[go: up one dir, main page]

JP2005201804A - X-ray stress measuring method and X-ray stress measuring apparatus - Google Patents

X-ray stress measuring method and X-ray stress measuring apparatus Download PDF

Info

Publication number
JP2005201804A
JP2005201804A JP2004009264A JP2004009264A JP2005201804A JP 2005201804 A JP2005201804 A JP 2005201804A JP 2004009264 A JP2004009264 A JP 2004009264A JP 2004009264 A JP2004009264 A JP 2004009264A JP 2005201804 A JP2005201804 A JP 2005201804A
Authority
JP
Japan
Prior art keywords
ray
incident
sample
sensitive
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009264A
Other languages
Japanese (ja)
Inventor
Yoshifumi Hata
良文 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004009264A priority Critical patent/JP2005201804A/en
Publication of JP2005201804A publication Critical patent/JP2005201804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】 1回の測定で迅速かつ高精度なX線での応力測定方法および測定装置を提供する。
【解決手段】 X線源1から出力されたX線の光路上に保持された試料4にX線を入射して、試料から生じる回折X線5を検出する位置感応型X線検出器7を用いたX線応力測定方法であって、試料を透過した回折X線5を位置感応型X線検出器で検出することで試料の残留応力を測定する。測定試料の膜厚を薄くして透過X線で回折X線を測定することにより、基準となる入射X線2も位置感応型X線検出器に記録されるため、回折X線パターンを正確に読み取ることができる。このように回折X線の測定の基準となる入射X線の位置を正確に把握できるため、迅速かつ高精度な応力測定が可能となる。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a rapid and highly accurate X-ray stress measurement method and measurement apparatus by one measurement.
A position sensitive X-ray detector 7 for detecting X-rays 5 generated from a sample by making the X-ray incident on the sample 4 held on the optical path of the X-ray output from the X-ray source 1 is provided. In this X-ray stress measurement method, the residual stress of the sample is measured by detecting the diffracted X-ray 5 transmitted through the sample with a position sensitive X-ray detector. By measuring the diffracted X-rays with transmitted X-rays with a thin film thickness, the reference incident X-ray 2 is also recorded in the position-sensitive X-ray detector. Can be read. As described above, since the position of the incident X-ray that becomes the reference for the measurement of the diffracted X-ray can be accurately grasped, the stress measurement can be performed quickly and highly accurately.
[Selection] Figure 1

Description

この発明は、X線を使用して材料、特に半導体デバイスを構成する配線材料の応力を測定するX線応力測定方法およびX線応力測定装置に関するものである。   The present invention relates to an X-ray stress measurement method and an X-ray stress measurement apparatus for measuring a stress of a material, particularly a wiring material constituting a semiconductor device, using X-rays.

半導体デバイスに使用される配線は、集積度の向上に伴い微細化され、サブミクロンの配線幅で形成される。このような微細配線は、上下層に形成された層間絶縁膜であるシリコン酸化膜に囲まれているため微細配線に大きな応力が発生する。このため、配線の金属原子が応力によって移動し、配線に断線不良が発生する。いわゆるストレスマイグレーションの発生である。このような微細配線の断線不良の発生を防ぐためにX線による配線の応力の測定が試みられている。   Wirings used in semiconductor devices are miniaturized as the degree of integration increases, and are formed with submicron wiring widths. Such a fine wiring is surrounded by a silicon oxide film which is an interlayer insulating film formed in the upper and lower layers, so that a large stress is generated in the fine wiring. For this reason, metal atoms of the wiring move due to stress, and a disconnection failure occurs in the wiring. This is the occurrence of so-called stress migration. In order to prevent the occurrence of such disconnection failure of fine wiring, measurement of wiring stress by X-rays has been attempted.

X線回折法を利用して、金属材料等の表面の残留応力を求めるX線応力測定装置は従来から知られている。最も一般的な応力測定方法としてsin2ψ法が用いられている。 An X-ray stress measuring apparatus for obtaining a residual stress on the surface of a metal material or the like by using an X-ray diffraction method has been conventionally known. The sin 2 ψ method is used as the most general stress measurement method.

しかしsin2ψ法は試料に対するX線の入射角を変化させ、各入射角における特定結晶格子面による回折線の回折角を測定する必要がある。そのため測定に要する時間が長くなる問題がある。 However, in the sin 2 ψ method, it is necessary to change the incident angle of X-rays to the sample and measure the diffraction angle of the diffraction line by the specific crystal lattice plane at each incident angle. Therefore, there is a problem that the time required for measurement becomes long.

そこで1回の測定で試料の応力が測定できる方法が提案されている(例えば特許文献1および2)。これらの方法はX線フィルム、位置感応型X線検出器などの2次元的な記録方式を利用して1回の測定で応力解析に必要なデータを得る方法である。
特開2001−56303号公報 特開平10−48158号公報
In view of this, a method has been proposed in which the stress of the sample can be measured by a single measurement (for example, Patent Documents 1 and 2). These methods are methods for obtaining data necessary for stress analysis in one measurement using a two-dimensional recording method such as an X-ray film, a position sensitive X-ray detector and the like.
JP 2001-56303 A Japanese Patent Laid-Open No. 10-48158

しかしながら、上記のX線応力測定方法では、試料中の結晶格子面で回折して試料表面から反射した回折X線を位置感応型X線検出器などで測定している。反射した回折X線を測定した場合、回折X線の位置を読み取る際の基準点となる入射X線は検出器には記録されないため、基準点が明確でなく測定精度が劣るという問題があった。   However, in the above X-ray stress measurement method, the diffracted X-rays diffracted at the crystal lattice plane in the sample and reflected from the sample surface are measured by a position sensitive X-ray detector or the like. When the reflected diffracted X-rays are measured, incident X-rays that serve as reference points for reading the position of the diffracted X-rays are not recorded in the detector. .

したがって、この発明の目的は、上記課題に鑑みてなされたものであり、1回の測定で迅速かつ高精度なX線でのX線応力測定方法およびX線応力測定装置を提供することである。   Accordingly, an object of the present invention is to provide an X-ray stress measurement method and an X-ray stress measurement apparatus using X-rays that are quick and highly accurate in one measurement. .

上記問題点を解決するためにこの発明の請求項1記載のX線応力測定方法は、X線源から出力されたX線の光路上に保持された試料にX線を入射して、前記試料から生じる回折X線を検出する位置感応型X線検出器を用いたX線応力測定方法であって、前記試料を透過した回折X線を前記位置感応型X線検出器で検出することで前記試料の残留応力を測定する。   In order to solve the above problem, the X-ray stress measurement method according to claim 1 of the present invention is characterized in that an X-ray is incident on a sample held on an optical path of an X-ray output from an X-ray source, and the sample An X-ray stress measurement method using a position-sensitive X-ray detector for detecting diffracted X-rays generated from the sample, wherein the position-sensitive X-ray detector detects the diffracted X-rays transmitted through the sample. Measure the residual stress of the sample.

請求項2記載のX線応力測定方法は、請求項1記載のX線応力測定方法において、前記試料の膜厚が200μm以下である。   The X-ray stress measurement method according to claim 2 is the X-ray stress measurement method according to claim 1, wherein the film thickness of the sample is 200 μm or less.

請求項3記載のX線応力測定方法は、X線源から出力されたX線の光路上に保持された試料にX線を入射して、前記試料から生じる回折X線を検出する位置感応型X線検出器を用いたX線応力測定方法であって、前記試料を透過した前記入射X線の光路上に設けた2枚のスリットの検出強度が最大となる位置関係から前記位置感応型X線検出器に対する前記入射X線の入射角度を求める工程と、前記入射角度から前記位置感応型X線検出器に対して垂直に前記入射X線が入射するように前記位置感応型X線検出器の向きを調整する工程と、前記調整後に前記試料を透過した回折X線を前記位置感応型X線検出器で検出することで前記試料の残留応力を測定する工程とを含む。   The X-ray stress measurement method according to claim 3 is a position-sensitive type in which X-rays are incident on a sample held on the optical path of the X-rays output from the X-ray source and diffracted X-rays generated from the sample are detected. An X-ray stress measurement method using an X-ray detector, wherein the position-sensitive X is determined from a positional relationship in which the detection intensity of two slits provided on the optical path of the incident X-ray transmitted through the sample is maximized. A step of obtaining an incident angle of the incident X-ray with respect to the X-ray detector; and the position-sensitive X-ray detector so that the incident X-ray is incident on the position-sensitive X-ray detector perpendicularly from the incident angle. And a step of measuring the residual stress of the sample by detecting diffraction X-rays transmitted through the sample after the adjustment by the position sensitive X-ray detector.

請求項4記載のX線応力測定装置は、X線源から出力されたX線の光路上に保持された試料にX線を入射して、前記試料から生じる回折X線を位置感応型X線検出器で検出することで前記試料の残留応力を測定するX線応力測定装置であって、前記試料を透過した前記入射X線の光路上に設けた2枚のスリットの検出強度が最大となる位置関係から前記位置感応型X線検出器に対する前記入射X線の入射角度を求め、前記入射角度から前記位置感応型X線検出器に対して垂直に前記入射X線が入射するように前記位置感応型X線検出器の向きを調整する制御機構を備えた。   5. The X-ray stress measuring apparatus according to claim 4, wherein X-rays are incident on a sample held on an optical path of X-rays output from an X-ray source, and diffraction X-rays generated from the sample are converted into position-sensitive X-rays. An X-ray stress measurement apparatus for measuring residual stress of the sample by detecting with a detector, wherein the detected intensity of two slits provided on the optical path of the incident X-ray transmitted through the sample is maximized. An incident angle of the incident X-ray with respect to the position-sensitive X-ray detector is obtained from a positional relationship, and the position is set so that the incident X-ray is perpendicularly incident on the position-sensitive X-ray detector from the incident angle. A control mechanism for adjusting the orientation of the sensitive X-ray detector was provided.

この発明の請求項1記載のX線応力測定方法によれば、試料を透過した回折X線を位置感応型X線検出器で検出することで試料の残留応力を測定するので、測定試料の膜厚を薄くして透過X線で回折X線を測定することにより、基準となる入射X線も位置感応型X線検出器に記録される。このため、回折X線パターンを正確に読み取ることができる。このように、回折X線の測定の基準となる入射X線の位置を正確に把握できるため、迅速かつ高精度な応力測定が可能となる。これによって半導体デバイスを構成する薄膜の応力評価が容易となり、応力を低減した半導体デバイスの製造が可能となり、信頼性の高い半導体デバイスの生産ができる効果がある。   According to the X-ray stress measurement method of the first aspect of the present invention, the residual stress of the sample is measured by detecting the diffracted X-ray transmitted through the sample with the position sensitive X-ray detector. By measuring the diffracted X-rays with the transmitted X-rays while reducing the thickness, the reference incident X-rays are also recorded in the position-sensitive X-ray detector. For this reason, the diffraction X-ray pattern can be read accurately. In this way, since the position of the incident X-ray that becomes the reference for measurement of the diffracted X-ray can be accurately grasped, it is possible to perform stress measurement quickly and with high accuracy. This facilitates the stress evaluation of the thin film constituting the semiconductor device, enables the manufacture of a semiconductor device with reduced stress, and has the effect of producing a highly reliable semiconductor device.

請求項2では、試料の膜厚が200μm以下であるので、透過X線を用いて応力測定が可能となる。   According to the second aspect of the present invention, since the film thickness of the sample is 200 μm or less, the stress can be measured using transmitted X-rays.

この発明の請求項3記載のX線応力測定方法によれば、試料を透過した入射X線の光路上に設けた2枚のスリットの検出強度が最大となる位置関係から位置感応型X線検出器に対する入射X線の入射角度を求める工程と、入射角度から位置感応型X線検出器に対して垂直に入射X線が入射するように位置感応型X線検出器の向きを調整する工程と、調整後に試料を透過した回折X線を位置感応型X線検出器で検出することで試料の残留応力を測定する工程とを含むので、位置感応型X線検出器に垂直に入射X線を入射させることができる。このため、入射X線と回折X線との位置感応型X線検出器上での距離が等しくなることで、正確に回折パターンの読み取りが可能となるため、迅速にかつ高い精度での応力測定が可能となる。これによって半導体デバイスを構成する薄膜の応力評価が容易となり、応力を低減した半導体デバイスの製造が可能となり、信頼性の高い半導体デバイスの生産ができる効果がある。   According to the X-ray stress measurement method of the third aspect of the present invention, the position-sensitive X-ray detection is based on the positional relationship in which the detection intensity of the two slits provided on the optical path of the incident X-ray transmitted through the sample is maximized. Determining the incident angle of the incident X-ray with respect to the detector, adjusting the orientation of the position-sensitive X-ray detector so that the incident X-ray enters the position-sensitive X-ray detector perpendicularly from the incident angle; And measuring the residual stress of the sample by detecting the diffracted X-ray transmitted through the sample with a position-sensitive X-ray detector after adjustment, so that the incident X-ray is perpendicular to the position-sensitive X-ray detector. It can be made incident. Therefore, the distance between the incident X-ray and the diffracted X-ray on the position-sensitive X-ray detector is equalized, so that the diffraction pattern can be read accurately, so that the stress measurement can be performed quickly and with high accuracy. Is possible. This facilitates the stress evaluation of the thin film constituting the semiconductor device, enables the manufacture of a semiconductor device with reduced stress, and has the effect of producing a highly reliable semiconductor device.

この発明の請求項4記載のX線応力測定装置によれば、試料を透過した入射X線の光路上に設けた2枚のスリットの検出強度が最大となる位置関係から位置感応型X線検出器に対する入射X線の入射角度を求め、入射角度から位置感応型X線検出器に対して垂直に入射X線が入射するように位置感応型X線検出器の向きを調整する制御機構を備えたので、回折X線の測定の基準となる入射X線の位置を正確に把握でき、迅速かつ高精度な応力測定が可能となる。また、位置感応型X線検出器が入射X線に対し垂直になるように制御機構で調整することができる。これにより、入射X線と回折X線との位置感応型X線検出器上での距離が等しくなることで、正確に回折パターンの読み取りが可能となるため、迅速にかつ高い精度での応力測定が可能となる。   According to the X-ray stress measuring apparatus of the fourth aspect of the present invention, the position-sensitive X-ray detection is based on the positional relationship in which the detection intensity of the two slits provided on the optical path of the incident X-ray transmitted through the sample is maximized. A control mechanism is provided for determining the incident angle of the incident X-ray with respect to the detector and adjusting the orientation of the position-sensitive X-ray detector so that the incident X-ray is incident on the position-sensitive X-ray detector perpendicularly from the incident angle. Therefore, it is possible to accurately grasp the position of the incident X-ray that is a reference for the measurement of the diffracted X-ray, and it is possible to measure the stress quickly and with high accuracy. The position sensitive X-ray detector can be adjusted by the control mechanism so as to be perpendicular to the incident X-ray. As a result, the distance between the incident X-ray and the diffracted X-ray on the position-sensitive X-ray detector is equalized so that the diffraction pattern can be read accurately, so that the stress measurement can be performed quickly and with high accuracy. Is possible.

この発明の第1の実施形態を図1に基づいて説明する。図1は本発明の第1の実施形態のX線応力測定方法の説明図である。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram of an X-ray stress measurement method according to the first embodiment of the present invention.

図1において1はX線発生装置、2はX線発生装置1から射出された入射X線、3は入射スリット、4は測定試料、5は透過した回折X線、6はX線照射点、7は位置感応型X線検出器、8はパーソナルコンピュータである。本実施形態は、試料4から生じる回折X線5を検出する位置感応型X線検出器7、パーソナルコンピュータ等を備えたX線回折装置を用いたX線応力測定方法である。   In FIG. 1, 1 is an X-ray generator, 2 is an incident X-ray emitted from the X-ray generator 1, 3 is an incident slit, 4 is a measurement sample, 5 is a diffracted X-ray transmitted, 6 is an X-ray irradiation point, 7 is a position sensitive X-ray detector, and 8 is a personal computer. The present embodiment is an X-ray stress measurement method using an X-ray diffractometer equipped with a position sensitive X-ray detector 7 for detecting diffracted X-rays 5 generated from a sample 4, a personal computer, and the like.

すなわち、X線発生装置(X線源)1から射出された入射X線2はスリット3を通じて、X線の光路上に保持された測定試料4に照射される。試料4の特定結晶格子面によって回折X線5が生じる。試料4の膜厚は200μm以下であることが望ましい。このように試料4の膜厚を薄くして、透過した回折X線5を位置感応型X線検出器7で検出することによって試料4の残留応力を測定する。図1において回折X線5は一本の直線で示しているが、X線照射点6を頂点とするコーン状の領域を回折X線5は進行する。このコーン状の回折X線5を位置感応型X線検出器7で検出する。この検出された回折像はパーソナルコンピュータ8へ送られて画像処理などが施され、回折パターンから試料4の残留応力が所定の演算処理によって求められる。実際の応力計算は上記の特許文献1に記載されている計算方法を用いて求めることができる。   That is, the incident X-ray 2 emitted from the X-ray generator (X-ray source) 1 is irradiated through the slit 3 onto the measurement sample 4 held on the optical path of the X-ray. Diffracted X-rays 5 are generated by the specific crystal lattice plane of the sample 4. The film thickness of the sample 4 is desirably 200 μm or less. In this way, the residual stress of the sample 4 is measured by reducing the thickness of the sample 4 and detecting the transmitted diffracted X-ray 5 with the position sensitive X-ray detector 7. In FIG. 1, the diffracted X-ray 5 is shown as a single straight line, but the diffracted X-ray 5 travels in a cone-shaped region having the X-ray irradiation point 6 as a vertex. The cone-shaped diffracted X-ray 5 is detected by a position sensitive X-ray detector 7. The detected diffraction image is sent to the personal computer 8 and subjected to image processing and the like, and the residual stress of the sample 4 is obtained from the diffraction pattern by a predetermined calculation process. The actual stress calculation can be obtained using the calculation method described in Patent Document 1 above.

このように本発明の実施形態のX線応力測定方法では、透過X線を用いているため、回折X線パターンとともに入射X線2も同時に位置感応型X線検出器7に記録されている。このため、正確に回折X線パターンを読み取ることができ、これによって高い精度での応力測定が可能となる。   As described above, in the X-ray stress measurement method according to the embodiment of the present invention, since transmitted X-rays are used, incident X-rays 2 are simultaneously recorded in the position-sensitive X-ray detector 7 together with the diffraction X-ray pattern. For this reason, a diffraction X-ray pattern can be read accurately, and stress measurement can be performed with high accuracy.

次に第1の実施形態の変形例を図2〜図5に基づいて説明する。上記第一の実施形態において、図2に示すようにX線2が位置感応型X線検出器7に垂直に入射していない場合、次のような問題がある。   Next, a modification of the first embodiment will be described with reference to FIGS. In the first embodiment, when the X-ray 2 is not perpendicularly incident on the position sensitive X-ray detector 7 as shown in FIG.

図3に示すとおり、位置感応型X線検出器7に対し垂直に入射X線2が入射している場合、入射X線2と回折X線5a,5bとの位置感応型X線検出器7上での距離10a,10bは等しい。9a,9bは回折角である。しかし、図4に示すとおり入射X線3が位置感応型X線検出器7に対し斜めに入射した場合は、入射X線2と回折X線5a,5bとの位置感応型X線検出器7上での距離11a,11bが等しくならない問題がある。   As shown in FIG. 3, when the incident X-ray 2 is incident perpendicular to the position-sensitive X-ray detector 7, the position-sensitive X-ray detector 7 of the incident X-ray 2 and the diffracted X-rays 5a and 5b is used. The above distances 10a and 10b are equal. 9a and 9b are diffraction angles. However, when the incident X-ray 3 is incident obliquely on the position-sensitive X-ray detector 7 as shown in FIG. 4, the position-sensitive X-ray detector 7 of the incident X-ray 2 and the diffracted X-rays 5a and 5b. There is a problem that the distances 11a and 11b are not equal.

この場合、図5に示すように位置感応型X線検出器7を入射X線2に対し垂直になるようにすれば、入射X線2と回折X線5a,5bとの位置感応型X線検出器7上での距離12a,12bが等しくなる。   In this case, if the position sensitive X-ray detector 7 is made perpendicular to the incident X-ray 2 as shown in FIG. 5, the position sensitive X-ray of the incident X-ray 2 and the diffracted X-rays 5a and 5b. The distances 12a and 12b on the detector 7 are equal.

この発明の第2の実施形態を図6〜図9に基づいて説明する。図6は本発明の第2の実施形態のX線応力測定方法の説明図である。本実施形態は上記の第1の実施形態の課題を解決するものである。   A second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is an explanatory diagram of an X-ray stress measurement method according to the second embodiment of the present invention. This embodiment solves the problem of the first embodiment.

図6において、1〜8の構成は図1の第1の実施形態と同じであり、その説明を省略する。ここで13はスリット、14は位置感応型X線検出器7の向きを調整する調整器(制御機構)である。   In FIG. 6, the configurations 1 to 8 are the same as those in the first embodiment in FIG. Here, 13 is a slit, and 14 is an adjuster (control mechanism) that adjusts the orientation of the position-sensitive X-ray detector 7.

図6に示すように、第2の実施形態では試料4を透過した入射X線2の光路上に設けた2つのスリット13で位置感応型X線検出器7に対する入射X線2の入射角を求め、この入射角から位置感応型X線検出器7に対する入射X線2の入射角が垂直になるように調整器14で位置感応型X線検出器7の向きを調整する。調整後に試料4を透過した回折X線5を位置感応型X線検出器7で検出することで試料4の残留応力を測定する。   As shown in FIG. 6, in the second embodiment, the incident angle of the incident X-ray 2 with respect to the position-sensitive X-ray detector 7 is set by two slits 13 provided on the optical path of the incident X-ray 2 transmitted through the sample 4. The orientation of the position-sensitive X-ray detector 7 is adjusted by the adjuster 14 so that the incident angle of the incident X-ray 2 with respect to the position-sensitive X-ray detector 7 is vertical from this incident angle. The residual stress of the sample 4 is measured by detecting the diffracted X-ray 5 transmitted through the sample 4 after the adjustment by the position sensitive X-ray detector 7.

以下、入射X線2に対して位置感応型X線検出器7を垂直に向ける調整方法について図7〜9を用いて説明する。ここで15は機械的な中心軸と入射X線2とがなす角度である。図7〜9では説明を分かり易くするためにx軸とy軸との縮尺は異なっている。また、本来3次元であるが説明を容易にするため、2次元で説明する。   Hereinafter, an adjustment method for directing the position-sensitive X-ray detector 7 perpendicularly to the incident X-ray 2 will be described with reference to FIGS. Here, 15 is an angle formed by the mechanical central axis and the incident X-ray 2. 7 to 9, the scales of the x axis and the y axis are different for easy understanding. Also, although it is originally three-dimensional, it will be described in two dimensions for ease of explanation.

まず、図7に示すとおりスリット13aのみを光路上に入れ、検出強度が最大になるようにスリット13aの位置を調整する。次に図8に示すように、スリット13bを光路上に入れ、検出強度が最大になるようにスリット13bの位置を調整する。この時の2つのスリット13a,13bの位置関係から入射X線の入射角15を求める。この場合、2つのスリット13a,13bのx軸方向の間隔は300mmであり、スリット13a,13bのy軸方向の差は0.1mmである。これより入射X線2の入射角度15が0.02度であることが分かる。   First, as shown in FIG. 7, only the slit 13a is placed on the optical path, and the position of the slit 13a is adjusted so that the detection intensity becomes maximum. Next, as shown in FIG. 8, the slit 13b is placed on the optical path, and the position of the slit 13b is adjusted so that the detection intensity is maximized. The incident angle 15 of the incident X-ray is obtained from the positional relationship between the two slits 13a and 13b at this time. In this case, the distance between the two slits 13a and 13b in the x-axis direction is 300 mm, and the difference between the slits 13a and 13b in the y-axis direction is 0.1 mm. This shows that the incident angle 15 of the incident X-ray 2 is 0.02 degrees.

続いて図9に示すように位置感応型X線検出器7が入射X線2に対し垂直になるように調整器14で調整する。   Subsequently, as shown in FIG. 9, the position sensitive X-ray detector 7 is adjusted by the adjuster 14 so as to be perpendicular to the incident X-ray 2.

このように本実施形態のX線応力測定装置では、試料を透過した回折X線を測定する際に、位置感応型X線検出器に垂直にX線を入射させることができるので、正確に回折パターンの読み取りが可能となるため、迅速にかつ高い精度での応力測定が可能となる。   As described above, in the X-ray stress measurement apparatus according to the present embodiment, when measuring the diffracted X-ray transmitted through the sample, the X-ray can be vertically incident on the position-sensitive X-ray detector. Since the pattern can be read, the stress can be measured quickly and with high accuracy.

本発明に係るX線応力測定方法およびX線応力測定装置は、回折X線の測定の基準となる入射X線の位置を正確に把握できるため、迅速かつ高精度な応力測定が可能となるものであり、半導体デバイスを構成する配線材料の応力を測定する方法および装置等に有用である。   The X-ray stress measurement method and the X-ray stress measurement apparatus according to the present invention can accurately determine the position of incident X-rays that are the reference for measurement of diffracted X-rays, so that quick and highly accurate stress measurement is possible. It is useful for a method and an apparatus for measuring the stress of a wiring material constituting a semiconductor device.

本発明の第1の実施形態のX線応力測定方法の説明図である。It is explanatory drawing of the X-ray stress measuring method of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例において入射X線が傾いている場合を示す説明図である。It is explanatory drawing which shows the case where the incident X-ray inclines in the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例において入射X線が垂直に位置感応型X線検出器に入射している場合を示す説明図である。It is explanatory drawing which shows the case where the incident X-ray is injecting into the position sensitive X-ray detector perpendicularly in the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例において入射X線が斜めに位置感応型X線検出器に入射している場合を示す説明図である。It is explanatory drawing which shows the case where the incident X-ray injects into the position sensitive X-ray detector diagonally in the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例において入射X線が斜めに位置感応型X線検出器に入射している場合に位置感応型X線検出器の向きの調整についての説明図である。It is explanatory drawing about adjustment of the direction of a position sensitive X-ray detector, when the incident X ray injects into the position sensitive X-ray detector diagonally in the modification of the 1st Embodiment of this invention. 本発明の第2の実施形態のX線応力測定装置の説明図である。It is explanatory drawing of the X-ray stress measuring apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態のX線応力測定方法による調整方法を示す説明図である。It is explanatory drawing which shows the adjustment method by the X-ray stress measuring method of the 2nd Embodiment of this invention. 本発明の第2の実施形態のX線応力測定方法による調整方法を示す説明図である。It is explanatory drawing which shows the adjustment method by the X-ray stress measuring method of the 2nd Embodiment of this invention. 本発明の第2の実施形態のX線応力測定方法による調整方法を示す説明図である。It is explanatory drawing which shows the adjustment method by the X-ray stress measuring method of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 X発生装置
2 入射X線
3 スリット
4 測定試料
5 回折X線
6 X線照射点
7 位置感応型X線検出器
8 パーソナルコンピュータ
9 回折角
10 位置感応型X線検出器上における入射X線と回折X線との距離
11 位置感応型X線検出器上における入射X線と回折X線との距離(入射X線が傾いている場合)
12 位置感応型X線検出器上における入射X線と回折X線との距離(位置感応型X線検出器の傾きを補正した場合)
13 スリット
14 調整器
DESCRIPTION OF SYMBOLS 1 X generator 2 Incident X-ray 3 Slit 4 Measurement sample 5 Diffracted X-ray 6 X-ray irradiation point 7 Position sensitive X-ray detector 8 Personal computer 9 Diffraction angle 10 Incident X-ray on position sensitive X-ray detector Distance from diffracted X-ray 11 Distance between incident X-ray and diffracted X-ray on position-sensitive X-ray detector (when incident X-ray is tilted)
12 Distance between incident X-rays and diffracted X-rays on position-sensitive X-ray detector (when tilt of position-sensitive X-ray detector is corrected)
13 Slit 14 Adjuster

Claims (4)

X線源から出力されたX線の光路上に保持された試料にX線を入射して、前記試料から生じる回折X線を検出する位置感応型X線検出器を用いたX線応力測定方法であって、
前記試料を透過した回折X線を前記位置感応型X線検出器で検出することで前記試料の残留応力を測定することを特徴とするX線応力測定方法。
X-ray stress measurement method using a position-sensitive X-ray detector for detecting X-rays diffracted from the sample by making the X-ray incident on the sample held on the optical path of the X-ray output from the X-ray source Because
An X-ray stress measurement method, comprising: measuring a residual stress of the sample by detecting diffraction X-rays transmitted through the sample with the position sensitive X-ray detector.
前記試料の膜厚が200μm以下である請求項1記載のX線応力測定方法。   The X-ray stress measurement method according to claim 1, wherein the film thickness of the sample is 200 μm or less. X線源から出力されたX線の光路上に保持された試料にX線を入射して、前記試料から生じる回折X線を検出する位置感応型X線検出器を用いたX線応力測定方法であって、
前記試料を透過した前記入射X線の光路上に設けた2枚のスリットの検出強度が最大となる位置関係から前記位置感応型X線検出器に対する前記入射X線の入射角度を求める工程と、
前記入射角度から前記位置感応型X線検出器に対して垂直に前記入射X線が入射するように前記位置感応型X線検出器の向きを調整する工程と、
前記調整後に前記試料を透過した回折X線を前記位置感応型X線検出器で検出することで前記試料の残留応力を測定する工程とを含むX線応力測定方法。
X-ray stress measurement method using a position-sensitive X-ray detector for detecting X-rays diffracted from the sample by making the X-ray incident on the sample held on the optical path of the X-ray output from the X-ray source Because
Obtaining an incident angle of the incident X-ray with respect to the position-sensitive X-ray detector from a positional relationship in which the detection intensity of two slits provided on the optical path of the incident X-ray transmitted through the sample is maximized;
Adjusting the orientation of the position sensitive X-ray detector so that the incident X-ray is incident perpendicularly to the position sensitive X-ray detector from the incident angle;
And measuring the residual stress of the sample by detecting the diffracted X-ray transmitted through the sample after the adjustment by the position sensitive X-ray detector.
X線源から出力されたX線の光路上に保持された試料にX線を入射して、前記試料から生じる回折X線を位置感応型X線検出器で検出することで前記試料の残留応力を測定するX線応力測定装置であって、
前記試料を透過した前記入射X線の光路上に設けた2枚のスリットの検出強度が最大となる位置関係から前記位置感応型X線検出器に対する前記入射X線の入射角度を求め、前記入射角度から前記位置感応型X線検出器に対して垂直に前記入射X線が入射するように前記位置感応型X線検出器の向きを調整する制御機構を備えたX線応力測定装置。
X-rays are incident on a sample held on the optical path of the X-rays output from the X-ray source, and the residual stress of the sample is detected by detecting the diffracted X-rays generated from the sample with a position-sensitive X-ray detector. An X-ray stress measuring device for measuring
An incident angle of the incident X-ray with respect to the position-sensitive X-ray detector is obtained from a positional relationship in which the detection intensity of the two slits provided on the optical path of the incident X-ray transmitted through the sample is maximized, and the incident An X-ray stress measurement apparatus comprising a control mechanism that adjusts the orientation of the position-sensitive X-ray detector so that the incident X-ray is incident perpendicularly to the position-sensitive X-ray detector from an angle.
JP2004009264A 2004-01-16 2004-01-16 X-ray stress measuring method and X-ray stress measuring apparatus Pending JP2005201804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009264A JP2005201804A (en) 2004-01-16 2004-01-16 X-ray stress measuring method and X-ray stress measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009264A JP2005201804A (en) 2004-01-16 2004-01-16 X-ray stress measuring method and X-ray stress measuring apparatus

Publications (1)

Publication Number Publication Date
JP2005201804A true JP2005201804A (en) 2005-07-28

Family

ID=34822358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009264A Pending JP2005201804A (en) 2004-01-16 2004-01-16 X-ray stress measuring method and X-ray stress measuring apparatus

Country Status (1)

Country Link
JP (1) JP2005201804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2349907C1 (en) * 2007-06-14 2009-03-20 Эдуард Авакович Кочаров X-ray method for direct elastic macrostress measurement of polycrystalline material skin and measuring sample for implementation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2349907C1 (en) * 2007-06-14 2009-03-20 Эдуард Авакович Кочаров X-ray method for direct elastic macrostress measurement of polycrystalline material skin and measuring sample for implementation thereof

Similar Documents

Publication Publication Date Title
TWI536014B (en) Method and apparatus for analyzing x-ray diffraction from tilted layers
KR102070263B1 (en) Angle calibration for grazing-incidence x-ray fluorescence (gixrf)
JP5009563B2 (en) Sample inspection method and apparatus
US20180113084A1 (en) Calibration Of A Small Angle X-Ray Scatterometry Based Metrology System
JP2019536057A (en) Full beam measurement of X-ray scatterometry system
CN109073902A (en) Beam shaping slit for small light spot size transmission small angle X ray scattering art
US7511828B2 (en) Three-dimensional shape measuring unit, processing unit, and semiconductor device manufacturing method
TWI650551B (en) Closed loop control of X-ray edge
US20140067316A1 (en) Measuring apparatus, detector deviation monitoring method and measuring method
CN109416330B (en) Hybrid inspection system
JP2008145417A (en) Surface shape measuring device, stress measuring device, surface shape measuring method, and stress measuring method
CN113686907B (en) Transmission X-ray Critical Dimension Characterization of Stack Shift and Tilt of High Aspect Ratio Structures
JP3919775B2 (en) X-ray reflectivity measuring method and apparatus
JP5145854B2 (en) Sample analyzer, sample analysis method, and sample analysis program
JP2005201804A (en) X-ray stress measuring method and X-ray stress measuring apparatus
RU2239178C1 (en) Method for detecting presence of resilient deformations in mono-crystalline plates and device for realization of said method
JP2009222640A (en) Measurement device and measurement method
JP2007258359A (en) Semiconductor device manufacturing method and semiconductor device film forming apparatus
TWI785152B (en) Atomic force microscopy system, method for mapping one or more subsurface structures located in a semiconductor device or for monitoring lithographic parameters in a semiconductor device and use of such an atomic force microscopy system
CN103824798A (en) Automated sample oreintation
JP3607821B2 (en) Inclination angle measuring machine
JP2009276300A (en) Specimen-machining method and specimen-machining program
US10438771B2 (en) Measurement device, calibration method of measurement device, and calibration member
JPH10253320A (en) Position shift amount measuring device
Vogel et al. Measuring techniques for deformation and stress analysis in micro-dimensions

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060523