[go: up one dir, main page]

JP2005203249A - Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery - Google Patents

Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2005203249A
JP2005203249A JP2004008851A JP2004008851A JP2005203249A JP 2005203249 A JP2005203249 A JP 2005203249A JP 2004008851 A JP2004008851 A JP 2004008851A JP 2004008851 A JP2004008851 A JP 2004008851A JP 2005203249 A JP2005203249 A JP 2005203249A
Authority
JP
Japan
Prior art keywords
positive electrode
conductive agent
active material
paste
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004008851A
Other languages
Japanese (ja)
Other versions
JP2005203249A5 (en
Inventor
Shinya Miyazaki
晋也 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004008851A priority Critical patent/JP2005203249A/en
Publication of JP2005203249A publication Critical patent/JP2005203249A/en
Publication of JP2005203249A5 publication Critical patent/JP2005203249A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery of a high capacity and a long life by using a positive electrode fabricated by a manufacturing method by which an electrode plate resistivity, liquid absorbing property, and liquid-retaining property become optimum. <P>SOLUTION: This manufacturing method of the positive electrode for the nonaqueous electrolyte battery is provided with an active material fabricating process in which by coating carbonaceous conductive agent on the surface of positive electrode active material particles to obtain a conductive agent coated active material, a conductive agent paste fabricating process in which by making the carbonaceous conductive agent kneaded and dispersed in a solution with an adhesive to obtain a conductive agent paste, a positive electrode paste fabricating process in which the conductive agent coated active material and the conductive agent paste are kneaded and dispersed to obtain an positive electrode paste, and an active material applying process in which the positive electrode paste is applied to a positive electrode core body. By this, the positive electrode for the nonaqueous electrolyte battery of which electrode plate resistivity is low, and which is superior in load performance and cycle performance is obtained, and the nonaqueous electrolyte battery of the high capacity and the long life becomes to be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は活物質と導電剤と結着剤とを備えた非水電解質電池用正極の製造方法およびこの製造方法により作製された正極を備えた非水電解質二次電池に関する。   The present invention relates to a method for producing a positive electrode for a nonaqueous electrolyte battery comprising an active material, a conductive agent, and a binder, and a nonaqueous electrolyte secondary battery comprising a positive electrode produced by this production method.

近年、各種の携帯用機器の電源として非水電解質電池が用いられるようになった。この種の非水電解質電池においては、負極活物質としてリチウムイオンの吸蔵・放出が可能な炭素材料などが用いられ、正極活物質としてリチウム含有コバルト酸化物(LiCoO2)、リチウム含有マンガン酸化物(LiMn24)、リチウム含有ニッケル酸化物(LiNiO2)等のリチウム含有遷移金属酸化物が用いられるのが一般的である。 In recent years, non-aqueous electrolyte batteries have been used as power sources for various portable devices. In this type of nonaqueous electrolyte battery, a carbon material capable of occluding and releasing lithium ions is used as a negative electrode active material, and lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing manganese oxide ( Lithium-containing transition metal oxides such as LiMn 2 O 4 ) and lithium-containing nickel oxide (LiNiO 2 ) are generally used.

ところで、リチウム含有遷移金属酸化物は比導電率が低いため、炭素粉末などからなる導電剤を正極合剤中に添加して、個々の金属酸化物粒子間に電子電導性を付与し、充分な酸化還元反応を促進させるようにしている。ところが、リチウム含有遷移金属酸化物と導電剤とが均一に、かつ頻度よく接触していないと、電子が充分に正極活物質に供給されない部分が生じる。これにより、結果的に未反応のまま残存する正極活物質が生じて、正極活物質の利用率が低下するという問題を生じた。このため、リチウム含有遷移金属酸化物に導電剤を一定量だけ均一に混合した正極合剤を用いるようにしていた。   By the way, since the lithium-containing transition metal oxide has a low specific conductivity, a conductive agent made of carbon powder or the like is added to the positive electrode mixture to provide electronic conductivity between the individual metal oxide particles. The redox reaction is promoted. However, when the lithium-containing transition metal oxide and the conductive agent are not uniformly and frequently in contact with each other, a portion where electrons are not sufficiently supplied to the positive electrode active material occurs. As a result, a positive electrode active material remaining unreacted is generated, resulting in a problem that the utilization rate of the positive electrode active material is lowered. For this reason, a positive electrode mixture in which a certain amount of a conductive agent is uniformly mixed with a lithium-containing transition metal oxide is used.

しかしながら、リチウム含有遷移金属酸化物と導電剤とを混合したとしても、両者を均一に分散させることは困難であり、正極活物質粉末粒子間で互いの接触が充分に得られないという問題を生じた。これは、正極合剤に溶剤を加えてスラリーを作製する際に、正極合剤に添加される結着剤が導電剤となる炭素粉末に吸収されて偏在するためである。このため、リチウム含有遷移金属酸化物と導電剤を単に混合しても、リチウム含有遷移金属酸化物同志あるいは導電剤同志が凝集して、見かけ上、均一に混合されたとしても微視的にみると完全な混合状態を得ることが困難であった。   However, even if the lithium-containing transition metal oxide and the conductive agent are mixed, it is difficult to uniformly disperse both, and there is a problem that sufficient contact between the positive electrode active material powder particles cannot be obtained. It was. This is because when a solvent is added to the positive electrode mixture to produce a slurry, the binder added to the positive electrode mixture is absorbed by the carbon powder serving as the conductive agent and unevenly distributed. Therefore, even if the lithium-containing transition metal oxide and the conductive agent are simply mixed, the lithium-containing transition metal oxides or the conductive agents are aggregated and apparently evenly mixed evenly. It was difficult to obtain a complete mixed state.

そこで、リチウム含有遷移金属酸化物と炭素粉末などからなる導電剤を混合するに際して、これらの混合粉末に圧縮剪断応力を加えるようにして混合し、リチウム含有遷移金属酸化物の表面の一部を導電剤で被覆する方法が特許文献1にて提案されるようになった。この特許文献1にて提案された方法においては、まず、リチウム含有遷移金属酸化物と炭素粉末からなる混合粉末を炭素皮膜形成装置に投入する。ついで、この炭素皮膜形成装置に配設された回転ドラムを所定の回転数で回転させて、回転ドラムの内周面と押圧剪断ヘッドとの間で圧縮剪断応力を付加し、その後、爪で掻き落として混合するようにしている。これにより、リチウム含有遷移金属酸化物の表面の一部が炭素粉末で被覆された正極活物質を得ることが可能となり、このような正極活物質は結着剤が炭素粉末に吸収されて偏在することがないため、正極活物質同士の密着性が向上することとなる。   Therefore, when mixing a conductive agent composed of a lithium-containing transition metal oxide and carbon powder, the mixed powder is mixed so as to apply a compressive shear stress, and a part of the surface of the lithium-containing transition metal oxide is electrically conductive. A method of coating with an agent has been proposed in Patent Document 1. In the method proposed in Patent Document 1, first, a mixed powder composed of a lithium-containing transition metal oxide and carbon powder is put into a carbon film forming apparatus. Next, the rotating drum disposed in the carbon film forming apparatus is rotated at a predetermined number of rotations to apply a compressive shear stress between the inner peripheral surface of the rotating drum and the pressing shear head, and then scraped with a nail. Drop and mix. This makes it possible to obtain a positive electrode active material in which a part of the surface of the lithium-containing transition metal oxide is coated with carbon powder, and such a positive electrode active material is unevenly distributed as the binder is absorbed by the carbon powder. Therefore, the adhesion between the positive electrode active materials is improved.

ところが、特許文献1にて提案された方法により製造された正極活物質粉末を用いても、正極活物質同士の密着性がそれほど向上しないことが明らかとなった。これは、表面の一部が導電剤で被覆された正極活物質は、単に導電剤がリチウム含有遷移金属酸化物の表面に機械的に圧着されているだけであるので、正極活物質と導電剤との結着力が弱いためである。このため、正極合剤層を正極集電体上に形成したとき、正極合剤が正極集電体から脱落するようになって、機械的強度が低下して、サイクル寿命が低下するという問題を生じた。   However, it has become clear that even when the positive electrode active material powder produced by the method proposed in Patent Document 1 is used, the adhesion between the positive electrode active materials is not improved so much. This is because the positive electrode active material whose surface is partially coated with the conductive agent is simply that the conductive agent is mechanically pressure-bonded to the surface of the lithium-containing transition metal oxide. This is because the binding power is weak. For this reason, when the positive electrode mixture layer is formed on the positive electrode current collector, the positive electrode mixture comes off from the positive electrode current collector, the mechanical strength is reduced, and the cycle life is reduced. occured.

そこで、正極活物質の表面の一部が導電剤で被覆された正極活物質を用いても、正極合剤と正極集電体との密着性が向上した正極が特許文献2にて提案されるようになった。この特許文献2で提案された正極は、表面の一部が導電剤で被覆された正極活物質と導電剤で被覆されていない正極活物質からなる混合正極活物質と結着剤とを含有する正極合剤を備えるようにしている。このように、表面の一部が導電剤で被覆された正極活物質と導電剤で被覆されていない正極活物質からなる混合正極活物質と結着剤とで正極合剤を構成するようにすると、導電剤は正極活物質の表面に固定されているので、結着剤が導電剤に吸収されることを防止できるようになって、結着剤が偏在することが抑制される。これにより、正極合剤と正極集電体との密着性が向上する。
特開平9−92265号公報 特開2002−231222号公報
Therefore, Patent Document 2 proposes a positive electrode in which the adhesion between the positive electrode mixture and the positive electrode current collector is improved even if a positive electrode active material in which a part of the surface of the positive electrode active material is coated with a conductive agent is used. It became so. The positive electrode proposed in Patent Document 2 contains a mixed positive electrode active material composed of a positive electrode active material partially covered with a conductive agent and a positive electrode active material not covered with a conductive agent, and a binder. A positive electrode mixture is provided. In this way, when a positive electrode mixture is constituted by a mixed positive electrode active material composed of a positive electrode active material whose surface is coated with a conductive agent and a positive electrode active material not coated with a conductive agent, and a binder. Since the conductive agent is fixed to the surface of the positive electrode active material, the binder can be prevented from being absorbed by the conductive agent, and the binder is prevented from being unevenly distributed. Thereby, the adhesiveness of a positive mix and a positive electrode electrical power collector improves.
JP-A-9-92265 JP 2002-231222 A

ところで、この種の非水電解質電池のさらなる高容量化、高寿命化の要望を満たすためには、正極活物質を高密度に充填するとともに、正極活物質の充填量を増加させるために導電剤の添加量を必要最小限度まで削減する必要がある。しかも、このように導電剤の添加量を必要最小限度まで削減しても、十分な高出力、サイクル性能が取り出せることが必要となる。しかしながら、上述した特許文献2にて提案された方法により製造された正極を用いても、導電剤の添加量が多いために、十分な高容量化、高寿命化を達成することが困難であった。   By the way, in order to satisfy the demand for higher capacity and longer life of this type of nonaqueous electrolyte battery, the positive electrode active material is filled with a high density and the conductive agent is used to increase the filling amount of the positive electrode active material. It is necessary to reduce the amount of addition to the minimum necessary. In addition, even if the amount of the conductive agent added is reduced to the minimum necessary in this way, it is necessary to obtain a sufficiently high output and cycle performance. However, even when the positive electrode manufactured by the method proposed in Patent Document 2 described above is used, it is difficult to achieve a sufficiently high capacity and long life due to the large amount of conductive agent added. It was.

そこで、本発明者等は正極中の活物質および導電剤の存在状態を検討した結果、極板抵抗、吸液性、保液性が最適となる正極の製造方法を見い出し、この製造方法により作製された正極を用いて、高容量で、高寿命の非水電解質電池を提供することを目的とするものである。   Thus, as a result of examining the existence state of the active material and the conductive agent in the positive electrode, the present inventors have found a positive electrode manufacturing method in which the electrode plate resistance, liquid absorption, and liquid retention properties are optimum, and are manufactured by this manufacturing method. It is an object of the present invention to provide a non-aqueous electrolyte battery having a high capacity and a long life by using the prepared positive electrode.

上記目的を達成するため、本発明の非水電解質電池用正極の製造方法は、正極活物質粒子の表面に炭素系導電剤を被覆させて導電剤被覆活物質とする活物質作製工程と、炭素系導電剤を結着剤とともに溶液中に混練・分散させて導電剤ペーストとする導電剤ペースト作製工程と、導電剤被覆活物質と導電剤ペーストとを混練・分散させて正極ペーストとする正極ペースト作製工程と、正極ペーストを正極芯体に塗着する活物質塗着工程とを備えたことを特徴とする。   In order to achieve the above object, a method for producing a positive electrode for a non-aqueous electrolyte battery according to the present invention includes an active material preparation step in which a surface of positive electrode active material particles is coated with a carbon-based conductive agent to form a conductive agent-coated active material, A conductive agent paste preparation step in which a conductive agent is kneaded and dispersed in a solution together with a binder to make a conductive agent paste, and a positive electrode paste in which a conductive agent-coated active material and a conductive agent paste are kneaded and dispersed It is characterized by comprising a production process and an active material application process for applying a positive electrode paste to a positive electrode core.

このように、正極活物質粒子の表面に炭素系導電剤が被覆された導電剤被覆活物質と、炭素系導電剤が結着剤とともに溶液中に混練・分散された導電剤ペーストとを混練・分散させて正極ペーストとすると、導電性が良好で、吸液性および保液性が良好な正極ペーストが得られるようになる。その結果、極板抵抗が低くて、負荷性能、サイクル性能の優れた非水電解質電池用正極が得られ、高容量で、高寿命の非水電解質電池が得られるようになる。   Thus, a conductive agent-coated active material in which the surface of the positive electrode active material particles is coated with the carbon-based conductive agent, and a conductive agent paste in which the carbon-based conductive agent is kneaded and dispersed in the solution together with the binder are kneaded. When dispersed into a positive electrode paste, a positive electrode paste having good conductivity and good liquid absorption and liquid retention can be obtained. As a result, a positive electrode for a nonaqueous electrolyte battery having a low electrode plate resistance and excellent load performance and cycle performance can be obtained, and a high capacity and long life nonaqueous electrolyte battery can be obtained.

なお、活物質作製工程において機械的応力を加えながら正極活物質粒子の表面に炭素系導電剤を被覆させるようにすると、正極活物質粒子の表面に均一に導電剤が被覆されて導電性に優れた導電剤被覆活物質を得られるようになるので望ましい。この場合、正極活物質の表面の一部を被覆する炭素系導電剤の被覆量が多くなると吸液性が低下するようなるので、導電剤の被覆量は正極活物質の質量に対して1.0質量%以下になるように規制するのが望ましい。   In addition, if the surface of the positive electrode active material particles is coated with the carbon-based conductive agent while applying mechanical stress in the active material preparation process, the surface of the positive electrode active material particles is uniformly coated with the conductive agent and has excellent conductivity. It is desirable because a conductive agent-coated active material can be obtained. In this case, as the coating amount of the carbon-based conductive agent covering a part of the surface of the positive electrode active material increases, the liquid absorbency decreases. Therefore, the coating amount of the conductive agent is 1. It is desirable to regulate the content to be 0% by mass or less.

また、炭素系導電剤の平均粒径を5μm以下になるようにして均一に分散させた導電剤ペーストを用いると、正極の導電性が向上するので、導電剤ペースト中の炭素系導電剤の平均粒径は5μm以下にするのが望ましい。さらに、表面抵抗が小さく、電解液の吸液性および保液性に優れ、かつ負荷性能およびサイクル性能も向上させるためには、導電剤ペースト中の炭素系導電剤の添加量は、活物質の質量に対して、1.0質量%以上で3.0質量%以下にするのが望ましい。   Moreover, since the conductivity of the positive electrode is improved by using a conductive agent paste that is uniformly dispersed so that the average particle size of the carbon-based conductive agent is 5 μm or less, the average of the carbon-based conductive agent in the conductive agent paste The particle size is desirably 5 μm or less. Furthermore, in order to improve the load performance and cycle performance with a low surface resistance, excellent electrolyte absorption and liquid retention, the amount of carbon-based conductive agent added to the conductive agent paste is It is desirable to set it to 1.0 mass% or more and 3.0 mass% or less with respect to mass.

ついで、本発明の実施の形態を以下に説明するが、本発明はこの実施の形態に何ら限定されるものでなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。   Next, an embodiment of the present invention will be described below. However, the present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that does not change the object of the present invention. is there.

1.正極の作製
まず、リチウム源の出発原料として炭酸リチウム(Li2CO3)を用意し、コバルト源の出発原料として熱分解反応により得られた四酸化三コバルト(Co34)を用意した後、これらをリチウムとコバルトのモル比が1:1になるように秤量した後、これらを混合した。ついで、得られた混合物を空気雰囲気下で焼成(例えば、850℃の温度で20時間の焼成)して、コバルト酸リチウム(LiCoO2)の焼成体を合成した。この後、合成した焼成体を平均粒径が10μmになるまで粉砕して、正極活物質(LiCoO2)αとした。
1. Preparation of positive electrode First, lithium carbonate (Li 2 CO 3 ) was prepared as a starting material for a lithium source, and tricobalt tetroxide (Co 3 O 4 ) obtained by a pyrolysis reaction was prepared as a starting material for a cobalt source. These were weighed so that the molar ratio of lithium to cobalt was 1: 1, and then mixed. Subsequently, the obtained mixture was baked in an air atmosphere (for example, baked at a temperature of 850 ° C. for 20 hours) to synthesize a sintered body of lithium cobaltate (LiCoO 2 ). Thereafter, the synthesized fired body was pulverized until the average particle size became 10 μm to obtain a positive electrode active material (LiCoO 2 ) α.

ついで、上述のようにして作製した正極活物質α(LiCoO2)に、炭素系導電剤としてのアセチレンブラックの所定量とを混合し、この混合物を炭素皮膜形成装置(例えば、ホソカワミクロン製:メカノフュージョン装置で上述した特許文献2参照のこと)内に投入した。ついで、この装置の回転ドラムを所定の回転数で回転させて、その回転圧力により混合粉末を回転ドラムの内周面と押圧剪断ヘッドとの間に押し付けて、強い圧縮力と強い剪断力とを受けるようにして、正極活物質α(LiCoO2)の表面に炭素系導電剤を擦り込むようにした。 Next, the positive electrode active material α (LiCoO 2 ) prepared as described above is mixed with a predetermined amount of acetylene black as a carbon-based conductive agent, and this mixture is mixed with a carbon film forming apparatus (for example, manufactured by Hosokawa Micron: Mechano-Fusion). (See Patent Document 2 mentioned above). Next, the rotating drum of this apparatus is rotated at a predetermined rotational speed, and the mixed powder is pressed between the inner peripheral surface of the rotating drum and the pressing shearing head by the rotating pressure to generate a strong compressive force and a strong shearing force. The carbon-based conductive agent was rubbed into the surface of the positive electrode active material α (LiCoO 2 ).

これにより、表面の一部が導電剤で被覆された導電剤被覆活物質β1,β2,β3を作製した。なお、導電剤(アセチレンブラック)の被覆量が正極活物質α(LiCoO2)の質量に対して0.1質量%となるようにして被覆されたものを導電剤被覆活物質β1とした。また、導電剤(アセチレンブラック)の被覆量が正極活物質α(LiCoO2)の質量に対して1.0質量%となるようにして被覆されたものを導電剤被覆活物質β2とし、導電剤(アセチレンブラック)の被覆量が正極活物質α(LiCoO2)の質量に対して2.0質量%となるようにして被覆されたものを導電剤被覆活物質β3とした。 As a result, conductive agent-coated active materials β1, β2, and β3 in which a part of the surface was coated with the conductive agent were produced. The conductive agent-coated active material β1 was coated so that the coating amount of the conductive agent (acetylene black) was 0.1% by mass with respect to the mass of the positive electrode active material α (LiCoO 2 ). A conductive agent-coated active material β2 is coated with the conductive agent (acetylene black) so that the coating amount is 1.0% by mass with respect to the mass of the positive electrode active material α (LiCoO 2 ). The conductive agent-coated active material β3 was coated so that the coating amount of (acetylene black) was 2.0% by mass with respect to the mass of the positive electrode active material α (LiCoO 2 ).

この後、炭素系導電剤としてのアセチレンブラックの総添加量が3.0質量%(正極活物質の質量に対して)となるように、下記の表1に示すようにアセチレンブラックの添加量を選択するとともに、結着剤としてのポリフッ化ビニリデン(PVdF)粉末を3質量%(正極活物質の質量に対して)添加、混合した。ついで、これらに溶剤としてのN−メチルピロリドン(NMP)を添加、混合して混合溶液とした後、この混合溶液中の炭素系導電剤としてのアセチレンブラックの平均粒径が3μmになるまで分散混練して、導電剤ペーストγ1〜γ3を作製した。   Thereafter, the addition amount of acetylene black as shown in Table 1 below is adjusted so that the total addition amount of acetylene black as the carbon-based conductive agent is 3.0% by mass (relative to the mass of the positive electrode active material). While being selected, 3% by mass (based on the mass of the positive electrode active material) of polyvinylidene fluoride (PVdF) powder as a binder was added and mixed. Next, N-methylpyrrolidone (NMP) as a solvent is added to these and mixed to form a mixed solution, and then dispersed and kneaded until the average particle diameter of acetylene black as a carbon-based conductive agent in the mixed solution becomes 3 μm. Thus, conductive agent pastes γ1 to γ3 were prepared.

ここで、導電剤ペースト中のアセチレンブラックの添加量が正極活物質の質量に対して2.9質量%のものを導電剤ペーストγ1とし、2.0質量%のものを導電剤ペーストγ2とし、1.0質量%のものを導電剤ペーストγ3とした。なお、炭素系導電剤の平均粒径は、導電剤ペーストγ1〜γ3にレーザ光線を照射して、レーザ回折、散乱法により評価し、体積メディアン径を用いた値である。ついで、得られた導電剤ペーストγ1〜γ3に、上述のように作製した導電剤被覆活物質β1〜β3を添加、混合した後、混練して正極ペーストδ1〜δ3を調製した。この場合、導電剤被覆活物質β1と導電剤ペーストγ1を用いたものを正極ペーストδ1とし、導電剤被覆活物質β2と導電剤ペーストγ2を用いたものを正極ペーストδ2とし、導電剤被覆活物質β3と導電剤ペーストγ3を用いたものを正極ペーストδ3とした。   Here, the addition amount of acetylene black in the conductive agent paste is 2.9% by mass with respect to the mass of the positive electrode active material as the conductive agent paste γ1, and 2.0% by mass is the conductive agent paste γ2. 1.0% by mass was designated as conductive agent paste γ3. The average particle diameter of the carbon-based conductive agent is a value obtained by irradiating the conductive agent pastes γ1 to γ3 with a laser beam, evaluating by a laser diffraction and scattering method, and using a volume median diameter. Next, the conductive agent-coated active materials β1 to β3 produced as described above were added to and mixed with the obtained conductive agent pastes γ1 to γ3, and then kneaded to prepare positive electrode pastes δ1 to δ3. In this case, the conductive agent-coated active material β1 and the conductive agent paste γ1 are used as the positive electrode paste δ1, and the conductive agent-coated active material β2 and the conductive agent paste γ2 are used as the positive electrode paste δ2, and the conductive agent-coated active material. A paste using β3 and conductive agent paste γ3 was designated as positive electrode paste δ3.

この後、得られた正極ペーストδ1〜δ3を厚みが20μmの正極集電体(アルミニウム箔あるいはアルミニウム合金箔)の両面にドクターブレード法によりそれれ塗布して、正極集電体の両面に正極活物質層を形成した。これを乾燥させた後、圧縮ロールを用いて所定の厚み(例えば160μm)になるまで圧延し、所定寸法(幅が55mmで、長さが500mm)に切断して、正極a1,a2,a3を作製した。なお、正極ペーストδ1を用いたものを正極a1とし、正極ペーストδ2を用いたものを正極a2とし、正極ペーストδ3を用いたものを正極a3とした。   Thereafter, the obtained positive electrode pastes δ1 to δ3 are applied to both surfaces of a positive electrode current collector (aluminum foil or aluminum alloy foil) having a thickness of 20 μm by the doctor blade method, and the positive electrode active material is applied to both surfaces of the positive electrode current collector. A material layer was formed. After drying this, it is rolled to a predetermined thickness (for example, 160 μm) using a compression roll, cut into predetermined dimensions (width is 55 mm, length is 500 mm), and positive electrodes a1, a2, and a3 are Produced. In addition, the thing using positive electrode paste (delta) 1 was made into positive electrode a1, the thing using positive electrode paste (delta) 2 was made into positive electrode a2, and the thing using positive electrode paste (delta) 3 was made into positive electrode a3.

一方、導電剤被覆活物質β2と、炭素系導電剤としてのアセチレンブラック2質量%(正極活物質の質量に対して)と、結着剤としてのポリフッ化ビニリデン(PVdF)粉末3質量%(正極活物質の質量に対して)とを混合し、これらに溶剤としてのN−メチルピロリドン(NMP)を添加、混合した後、混練して正極ペーストδ4を調製した。ついで、上述と同様に、得られた正極ペーストδ4を正極集電体の両面に塗布、乾燥、圧延した後、所定寸法に切断して、正極x1を作製した。   On the other hand, conductive agent-coated active material β2, acetylene black 2% by mass (based on the mass of the positive electrode active material) as a carbon-based conductive agent, and 3% by mass of polyvinylidene fluoride (PVdF) powder as a binder (positive electrode) The N-methylpyrrolidone (NMP) as a solvent was added to and mixed with them, and then kneaded to prepare a positive electrode paste δ4. Next, in the same manner as described above, the obtained positive electrode paste δ4 was applied to both surfaces of the positive electrode current collector, dried and rolled, and then cut into predetermined dimensions to produce a positive electrode x1.

また、導電剤ペースト中のアセチレンブラックの添加量が正極活物質の質量に対して3.0質量%となるような導電剤ペーストγ4を調製し、得られた導電剤ペーストγ4に正極活物質(LiCoO2)αを添加、混合した後、混練して正極ペーストδ5を調製した。ついで、上述と同様に、得られた正極ペーストδ5を正極集電体の両面に塗布、乾燥、圧延した後、所定寸法に切断して、正極x2を作製した。 In addition, a conductive agent paste γ4 was prepared such that the amount of acetylene black added in the conductive agent paste was 3.0% by mass with respect to the mass of the positive electrode active material, and the positive electrode active material ( LiCoO 2 ) α was added and mixed, and then kneaded to prepare a positive electrode paste δ5. Subsequently, in the same manner as described above, the obtained positive electrode paste δ5 was applied to both surfaces of the positive electrode current collector, dried and rolled, and then cut into predetermined dimensions to produce a positive electrode x2.

さらに、正極活物質(LiCoO2)αと、炭素系導電剤としてのアセチレンブラック3質量%(正極活物質の質量に対して)と、結着剤としてのポリフッ化ビニリデン(PVdF)粉末3質量%(正極活物質の質量に対して)とを混合し、これらに溶剤としてのN−メチルピロリドン(NMP)を添加、混合した後、混練して正極ペーストδ6を調製した。ついで、上述と同様に、得られた正極ペーストδ6を正極集電体の両面に塗布、乾燥、圧延した後、所定寸法に切断して、正極x3を作製した。 Furthermore, positive electrode active material (LiCoO 2 ) α, acetylene black 3% by mass (based on the mass of the positive electrode active material) as a carbon-based conductive agent, and polyvinylidene fluoride (PVdF) powder 3% by mass as a binder (Based on the mass of the positive electrode active material), N-methylpyrrolidone (NMP) as a solvent was added and mixed with these, and kneaded to prepare a positive electrode paste δ6. Next, in the same manner as described above, the obtained positive electrode paste δ6 was applied to both surfaces of the positive electrode current collector, dried and rolled, and then cut into predetermined dimensions to produce a positive electrode x3.

2.正極の物性値の測定
ついで、上述のようにして作製した各正極a1〜a3,x1〜x3の表面抵抗および吸液時間について、以下のようにして測定した。ここで、表面抵抗においては、各正極a1〜a3,x1〜x3の表面に、一対の測定電極を1cmの間隔を隔てて配置した後、この一対の測定電極間に1mAの電流を印加して、その際の抵抗値を測定したものであって、下記の表1に示すような結果が得られた。さらに、吸液時間については、圧延後の各正極a1〜a3,x1〜x3の表面に3マイクロリットル(3μl)の電解液を滴下し、滴下された電解液が完全に各正極a1〜a3,x1〜x3内に吸液されるまでの時間を測定したものであって、下記の表1に示すような結果が得られた。
2. Measurement of Physical Properties of Positive Electrode Next, the surface resistance and liquid absorption time of each of the positive electrodes a1 to a3 and x1 to x3 produced as described above were measured as follows. Here, in terms of surface resistance, a pair of measurement electrodes are arranged on the surface of each of the positive electrodes a1 to a3, x1 to x3 with an interval of 1 cm, and then a current of 1 mA is applied between the pair of measurement electrodes. The resistance value at that time was measured, and the results shown in Table 1 below were obtained. Furthermore, about liquid absorption time, 3 microliters (3 microliters) of electrolyte solution is dripped at the surface of each positive electrode a1-a3, x1-x3 after rolling, and the dripped electrolyte solution is completely each positive electrode a1-a3. The time until the liquid was absorbed in x1 to x3 was measured, and the results shown in Table 1 below were obtained.

Figure 2005203249
Figure 2005203249

上記表1の結果から明らかなように、表面の一部が導電剤で被覆された導電剤被覆活物質β1,β2,β3を用いた正極a1〜a3の表面抵抗は40〜50Ωであって、その表面抵抗が低いことが分かる。一方、導電剤被覆活物質を用いなかった正極x2,x3の表面抵抗は100Ωおよび180Ωであって、その表面抵抗が高いことが分かる。また、表面の一部が導電剤で被覆された導電剤被覆活物質β2を用いても、導電剤ペーストを用いなかった正極x1の表面抵抗は80Ωであって、その表面抵抗が高いことが分かる。   As is clear from the results in Table 1 above, the surface resistances of the positive electrodes a1 to a3 using the conductive agent-coated active materials β1, β2, and β3 in which part of the surface is coated with a conductive agent are 40 to 50Ω, It can be seen that the surface resistance is low. On the other hand, it can be seen that the surface resistances of the positive electrodes x2 and x3 without using the conductive agent-coated active material are 100Ω and 180Ω, and the surface resistance is high. In addition, even when the conductive agent-coated active material β2 partially coated with the conductive agent is used, the surface resistance of the positive electrode x1 without using the conductive agent paste is 80Ω, and the surface resistance is high. .

これらのことから、表面の一部が導電剤で被覆された導電剤被覆活物質を用いるとともに導電剤ペーストを用いることにより、十分な導電性と吸液性が得られることが分かる。ただし、導電剤被覆活物質β3を用いた正極a3のように、表面の一部を被覆する導電剤の被覆量が活物質の質量に対して2.0質量%と多くなると吸液性が低下するようなるので、導電剤の被覆量は活物質の質量に対して1.0質量%以下になるように規制するのが望ましいということができる。   From these facts, it can be seen that sufficient conductivity and liquid absorption can be obtained by using a conductive agent-coated active material whose surface is partially coated with a conductive agent and using a conductive agent paste. However, like the positive electrode a3 using the conductive agent-coated active material β3, the liquid absorbency decreases when the coating amount of the conductive agent covering a part of the surface is 2.0% by mass with respect to the mass of the active material. Therefore, it can be said that it is desirable to regulate the coating amount of the conductive agent to be 1.0% by mass or less with respect to the mass of the active material.

3.非水電解質二次電池の作製
ついで、天然黒鉛粉末が95質量%で、結着剤としてのポリフッ化ビニリデン(PVdF)粉末が5質量%となるように混合した後、これをN−メチルピロリドン(NMP)溶液と混合して負極ペーストを調製した。この後、得られた負極ペーストを厚みが18μmの負極集電体(銅箔)の両面にドクターブレード法により塗布して、負極集電体の両面に負極活物質層を形成した。これを乾燥させた後、圧縮ロールを用いて所定の厚み(例えば155μm)になるまで圧延し、所定寸法(例えば幅が57mmで、長さが550mm)に切断して、負極を作製した。
3. Preparation of Nonaqueous Electrolyte Secondary Battery Next, the mixture was mixed so that the natural graphite powder was 95% by mass and the polyvinylidene fluoride (PVdF) powder as the binder was 5% by mass, and this was mixed with N-methylpyrrolidone ( NMP) solution was mixed to prepare a negative electrode paste. Thereafter, the obtained negative electrode paste was applied to both surfaces of a negative electrode current collector (copper foil) having a thickness of 18 μm by a doctor blade method to form a negative electrode active material layer on both surfaces of the negative electrode current collector. After drying this, it rolled until it became predetermined thickness (for example, 155 micrometers) using the compression roll, and it cut | disconnected to the predetermined dimension (for example, width 57mm, length 550mm), and produced the negative electrode.

ついで、前述のように作製した各正極a1〜a3,x1〜x3と、上述のようにして作製した負極とをそれぞれ用い、これらの間にポリプロピレン製微多孔膜からなるセパレータを介在させて積層した後、これらを渦巻状にそれぞれ巻回して渦巻状電極群とした。これらをそれぞれ円筒状の金属製外装缶に挿入した後、各集電体から延出する集電タブを各端子に溶接し、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との等体積混合溶媒に、LiPF6を1モル/リットル溶解した非水電解液を注入した。 Next, each of the positive electrodes a1 to a3 and x1 to x3 prepared as described above and the negative electrode prepared as described above were used, and a separator made of a polypropylene microporous film was interposed therebetween and laminated. Thereafter, these were wound in a spiral shape to form a spiral electrode group. After these are inserted into cylindrical metal outer cans, current collecting tabs extending from each current collector are welded to each terminal, and an equal volume mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) Then, a nonaqueous electrolytic solution in which 1 mol / liter of LiPF 6 was dissolved was injected.

この後、外装缶の開口部に正極蓋を取り付けて封口して、設計容量が1800mAhの非水電解質二次電池(高さ65mm、直径18mm)A1〜A3,X1〜X3をそれぞれ作製した。なお、正極a1を用いたものを電池A1とし、正極a2を用いたものを電池A2とし、正極a3を用いたものを電池A3とした。また、正極x1を用いたものを電池X1とし、正極x2を用いたものを電池X2とし、正極x3を用いたものを電池X3とした。   Thereafter, a positive electrode lid was attached to the opening of the outer can and sealed to prepare non-aqueous electrolyte secondary batteries (height 65 mm, diameter 18 mm) A1 to A3, X1 to X3 having a design capacity of 1800 mAh. Note that a battery using the positive electrode a1 is referred to as a battery A1, a battery using the positive electrode a2 is referred to as a battery A2, and a battery using the positive electrode a3 is referred to as a battery A3. A battery using positive electrode x1 was designated as battery X1, a battery using positive electrode x2 was designated as battery X2, and a battery using positive electrode x3 was designated as battery X3.

ついで、これらの各電池A1〜A3,X1〜X3を用いて、室温(約25℃)で、1800mA(1It:Itは定格容量(mA)/1h(時間)で表される数値)の充電電流で、電池電圧が4.2Vになるまで定電流充電した後、電池電圧が4.2Vの定電圧で終止電流が36mAになるまで定電圧充電した。この後、1800mA(1It)の放電電流で電池電圧が2.75Vになるまで放電させ、これを1サイクル目の充放電として、放電時間から1サイクル目の放電容量を求めた。   Next, using each of these batteries A1 to A3 and X1 to X3, a charging current of 1800 mA (1 It: It is a numerical value represented by rated capacity (mA) / 1 h (hour)) at room temperature (about 25 ° C.). Then, the battery was charged at a constant current until the battery voltage reached 4.2 V, and then charged at a constant voltage until the battery voltage was 4.2 V and the end current reached 36 mA. Thereafter, the battery was discharged at a discharge current of 1800 mA (1 It) until the battery voltage reached 2.75 V, and this was charged and discharged in the first cycle, and the discharge capacity in the first cycle was determined from the discharge time.

ついで、室温(約25℃)で、1800mA(1It)の充電電流で、電池電圧が4.2Vになるまで定電流充電した後、電池電圧が4.2Vの定電圧で終止電流が36mAになるまで定電圧充電した。この後、5400mA(3It)の放電電流で電池電圧が2.75Vになるまで放電させ、これを2サイクル目の充放電として、放電時間から2サイクル目の放電容量を求めた。ついで、求めた1サイクル目の放電容量に対する2サイクル目の放電容量の割合を放電容量維持率(放電容量維持率(%)=(2サイクル目の放電容量/1サイクル目の放電容量)×100)として算出すると、下記の表2に示すような結果となった。なお、表2においては、放電容量維持率を負荷性能(%)として示している。   Next, at room temperature (about 25 ° C.), with a charging current of 1800 mA (1 It), after constant current charging until the battery voltage becomes 4.2 V, the battery voltage becomes a constant voltage of 4.2 V and the termination current becomes 36 mA. Until constant voltage charging. Thereafter, the battery was discharged at a discharge current of 5400 mA (3 It) until the battery voltage reached 2.75 V. This was charged and discharged in the second cycle, and the discharge capacity in the second cycle was determined from the discharge time. Next, the ratio of the discharge capacity at the second cycle to the calculated discharge capacity at the first cycle is the discharge capacity maintenance rate (discharge capacity maintenance rate (%) = (discharge capacity at the second cycle / discharge capacity at the first cycle) × 100. ), The results shown in Table 2 below were obtained. In Table 2, the discharge capacity maintenance rate is shown as load performance (%).

また、室温(約25℃)で、1800mA(1It)の充電電流で、電池電圧が4.2Vになるまで定電流充電した後、電池電圧が4.2Vの定電圧で終止電流が36mAになるまで定電圧充電した。この後、1800mA(1It)の放電電流で電池電圧が3.2Vになるまで放電させ、これを1サイクル目の充放電として、放電時間から1サイクル目の放電容量を求めた。2サイクル以降の放電は5400mA(3It)の放電電流で電池電圧が3.2Vになるまで放電させた。このような充放電サイクルを300サイクル繰り返し、300サイクル目の放電容量を求めた。ついで、1サイクル目の放電容量に対する300サイクル目の放電容量の割合を300サイクル容量維持率(300サイクル容量維持率(%)=(300サイクル後の放電容量/1サイクル後の放電容量)×100)として算出すると、下記の表2に示すような結果となった。なお、表1においては、300サイクル容量維持率をサイクル性能(%)として示している。   In addition, after constant current charging at room temperature (about 25 ° C.) with a charging current of 1800 mA (1 It) until the battery voltage reaches 4.2 V, the end current becomes 36 mA at a constant voltage of 4.2 V. Until constant voltage charging. Thereafter, the battery was discharged at a discharge current of 1800 mA (1 It) until the battery voltage became 3.2 V, and this was charged and discharged in the first cycle, and the discharge capacity in the first cycle was determined from the discharge time. Discharge after 2 cycles was discharged with a discharge current of 5400 mA (3 It) until the battery voltage reached 3.2V. Such a charge / discharge cycle was repeated 300 times, and the discharge capacity at the 300th cycle was determined. Next, the ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle is the 300 cycle capacity retention rate (300 cycle capacity retention rate (%) = (discharge capacity after 300 cycles / discharge capacity after 1 cycle) × 100. ), The results shown in Table 2 below were obtained. In Table 1, the 300 cycle capacity retention rate is shown as cycle performance (%).

Figure 2005203249
Figure 2005203249

上記表2の結果から以下のことが明らかになった。即ち、表面の一部が導電剤で被覆された導電剤被覆活物質β1,β2,β3を用いた正極a1〜a3を備えた電池A1〜A3においては、正極a1〜a3の表面抵抗が40〜50Ωと低く、かつサイクル性能が95〜96%と向上していることが分かる。一方、導電剤被覆活物質を用いなかった正極x2,x3を備えた電池X2,X3においては、正極x2,x3の表面抵抗が100Ωおよび180Ωと高く、かつサイクル性能が89〜92%と低下していることが分かる。また、表面の一部が導電剤で被覆された導電剤被覆活物質β2を用いても、導電剤ペーストを用いなかった正極x1を備えた電池X1においては、正極x1の表面抵抗は80Ωと高く、かつサイクル性能が91%と低下していることが分かる。   From the results in Table 2 above, the following became clear. That is, in the batteries A1 to A3 provided with the positive electrodes a1 to a3 using the conductive agent-coated active materials β1, β2, and β3 partially coated with the conductive agent, the surface resistance of the positive electrodes a1 to a3 is 40 to 40. It can be seen that the cycle performance is improved to 95 to 96% as low as 50Ω. On the other hand, in the batteries X2 and X3 provided with the positive electrodes x2 and x3 that do not use the conductive agent-coated active material, the surface resistance of the positive electrodes x2 and x3 is as high as 100Ω and 180Ω, and the cycle performance is reduced to 89 to 92%. I understand that Further, even when the conductive agent-coated active material β2 whose surface is partially coated with the conductive agent is used, in the battery X1 including the positive electrode x1 without using the conductive agent paste, the surface resistance of the positive electrode x1 is as high as 80Ω. It can be seen that the cycle performance is reduced to 91%.

これらのことから、表面の一部が導電剤で被覆された導電剤被覆活物質を用いるとともに導電剤ペーストを用いることにより、十分な導電性と吸液性が得られ、優れた負荷性能とサイクル性能とが得られることが分かる。ただし、導電剤被覆活物質β3を用いた正極a3を備えた電池A3のように、表面の一部を被覆する導電剤の被覆量が活物質の質量に対して2.0質量%と多くなると吸液性が低下し、活物質への迅速な電解液の供給が妨げられるようになり、負荷性能が低下するので、導電剤の被覆量は活物質の質量に対して1.0質量%以下になるように規制するのが望ましいということができる。   Therefore, by using a conductive agent-coated active material whose surface is partially coated with a conductive agent and using a conductive agent paste, sufficient conductivity and liquid absorption can be obtained, and excellent load performance and cycle can be obtained. It can be seen that performance is obtained. However, when the coating amount of the conductive agent covering a part of the surface is 2.0% by mass with respect to the mass of the active material as in the battery A3 including the positive electrode a3 using the conductive agent-coated active material β3. Since the liquid absorption is reduced, the supply of the electrolyte to the active material is prevented from being promptly performed, and the load performance is reduced. Therefore, the coating amount of the conductive agent is 1.0% by mass or less based on the mass of the active material. It can be said that it is desirable to regulate so that

4.導電剤ペースト中の導電剤の平均粒径についての検討
ついで、導電剤ペースト中の導電剤の平均粒径について検討した。そこで、導電剤ペースト中の炭素系導電剤としてのアセチレンブラックの添加量を2.0質量%(正極活物質の質量に対して)とし、結着剤としてのポリフッ化ビニリデン(PVdF)粉末の添加量が3質量%(正極活物質の質量に対して)となるように添加、混合した。ついで、これらに溶剤としてのN−メチルピロリドン(NMP)を添加、混合して混合溶液とした後、この混合溶液中の炭素系導電剤の平均粒径が5μmあるいは7μmになるまで分散させ、混練して、導電剤ペーストγ5,γ6を作製した。なお、炭素系導電剤の平均粒径は上述と同様に、導電剤ペーストγ5,γ6にレーザ光線を照射して、レーザ回折、散乱法により評価し、体積メディアン径を用いた値である。
4). Examination of the average particle diameter of the conductive agent in the conductive agent paste Next, the average particle diameter of the conductive agent in the conductive agent paste was examined. Therefore, the addition amount of acetylene black as the carbon-based conductive agent in the conductive agent paste is 2.0 mass% (based on the mass of the positive electrode active material), and the addition of polyvinylidene fluoride (PVdF) powder as the binder It added and mixed so that the quantity might be 3 mass% (with respect to the mass of a positive electrode active material). Next, N-methylpyrrolidone (NMP) as a solvent is added to these and mixed to form a mixed solution, and then dispersed until the average particle size of the carbon-based conductive agent in the mixed solution becomes 5 μm or 7 μm, and kneaded. Thus, conductive agent pastes γ5 and γ6 were prepared. Note that the average particle diameter of the carbon-based conductive agent is a value obtained by irradiating the conductive agent pastes γ5 and γ6 with a laser beam and evaluating the volume using the volume median diameter, as described above.

ここで、炭素系導電剤の平均粒径が5μmのものを導電剤ペーストγ5とし、炭素系導電剤の平均粒径が7μmのものを導電剤ペーストγ6とした。ついで、得られた導電剤ペーストγ5,γ6に、上述のように作製した導電剤被覆活物質β2を添加、混合した後、混練して正極ペーストδ7,δ8を調製した。この場合、導電剤ペーストγ5を用いたものを正極ペーストδ7とし、導電剤ペーストγ6を用いたものを正極ペーストδ8とした。   Here, a conductive agent paste γ5 having a carbon-based conductive agent average particle diameter of 5 μm was used, and a conductive agent paste γ6 having a carbon-based conductive agent average particle diameter of 7 μm. Next, the conductive agent-coated active material β2 prepared as described above was added to and mixed with the obtained conductive agent pastes γ5 and γ6, and kneaded to prepare positive electrode pastes δ7 and δ8. In this case, the paste using the conductive agent paste γ5 was designated as the positive electrode paste δ7, and the paste using the conductive agent paste γ6 was designated as the positive electrode paste δ8.

この後、得られた正極ペーストδ7,δ8を厚みが20μmの正極集電体(アルミニウム箔あるいはアルミニウム合金箔)の両面にドクターブレード法によりそれれ塗布して、正極集電体の両面に正極活物質層を形成した。これを乾燥させた後、圧縮ロールを用いて所定の厚み(例えば160μm)になるまで圧延し、所定寸法(幅が55mmで、長さが500mm)に切断して、正極b1,b2をそれぞれ作製した。なお、正極ペーストδ7を用いたものを正極b1とし、正極ペーストδ8を用いたものを正極b2とした。   Thereafter, the obtained positive electrode pastes δ7 and δ8 are applied to both surfaces of a positive electrode current collector (aluminum foil or aluminum alloy foil) having a thickness of 20 μm by the doctor blade method, and the positive electrode active material is applied to both surfaces of the positive electrode current collector. A material layer was formed. After drying this, it is rolled to a predetermined thickness (for example, 160 μm) using a compression roll, and cut into predetermined dimensions (width is 55 mm and length is 500 mm) to produce positive electrodes b1 and b2, respectively. did. The positive electrode paste δ7 was used as the positive electrode b1, and the positive electrode paste δ8 was used as the positive electrode b2.

ついで、上述のようにして作製した各正極b1,b2の表面抵抗および吸液時間を上述と同様に測定すると、下記の表3に示すような結果が得られた。また、これらの正極b1,b2を用いて、上述と同様に設計容量が1800mAhの非水電解質二次電池(高さ65mm、直径18mm)B1,B2をそれぞれ作製した。なお、正極b1を用いたものを電池B1とし、正極b2を用いたものを電池B2とした。   Next, when the surface resistance and the liquid absorption time of each of the positive electrodes b1 and b2 produced as described above were measured in the same manner as described above, the results shown in Table 3 below were obtained. Further, using these positive electrodes b1 and b2, non-aqueous electrolyte secondary batteries (height 65 mm, diameter 18 mm) B1 and B2 having a design capacity of 1800 mAh were respectively produced in the same manner as described above. A battery using positive electrode b1 was designated as battery B1, and a battery using positive electrode b2 was designated as battery B2.

ついで、これらの電池B1,B2を用いて、上述と同様に1サイクル目の放電容量と2サイクル目の放電容量を求めた後、1サイクル目の放電容量に対する2サイクル目の放電容量の割合を放電容量維持率(負荷性能)として算出すると、下記の表3に示すような結果となった。また、300サイクル目の放電容量求めた後、1サイクル目の放電容量に対する300サイクル目の放電容量の割合を300サイクル容量維持率(サイクル性能)として算出すると、下記の表3に示すような結果となった。なお、下記の表3には上述した電池A2の結果も併せて示している。   Then, using these batteries B1 and B2, the discharge capacity of the first cycle and the discharge capacity of the second cycle were obtained in the same manner as described above, and then the ratio of the discharge capacity of the second cycle to the discharge capacity of the first cycle was determined. When calculated as the discharge capacity retention rate (load performance), the results shown in Table 3 below were obtained. Further, after determining the discharge capacity at the 300th cycle, the ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle is calculated as the 300 cycle capacity retention rate (cycle performance). The results shown in Table 3 below are obtained. It became. Table 3 below also shows the results of the battery A2 described above.

Figure 2005203249
Figure 2005203249

上記表3の結果から明らかになように、炭素系導電剤の平均粒径を3.0μmに形成した導電剤ペーストγ2を用いた正極a2の表面抵抗は40Ωと小さく、この正極a2を用いた電池A2は、導電性が向上することに起因してサイクル性能が96%に上昇していることが分かる。また、炭素系導電剤の平均粒径を5.0μmに形成した導電剤ペーストγ5を用いた正極b1の表面抵抗も40Ωと小さく、この正極a2を用いた電池A2も、導電性が向上することに起因してサイクル性能が96%に上昇していることが分かる。   As is clear from the results of Table 3 above, the surface resistance of the positive electrode a2 using the conductive agent paste γ2 having an average particle diameter of the carbon-based conductive agent of 3.0 μm is as small as 40Ω, and this positive electrode a2 was used. It can be seen that the cycle performance of the battery A2 is increased to 96% due to the improved conductivity. Further, the surface resistance of the positive electrode b1 using the conductive agent paste γ5 in which the average particle diameter of the carbon-based conductive agent is 5.0 μm is as small as 40Ω, and the conductivity of the battery A2 using the positive electrode a2 is also improved. It can be seen that the cycle performance has increased to 96% due to the above.

これらに対して、炭素系導電剤の平均粒径を7μmに形成した導電剤ペーストγ6を用いた正極b2の表面抵抗は120Ωと大きく、この正極b2を用いた電池Bは、導電性が低下することに起因してサイクル性能が90%に低下していることが分かる。
このことは、炭素系導電剤の平均粒径を適切なサイズ、好ましくは5μm以下になるようにして均一に分散させた導電剤ペーストを用いて正極ペーストを形成し、この正極ペーストを用いて正極を形成することにより、正極の導電性が向上することを示している。
On the other hand, the surface resistance of the positive electrode b2 using the conductive agent paste γ6 in which the average particle diameter of the carbon-based conductive agent is 7 μm is as large as 120Ω, and the conductivity of the battery B using the positive electrode b2 decreases. It can be seen that the cycle performance is reduced to 90%.
This means that a positive electrode paste is formed using a conductive agent paste in which the average particle diameter of the carbon-based conductive agent is uniformly dispersed so as to be an appropriate size, preferably 5 μm or less, and this positive electrode paste is used to form a positive electrode. It is shown that the conductivity of the positive electrode is improved by forming.

5.導電剤の添加量についての検討
ついで、導電剤の添加量について検討した。そこで、導電剤ペースト中の炭素系導電剤としてのアセチレンブラックの添加量を0.5質量%、1.0質量%、3.0質量%、4.0質量%(いずも正極活物質の質量に対して)とし、結着剤としてのポリフッ化ビニリデン(PVdF)粉末の添加量が3質量%(正極活物質の質量に対して)となるように添加、混合した。ついで、これらに溶剤としてのN−メチルピロリドン(NMP)を添加、混合して混合溶液とした後、この混合溶液中の炭素系導電剤の平均粒径が3μmになるまで分散させ、混練して、導電剤ペーストγ7〜γ10を作製した。なお、炭素系導電剤の平均粒径は上述と同様に、導電剤ペーストγ7〜γ10にレーザ光線を照射して、レーザ回折、散乱法により評価し、体積メディアン径を用いた値である。
5). Study on the amount of conductive agent added Next, the amount of conductive agent added was examined. Therefore, the addition amount of acetylene black as the carbon-based conductive agent in the conductive agent paste is 0.5% by mass, 1.0% by mass, 3.0% by mass, 4.0% by mass (both of the positive electrode active material). And added and mixed so that the amount of polyvinylidene fluoride (PVdF) powder added as a binder is 3% by mass (relative to the mass of the positive electrode active material). Next, N-methylpyrrolidone (NMP) as a solvent is added to these and mixed to form a mixed solution, and then dispersed until the average particle diameter of the carbon-based conductive agent in this mixed solution becomes 3 μm and kneaded. Conductive agent pastes γ7 to γ10 were prepared. Note that the average particle diameter of the carbon-based conductive agent is a value obtained by irradiating the conductive agent pastes γ7 to γ10 with a laser beam and evaluating the volume using a volume median diameter, as described above.

なお、炭素系導電剤としてのアセチレンブラックの添加量が0.5質量%のものを導電剤ペーストγ7とした。同様に、アセチレンブラックの添加量が1.0質量%のものを導電剤ペーストγ8とし、アセチレンブラックの添加量が3.0質量%のものを導電剤ペーストγ9とし、アセチレンブラックの添加量が4.0質量%のものを導電剤ペーストγ10とした。ついで、得られた導電剤ペーストγ7〜γ10に、それぞれ上述のように作製した導電剤被覆活物質β1(被覆量が0.1質量%のもの)あるいは導電剤被覆活物質β2(被覆量が1.0質量%のもの)を添加、混合した後、混練して正極ペーストε1〜ε4、ζ1〜ζ4をそれぞれ調製した。   A conductive agent paste γ7 having an addition amount of acetylene black as a carbon-based conductive agent of 0.5% by mass was used. Similarly, a conductive agent paste γ8 with an addition amount of acetylene black of 1.0% by mass and a conductive agent paste γ9 with an addition amount of acetylene black of 3.0% by mass, and an addition amount of acetylene black of 4%. The conductive material paste γ10 was 0.0% by mass. Subsequently, the obtained conductive agent pastes γ7 to γ10 were each coated with a conductive agent-coated active material β1 (with a coating amount of 0.1% by mass) or a conductive agent-coated active material β2 (with a coating amount of 1). 0.0 mass%) was added and mixed, and then kneaded to prepare positive electrode pastes ε1 to ε4 and ζ1 to ζ4, respectively.

この場合、導電剤被覆活物質β1を用いるとともに、導電剤ペーストγ7を用いたものを正極ペーストε1とし、導電剤ペーストγ8を用いたものを正極ペーストε2とし、導電剤ペーストγ9を用いたものを正極ペーストε3とし、導電剤ペーストγ10を用いたものを正極ペーストε4とした。また、導電剤被覆活物質β2を用いるとともに、導電剤ペーストγ7を用いたものを正極ペーストζ1とし、導電剤ペーストγ8を用いたものを正極ペーストζ2とし、導電剤ペーストγ9を用いたものを正極ペーストζ3とし、導電剤ペーストγ10を用いたものを正極ペーストζ4とした。   In this case, the conductive agent-coated active material β1 is used, the one using the conductive agent paste γ7 is the positive electrode paste ε1, the one using the conductive agent paste γ8 is the positive electrode paste ε2, and the one using the conductive agent paste γ9. A positive electrode paste ε3 and a conductive paste γ10 were used as a positive electrode paste ε4. In addition to using the conductive agent-coated active material β2, the one using the conductive agent paste γ7 is the positive electrode paste ζ1, the one using the conductive agent paste γ8 is the positive electrode paste ζ2, and the one using the conductive agent paste γ9 is the positive electrode. The paste ζ3 and the conductive paste γ10 were used as the positive electrode paste ζ4.

この後、得られた正極ペーストε1〜ε4、ζ1〜ζ4をそれぞれ厚みが20μmの正極集電体(アルミニウム箔あるいはアルミニウム合金箔)の両面にドクターブレード法によりそれれ塗布して、正極集電体の両面に正極活物質層を形成した。これを乾燥させた後、圧縮ロールを用いて所定の厚み(例えば160μm)になるまで圧延し、所定寸法(幅が55mmで、長さが500mm)に切断して、正極c1〜c4および正極d1〜d4をそれぞれ作製した。   After that, the obtained positive electrode pastes ε1 to ε4 and ζ1 to ζ4 were each applied to both surfaces of a positive electrode current collector (aluminum foil or aluminum alloy foil) having a thickness of 20 μm by the doctor blade method. A positive electrode active material layer was formed on both sides. After drying this, it is rolled to a predetermined thickness (for example, 160 μm) using a compression roll, cut into predetermined dimensions (width is 55 mm, length is 500 mm), and positive electrodes c1 to c4 and positive electrode d1 ˜d4 was prepared.

なお、正極ペーストε1を用いたものを正極c1とし、正極ペーストε2を用いたものを正極c2とし、正極ペーストε3を用いたものを正極c3とし、正極ペーストε4を用いたものを正極c4とした。また、正極ペーストζ1を用いたものを正極d1とし、正極ペーストζ2を用いたものを正極d2とし、正極ペーストζ3を用いたものを正極d3とし、正極ペーストζ4を用いたものを正極d4とした。   The positive electrode paste ε1 was used as the positive electrode c1, the positive electrode paste ε2 was used as the positive electrode c2, the positive electrode paste ε3 was used as the positive electrode c3, and the positive electrode paste ε4 was used as the positive electrode c4. . Also, the positive electrode d1 is the one using the positive electrode paste ζ1, the positive electrode d2 is the one using the positive electrode paste ζ2, the positive electrode d3 is the one using the positive electrode paste ζ3, and the positive electrode d4 is the one using the positive electrode paste ζ4. .

ついで、上述のようにして作製した各正極c1〜c4および正極d1〜d4の表面抵抗および吸液時間を上述と同様に測定すると、下記の表4に示すような結果が得られた。また、これらの正極c1〜c4および正極d1〜d4を用いて、上述と同様に設計容量が1800mAhの非水電解質二次電池(高さ65mm、直径18mm)C1〜C4およびD1〜D4をそれぞれ作製した。なお、正極c1を用いたものを電池C1とし、正極c2を用いたものを電池C2とし、正極c3を用いたものを電池C3とし、正極c4を用いたものを電池C4とした。また、正極d1を用いたものを電池D1とし、正極d2を用いたものを電池D2とし、正極d3を用いたものを電池D3とし、正極d4を用いたものを電池D4とした。   Subsequently, when the surface resistance and the liquid absorption time of each of the positive electrodes c1 to c4 and the positive electrodes d1 to d4 produced as described above were measured in the same manner as described above, the results shown in Table 4 below were obtained. Also, using these positive electrodes c1 to c4 and positive electrodes d1 to d4, non-aqueous electrolyte secondary batteries (height 65 mm, diameter 18 mm) C1 to C4 and D1 to D4 having a design capacity of 1800 mAh are respectively produced in the same manner as described above. did. Note that a battery using the positive electrode c1 was referred to as a battery C1, a battery using the positive electrode c2 was referred to as a battery C2, a battery using the positive electrode c3 was referred to as a battery C3, and a battery using the positive electrode c4 was referred to as a battery C4. A battery using the positive electrode d1 is referred to as a battery D1, a battery using the positive electrode d2 is referred to as a battery D2, a battery using the positive electrode d3 is referred to as a battery D3, and a battery using the positive electrode d4 is referred to as a battery D4.

ついで、これらの電池C1〜C4およびD1〜D4をそれぞれ用いて、上述と同様に1サイクル目の放電容量と2サイクル目の放電容量を求めた後、1サイクル目の放電容量に対する2サイクル目の放電容量の割合を放電容量維持率(負荷性能)として算出すると、下記の表4に示すような結果となった。また、300サイクル目の放電容量求めた後、1サイクル目の放電容量に対する300サイクル目の放電容量の割合を300サイクル容量維持率(サイクル性能)として算出すると、下記の表4に示すような結果となった。なお、下記の表4には上述した電池A2の結果も併せて示している。   Then, using these batteries C1 to C4 and D1 to D4, respectively, the discharge capacity at the first cycle and the discharge capacity at the second cycle were obtained in the same manner as described above, and then the second cycle with respect to the discharge capacity at the first cycle. When the ratio of the discharge capacity was calculated as the discharge capacity maintenance ratio (load performance), the results shown in Table 4 below were obtained. Further, after determining the discharge capacity at the 300th cycle, the ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle is calculated as the 300 cycle capacity retention rate (cycle performance), and the results shown in Table 4 below are obtained. It became. Table 4 below also shows the results of the battery A2 described above.

Figure 2005203249
Figure 2005203249

上記表4の結果から明らかなように、被覆量が0.1質量%の導電剤被覆活物質β1を用いても、あるいは被覆量が1.0質量%の導電剤被覆活物質β2を用いても、導電剤ペーストγ7を用いた正極c1,d1を備えた電池C1,D1においては、正極c1,d1の表面抵抗が100Ωと大きく、かつサイクル性能が90%と低下していることが分かる。これは、導電剤ペーストγ7はアセチレンブラックの添加量が0.5質量%と少ないために、正極の表面抵抗が増大することに起因して正極c1,d1の導電性が低下し、サイクル性能が低下したと考えられる。   As is clear from the results of Table 4 above, even when the conductive agent-coated active material β1 with a coating amount of 0.1% by mass is used, or the conductive agent-coated active material β2 with a coating amount of 1.0% by mass is used. However, in the batteries C1 and D1 including the positive electrodes c1 and d1 using the conductive agent paste γ7, it can be seen that the surface resistances of the positive electrodes c1 and d1 are as large as 100Ω and the cycle performance is decreased to 90%. This is because the conductive agent paste γ7 has a small addition amount of acetylene black of 0.5% by mass, and therefore the conductivity of the positive electrodes c1 and d1 decreases due to the increase in the surface resistance of the positive electrode, and the cycle performance is reduced. It is thought that it fell.

また、導電剤被覆活物質β1を用いてもあるいは導電剤被覆活物質β2を用いても、導電剤ペーストγ10を用いた正極c4,d4を備えた電池C4,D4においては、正極c4,d4の電解液の吸液時間がいずれも16分に増大するとともに、負荷性能がいずれも88%に低下していることが分かる。これは、導電剤ペーストγ10はアセチレンブラックの添加量が4.0質量%と過剰に多いために、相対的に活物質の充填量が低下して負荷性能が低下し、かつ活物質への迅速な電解液の供給が妨げられたと考えられる。   In addition, in the batteries C4 and D4 including the positive electrodes c4 and d4 using the conductive agent paste γ10, the conductive agent-coated active material β1 or the conductive agent-coated active material β2 is used. It can be seen that the electrolyte absorption time increased to 16 minutes and the load performance decreased to 88%. This is because the conductive agent paste γ10 has an excessively large addition amount of acetylene black of 4.0% by mass, so that the loading amount of the active material is relatively reduced, the load performance is lowered, and the active material is rapidly applied. It is thought that the supply of a proper electrolyte was hindered.

これらに対して、導電剤ペーストγ8,γ9を用いた正極c2,c3およびd2,d3を備えた電池C2,C3およびD2,D3、導電剤ペーストγ2を用いた正極a2を備えた電池A2においては、各正極の表面抵抗が40〜50Ωと小さく、電解液の吸液時間も11〜12分と短く、負荷性能も92〜93%と大きく、かつサイクル性能も95〜96%と向上していることが分かる。以上のことから、導電剤ペースト中の炭素系導電剤としてのアセチレンブラックの添加量は、活物質(LiCoO2)の質量に対して、1.0質量%以上で、3.0質量%以下に規制するのが望ましいということができる。 On the other hand, in the batteries C2, C3 and D2, D3 provided with the positive electrodes c2, c3 and d2, d3 using the conductive agent pastes γ8, γ9, and the battery A2 provided with the positive electrode a2 using the conductive agent paste γ2. The surface resistance of each positive electrode is as small as 40 to 50Ω, the electrolyte absorption time is as short as 11 to 12 minutes, the load performance is as large as 92 to 93%, and the cycle performance is improved to 95 to 96%. I understand that. From the above, the addition amount of acetylene black as a carbon-based conductive agent in the conductive agent paste is 1.0% by mass or more and 3.0% by mass or less with respect to the mass of the active material (LiCoO 2 ). It can be said that regulation is desirable.

上述した表1〜表4の結果を総合すると、以下のようなことが推測できる。即ち、正極活物質粒子の表面の一部を被覆する炭素系導電剤が主に導電性の確保(極板抵抗の低減)を担当し、導電剤ペースト中の炭素系導電剤(固定されていない導電剤)が吸液性、保液性、導電性を高めることを担当する。この結果、これらの導電剤被覆活物質と導電剤ペーストの相乗効果により、負荷性能およびサイクル性能に優れた非水電解質電池を得ることが可能となる。   By summing up the results of Tables 1 to 4 described above, the following can be estimated. That is, the carbon-based conductive agent covering a part of the surface of the positive electrode active material particle is mainly responsible for ensuring conductivity (reducing electrode plate resistance), and the carbon-based conductive agent in the conductive agent paste (not fixed) Conductive agent) is in charge of improving liquid absorption, liquid retention and electrical conductivity. As a result, it is possible to obtain a nonaqueous electrolyte battery excellent in load performance and cycle performance due to the synergistic effect of these conductive agent-coated active material and conductive agent paste.

この場合、活物質の表面の一部を被覆する炭素系導電剤としてのアセチレンブラックの被覆量が多くなると吸液性が低下するようなるので、導電剤の被覆量は活物質の質量に対して1.0質量%以下になるように規制するのが望ましい。また、炭素系導電剤の平均粒径を5μm以下になるようにして均一に分散させた導電剤ペーストを用いると、正極の導電性が向上するので、導電剤ペースト中の炭素系導電剤の平均粒径は5μm以下にするのが望ましい。さらに、表面抵抗が小さく、電解液の吸液性および保液性に優れ、かつ負荷性能およびサイクル性能も向上させるためには、導電剤ペースト中の炭素系導電剤の添加量は、活物質の質量に対して、1.0質量%以上で3.0質量%以下にするのが望ましい。   In this case, as the coating amount of acetylene black as a carbon-based conductive agent that covers a part of the surface of the active material increases, the liquid absorbency decreases. Therefore, the coating amount of the conductive agent is based on the mass of the active material. It is desirable to regulate the amount to 1.0% by mass or less. Moreover, since the conductivity of the positive electrode is improved by using a conductive agent paste that is uniformly dispersed so that the average particle size of the carbon-based conductive agent is 5 μm or less, the average of the carbon-based conductive agent in the conductive agent paste The particle size is desirably 5 μm or less. Furthermore, in order to improve the load performance and cycle performance with a low surface resistance, excellent electrolyte absorption and liquid retention, the amount of carbon-based conductive agent added to the conductive agent paste is It is desirable to set it to 1.0 mass% or more and 3.0 mass% or less with respect to mass.

なお、上述した実施の形態においては炭素系導電剤としてアセチレンブラックを用いる例について説明したが、アセチレンブラック以外の炭素系導電剤としては、ケッチェンブラック、ファーネストブラックのいずれかあるいはこれらの混合物から選択して用いるようにするのが望ましい。   In the above-described embodiment, an example in which acetylene black is used as the carbon-based conductive agent has been described. However, as the carbon-based conductive agent other than acetylene black, either ketjen black, furnace black, or a mixture thereof can be used. It is desirable to select and use.

また、上述した実施の形態においては正極活物質としてコバルト酸リチウム(LiCoO2)を用いる例について説明したが、コバルト酸リチウム(LiCoO2)以外の正極活物質としては、スピネル型マンガン酸リチウム(LiMn24)、ニッケル酸リチウム(LiNiO2)等、種々のリチウム含有遷移金属酸化物を用いることができる。その中でも、LiCo1-xx2(但し、MはMg,V,Cr,Fe,Mn,Ni,Al,Ti,Zrから選択される少なくとも一種で、0≦x<1)で表されるリチウム含有コバルト複合酸化物、Li1+xMn2-yx4(但し、MはB,Mg,Si,V,Cr,Fe,Al,Znから選択される少なくとも一種で、0.54≦((1+x)+z)/(2−y)≦0.62で、−0.15≦x≦0.15,y≦0.5,0≦z≦0.1)で表されるリチウム含有マンガン複合酸化物、LiNix1-x2(但し、MはLi,B,Mg,Co,Mn,Ti,Zr,Cr,Fe,Al,Znから選択される少なくとも一種で、0.3≦x≦0.9)で表されるリチウム含有ニッケル複合酸化物のいずれかあるいはこれらの混合物から選択して用いるようにするのが望ましい。
In the above-described embodiment, an example in which lithium cobaltate (LiCoO 2 ) is used as a positive electrode active material has been described. However, as a positive electrode active material other than lithium cobaltate (LiCoO 2 ), spinel type lithium manganate (LiMn) Various lithium-containing transition metal oxides such as 2 O 4 ) and lithium nickelate (LiNiO 2 ) can be used. Among them, LiCo 1-x M x O 2 (where M is at least one selected from Mg, V, Cr, Fe, Mn, Ni, Al, Ti, Zr, and 0 ≦ x <1). Li 1 + x Mn 2 -y M x O 4 (wherein M is at least one selected from B, Mg, Si, V, Cr, Fe, Al, and Zn; 54 ≦ ((1 + x) + z) / (2-y) ≦ 0.62, lithium represented by −0.15 ≦ x ≦ 0.15, y ≦ 0.5, 0 ≦ z ≦ 0.1) containing manganese composite oxide, LiNi x M 1-x O 2 ( where, M is Li, B, Mg, Co, Mn, Ti, Zr, Cr, Fe, Al, at least one selected from Zn, 0. 3 ≦ x ≦ 0.9) selected from any of the lithium-containing nickel composite oxides or mixtures thereof It is desirable to make use.

Claims (6)

正極活物質と導電剤と結着剤とを備えた非水電解質電池用正極の製造方法であって、
正極活物質粒子の表面に炭素系導電剤を被覆させて導電剤被覆活物質とする活物質作製工程と、
炭素系導電剤を結着剤とともに溶液中に混練・分散させて導電剤ペーストとする導電剤ペースト作製工程と、
前記導電剤被覆活物質と前記導電剤ペーストとを混練・分散させて正極ペーストとする正極ペースト作製工程と、
前記正極ペーストを正極芯体に塗着する活物質塗着工程とを備えたことを特徴とする非水電解質電池用正極の製造方法。
A method for producing a positive electrode for a non-aqueous electrolyte battery comprising a positive electrode active material, a conductive agent, and a binder,
An active material preparation step in which the surface of the positive electrode active material particles is coated with a carbon-based conductive agent to form a conductive agent-coated active material;
A conductive agent paste preparation step in which a carbon conductive agent is kneaded and dispersed in a solution together with a binder to form a conductive agent paste;
A positive electrode paste preparation step of kneading and dispersing the conductive agent-coated active material and the conductive agent paste to form a positive electrode paste;
A method for producing a positive electrode for a non-aqueous electrolyte battery, comprising: an active material application step of applying the positive electrode paste to a positive electrode core.
前記活物質作製工程において機械的応力を加えながら前記正極活物質粒子の表面に前記炭素系導電剤を被覆させるようにしたことを特徴とする請求項1に記載の非水電解質電池用正極の製造方法。   The positive electrode for a nonaqueous electrolyte battery according to claim 1, wherein the carbon-based conductive agent is coated on the surface of the positive electrode active material particles while applying mechanical stress in the active material preparation step. Method. 前記活物質作製工程において前記正極活物質粒子の表面に被覆される前記炭素系導電剤の被覆量は前記正極活物質の質量に対して0.1質量%以上で1.0質量%以下であることを特徴とする請求項1または請求項2に記載の非水電解質電池用正極の製造方法。   The amount of the carbon-based conductive agent coated on the surface of the positive electrode active material particles in the active material preparation step is 0.1% by mass or more and 1.0% by mass or less with respect to the mass of the positive electrode active material. The manufacturing method of the positive electrode for nonaqueous electrolyte batteries of Claim 1 or Claim 2 characterized by the above-mentioned. 前記導電剤ペースト作製工程において前記導電剤ペースト中に分散される前記炭素系導電剤の平均粒径は5.0μm以下であることを特徴とする請求項1から請求項3のいずれかに記載の非水電解質電池用正極の製造方法。   The average particle diameter of the said carbon type electrically conductive agent disperse | distributed in the said electrically conductive agent paste in the said electrically conductive agent paste preparation process is 5.0 micrometers or less, The Claim 1 characterized by the above-mentioned. A method for producing a positive electrode for a non-aqueous electrolyte battery. 前記導電剤ペースト中の前記炭素系導電剤の添加量は前記正極活物質の質量に対して1.0質量%以上で3.0質量%以下であることを特徴とする請求項1から請求項4のいずれかに記載の非水電解質電池用正極の製造方法。   The addition amount of the carbon-based conductive agent in the conductive agent paste is 1.0 mass% or more and 3.0 mass% or less with respect to the mass of the positive electrode active material. 5. A method for producing a positive electrode for a non-aqueous electrolyte battery according to any one of 4 above. 前記請求項1から請求項5のいずれかに記載の製造方法により作製された正極と、負極と、これらの両極を隔離するセパレータと、非水電解質とを備えたことを特徴とする非水電解質電池。
A nonaqueous electrolyte comprising: a positive electrode produced by the manufacturing method according to any one of claims 1 to 5; a negative electrode; a separator that separates both electrodes; and a nonaqueous electrolyte. battery.
JP2004008851A 2004-01-16 2004-01-16 Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery Withdrawn JP2005203249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008851A JP2005203249A (en) 2004-01-16 2004-01-16 Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008851A JP2005203249A (en) 2004-01-16 2004-01-16 Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2005203249A true JP2005203249A (en) 2005-07-28
JP2005203249A5 JP2005203249A5 (en) 2007-02-22

Family

ID=34822055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008851A Withdrawn JP2005203249A (en) 2004-01-16 2004-01-16 Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2005203249A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335325A (en) * 2006-06-16 2007-12-27 Kyushu Univ Cathode active material and battery for non-aqueous electrolyte secondary battery
JP2013084507A (en) * 2011-10-12 2013-05-09 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
US8454925B2 (en) 2006-11-17 2013-06-04 Mitsubishi Heavy Industries, Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method of the same
JP2015005355A (en) * 2013-06-19 2015-01-08 株式会社Gsユアサ Power storage element
JP2015215947A (en) * 2014-05-07 2015-12-03 株式会社カネカ Electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335325A (en) * 2006-06-16 2007-12-27 Kyushu Univ Cathode active material and battery for non-aqueous electrolyte secondary battery
US8454925B2 (en) 2006-11-17 2013-06-04 Mitsubishi Heavy Industries, Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method of the same
JP2013084507A (en) * 2011-10-12 2013-05-09 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
JP2015005355A (en) * 2013-06-19 2015-01-08 株式会社Gsユアサ Power storage element
JP2015215947A (en) * 2014-05-07 2015-12-03 株式会社カネカ Electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3585122B2 (en) Non-aqueous secondary battery and its manufacturing method
JP4237074B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
CN108807959B (en) Secondary battery
JP6128481B2 (en) Nonaqueous electrolyte secondary battery
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
JP2020145034A (en) Manufacturing method of positive electrode slurry, manufacturing method of positive electrode, manufacturing method of all-solid battery, positive electrode, and all-solid battery
CN112751002A (en) Positive plate and lithium ion battery
JPWO2011052122A1 (en) Non-aqueous electrolyte secondary battery current collector, electrode, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP2007141527A (en) Electrode and non-aqueous secondary battery using the same
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JP4821023B2 (en) Positive electrode for lithium secondary battery and lithium ion battery using the same
JP4817505B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the positive electrode
CN111052457B (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2012086186A1 (en) Positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP3996554B2 (en) Lithium secondary battery
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
CN108808006B (en) Negative pole piece and battery
JP2005203249A (en) Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2022220249A1 (en) Polyphenylene sulfide powder for lithium ion battery binder, binder for lithium ion battery negative electrode, slurry for forming lithium ion battery negative electrode mixture layer, lithium ion battery negative electrode, and lithium ion battery
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
JP2005071712A (en) Manufacturing method of positive electrode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070801