JP2005205815A - Manufacturing method for electrical machinery equipment - Google Patents
Manufacturing method for electrical machinery equipment Download PDFInfo
- Publication number
- JP2005205815A JP2005205815A JP2004016570A JP2004016570A JP2005205815A JP 2005205815 A JP2005205815 A JP 2005205815A JP 2004016570 A JP2004016570 A JP 2004016570A JP 2004016570 A JP2004016570 A JP 2004016570A JP 2005205815 A JP2005205815 A JP 2005205815A
- Authority
- JP
- Japan
- Prior art keywords
- filler
- manufacturing
- filling material
- casting mold
- fibrous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、熱放散性や機械的強度に優れた電機機器の製造方法に関するものである。 The present invention relates to a method for manufacturing an electrical device having excellent heat dissipation and mechanical strength.
電動機、トランス等のコイル装置や、パワーモジュール、LSI等の半導体デバイスは、近年、その小型化や高密度化、および高出力化等に伴い、作動時の発熱が大きな問題となっている。これは、発熱に起因した装置やデバイスの特性の不安定化や寿命の劣化という問題があるためであり、限界温度を超える温度に昇温するのを防止するため、コイルや半導体を封止するモールド樹脂の熱伝導率を大きくし、効率良く熱を放散させることが重要となっている。
これを解決する従来技術としてよく知られている方法は、コイル等の電機部品を注形型にセットし、これに熱伝導率の高い無機充填材を高充填した熱硬化性樹脂組成物を常圧下または真空下、注入し、硬化させる方法である。しかしながら、無機充填材の配合量を増加させると、それに伴い熱硬化性樹脂組成物の粘度が大幅に上昇してしまい、注形することが困難となることから、無機充填材の配合量に限界があった。
また、他の従来例として、コイル等、電機部品を入れた注形型に、予めシリカなどの粒子状充填材入れ、これに熱硬化性樹脂組成物を真空下、注入して硬化させる方法である(例えば、特許文献1参照)。この方法では、無機充填材は予め注形型の方に入れておくので、熱硬化性樹脂組成物の粘度を低くする事ができる。よって無機充填材の高充填率化を図る事ができ、電機機器の熱放散性を向上させることが可能となる。
A well-known method for solving this problem is that a thermosetting resin composition in which an electrical component such as a coil is set in a casting mold and highly filled with an inorganic filler having a high thermal conductivity is usually used. It is a method of injecting and curing under pressure or vacuum. However, increasing the blending amount of the inorganic filler significantly increases the viscosity of the thermosetting resin composition, which makes it difficult to cast, so there is a limit to the blending amount of the inorganic filler. was there.
In addition, as another conventional example, in a casting mold containing an electrical component such as a coil, a particulate filler such as silica is previously placed, and a thermosetting resin composition is injected and cured under vacuum in this method. Yes (see, for example, Patent Document 1). In this method, since the inorganic filler is previously placed in the casting mold, the viscosity of the thermosetting resin composition can be lowered. Therefore, it is possible to increase the filling rate of the inorganic filler, and it is possible to improve the heat dissipation property of the electrical equipment.
しかしながら、特許文献1に記載の方法のように、粒子状充填材を高密度に充填させた場合、それに伴い樹脂量が少なくなくなる事から、靭性が低下してしまい、その結果、硬化する際や、硬化後、ヒートサイクルや機械的衝撃が加わった場合に、クラックが発生しやすくなるという問題があった。
そこで、本発明はこのような問題点に鑑みてなされたものであり、熱放散性に優れ、機械的強度が高く、クラック発生のない電機機器を提供することを目的とする。
However, as in the method described in Patent Document 1, when the particulate filler is filled at a high density, the amount of the resin is not reduced accordingly, resulting in a decrease in toughness. After curing, there is a problem that cracks are likely to occur when a heat cycle or mechanical impact is applied.
Therefore, the present invention has been made in view of such problems, and an object thereof is to provide an electrical device that is excellent in heat dissipation, has high mechanical strength, and does not generate cracks.
上記問題を解決するため、本発明は次のように構成したものである。
請求項1に記載の発明は、注形型内に電機部品を設置し、つぎに前記注形型内に無機充填材として粒子状充填材を充填し,これに脱泡処理した熱硬化性樹脂組成物を真空下にて注型して硬化させ、樹脂モールドされた電機機器の製造方法において、前記無機充填材に繊維状充填材を加えたものである。
請求項2に記載の発明は、前記繊維状充填材を短繊維にしたものである。
請求項3に記載の発明は、前記繊維状充填材をクロスにしたものである。
請求項4に記載の発明は、前記繊維状充填材を、ガラス、アルミナ、シリカ、窒化アルミ、窒化ケイ素、窒化ホウ素、炭化ケイ素、又は酸化マグネシウムの少なくとも1種類としたものである。
請求項5に記載の発明は、前記粒子状充填材をガラス、アルミナ、シリカ、窒化アルミ、窒化ケイ素、窒化ホウ素、炭化ケイ素、又は酸化マグネシウムの少なくとも1種類としたものである。
請求項6に記載の発明は、前記粒子状充填材の粒径を200μm〜1000μmとしたものである。
請求項7に記載の発明は、上記請求項1から6のいずれかの製造方法によって得られた電機機器である。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is a thermosetting resin in which an electric part is installed in a casting mold, and then a particulate filler as an inorganic filler is filled in the casting mold, and then defoamed. The composition is cast and cured under vacuum, and a resin-molded electrical equipment manufacturing method is obtained by adding a fibrous filler to the inorganic filler.
According to a second aspect of the present invention, the fibrous filler is a short fiber.
According to a third aspect of the present invention, the fibrous filler is made into a cloth.
According to a fourth aspect of the present invention, the fibrous filler is at least one of glass, alumina, silica, aluminum nitride, silicon nitride, boron nitride, silicon carbide, or magnesium oxide.
According to a fifth aspect of the present invention, the particulate filler is at least one of glass, alumina, silica, aluminum nitride, silicon nitride, boron nitride, silicon carbide, or magnesium oxide.
In a sixth aspect of the present invention, the particle filler has a particle size of 200 μm to 1000 μm.
The invention according to claim 7 is an electrical device obtained by the manufacturing method according to any one of claims 1 to 6.
請求項1に記載の発明によると,粒子状充填材に加えて繊維状充填材を充填したので,機械的な強度を大幅に向上させることができる。よって,硬化する際や,硬化後,ヒートサイクルや機械的衝撃が加わった場合において,製品に発生するクラックを防止する事ができる。また,一般的に,繊維状充填材を用いて熱硬化性樹脂組成物を作製した場合,粒子状充填材を用いた場合より粘度が大きく上昇し,注形性が損なわれるが,本発明は,繊維状充填材を注形型に予め入れておくので,注形性が損なわれる事は無い。
請求項2に記載の発明によると,繊維状充填材を短繊維としたので,注形硬化物の機械的強度を向上させることができる。また,短繊維は,注形型に予め入れておくので,注形性が損なわれる事は無い。また,短繊維は,粒子状充填材と比較して,充填材間同士で連続的な放熱ネットワークを築きやすい。このことから,熱伝導率向上に効果があり,また硬化の際の発熱も金型や大気中へ放散しやすくなるため,硬化反応がより均一となり,クラック防止に効果がある。
請求項3に記載の発明によると,繊維状充填材をクロスとしたので、2次元的にネットワーク化した構造ができ,注形硬化物の機械的強度を大幅に向上させることができる。また,連続的な放熱ネットワークを築いているので,熱伝導率が向上し、硬化の際の発熱も金型や大気中へ放散しやすくなるため,硬化反応がより均一となり,クラック防止に効果がある。
請求項4に記載の発明によると,繊維状充填材として熱伝導率の高い無機化合物を用いているので,放熱性を向上させることができ,クラック防止にも効果がある。
請求項5に記載の発明によると,粒子状充填材として熱伝導率の高い無機化合物を用いているので,放熱性を向上させることができ,クラック防止にも効果がある。
請求項6に記載の発明によると,粒子状充填材の粒径を200μm〜1000μmとしたので,熱硬化性樹脂組成物を注形する際の圧力損失の増大を防止する事ができる。これより,充填材間や部品間に隙間無く,均一に熱硬化性樹脂組成物を注入する事が可能となるので,機械的強度が向上する。
請求項7に記載の発明によると,熱放散性に優れ、機械的強度が高く、クラック発生のない電機機器が得られる。
According to the first aspect of the present invention, since the fibrous filler is filled in addition to the particulate filler, the mechanical strength can be greatly improved. Therefore, it is possible to prevent cracks occurring in the product when it is cured or when a heat cycle or mechanical impact is applied after curing. In general, when a thermosetting resin composition is prepared using a fibrous filler, the viscosity is greatly increased compared to the case where a particulate filler is used, and castability is impaired. Since the fibrous filler is put in the casting mold in advance, the castability is not impaired.
According to the second aspect of the invention, since the fibrous filler is a short fiber, the mechanical strength of the cast cured product can be improved. Moreover, since the short fiber is previously placed in the casting mold, the casting property is not impaired. In addition, short fibers tend to form a continuous heat dissipation network between fillers as compared to particulate fillers. This is effective in improving thermal conductivity, and heat generated during curing is easily dissipated into the mold and the atmosphere, making the curing reaction more uniform and effective in preventing cracks.
According to the invention described in claim 3, since the fibrous filler is made of cloth, a two-dimensional network structure can be formed, and the mechanical strength of the cast cured product can be greatly improved. In addition, since a continuous heat dissipation network is built, the thermal conductivity is improved and the heat generated during curing is easily dissipated into the mold and the atmosphere, making the curing reaction more uniform and effective in preventing cracks. is there.
According to the invention described in claim 4, since the inorganic compound having high thermal conductivity is used as the fibrous filler, the heat dissipation can be improved, and the crack prevention is effective.
According to the invention described in claim 5, since the inorganic compound having a high thermal conductivity is used as the particulate filler, it is possible to improve the heat dissipation and to prevent cracks.
According to the invention described in claim 6, since the particle size of the particulate filler is 200 μm to 1000 μm, it is possible to prevent an increase in pressure loss when casting the thermosetting resin composition. As a result, it is possible to inject the thermosetting resin composition uniformly without any gaps between fillers and parts, so that the mechanical strength is improved.
According to the seventh aspect of the present invention, it is possible to obtain an electrical device that has excellent heat dissipation, high mechanical strength, and no occurrence of cracks.
以下、本発明の具体的実施例を図に基づいて説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の電機機器であるリニアモータ可動子の製造方法を示す工程図である。図において、1は注形型、2はコイルを取付けたリニアモータの電機子、3は繊維状充填材、4は粒子状充填材、5は熱硬化性樹脂組成物、6はリニアモータ可動子である。
繊維状充填材3として、ガラスクロス(ユニチカグラスファイバー(株)製)、アルミナクロス、シリカクロス、ガラス繊維の4種類を用いた。なお、比較例として、繊維状充填材3を加えないものも用いた。粒子状充填材4として、粒径200〜400μmのシリカ(電機化学工業(株)製)を用いた。なお、比較例として、粒径100〜200μmのシリカを用いた(試料No5)。熱硬化性樹脂組成物5は、ビスフェノールF型エポキシ樹脂(大日本インキ化学工業(株)製 商品名:エピクロン830)100部を用い、フェニルグリシジルエーテル(ナガセケムテックス(株)製 商品名:デナコールEX141)5部、三フッ化ホウ素モノエチルアミン(ステラケミファ(株)製)7部を加えて均一に混合し、エポキシ樹脂組成物を得た(試料No1〜6)。
表1に、繊維状充填材および粒子状充填材を組み合せた試料の種類を示す。試料No.1〜4は本実施例、試料No.5,6は比較例である。
つぎに、本実施例の試料No1のリニアモータ可動子の製造方法について述べる。
図1に示すように、工程1では、注形型1内へ、電機子2と繊維状充填材(ガラスクロス)3を設置した。この時、繊維状充填材(ガラスクロス)3は電機子2の両側にそれぞれ1枚ずつ、電機子2に対して平行に配置した。
工程2では、この電機子2および繊維状充填材(ガラスクロス)3が収納された注形型1内に、粒径200〜400μmの粒子状充填材(シリカ)4を注形型1に振動を与えながら充填した。
工程3では、先に調合したエポキシ樹脂組成物5を80℃に加熱した後、脱泡し、これを電機子2、繊維状充填材(ガラスクロス)3および粒子状充填材(シリカ)4の入った注形型1内へ真空下、注形した。
工程4では、注形後、これを150℃×15hr加熱硬化させて、リニアモータの可動子6を完成させた。
次に、製作したリニアモータ可動子6のクラック特性について調べた。評価方法は、リニアモータ可動子6に、−50℃で4時間、130℃で4時間の冷熱サイクルを200サイクル施し、クラックの発生の有無を調べる方法で行った。
その結果を表1に示すように、200サイクル後においてもクラック発生が無く、ヒートサイクル性は良好であった。(試験の結果はクラックが全く発生しない場合を○、わずかに発生する場合を△、著しく発生する場合を×とした。)
FIG. 1 is a process diagram showing a method for manufacturing a linear motor movable element which is an electrical apparatus of the present invention. In the figure, 1 is a casting mold, 2 is a linear motor armature with a coil attached, 3 is a fibrous filler, 4 is a particulate filler, 5 is a thermosetting resin composition, and 6 is a linear motor mover. It is.
As the fibrous filler 3, four types of glass cloth (manufactured by Unitika Glass Fiber Co., Ltd.), alumina cloth, silica cloth, and glass fiber were used. In addition, the thing which does not add the fibrous filler 3 was also used as a comparative example. As the particulate filler 4, silica having a particle diameter of 200 to 400 μm (manufactured by Denki Chemical Co., Ltd.) was used. As a comparative example, silica having a particle size of 100 to 200 μm was used (Sample No. 5). The thermosetting resin composition 5 uses 100 parts of bisphenol F type epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name: Epicron 830) and phenyl glycidyl ether (manufactured by Nagase ChemteX Corporation), trade name: Denacol. EX141) 5 parts and boron trifluoride monoethylamine (manufactured by Stella Chemifa Co., Ltd.) 7 parts were added and mixed uniformly to obtain an epoxy resin composition (Sample Nos. 1 to 6).
Table 1 shows the types of samples in which the fibrous filler and the particulate filler are combined. Samples Nos. 1 to 4 are in this example, and Samples Nos. 5 and 6 are comparative examples.
Next, a manufacturing method of the linear motor movable element of sample No. 1 of this example will be described.
As shown in FIG. 1, in step 1, an armature 2 and a fibrous filler (glass cloth) 3 were installed in the casting mold 1. At this time, one fibrous filler (glass cloth) 3 was arranged on each side of the armature 2 in parallel with the armature 2.
In step 2, a particulate filler (silica) 4 having a particle size of 200 to 400 μm is vibrated into the casting mold 1 in the casting mold 1 in which the armature 2 and the fibrous filler (glass cloth) 3 are accommodated. Filled while giving.
In step 3, the previously prepared epoxy resin composition 5 is heated to 80 ° C. and then defoamed. This is made up of armature 2, fibrous filler (glass cloth) 3, and particulate filler (silica) 4. The casting mold 1 was cast under vacuum.
In step 4, after casting, this was heated and cured at 150 ° C. for 15 hours to complete the mover 6 of the linear motor.
Next, the crack characteristics of the manufactured linear motor movable element 6 were examined. The evaluation method was performed by subjecting the linear motor movable element 6 to 200 cycles of a cooling cycle of −50 ° C. for 4 hours and 130 ° C. for 4 hours, and examining the occurrence of cracks.
As shown in Table 1, no crack was generated even after 200 cycles, and the heat cycle property was good. (The result of the test is ◯ when no crack is generated, △ when slightly cracked, and × when markedly cracked.)
本実施例の試料No.2-4は、表1に示したように、粒子状充填材4と繊維状充填材3の種類を変えて行ったものである。試料No.2,3については、繊維状充填材3として、アルミナクロスおよびシリカクロスをそれぞれ用い、他の条件は試料No.1と同じとした。試料No.4は、粒径200〜400μmのシリカ4を70部に対して、ガラス繊維3を5部配合し、均一に混合したものを注形型1に振動を与えながら充填していった。その後、試料No.1と同様にエポキシ樹脂組成物5を注形し硬化させた。 Sample No. 2-4 in this example was obtained by changing the types of the particulate filler 4 and the fibrous filler 3 as shown in Table 1. For sample Nos. 2 and 3, alumina cloth and silica cloth were used as the fibrous filler 3, and the other conditions were the same as those of sample No. 1. Sample No. 4 was prepared by mixing 5 parts of glass fiber 3 with 70 parts of silica 4 having a particle size of 200 to 400 μm, and uniformly mixing the casting mold 1 with vibration. . Thereafter, the epoxy resin composition 5 was cast and cured in the same manner as Sample No. 1.
次に、試料No.1と同様に、製作したリニアモータ可動子6のクラック特性について調べた。その結果、試料No.2-4のどのリニアモータ可動子6も200サイクル後においてもクラック発生が無く、ヒートサイクル性は良好であった。
本発明の実施例に対して、比較例の試料No5は、粒子状充填材4として平均粒径100〜200μmのシリカを用いたものであるが、著しいクラックの発生が認められた。これは、粒子状充填材4の粒径が細かすぎるため、熱硬化性樹脂組成物5の注形性が悪く、樹脂の未含浸部が多く存在していた事に起因していると考えられる。これより、粒子状充填材4の粒径は200μm以上である必要があり、またコイル等の隙間へ充填させるためには1000μm以下である必要がある。また、比較例の試料No6は、粒子状充填材4のみで、繊維状充填材3を用いなかったものであるが、わずかではあったが、クラックの発生が認められた。
Next, as with sample No. 1, the crack characteristics of the manufactured linear motor movable element 6 were examined. As a result, none of the linear motor movable elements 6 of Sample No. 2-4 were cracked after 200 cycles, and the heat cycle performance was good.
In contrast to the examples of the present invention, sample No. 5 of the comparative example uses silica having an average particle size of 100 to 200 μm as the particulate filler 4, but significant cracks were observed. This is presumably because the particle size of the particulate filler 4 is too small, the castability of the thermosetting resin composition 5 is poor, and there are many unimpregnated portions of the resin. Accordingly, the particle size of the particulate filler 4 needs to be 200 μm or more, and in order to fill a gap such as a coil, it needs to be 1000 μm or less. Moreover, although sample No6 of the comparative example was only the particulate filler 4 and did not use the fibrous filler 3, although it was slight, generation | occurrence | production of the crack was recognized.
なお、本実施例において、熱硬化性樹脂組成物5の主剤としてビスフェノールF型エポキシ樹脂を用いたが、ビスフェノールA型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等、他のエポキシ樹脂を用いても良い。
また、硬化剤は三フッ化ホウ素モノエチルアミンを用いたが、酸無水物系硬化剤やアミン系硬化剤、イミダゾール系硬化剤など通常エポキシ樹脂の硬化剤として使用されるものを広く使用する事ができる。また必要に応じて各種の硬化促進剤を併用する事もできる。
また、希釈剤、カップリング剤、着色剤など、各種添加剤を併用する事ができ、無機充填材を併用しても良い。
また本実施例において、ガラスクロス3は電機子2の両側にそれぞれ1枚ずつ配置したが、特にこれに限定されるものではなく、スペース等を勘案しながら、必要に応じて複数枚配置させることもできる。また、配置方法も電機子2に対して垂直、あるいはランダムに配置させても良いし、ガラスクロス3を短片化して全体に分散させても良い。
また、粒子状充填材4の形状として破砕状のものを用いたが、球状のものを用いる事もできる。
In this example, bisphenol F type epoxy resin was used as the main component of the thermosetting resin composition 5, but other epoxy resins such as bisphenol A type epoxy resin and cresol novolac type epoxy resin may be used.
In addition, boron trifluoride monoethylamine was used as the curing agent, but it is possible to use a wide range of commonly used epoxy resin curing agents such as acid anhydride curing agents, amine curing agents, and imidazole curing agents. it can. Moreover, various hardening accelerators can also be used together as needed.
Moreover, various additives, such as a diluent, a coupling agent, and a coloring agent, can be used together, and you may use together an inorganic filler.
In this embodiment, one glass cloth 3 is arranged on each side of the armature 2, but this is not particularly limited, and a plurality of glass cloths 3 may be arranged as necessary in consideration of space and the like. You can also. Also, the arrangement method may be arranged perpendicularly or randomly with respect to the armature 2, or the glass cloth 3 may be shortened and dispersed throughout.
Moreover, although the crushed thing was used as the shape of the particulate filler 4, a spherical thing can also be used.
1 注形型
2 電機子
3 繊維状充填材(ガラスクロス)
4 粒子状充填材(シリカ)
5 熱硬化性樹脂組成物(エポキシ樹脂組成物)
6 リニアモータ可動子
1 Casting mold 2 Armature 3 Fibrous filler (glass cloth)
4 Particulate filler (silica)
5 Thermosetting resin composition (epoxy resin composition)
6 Linear motor mover
Claims (7)
前記無機充填材に繊維状充填材を加えたことを特徴とする電機機器の製造方法。 Electrical parts are installed in the casting mold, and then the filler is filled with a particulate filler as an inorganic filler. The defoamed thermosetting resin composition is cast under vacuum. In the manufacturing method of the electrical equipment that is cured and resin molded,
The manufacturing method of the electric equipment characterized by adding the fibrous filler to the said inorganic filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004016570A JP2005205815A (en) | 2004-01-26 | 2004-01-26 | Manufacturing method for electrical machinery equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004016570A JP2005205815A (en) | 2004-01-26 | 2004-01-26 | Manufacturing method for electrical machinery equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005205815A true JP2005205815A (en) | 2005-08-04 |
Family
ID=34901685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004016570A Pending JP2005205815A (en) | 2004-01-26 | 2004-01-26 | Manufacturing method for electrical machinery equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005205815A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014030632A1 (en) * | 2012-08-21 | 2014-02-27 | 株式会社 豊田自動織機 | Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite |
WO2014120018A1 (en) * | 2013-02-01 | 2014-08-07 | Smartmotor As | Electrical machine provided with a composite material cooling layer and method for producing such a cooling layer |
CN106626181A (en) * | 2016-11-30 | 2017-05-10 | 国网重庆市电力公司电力科学研究院 | Pouring technology for all-fiber optical current transformer |
-
2004
- 2004-01-26 JP JP2004016570A patent/JP2005205815A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014030632A1 (en) * | 2012-08-21 | 2014-02-27 | 株式会社 豊田自動織機 | Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite |
US9539789B2 (en) | 2012-08-21 | 2017-01-10 | Kabushiki Kaisha Toyota Jidoshokki | Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite |
WO2014120018A1 (en) * | 2013-02-01 | 2014-08-07 | Smartmotor As | Electrical machine provided with a composite material cooling layer and method for producing such a cooling layer |
CN106626181A (en) * | 2016-11-30 | 2017-05-10 | 国网重庆市电力公司电力科学研究院 | Pouring technology for all-fiber optical current transformer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100632084B1 (en) | Thermally Conductive Body and Method of Manufacturing the Same | |
CN105647120B (en) | A kind of epoxy resin-based nonlinear adaptive nanocomposite insulating material and preparation method thereof | |
JP5250003B2 (en) | Resin material and high voltage equipment using the same | |
JP2011184650A (en) | Resin composition for electronic component encapsulation and electronic component device using the same | |
EP4262059A1 (en) | Stator, rotating electric machine, and method for manufacturing stator | |
JP2009013213A (en) | Epoxy resin molding material and molded product for motor sealing | |
Kushwaha et al. | Fabrication and characterization of hexagonal boron nitride/polyester composites to study the effect of filler loading and surface modification for microelectronic applications | |
CN114525100A (en) | High-thermal-conductivity low-viscosity epoxy pouring sealant and preparation method thereof | |
JP2005205815A (en) | Manufacturing method for electrical machinery equipment | |
TWI523910B (en) | High-voltage machine with composite insulating resin materials, and the use of its high-voltage machines | |
KR101072139B1 (en) | Method for preparing epoxy/silica multicomposite for high voltage insulation and product thereby | |
JP2004143368A (en) | Epoxy resin composition | |
CN104364854B (en) | Insulating materials and the high voltage installation using the insulating materials | |
CN115960567B (en) | High-heat-conductivity high-adhesion epoxy plastic package material and preparation method thereof | |
KR102571498B1 (en) | Epoxy resin compositions for molding | |
CN114456772A (en) | Motor pouring sealant and preparation method thereof | |
JP6450597B2 (en) | Coil insulation structure for rotating electrical machine, method for manufacturing the same, and rotating electrical machine comprising the coil insulation structure | |
JP2005330390A (en) | Epoxy resin composition and molded motor | |
KR102449297B1 (en) | Substrate for power electronic module comprising organic-inorganic composite | |
KR101252593B1 (en) | Production of electrical insulation and insulated products | |
CN115850908B (en) | High thermal conductivity and electrical insulation polymer material for motor stator and preparation method thereof | |
Xie et al. | Effect of Al 2 O 3 gradation on rheological behavior and thermomechanical properties of epoxy molding Compounds | |
Park | Effect of silica particle size on the mechanical properties in an epoxy/silica composite for HV insulation | |
JP2006137807A (en) | Epoxy resin molded article and its production method | |
JP2008222824A (en) | Epoxy resin molding material and molded product for motor sealing |