B) a curing agent, and (C) a resin composition for encapsulating a semiconductor, comprising silica particles having an average particle diameter dmax of 3 to 50 nm and a half width of 1.5 times or less of the average particle diameter dmax,
(2) The resin composition for semiconductor encapsulation according to (1), wherein the silica particles are dispersed in the epoxy resin,
(3) The thermal expansion coefficient measured at the Tg temperature of the cured product of the resin composition for semiconductor encapsulation is 70 × 10 −6 / K or less, according to (1) or (2) above The present invention relates to a semiconductor sealing resin composition, and (4) a semiconductor device sealed with the semiconductor sealing resin composition according to any one of (1) to (3).
本発明によれば、ハンダ接合性および作業性に優れる半導体封止用樹脂組成物が提供される。さらに、該組成物を用いることにより、優れた接続信頼性を有する半導体装置を効率的に生産することができる。 ADVANTAGE OF THE INVENTION According to this invention, the resin composition for semiconductor sealing excellent in solder bondability and workability | operativity is provided. Furthermore, by using the composition, a semiconductor device having excellent connection reliability can be efficiently produced.
本発明の半導体封止用樹脂組成物は、80℃で測定される粘度が5000Pa・s以下であり、
(A)1分子中に2個以上のエポキシ基を有するエポキシ樹脂、
(B)硬化剤、および
(C)平均粒径dmaxが3〜50nmでかつ半値幅が平均粒径dmaxの1.5倍以下であるシリカ粒子
を含有することに1つの大きな特徴を有する。
The resin composition for semiconductor encapsulation of the present invention has a viscosity measured at 80 ° C. of 5000 Pa · s or less,
(A) an epoxy resin having two or more epoxy groups in one molecule;
One major feature is that it contains (B) a curing agent, and (C) silica particles having an average particle diameter dmax of 3 to 50 nm and a half width of 1.5 times or less of the average particle diameter dmax.
通常、半導体装置において封止用樹脂として用いられる樹脂組成物には、その熱膨張係数あるいは吸水率を下げ、半導体装置の熱ストレス信頼性や耐ハンダ性を満足させる目的で、シリカ粒子などの無機充填剤が添加される。しかし、前記の通り、充分なハンダ接合性が得られないという問題があった。 Usually, a resin composition used as a sealing resin in a semiconductor device has an inorganic coefficient such as silica particles for the purpose of lowering its thermal expansion coefficient or water absorption rate and satisfying the thermal stress reliability and solder resistance of the semiconductor device. Filler is added. However, as described above, there is a problem that sufficient solderability cannot be obtained.
これに対し、本発明の樹脂組成物は、特定の粒径を有するシリカ粒子を含有しているので、配線回路基板と半導体素子との間の空隙を封止する際、ハンダ接合面における立体障害を回避でき、接続用電極にかかる応力も軽減できるという効果が発現される。さらに、本発明の樹脂組成物を用いて封止してなる半導体装置は、優れた接続信頼性を発現するという、優れた特性を有する。 On the other hand, since the resin composition of the present invention contains silica particles having a specific particle size, when sealing the gap between the printed circuit board and the semiconductor element, the steric hindrance on the solder joint surface Can be avoided, and the effect that the stress applied to the connection electrode can be reduced is exhibited. Furthermore, the semiconductor device formed by sealing using the resin composition of the present invention has excellent characteristics of exhibiting excellent connection reliability.
なお、本明細書において、本発明の樹脂組成物を熱硬化させたものを硬化体という。 In addition, in this specification, what heat-cured the resin composition of this invention is called hardened | cured material.
本発明の樹脂組成物に含まれる1分子中に2個以上のエポキシ基を有するエポキシ樹脂としては、好ましくは少なくとも50℃以下において液状であれば特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられ、溶融時の流動性の確保の観点から、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂が好適に使用される。これらは単独で使用されてもよく、あるいは、2種以上併用されてもよい。 The epoxy resin having two or more epoxy groups in one molecule contained in the resin composition of the present invention is not particularly limited as long as it is liquid at least at 50 ° C. or less. For example, a bisphenol A type epoxy resin, Examples thereof include bisphenol F-type epoxy resins, naphthalene-type epoxy resins, and alicyclic epoxy resins. From the viewpoint of securing fluidity at the time of melting, bisphenol A-type epoxy resins and bisphenol F-type epoxy resins are preferably used. These may be used alone or in combination of two or more.
エポキシ樹脂のエポキシ当量は、好ましくは90〜1000g/eq、より好ましくは100〜500g/eqである。エポキシ当量が90g/eq以上であると、硬化体が脆くなりにくく、1000g/eq以下であると、硬化体のガラス転移温度(Tg)が低くなりすぎないため好ましい。樹脂組成物中のエポキシ樹脂の含有量は、耐熱性や耐湿性の観点から、好ましくは5〜90重量%、より好ましくは10〜80重量%である。 The epoxy equivalent of the epoxy resin is preferably 90 to 1000 g / eq, more preferably 100 to 500 g / eq. When the epoxy equivalent is 90 g / eq or more, the cured product is hardly brittle, and when it is 1000 g / eq or less, the glass transition temperature (Tg) of the cured product is not too low, which is preferable. The content of the epoxy resin in the resin composition is preferably 5 to 90% by weight, more preferably 10 to 80% by weight from the viewpoints of heat resistance and moisture resistance.
本発明の樹脂組成物に含まれる硬化剤としては、上記エポキシ樹脂の硬化剤として作用するものであれば特に限定されず、各種の硬化剤が用いられる。耐湿信頼性に優れる点で、フェノール系硬化剤が一般に用いられるが、各種酸無水物系硬化剤、芳香族アミン類、ジシアンジアミド、ヒドラジド、ベンゾオキサジン環化合物などを使用することもできる。これらは、単独で使用されてもよく、また2種以上併用されてもよい。 The curing agent contained in the resin composition of the present invention is not particularly limited as long as it acts as a curing agent for the epoxy resin, and various curing agents are used. A phenolic curing agent is generally used in terms of excellent moisture resistance reliability, but various acid anhydride curing agents, aromatic amines, dicyandiamide, hydrazide, benzoxazine ring compounds, and the like can also be used. These may be used alone or in combination of two or more.
フェノール系硬化剤としては、例えば、クレゾールノボラック樹脂、フェノールノボラック樹脂、ジシクロペンタジエン環型フェノール樹脂、フェノールアラルキル樹脂、ナフトール、シリコン変性フェノールノボラック樹脂などが挙げられる。これらは、単独で使用されてもよく、また2種以上併用されてもよい。 Examples of the phenol-based curing agent include cresol novolak resin, phenol novolak resin, dicyclopentadiene ring type phenol resin, phenol aralkyl resin, naphthol, silicon-modified phenol novolak resin, and the like. These may be used alone or in combination of two or more.
上記エポキシ樹脂と硬化剤との配合割合は、硬化剤としてフェノール系硬化剤を用いる場合、硬化性、耐熱性、耐湿信頼性の確保の観点から、エポキシ樹脂中のエポキシ当量1g/eqに対して、通常、フェノール系硬化剤における反応性の水酸基当量が好ましくは0.5〜1.5g/eq、より好ましくは0.7〜1.2g/eqとなるような割合である。なお、フェノール系硬化剤以外の硬化剤を使用する場合においても、その配合割合は、フェノール系硬化剤を用いる場合の配合割合(当量比)に準じればよい。 When the phenolic curing agent is used as the curing agent, the blending ratio of the epoxy resin and the curing agent is based on the epoxy equivalent of 1 g / eq in the epoxy resin from the viewpoint of securing curability, heat resistance, and moisture resistance reliability. Usually, the reactive hydroxyl group equivalent in the phenolic curing agent is preferably 0.5 to 1.5 g / eq, more preferably 0.7 to 1.2 g / eq. In addition, also when using hardening | curing agents other than a phenol type hardening | curing agent, the mixture ratio should just follow the mixing | blending ratio (equivalent ratio) in the case of using a phenol type hardening | curing agent.
本発明の樹脂組成物に含有されるシリカ粒子の平均粒径dmaxは、3〜50nmであり、ハンダ接合性や透明性の確保の観点から、好ましくは8〜30nmである。さらに、半値幅は平均粒径dmaxの1.5倍以下である。さらに、シリカ粒子は真球度の高いものが好ましい。 The average particle diameter dmax of the silica particles contained in the resin composition of the present invention is 3 to 50 nm, and preferably 8 to 30 nm from the viewpoint of securing solderability and transparency. Further, the full width at half maximum is 1.5 times or less of the average particle diameter dmax. Further, silica particles with high sphericity are preferable.
ここで、平均粒径dmaxとは、中性子小角散乱法により測定される場合の、粒子直径に対してその粒子の容量割合がプロットされる粒度分布曲線において、最大容量を有する粒子の直径をいう。また、半値幅とは、粒度分布曲線のピークdmaxの半分の高さに位置する分布曲線の幅をいう。この半値幅が小さいことは、粒度分布がシャープであることを意味する。かかる特徴を有するシリカ粒子を本発明の樹脂組成物に用いることで、比較的高い添加量においても低粘度の樹脂組成物を得ることができる。 Here, the average particle diameter dmax refers to the diameter of a particle having the maximum capacity in a particle size distribution curve in which the volume ratio of the particle is plotted against the particle diameter when measured by the small-angle neutron scattering method. The half-value width refers to the width of the distribution curve located at half the height of the peak dmax of the particle size distribution curve. A small half-value width means that the particle size distribution is sharp. By using silica particles having such characteristics in the resin composition of the present invention, a low viscosity resin composition can be obtained even with a relatively high addition amount.
樹脂組成物中のシリカ粒子の含有量は、流動性の確保および接続信頼性の向上の観点から、好ましくは10〜65重量%、より好ましくは20〜60重量%である。 The content of the silica particles in the resin composition is preferably 10 to 65% by weight, more preferably 20 to 60% by weight, from the viewpoint of securing fluidity and improving connection reliability.
また、本発明の樹脂組成物には、所望により、以下のようなその他の成分を含んでいてもよい。 In addition, the resin composition of the present invention may contain the following other components as desired.
例えば、本発明の樹脂組成物には、所望により硬化促進剤を加えることができる。硬化促進剤としては、前記エポキシ樹脂の硬化促進剤として作用するものであれば特に限定されず、各種の硬化剤が用いられ、例えば、アミン系、リン系、ホウ素系、リン−ホウ素系などの硬化促進剤が用いられる。また、該硬化促進剤をマイクロカプセルに封入したものからなるマイクロカプセル型硬化促進剤(例えば、特開2000−309682号公報を参照のこと)はより好適に用いられる。これらは、単独で使用されてもよく、また2種以上併用されてもよい。硬化促進剤の含有量は、所望の硬化速度が得られ、かつハンダ付け性および密着性を低下させないような割合で、適宜設定すればよい。設定方法としては、例えば、種々の量の硬化促進剤を含有する樹脂組成物の熱板上でのゲル化時間(硬化速度の指標)を測定し、所望のゲル化時間が得られた量をその含有量とする方法が挙げられる。一般に、硬化剤100重量部に対して、好ましくは0.01〜20重量部、より好ましくは0.05〜10重量部である。 For example, a curing accelerator can be added to the resin composition of the present invention as desired. The curing accelerator is not particularly limited as long as it acts as a curing accelerator for the epoxy resin, and various curing agents are used. For example, amine-based, phosphorus-based, boron-based, phosphorus-boron-based, etc. A curing accelerator is used. Further, a microcapsule type curing accelerator (for example, see Japanese Patent Application Laid-Open No. 2000-309682) made by encapsulating the curing accelerator in a microcapsule is more preferably used. These may be used alone or in combination of two or more. What is necessary is just to set content of a hardening accelerator suitably in the ratio which a desired hardening rate is obtained and does not reduce solderability and adhesiveness. As a setting method, for example, the gelation time (an index of the curing rate) of the resin composition containing various amounts of the curing accelerator on the hot plate is measured, and the amount of the desired gelation time is obtained. The method of making it the content is mentioned. In general, the amount is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight with respect to 100 parts by weight of the curing agent.
さらに、本発明の樹脂組成物には、所望によりハンダ接合助剤を加えることができる。ハンダ接合助剤としては、従来から用いられているものであれば特に限定されず、酢酸、アジピン酸、マレイン酸、フマル酸、イタコン酸、フタル酸、トリメリット酸、ピロメリット酸、アクリル酸、イソシアヌル酸、カルボキシル基含有アクリロニトリルブタジエンゴムなどの有機カルボン酸類などが用いられる。ハンダ接合助剤としてはまた、ハンダ接続性およびエポキシ樹脂との相溶性の向上の観点から、該有機カルボン酸類とビニルエーテル化合物とのエステル結合体が用いられる。該ビニルエーテル化合物としては、ブチル基、エチル基、プロピル基、イソプロピル基、シクロヘキシル基などを有するビニルエーテル類が挙げられる。このようなエステル結合体をハンダ接合助剤として用いることにより、半導体実装プロセス中においてハンダ付け機能を発揮した後、エポキシ樹脂と反応しうるため、ハンダ接合助剤および硬化剤の特性を兼ね備えた材料として好適に使用される。 Furthermore, a solder bonding aid can be added to the resin composition of the present invention as desired. The soldering aid is not particularly limited as long as it is conventionally used. Acetic acid, adipic acid, maleic acid, fumaric acid, itaconic acid, phthalic acid, trimellitic acid, pyromellitic acid, acrylic acid, Organic carboxylic acids such as isocyanuric acid and carboxyl group-containing acrylonitrile butadiene rubber are used. As the solder bonding aid, an ester bond of the organic carboxylic acid and the vinyl ether compound is used from the viewpoint of improving solder connectivity and compatibility with the epoxy resin. Examples of the vinyl ether compound include vinyl ethers having a butyl group, an ethyl group, a propyl group, an isopropyl group, a cyclohexyl group, and the like. By using such an ester bond as a solder bonding aid, after exhibiting a soldering function during the semiconductor mounting process, it can react with an epoxy resin, so that the material combines the properties of a solder bonding aid and a curing agent. Is preferably used.
樹脂組成物中のハンダ接合助剤の含有量は、ハンダ接合性や硬化体強度の確保の観点から、好ましくは0.1〜20重量%、より好ましくは0.3〜10重量%、さらに好ましくは0.5〜5重量%である。 The content of the solder bonding aid in the resin composition is preferably 0.1 to 20% by weight, more preferably 0.3 to 10% by weight, and still more preferably, from the viewpoint of securing solder bonding properties and cured body strength. Is 0.5 to 5% by weight.
さらに、本発明の樹脂組成物には、接着性を高めるために、シラン系、チタン系などのカップリング剤、合成ゴム、シリコン化合物などの可撓性付与剤;または酸化防止剤、消泡剤などを加えることができる。 Furthermore, the resin composition of the present invention includes a coupling agent such as silane or titanium, a flexibility imparting agent such as a synthetic rubber, a silicon compound, or the like; Etc. can be added.
本発明の樹脂組成物は、例えば、以下のようにして調製することができる。すなわち、まず、分散の均一性および粘度上昇の抑制の観点から、所定量のエポキシ樹脂に所定量のシリカ粒子を分散させた後、減圧乾燥してエポキシ樹脂とシリカ粒子の混合物(本明細書において、シリカ分散エポキシ樹脂という場合がある)を得る。このとき、完全に脱水するために水と共沸化合物を形成する溶剤を混合してもよい。このような溶剤の例としては、メタノール、エタノール、アセトン、メチルエチルケトン、酢酸エチルなどが挙げられる。なお、分散とは、媒質中に固形分粒子の凝集に由来するゲル状物が実質的に存在しない状態をいう。 The resin composition of the present invention can be prepared, for example, as follows. That is, first, from the viewpoint of uniformity of dispersion and suppression of increase in viscosity, a predetermined amount of silica particles is dispersed in a predetermined amount of epoxy resin, and then dried under reduced pressure to obtain a mixture of epoxy resin and silica particles (in this specification, , Sometimes referred to as silica-dispersed epoxy resin). At this time, in order to completely dehydrate, water and a solvent that forms an azeotropic compound may be mixed. Examples of such solvents include methanol, ethanol, acetone, methyl ethyl ketone, ethyl acetate and the like. The dispersion means a state in which a gel-like material derived from aggregation of solid particles is not substantially present in the medium.
このようなシリカ分散エポキシ樹脂としては、例えばHanse社製のNANOPOX XP22/0543、NANOPOX XP22/0540などが挙げられる。 Examples of such silica-dispersed epoxy resins include NANOPOX XP22 / 0543 and NANOPOX XP22 / 0540 manufactured by Hanse.
上記のように得られたシリカ分散エポキシ樹脂および硬化剤を所定量混合し、さらに所望により、それら以外の成分を適宜添加し、万能攪拌釜などの混練機にかけ加熱状態で混練して溶融混合する。つぎに、これをフィルターを用いて濾過し、ついで減圧脱泡することにより目的とする樹脂組成物を調製することができる。 A predetermined amount of the silica-dispersed epoxy resin and the curing agent obtained as described above are mixed, and if necessary, other components are appropriately added, and the mixture is kneaded in a heated state with a kneader such as a universal stirring kettle and melt mixed. . Next, this is filtered using a filter, and then degassed under reduced pressure, whereby a desired resin composition can be prepared.
なお、樹脂組成物を調製する際、該組成物の流動性を調整するために、有機溶剤を添加してもよい。上記有機溶剤としては、例えば、トルエン、キシレン、メチルエチルケトン(MEK)、アセトン、ジアセトンアルコールなどが挙げられる。これらは、単独で使用されてもよく、また2種以上併用されてもよい。 In preparing the resin composition, an organic solvent may be added in order to adjust the fluidity of the composition. Examples of the organic solvent include toluene, xylene, methyl ethyl ketone (MEK), acetone, diacetone alcohol, and the like. These may be used alone or in combination of two or more.
以上のようにして調製された本発明の樹脂組成物の80℃で測定される粘度は、5000Pa・s以下であり、ハンダ接合性や塗布作業性の確保の観点から、好ましくは0.1〜3000Pa・sであり、より好ましくは、1〜1000Pa・sである。 The viscosity measured at 80 ° C. of the resin composition of the present invention prepared as described above is 5000 Pa · s or less, and preferably 0.1 to 0.1 from the viewpoint of ensuring solderability and application workability. 3000 Pa · s, more preferably 1 to 1000 Pa · s.
なお、上記樹脂組成物の粘度は、樹脂組成物1gについて、E型粘度計(HAAKE社製:RS−1)を用いて、プレートの直径を35mm、ギャップを100μm、および回転速度を10(1/s)に設定して80℃にて測定する。 The resin composition has a viscosity of 1 g of the resin composition using an E-type viscometer (manufactured by HAAKE: RS-1) with a plate diameter of 35 mm, a gap of 100 μm, and a rotation speed of 10 (1 / S) and measure at 80 ° C.
さらに、以上のようにして調製された本発明の樹脂組成物の硬化体のガラス転移温度(Tg)の温度で測定される熱膨張係数は、接合信頼性の確保の観点から、好ましくは70×10−6/K以下であり、より好ましくは60×10−6/K以下である。 Furthermore, the thermal expansion coefficient measured at the glass transition temperature (Tg) of the cured product of the resin composition of the present invention prepared as described above is preferably 70 × from the viewpoint of securing the bonding reliability. It is 10 −6 / K or less, more preferably 60 × 10 −6 / K or less.
なお、上記樹脂組成物の熱膨張係数は、樹脂組成物を、金型注形により170℃で2時間硬化を行い、5mmφ×20mmの試験片を作製し、リガク社製MJ800GMを用いて5℃/minの昇温速度で、Tgの温度におけるその熱膨張係数を測定する。 The thermal expansion coefficient of the resin composition was determined by curing the resin composition at 170 ° C. for 2 hours by mold casting to produce a 5 mmφ × 20 mm test piece, and using a MJ800GM manufactured by Rigaku Corporation at 5 ° C. The coefficient of thermal expansion at the temperature of Tg is measured at a temperature increase rate of / min.
本発明の樹脂組成物により封止されてなる半導体装置は、図1に示すように、配線回路基板1の片面に、複数の接続用電極2を介して半導体素子3が搭載された構造をとる。さらに、配線回路基板1と半導体素子3との間に封止樹脂層4が形成されている。
As shown in FIG. 1, the semiconductor device sealed with the resin composition of the present invention has a structure in which a
配線回路基板1の材質としては、特に限定するものではないが、大別してセラミック基板、プラスチック基板があり、プラスチック基板としては、例えばガラスエポキシ基板などのエポキシ基板、ビスマレイミドトリアジン基板、ポリイミド基板などが挙げられる。
The material of the printed
配線回路基板1と半導体素子3とを電気的に接続する複数の接続用電極2は、予め配線回路基板1の表面に配設されていてもよいし、半導体素子3の表面に配設されていてもよい。さらには、予め配線回路基板1の表面および半導体素子3の表面の双方にそれぞれ配設されていてもよい。
The plurality of
複数の接続用電極2の材質としては、特に限定するものではないが、例えば、低融点および高融点ハンダ、錫、銀−錫などが挙げられ、また配線回路基板上の電極が上記の材質からなるものに対しては金、銅などであってもよい。
The material of the plurality of
半導体素子3は、特に限定されず、通常使用されるものが使用できる。例えば、シリコン、ゲルマニウムなどの元素半導体、ガリウムヒ素、インジウムリンなどの化合物半導体などの各種の半導体が使用される。半導体素子3の大きさは、通常、幅2〜20mm×長さ2〜20mm×厚さ0.1〜0.6mmに設定される。また、半導体素子3を搭載する配線回路が形成された配線回路基板1の大きさは通常、半導体素子3のサイズに合わせて、幅10〜70mm×長さ10〜70mm×厚さ0.05〜3.0mmの範囲に設定される。また、マップタイプの基板(1つの配線回路基板に多くの半導体素子を実装するもの)の場合は、幅及び長さとも40mm以上に設定することができる。そして、溶解した樹脂組成物が充填される、半導体素子3と配線回路基板1との間の距離は、通常、5〜100μmである。
The
本発明の樹脂組成物を用いて封止してなる半導体装置は、先に述べたように、配線回路基板と半導体素子との間に樹脂組成物を介在させて、封止樹脂層を形成させることにより製造される。ここで、樹脂組成物の塗布は、配線回路基板上に行ってもよいし、半導体素子上に行ってもよい。半導体素子側に樹脂組成物を塗布する場合、個片チップにダイシングされる前のウエハに行ってもよいし、ダイシングされた後の個片チップに行ってもよい。ウエハに樹脂組成物を塗布し、次いで個片チップにダイシングした後にチップ実装する方法は、ウエハレベルで一括して樹脂塗布できるので生産性向上の点から好ましい。樹脂塗布の方法としては、印刷方式やスピンコート方式のいずれでもよいが、印刷方式において真空差圧を利用した印刷封止法は樹脂封止層に気泡が入りにくいのでより好ましい。本発明の半導体装置の製造方法の態様の一例を図面に基づき順を追って説明する。 In the semiconductor device formed by sealing using the resin composition of the present invention, as described above, the sealing resin layer is formed by interposing the resin composition between the printed circuit board and the semiconductor element. It is manufactured by. Here, application | coating of a resin composition may be performed on a wiring circuit board, and may be performed on a semiconductor element. When the resin composition is applied to the semiconductor element side, the resin composition may be applied to a wafer before dicing into individual chips, or may be applied to individual chips after being diced. The method of applying a resin composition to a wafer and then dicing into individual chips and then mounting the chip is preferable from the viewpoint of improving productivity because the resin can be applied collectively at the wafer level. As a resin coating method, either a printing method or a spin coating method may be used, but a printing sealing method using a vacuum differential pressure in the printing method is more preferable because air bubbles hardly enter the resin sealing layer. An example of an embodiment of a method for manufacturing a semiconductor device of the present invention will be described in order with reference to the drawings.
配線回路基板に樹脂組成物を塗布する態様では、まず図2に示すように、配線回路基板1上に、例えば、60℃に加温した溶融状態の本発明の樹脂組成物5をポッティングする。次いで図3に示すように樹脂組成物の上の所定位置に、複数の球状の接続用電極(ジョイントボール)2が設けられた半導体素子3を載置し、加熱ステージ上で樹脂組成物5をさらに溶融状態として、半導体素子3の接続用電極2が溶融状態の樹脂組成物5を押しのけて配線回路基板1と接続用電極2とが接触するようにし、かつ、半導体素子3と配線回路基板1との間の空隙内に溶融状態の樹脂組成物を充填させた後、ハンダリフローによる金属接合を行い、その後樹脂組成物を硬化させることにより封止樹脂層4を形成して空隙を封止する。樹脂組成物の硬化温度としては、通常、130〜200℃が好適である。この時ハンダリフロー方式はリフロー炉を用いた接合方式であっても、チップ搭載と同時にハンダ融点以上にヒーター部分を加熱しハンダ溶融を行う接合方式であってもよい。このようにして、図1に示す半導体装置を製造する。
In the embodiment in which the resin composition is applied to the printed circuit board, first, as shown in FIG. 2, the
なお、半導体装置の製法は、複数の球状の接続用電極(ジョイントボール)2が設けられた半導体素子3を用いた場合について述べたが、これに限定するものではなく、予め配線回路基板1に複数の球状の接続用電極2が配設されたものを用いてもよい。
The method for manufacturing the semiconductor device has been described with respect to the case where the
樹脂組成物5の厚さおよび重量は、搭載される半導体素子3の大きさおよび半導体素子3に設けられた接続用電極の大きさ、すなわち、半導体素子3と配線回路基板1との空隙を充填し封止することにより形成される封止樹脂層4の占める容積により適宜に設定される。
The thickness and weight of the
半導体装置の製造方法において、樹脂組成物5を加熱溶融して溶融状態とする際の加熱温度としては、半導体素子3および配線回路基板1の耐熱性、接続用電極2の融点、および樹脂組成物5の軟化点、耐熱性などを考慮して適宜に設定されるものである。
In the method for manufacturing a semiconductor device, the heating temperature when the
以下、実施例を挙げて本発明をさらに説明するが、本発明はかかる実施例によりなんら限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further, this invention is not limited at all by this Example.
以下に実施例および比較例で用いた原料をまとめて示す。 The raw materials used in the examples and comparative examples are summarized below.
(1)エポキシ樹脂
エポキシ樹脂として、
(a)ビスフェノールA型エポキシ樹脂(エポキシ当量:185g/eq)、または
(b)ビスフェノールF型エポキシ樹脂(エポキシ当量:158g/eq)
を用いた。
(1) Epoxy resin As an epoxy resin,
(A) Bisphenol A type epoxy resin (epoxy equivalent: 185 g / eq) or (b) Bisphenol F type epoxy resin (epoxy equivalent: 158 g / eq)
Was used.
(2)硬化剤
硬化剤として、キシリレン型フェノール樹脂(水酸基当量:174g/eq)
を用いた。
(2) Curing agent As a curing agent, xylylene type phenol resin (hydroxyl equivalent: 174 g / eq)
Was used.
(3)硬化促進剤
硬化促進剤として、マイクロカプセル化トリフェニルホスフィン(シェル:ポリウレア、コア/シェル比=20/80重量%)を用いた。
(3) Curing accelerator Microencapsulated triphenylphosphine (shell: polyurea, core / shell ratio = 20/80 wt%) was used as a curing accelerator.
(4)ハンダ接合助剤
ハンダ接合助剤として、カルボキシ変性アクリロニトリルブタジエン共重合体(ムーニー粘度:45ML(1+4)、アクリロニトリル含有量:27重量%、カルボキシル基含有量:0.027ephr)を用いた。
(4) Solder joining aid A carboxy-modified acrylonitrile butadiene copolymer (Mooney viscosity: 45 ML (1 + 4), acrylonitrile content: 27 wt%, carboxyl group content: 0.027 ephr) was used as a solder joining aid.
(6)シリカ分散エポキシ樹脂
シリカ分散エポキシ樹脂として、
(a)シリカ分散エポキシ樹脂(エポキシ樹脂:ビスフェノールA型エポキシ樹脂;シリカ粒子径:平均粒径dmax=15nm、最大粒径=40nm、半値幅=10nm;シリカ濃度=50重量%;エポキシ当量=380g/eq;Hanse社製:NANOPOX XP22/0543)、または
(b)シリカ分散エポキシ樹脂(エポキシ樹脂:ビスフェノールF型エポキシ樹脂;シリカ粒子径:平均粒径dmax=15nm、最大粒径=40nm、半値幅=10nm;シリカ濃度=60重量%;エポキシ当量=425g/eq;Hanse社製:NANOPOX XP22/0540)
を用いた。
(6) Silica-dispersed epoxy resin As silica-dispersed epoxy resin,
(A) Silica-dispersed epoxy resin (epoxy resin: bisphenol A type epoxy resin; silica particle diameter: average particle diameter dmax = 15 nm, maximum particle diameter = 40 nm, half-value width = 10 nm; silica concentration = 50% by weight; epoxy equivalent = 380 g / Eq; manufactured by Hanse: NANOPOX XP22 / 0543), or (b) silica-dispersed epoxy resin (epoxy resin: bisphenol F type epoxy resin; silica particle size: average particle size dmax = 15 nm, maximum particle size = 40 nm, half width) = 10 nm; silica concentration = 60 wt%; epoxy equivalent = 425 g / eq; manufactured by Hanse: NANOPOX XP22 / 0540)
Was used.
(7)シリカ粒子
シリカ粒子として、
(a)シリカ分散溶液(平均粒径dmax=12nm、最大粒径=40nm、半値幅=20nm、溶媒:メチルエチルケトン、シリカ含量:12重量%、扶桑化学工業社製:PL−1)、または
(b)シリカ分散溶液(シリカ粒子(平均粒径dmax=300nm、最大粒径=350nm、半値幅=50nm、日本触媒社製:KE−S30)をアサダ鉄工社製:ビーズミル(ビーズ材質=ジルコニア、粒径=1mm)を用いて回転数=3000rpmで60分間メチルエチルケトン溶媒に分散させたもの、シリカ含有量:50重量%)
を用いた。
(7) Silica particles As silica particles,
(A) Silica dispersion solution (average particle size dmax = 12 nm, maximum particle size = 40 nm, half width = 20 nm, solvent: methyl ethyl ketone, silica content: 12% by weight, manufactured by Fuso Chemical Industries, Ltd .: PL-1), or (b ) Silica dispersion solution (silica particles (average particle size dmax = 300 nm, maximum particle size = 350 nm, half width = 50 nm, manufactured by Nippon Shokubai Co., Ltd .: KE-S30) manufactured by Asada Tekko Co., Ltd .: beads mill (bead material = zirconia, particle size) = 1 mm) and dispersed in methyl ethyl ketone solvent for 60 minutes at 3000 rpm, silica content: 50% by weight)
Was used.
以下に実施例および比較例における評価方法をまとめて示す。 Below, the evaluation method in an Example and a comparative example is shown collectively.
(1)粘度
樹脂組成物1gを、プレートの直径を35mm、ギャップを100μm、回転速度速度を10(1/s)に設定したE型粘度計(HAAKE社製:RS−1)を用いて、80℃にて測定した。なお、E型粘度計の測定限界は、10000Pa・sであるため、測定限界以上の粘度のものは測定できない。
(1) Viscosity Using 1 g of resin composition, an E-type viscometer (manufactured by HAAKE: RS-1) having a plate diameter of 35 mm, a gap of 100 μm, and a rotational speed of 10 (1 / s), Measured at 80 ° C. In addition, since the measurement limit of the E-type viscometer is 10,000 Pa · s, those having a viscosity equal to or higher than the measurement limit cannot be measured.
(2)熱膨張係数
樹脂組成物を、金型注形により170℃で2時間硬化を行い、5mmφ×20mmの試験片を作製し、リガク社製MJ800GMを用いて5℃/分の昇温速度で、Tg以下におけるその熱膨張係数を測定した。
(2) Coefficient of thermal expansion The resin composition was cured at 170 ° C. for 2 hours by mold casting to prepare a 5 mmφ × 20 mm test piece, and a temperature increase rate of 5 ° C./min using MJ800GM manufactured by Rigaku Corporation. Then, the coefficient of thermal expansion below Tg was measured.
(3)初期通電試験
デイジーチェーン(ADVANTEST社製:デジタルマルチメーターTR6847)で半導体装置の電気抵抗値を測定し、抵抗値表示なしのものを不良品としてカウントした。
(3) Initial energization test The electrical resistance value of the semiconductor device was measured with a daisy chain (manufactured by ADVANTEST: digital multimeter TR6847), and those without a resistance value display were counted as defective products.
(4)サーマルショック試験
半導体装置を−55℃で5分間維持後、125℃で5分間維持する操作を500回(TST500サイクル)および1000回(TST1000サイクル)行い、その後、デイジーチェーン(ADVANTEST社製:デジタルマルチメーターTR6847)にて半導体装置の電気抵抗値を測定し、その電気抵抗値を初期値(前記操作を行う前の半導体装置の電気抵抗値)と比較した。この電気抵抗値が初期値の2倍以上となった半導体を不良品としてカウントした。
(4) Thermal shock test After maintaining the semiconductor device at −55 ° C. for 5 minutes, the operation of maintaining the semiconductor device at 125 ° C. for 5 minutes was performed 500 times (TST 500 cycles) and 1000 times (TST 1000 cycles), and then daisy chain (manufactured by ADVANTEST) : The electrical resistance value of the semiconductor device was measured with a digital multimeter TR6847), and the electrical resistance value was compared with the initial value (the electrical resistance value of the semiconductor device before the operation). Semiconductors whose electrical resistance value was twice or more the initial value were counted as defective products.
実施例1〜4および比較例1〜4
以下のようにして実施例1〜4および比較例1〜4の樹脂組成物を製造した。
Examples 1-4 and Comparative Examples 1-4
The resin compositions of Examples 1 to 4 and Comparative Examples 1 to 4 were produced as follows.
表1および表2に示す各原料を同表に示す割合で、ホモディスパー(特殊機化工業社製:T.K.ロボミックスタイプB)を用いて室温にて1000rpmで30分間混合した。次いで、得られた混合物を400メッシュのフィルターを用いて室温で濾過した。その後、濾液中の溶剤および気泡を除去するため、90℃で60分間、0.0026MPaで減圧濃縮して樹脂組成物を調製し、その物性を測定した。その値を表2に示す。 Each raw material shown in Table 1 and Table 2 was mixed at a ratio shown in the same table at 1000 rpm for 30 minutes at 1000 rpm using a homodisper (manufactured by Tokushu Kika Kogyo Co., Ltd .: TK Robotics Type B). The resulting mixture was then filtered at room temperature using a 400 mesh filter. Thereafter, in order to remove the solvent and bubbles in the filtrate, a resin composition was prepared by concentration under reduced pressure at 0.0026 MPa at 90 ° C. for 60 minutes, and the physical properties thereof were measured. The values are shown in Table 2.
以上で製造した樹脂組成物を用い、前述の半導体装置の製造方法に従って半導体装置(図1に示す半導体装置に相当)を製造した。すなわち、配線回路基板(ガラスエポキシ基板厚さ:0.8mm)上に樹脂組成物を80℃に加温し溶融状態でポッティングした。これを100℃に加熱したステージ上に置き、樹脂組成物の上の所定の位置に、接続用電極(共晶ハンダ:融点183℃、電極高さ:80μm、電極数2000個)を設けた半導体素子(厚さ:600μm、大きさ10mm×10mm)をフリップチップボンダー(九州松下社製:FB30T−M)を用いて、チップ実装(温度=100℃、圧力=1g/個(9.8×10-3N/個)、時間=1秒)した。これにより、配線回路基板と半導体素子との空隙内に溶融状態の樹脂が充填される。その後、ハンダリフロー炉(ジャード社製:MJ−R4000)を用いてハンダ接合(JEDECコンディション)を行い電気接続を得た。その後、同ハンダリフロー炉を用いて170℃にて120分間樹脂硬化を行い、目的とする半導体装置を作製した。得られた半導体装置について上記の評価を行った。その結果を表3および表4に示す。 Using the resin composition produced as described above, a semiconductor device (corresponding to the semiconductor device shown in FIG. 1) was produced according to the method for producing a semiconductor device described above. That is, the resin composition was heated to 80 ° C. on a printed circuit board (glass epoxy substrate thickness: 0.8 mm) and potted in a molten state. This is placed on a stage heated to 100 ° C., and a connection electrode (eutectic solder: melting point 183 ° C., electrode height: 80 μm, number of electrodes 2000) is provided at a predetermined position on the resin composition. The element (thickness: 600 μm, size 10 mm × 10 mm) was mounted on a chip using a flip chip bonder (manufactured by Kyushu Matsushita: FB30T-M) (temperature = 100 ° C., pressure = 1 g / piece (9.8 × 10)). -3 N / piece), time = 1 second). Thus, the molten resin is filled in the gap between the printed circuit board and the semiconductor element. Thereafter, solder bonding (JEDEC condition) was performed using a solder reflow furnace (manufactured by Jard: MJ-R4000) to obtain electrical connection. Thereafter, resin curing was performed at 170 ° C. for 120 minutes using the solder reflow furnace, and a target semiconductor device was manufactured. Said evaluation was performed about the obtained semiconductor device. The results are shown in Tables 3 and 4.
表3および表4の結果から、実施例品は特定の粒径を有するシリカ粒子を含有し、さらに樹脂組成物として80℃で測定される粘度が5000Pa・s以下のものを用いているため、比較例品に比べて、優れたハンダ接合性、作業性および接続信頼性を確保していることが確認された。 From the results of Table 3 and Table 4, the example product contains silica particles having a specific particle size, and further uses a resin composition having a viscosity of 5000 Pa · s or less measured at 80 ° C. It was confirmed that excellent solderability, workability, and connection reliability were ensured as compared with the comparative product.
本発明の半導体封止用樹脂組成物は、半導体産業において配線回路基板と半導体素子との間の空隙を封止するために利用できる。 The resin composition for encapsulating a semiconductor according to the present invention can be used for encapsulating a gap between a printed circuit board and a semiconductor element in the semiconductor industry.
1 配線回路基板
2 接続用電極
3 半導体素子
4 封止樹脂層
5 半導体封止用樹脂組成物
DESCRIPTION OF
Claims (4)
(A)1分子中に2個以上のエポキシ基を有するエポキシ樹脂、
(B)硬化剤、および
(C)平均粒径dmaxが3〜50nmでかつ半値幅が平均粒径dmaxの1.5倍以下であるシリカ粒子
を含有してなる半導体封止用樹脂組成物。 The viscosity measured at 80 ° C. is 5000 Pa · s or less,
(A) an epoxy resin having two or more epoxy groups in one molecule;
A resin composition for encapsulating a semiconductor comprising (B) a curing agent, and (C) silica particles having an average particle diameter dmax of 3 to 50 nm and a half width of 1.5 times or less of the average particle diameter dmax.
A semiconductor device sealed with the semiconductor sealing resin composition according to claim 1.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004013396A JP2005206664A (en) | 2004-01-21 | 2004-01-21 | Semiconductor sealing resin composition |
EP20050000896 EP1557880A1 (en) | 2004-01-21 | 2005-01-18 | Resin composition for encapsulating semiconductor |
KR1020050004897A KR101139740B1 (en) | 2004-01-21 | 2005-01-19 | Resin Composition for Semiconductor Sealing |
US11/037,051 US20050158557A1 (en) | 2004-01-21 | 2005-01-19 | Resin composition for encapsulating semiconductor |
CNB2005100055378A CN100543099C (en) | 2004-01-21 | 2005-01-20 | Resin composition for encapsulating semiconductor |
TW094101867A TWI369716B (en) | 2004-01-21 | 2005-01-21 | Resin composition for encapsulating semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004013396A JP2005206664A (en) | 2004-01-21 | 2004-01-21 | Semiconductor sealing resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005206664A true JP2005206664A (en) | 2005-08-04 |
Family
ID=34899468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004013396A Pending JP2005206664A (en) | 2004-01-21 | 2004-01-21 | Semiconductor sealing resin composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2005206664A (en) |
CN (1) | CN100543099C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009008509A1 (en) | 2007-07-11 | 2009-01-15 | Nissan Chemical Industries, Ltd. | Epoxy resin-forming liquid preparation containing inorganic particle |
JP2011052118A (en) * | 2009-09-02 | 2011-03-17 | Sumitomo Bakelite Co Ltd | Resin composition, transparent substrate and substrate for solar battery |
JP2015074662A (en) * | 2013-10-04 | 2015-04-20 | 株式会社アドマテックス | Mineral particle material-containing composition and method for producing the same |
JP2015518242A (en) * | 2012-04-05 | 2015-06-25 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | Insulating materials for rotary machines |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009104438A1 (en) | 2008-02-18 | 2009-08-27 | 株式会社 村田製作所 | Elastic wave device and method for manufacturing the same |
JP6288935B2 (en) * | 2013-04-18 | 2018-03-07 | 株式会社ディスコ | Sheet |
JP6919508B2 (en) * | 2017-11-07 | 2021-08-18 | 味の素株式会社 | Resin composition |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0563240A (en) * | 1991-05-08 | 1993-03-12 | Nitto Denko Corp | Optical semiconductor device |
JPH08337680A (en) * | 1995-06-09 | 1996-12-24 | Hitachi Ltd | Thermosetting resin and semiconductor device using the resin |
JPH11124504A (en) * | 1997-08-18 | 1999-05-11 | Nippon Shokubai Co Ltd | Thermosetting resin sealant |
JP2000336247A (en) * | 1999-05-27 | 2000-12-05 | C I Kasei Co Ltd | Liquid epoxy resin sealing material |
EP1236765A1 (en) * | 2001-02-28 | 2002-09-04 | hanse chemie GmbH | Silica dispersion |
JP2005120230A (en) * | 2003-10-16 | 2005-05-12 | Nitto Denko Corp | Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition |
JP2005206665A (en) * | 2004-01-21 | 2005-08-04 | Nitto Denko Corp | Sheet semiconductor sealing resin composition |
-
2004
- 2004-01-21 JP JP2004013396A patent/JP2005206664A/en active Pending
-
2005
- 2005-01-20 CN CNB2005100055378A patent/CN100543099C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0563240A (en) * | 1991-05-08 | 1993-03-12 | Nitto Denko Corp | Optical semiconductor device |
JPH08337680A (en) * | 1995-06-09 | 1996-12-24 | Hitachi Ltd | Thermosetting resin and semiconductor device using the resin |
JPH11124504A (en) * | 1997-08-18 | 1999-05-11 | Nippon Shokubai Co Ltd | Thermosetting resin sealant |
JP2000336247A (en) * | 1999-05-27 | 2000-12-05 | C I Kasei Co Ltd | Liquid epoxy resin sealing material |
EP1236765A1 (en) * | 2001-02-28 | 2002-09-04 | hanse chemie GmbH | Silica dispersion |
JP2005120230A (en) * | 2003-10-16 | 2005-05-12 | Nitto Denko Corp | Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition |
JP2005206665A (en) * | 2004-01-21 | 2005-08-04 | Nitto Denko Corp | Sheet semiconductor sealing resin composition |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009008509A1 (en) | 2007-07-11 | 2009-01-15 | Nissan Chemical Industries, Ltd. | Epoxy resin-forming liquid preparation containing inorganic particle |
EP2166037A1 (en) * | 2007-07-11 | 2010-03-24 | Nissan Chemical Industries, Ltd. | Epoxy resin-forming liquid preparation containing inorganic particle |
EP2166037A4 (en) * | 2007-07-11 | 2012-07-25 | Nissan Chemical Ind Ltd | Epoxy resin-forming liquid preparation containing inorganic particle |
JP2011052118A (en) * | 2009-09-02 | 2011-03-17 | Sumitomo Bakelite Co Ltd | Resin composition, transparent substrate and substrate for solar battery |
JP2015518242A (en) * | 2012-04-05 | 2015-06-25 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | Insulating materials for rotary machines |
US9771464B2 (en) | 2012-04-05 | 2017-09-26 | Siemens Aktiengesellschaft | Insulating material for rotating machines |
JP2015074662A (en) * | 2013-10-04 | 2015-04-20 | 株式会社アドマテックス | Mineral particle material-containing composition and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
CN100543099C (en) | 2009-09-23 |
CN1807539A (en) | 2006-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998028788A1 (en) | Manufacture of semiconductor device | |
JP3947296B2 (en) | Sheet-like sealing material and method of manufacturing semiconductor device using the same | |
JP2007189210A (en) | Method of assembling flip-chip-type semiconductor device and semiconductor device produced by method | |
JP4417122B2 (en) | Resin composition for sheet-like semiconductor encapsulation | |
JP3999840B2 (en) | Resin sheet for sealing | |
JP4753329B2 (en) | Thermosetting resin composition and semiconductor device | |
KR101139740B1 (en) | Resin Composition for Semiconductor Sealing | |
JP2002121358A (en) | Resin composition for thermosetting liquid sealing, assembling technique of semiconductor element and semiconductor device | |
JP2001223227A (en) | Resin composition for sealing semiconductor material and semiconductor device | |
JP4721309B2 (en) | Thermosetting resin composition and semiconductor device | |
JP3938502B2 (en) | Liquid encapsulating resin composition, semiconductor element assembly method, and semiconductor device | |
JP3891550B2 (en) | Liquid resin composition, method for manufacturing semiconductor device, and semiconductor device | |
JP3732148B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP2005206664A (en) | Semiconductor sealing resin composition | |
JP2002241469A (en) | Thermosetting resin composition and semiconductor device | |
JPH1129624A (en) | Semiconductor sealing liquid epoxy resin composition | |
JP3779091B2 (en) | Resin composition for sealing | |
JP2006169407A (en) | Resin composition for semiconductor sealing | |
JP3818623B2 (en) | Assembling method of semiconductor device | |
JP4267428B2 (en) | Method for producing thermosetting resin composition for semiconductor encapsulation | |
JP4729873B2 (en) | Assembling method of semiconductor element | |
JP3897303B2 (en) | One-part epoxy resin composition | |
JP4655501B2 (en) | Liquid encapsulating resin composition, electronic component device, and manufacturing method thereof | |
JP4119356B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP4112306B2 (en) | Liquid encapsulating resin composition, semiconductor device using the same, and method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100210 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100611 |