[go: up one dir, main page]

JP2005200364A - Process for producing n-butenes by isomerization of isobutene - Google Patents

Process for producing n-butenes by isomerization of isobutene Download PDF

Info

Publication number
JP2005200364A
JP2005200364A JP2004009136A JP2004009136A JP2005200364A JP 2005200364 A JP2005200364 A JP 2005200364A JP 2004009136 A JP2004009136 A JP 2004009136A JP 2004009136 A JP2004009136 A JP 2004009136A JP 2005200364 A JP2005200364 A JP 2005200364A
Authority
JP
Japan
Prior art keywords
isobutene
butenes
producing
feedstock
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004009136A
Other languages
Japanese (ja)
Other versions
JP4431407B2 (en
Inventor
Nobuhiro Kimura
信啓 木村
Shinichiro Yanagawa
真一郎 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP2004009136A priority Critical patent/JP4431407B2/en
Publication of JP2005200364A publication Critical patent/JP2005200364A/en
Application granted granted Critical
Publication of JP4431407B2 publication Critical patent/JP4431407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】 イソブテンの異性化反応において、重質物およびコークの生成を抑え、高選択的にn−ブテン類を製造する方法を提供する。
【解決手段】 イソブテンと炭素数1〜10の飽和炭化水素とを含む供給原料を固体酸触媒と接触させ、イソブテンを骨格異性化させることによりn−ブテン類を製造する。供給原料中のイソブテンの濃度が10〜90体積%、供給原料中の前記飽和炭化水素の濃度が10〜90体積%であることが好ましい。また、固体酸触媒がシリカアルミナまたは活性アルミナであることが好ましい。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a method for producing n-butenes with high selectivity by suppressing the formation of heavy substances and coke in the isomerization reaction of isobutene.
An n-butene is produced by bringing a feedstock containing isobutene and a saturated hydrocarbon having 1 to 10 carbon atoms into contact with a solid acid catalyst to skeleton isomerize isobutene. The concentration of isobutene in the feedstock is preferably 10 to 90% by volume, and the concentration of the saturated hydrocarbon in the feedstock is preferably 10 to 90% by volume. The solid acid catalyst is preferably silica alumina or activated alumina.
[Selection figure] None

Description

本発明は、イソブテンの骨格異性化によるn−ブテン類の製造方法に関する。   The present invention relates to a method for producing n-butenes by skeletal isomerization of isobutene.

従来、イソブテンとメタノールとを反応させて得られるメチル−tert−ブチルエーテル(MTBE)のガソリン用オクタン価向上剤としての需要が多かったため、イソブテンの増産を目的として、n−ブテン類からイソブテンへの異性化方法が数多く提案されている。
一方、n−ブテンは、ポリオレフィンの共重合成分等として有用である。また、需要が増大しているプロピレンの増産を目的として、エチレンとn−ブテンとのメタセシス反応によるプロピレン製造に関する研究が盛んに行われており、n−ブテンの需要が増している。そのため、n−ブテンの増産を目的とするイソブテンからn−ブテン類への異性化も重要な反応である。
Conventionally, there has been much demand for methyl-tert-butyl ether (MTBE) obtained by reacting isobutene and methanol as an octane number improver for gasoline. For the purpose of increasing production of isobutene, isomerization of n-butenes to isobutene Many methods have been proposed.
On the other hand, n-butene is useful as a copolymerization component of polyolefin. In addition, for the purpose of increasing the production of propylene for which demand is increasing, research on propylene production by a metathesis reaction between ethylene and n-butene is actively conducted, and the demand for n-butene is increasing. Therefore, isomerization from isobutene to n-butenes for the purpose of increasing production of n-butene is also an important reaction.

イソブテンをn−ブテン類に骨格異性化する方法としては、純粋なイソブテンを用いアルミナの表面を有機ケイ素化合物で前処理した触媒による方法が提案されているが(例えば特許文献1参照)、触媒製造工程において特殊な処理を要するなど工業的に問題がある。
また、アルミニウムと、チタン、タングステン、ジルコニウム、ケイ素、ビスマス及びバリウムのいずれか1種又は2種の元素からなる酸化物と塩素及び/又は弗素を含む触媒を用いてイソブチレンをn−ブテン類に異性化する方法が提案されているが(例えば特許文献2参照)、塩素や弗素を含むことから装置の腐食や環境汚染等の問題がある。
また、触媒としてフェリエライトを用い、7〜20kPaの低い圧力かつ260℃程度の低い温度で、純粋なイソブテンの異性化反応を行う方法が開示されているが(例えば非特許文献1参照)、n−ブテン類の収率が約6%と低く実用性に乏しい。
さらには、MFI型ゼオライト、フェリエライト、アルミナ、フッ化アルミナなどの触媒を用いて、30kPa程度の低い圧力かつ450℃で、純粋なイソブテンからn−ブテン類への異性化反応を検討している例もあるが(例えば非特許文献2参照)、転化率と選択率のどちらか一方が低いために収率が1〜20%程度と低く、工業的に問題となる重質物やコークの生成が避けられず、これらを抑制するための具体的方法は何ら開示されていない。
特開昭51-39605号公報(実施例9) 特開昭59-123538号公報(参考例1〜8) 「ジャーナル・オブ・キャタリシス(Journal of Catalysis)」,(アメリカ),2000年,vol.191,p.1−11 「キャタリシス・トゥデイ(Catalysis Today)」,(オランダ),1998年,vol.44,p.215−222
As a method for skeletal isomerization of isobutene into n-butenes, a method using a catalyst in which the surface of alumina is pretreated with an organosilicon compound using pure isobutene has been proposed (see, for example, Patent Document 1). There are industrial problems such as requiring special treatment in the process.
In addition, isobutylene is isomerized into n-butenes using a catalyst containing aluminum and an oxide composed of any one or two elements of titanium, tungsten, zirconium, silicon, bismuth and barium and chlorine and / or fluorine. However, since chlorine and fluorine are contained, there are problems such as corrosion of the apparatus and environmental pollution.
In addition, a method is disclosed in which ferrilite is used as a catalyst and an isomerization reaction of pure isobutene is performed at a low pressure of 7 to 20 kPa and a low temperature of about 260 ° C. (see, for example, Non-Patent Document 1), n -The yield of butenes is as low as about 6% and is not practical.
Furthermore, we are investigating the isomerization reaction from pure isobutene to n-butenes at a pressure as low as 30 kPa and 450 ° C. using catalysts such as MFI-type zeolite, ferrierite, alumina, and fluorinated alumina. Although there is an example (for example, refer nonpatent literature 2), since either one of a conversion rate and a selectivity is low, a yield is as low as about 1-20%, and the production | generation of the heavy material and coke which are industrially problematic is produced. Inevitably, no specific method for suppressing these is disclosed.
Japanese Patent Laid-Open No. 51-39605 (Example 9) JP 59-123538 A (Reference Examples 1 to 8) “Journal of Catalysis” (USA), 2000, vol.191, p.1-11 “Catalysis Today” (Netherlands), 1998, vol.44, pp.215-222

本発明の目的は、イソブテンの異性化反応において、特殊な処理を施した触媒を用いることなく、重質物およびコークの生成を抑え、高転化率・高選択率で収率よくn−ブテン類を製造する方法を提供することにある。   The object of the present invention is to suppress the formation of heavy substances and coke without using a specially treated catalyst in the isomerization reaction of isobutene, and to produce n-butenes with high conversion and high selectivity and high yield. It is to provide a method of manufacturing.

本発明の第1は、イソブテンと炭素数1〜10の飽和炭化水素とを含む供給原料を固体酸触媒と接触させ、イソブテンを骨格異性化させることによりn−ブテン類を製造する方法である。   The first of the present invention is a method for producing n-butenes by bringing a feedstock containing isobutene and a saturated hydrocarbon having 1 to 10 carbon atoms into contact with a solid acid catalyst, and subjecting isobutene to skeletal isomerization.

本発明の第2は、本発明の第1において、供給原料中のイソブテンの濃度が10〜90体積%であることを特徴とするn−ブテン類の製造方法である。   A second aspect of the present invention is the method for producing n-butenes according to the first aspect of the present invention, wherein the concentration of isobutene in the feedstock is 10 to 90% by volume.

本発明の第3は、本発明の第1または第2において、供給原料中の前記飽和炭化水素の濃度が10〜90体積%であることを特徴とするn−ブテン類の製造方法である。   A third aspect of the present invention is the method for producing n-butenes according to the first or second aspect of the present invention, wherein the concentration of the saturated hydrocarbon in the feedstock is 10 to 90% by volume.

本発明の第4は、上記本発明の第1から第3のいずれかにおいて、飽和炭化水素がブタン類であることを特徴とする記載のn−ブテン類の製造方法である。   A fourth aspect of the present invention is the method for producing n-butenes according to any one of the first to third aspects of the present invention, wherein the saturated hydrocarbon is butanes.

本発明の第5は、上記本発明の第1から第4のいずれかにおいて、固体酸触媒がシリカアルミナまたは活性アルミナであることを特徴とするn−ブテン類の製造方法である。   A fifth aspect of the present invention is the method for producing n-butenes according to any one of the first to fourth aspects of the present invention, wherein the solid acid catalyst is silica alumina or activated alumina.

本発明によれば、イソブテンからn−ブテン類への異性化反応において、特殊な処理を施した触媒を用いることなく、重質物およびコークの生成が抑えられ、高転化率・高選択率で収率よくn−ブテン類を製造し、触媒寿命を向上させることができる。   According to the present invention, in the isomerization reaction from isobutene to n-butenes, the formation of heavy materials and coke can be suppressed without using a specially treated catalyst, and the conversion can be achieved with high conversion and high selectivity. It is possible to efficiently produce n-butenes and improve the catalyst life.

以下、本発明を詳細に説明する。
本発明では、イソブテンを供給原料として骨格異性化反応を行う際、供給原料中に飽和炭化水素を共存させることを特徴とする。イソブテンのみを供給原料とする場合に比べて、重質物およびコークの生成が抑えられ、n−ブテン類の選択性および触媒寿命が向上する。
Hereinafter, the present invention will be described in detail.
In the present invention, when the skeletal isomerization reaction is performed using isobutene as a feedstock, saturated hydrocarbons are allowed to coexist in the feedstock. Compared with the case where only isobutene is used as a feedstock, the formation of heavy substances and coke is suppressed, and the selectivity of n-butenes and the catalyst life are improved.

本発明に用いることができる飽和炭化水素としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサンなど数多くあるが、炭素数が多くなると熱分解による副生物が多くなるため、炭素数1〜10、さらには5以下が好ましい。特に、ナフサ等の石油類の熱分解または接触分解などから生成するC4留分中にイソブテンと共存しているブタン類(n−ブタン、イソブタン)は、特別な操作や装置を必要とせず、分離せずにそのまま用いることができるため好ましい。さらに、イソブタンは高温においてもクラッキングなどを起こしにくいことから、軽質等の副生物を生成しにくく、単離・精製工程が複雑にならないため特に好ましい。   There are many saturated hydrocarbons that can be used in the present invention, such as methane, ethane, propane, butane, pentane, hexane, etc., but as the number of carbons increases, by-products due to thermal decomposition increase, Furthermore, 5 or less is preferable. In particular, butanes (n-butane, isobutane) coexisting with isobutene in the C4 fraction produced from the thermal cracking or catalytic cracking of petroleum such as naphtha do not require any special operation or equipment. This is preferable because it can be used as it is without separation. Furthermore, isobutane is particularly preferable because it hardly causes cracking and the like even at a high temperature, so that by-products such as light are hardly generated and the isolation / purification process does not become complicated.

共存させる飽和炭化水素の量は供給原料中の10〜90体積%が好ましい。10体積%未満では、重質物の副生やコーキングを抑制する効果が低下する。一方、90体積%を超えると、反応効率が低下する。さらに好ましくは40〜80体積%である。供給原料中のイソブテンの濃度は10〜90体積%が好ましい。イソブテンの濃度が高すぎると、重質物およびコークの生成が激しく、n−ブテン類の選択性が低下し、濃度が低すぎると、収率が低くなり生産性が低下するのでいずれも好ましくない。さらに好ましくは20〜60体積%である。
供給原料中に、n−ブテン、プロピレン、ペンテン類等のイソブテン以外の不飽和成分が多いと、該成分による異性化、不均化、重合等の副反応が起こり、効率が低下して好ましくないので、供給原料中の他の不飽和成分の濃度を20体積%以下、さらには10体積%以下に抑制するのが好ましい。また、本発明においては、飽和炭化水素とともに水蒸気を共存させてもよい。
The amount of saturated hydrocarbons to coexist is preferably 10 to 90% by volume in the feedstock. If it is less than 10 volume%, the effect which suppresses the byproduct and coking of a heavy material will fall. On the other hand, when it exceeds 90 volume%, reaction efficiency will fall. More preferably, it is 40-80 volume%. The concentration of isobutene in the feed is preferably 10 to 90% by volume. If the concentration of isobutene is too high, heavy products and coke are severely generated, and the selectivity of n-butenes is lowered. If the concentration is too low, the yield is lowered and the productivity is lowered. More preferably, it is 20-60 volume%.
If there are many unsaturated components other than isobutene such as n-butene, propylene, and pentenes in the feedstock, side reactions such as isomerization, disproportionation, and polymerization are caused by the components, which is not preferable because efficiency is lowered. Therefore, it is preferable to suppress the concentration of other unsaturated components in the feedstock to 20% by volume or less, and further to 10% by volume or less. In the present invention, water vapor may coexist with the saturated hydrocarbon.

本発明で用いる固体酸触媒は、工業的に入手可能なものを使用することができるが、シリカアルミナや活性アルミナが好ましく、特にシリカアルミナが好ましい。それらは使用する際に焼成等の処理をすることが好ましい。シリカアルミナ触媒としては、フェリエライト、MFI型ゼオライト、AEL型ゼオライト、TON型ゼオライト、Y型ゼオライト、モルデナイト、ヒューランダイト、チャバサイト、エリオナイトなどのゼオライト触媒、を例示することができる。これらの触媒は場合によって前処理が行われる。特に好ましくは、細孔径が八員環もしくは十員環のゼオライトであり、さらには八員環と十員環の二次元構造から成るフェリエライトが好ましい。ゼオライトの細孔径が大きいとイソブテンの重合体や環構造をもつ化合物などが容易に入り込みやすくなるため、副生物が多くなりn−ブテン類の選択性が低下する。逆に細孔径が小さすぎるとイソブテンが入り込むことができなくなるため、骨格異性化反応が進行しにくくなる。また、活性アルミナ触媒としては、特にγ-アルミナが好ましい。   As the solid acid catalyst used in the present invention, those commercially available can be used, but silica alumina and activated alumina are preferable, and silica alumina is particularly preferable. They are preferably subjected to a treatment such as firing when used. Examples of the silica alumina catalyst include zeolite catalysts such as ferrierite, MFI-type zeolite, AEL-type zeolite, TON-type zeolite, Y-type zeolite, mordenite, hurlandite, chabasite, and erionite. These catalysts are optionally pretreated. Particularly preferred are zeolites having an eight-membered ring or a ten-membered ring, and ferrierite having a two-dimensional structure of an eight-membered ring and a ten-membered ring is preferred. When the pore diameter of zeolite is large, an isobutene polymer, a compound having a ring structure and the like easily enter, so that by-products increase and the selectivity of n-butenes decreases. On the other hand, if the pore diameter is too small, isobutene cannot enter, so that the skeletal isomerization reaction does not proceed easily. As the active alumina catalyst, γ-alumina is particularly preferable.

イソブテンからn−ブテン類への異性化反応は、逆反応と平衡の関係にあり、平衡に到達すると最大収率となる。平衡組成は温度とともに変化し、高温になるにつれイソブテンの割合は減少しn−ブテン類の割合が増加する。例えば、100℃ではイソブテン: n−ブテン類=74:26であり、600℃ではイソブテン: n−ブテン類=37:63である。
生成するn−ブテン類は、1−ブテン、シス−2−ブテン、トランス−2−ブテンである。これらの生成割合は反応温度での平衡組成によって決まる。反応混合物に含まれるn−ブテン類は、蒸留等の公知の方法により分離することができる。なお、1−ブテンとイソブテンとは沸点が近接しているため、1−ブテンの2−ブテンへの異性化やイソブテンの重合を行うことによって分離することができる。
The isomerization reaction from isobutene to n-butenes is in equilibrium with the reverse reaction, and reaches the maximum yield when equilibrium is reached. The equilibrium composition changes with temperature, and as the temperature increases, the proportion of isobutene decreases and the proportion of n-butenes increases. For example, at 100 ° C., isobutene: n-butenes = 74: 26, and at 600 ° C., isobutene: n-butenes = 37: 63.
The n-butenes produced are 1-butene, cis-2-butene, and trans-2-butene. Their production rate depends on the equilibrium composition at the reaction temperature. The n-butenes contained in the reaction mixture can be separated by a known method such as distillation. Since 1-butene and isobutene have close boiling points, they can be separated by isomerization of 1-butene to 2-butene or polymerization of isobutene.

本発明の骨格異性化反応における反応温度は、300℃〜600℃、好ましくは400〜550℃である。600℃より高温では、平衡に到達しやすく平衡組成におけるn−ブテン類の比率が高くなるが、コークの生成が著しく、触媒の寿命が極端に低下するため好ましくない。また300℃未満では平衡に到達しにくいうえに平衡組成におけるイソブテンの比率が高く、イソブテンダイマーを生成しやすいため、n−ブテン類の収率が低下し好ましくない。   The reaction temperature in the skeletal isomerization reaction of the present invention is 300 ° C to 600 ° C, preferably 400 to 550 ° C. When the temperature is higher than 600 ° C., the equilibrium is easily reached and the ratio of n-butenes in the equilibrium composition becomes high. However, coke formation is remarkable and the life of the catalyst is extremely reduced, which is not preferable. Further, if it is less than 300 ° C., it is difficult to reach equilibrium, and since the ratio of isobutene in the equilibrium composition is high and isobutene dimer is likely to be formed, the yield of n-butenes is undesirably lowered.

反応圧力は、3MPa以下、好ましくは0.5MPa以下、さらに好ましくは0.1MPa以下である。特に大気圧(0.1MPa)が好ましい。高圧にすると、分子同士の衝突頻度が高まり、重質物やコークの生成の要因となり好ましくない。   The reaction pressure is 3 MPa or less, preferably 0.5 MPa or less, more preferably 0.1 MPa or less. In particular, atmospheric pressure (0.1 MPa) is preferable. High pressure is not preferable because the collision frequency between molecules increases, which causes generation of heavy substances and coke.

重量空間速度(WHSV)は、供給原料基準で、0.1〜100h−1、好ましくは0.2〜30h−1、さらに好ましくは0.5〜20 h−1である。WHSVが高い領域では、イソブテンの転化率が低下するため好ましくない。WHSVが低い領域では、イソブテンダイマーが生成しやすく、重質物等の副生物が多くなり、n−ブテン類の選択性が低下するとともにコークが生成しやすくなるため好ましくない。 A weight hourly space velocity (WHSV) is based on the feed, 0.1~100H -1, preferably 0.2~30H -1, more preferably 0.5 to 20 h -1. In the region where WHSV is high, the conversion rate of isobutene decreases, which is not preferable. In a region where WHSV is low, isobutene dimer is likely to be produced, and by-products such as heavy substances are increased, the selectivity of n-butenes is lowered and coke is liable to be produced, which is not preferable.

反応形式は特に限定されず、固定床、移動床、流動床などいずれでもよいが、固定床流通反応式が特に好ましい。   The reaction mode is not particularly limited and may be any of a fixed bed, a moving bed, a fluidized bed, etc., but a fixed bed flow reaction formula is particularly preferable.

[実施例]
以下の実施例1〜6および比較例1〜2のようにして、イソブテンの異性化反応を行い、n−ブテンの製造を行った。結果は、表1にまとめて示した。なお。n−ブテンの組成は、いずれにおいても、1−ブテン/cis−2−ブテン/trans−2−ブテン=約25%/約30%/約45%であった。
[Example]
As in Examples 1 to 6 and Comparative Examples 1 and 2 below, isobutene was isomerized to produce n-butene. The results are summarized in Table 1. Note that. The composition of n-butene was 1-butene / cis-2-butene / trans-2-butene = about 25% / about 30% / about 45% in all cases.

固体酸触媒としてシリカアルミナ系であるZeolist社製のフェリエライト(0.425〜1.0mmに粉砕、500℃で3時間焼成)を長さ60cm、内径10mmの反応管に3.0g充填した固定床流通反応装置に、イソブテン/イソブタン=5/95(体積比)の原料を12g/h、ダウンフローで供給して3時間運転した。反応温度は400℃、圧力は大気圧として、n−ブテン類を製造した。   Fixed bed flow reactor with 60g length and 10mm ID tube packed with Zeolist ferrilite (crushed to 0.425-1.0mm, calcined at 500 ° C for 3 hours), silica alumina based solid acid catalyst. In addition, a raw material of isobutene / isobutane = 5/95 (volume ratio) was supplied at 12 g / h in a down flow and operated for 3 hours. N-butenes were produced at a reaction temperature of 400 ° C. and a pressure of atmospheric pressure.

原料をイソブテン/イソブタン=20/80(体積比)とした他は例1と同様の反応を行った。   The same reaction as in Example 1 was carried out except that the raw material was isobutene / isobutane = 20/80 (volume ratio).

原料をイソブテン/イソブタン=50/50(体積比)とした他は実施例1と同様の反応を行った。   The same reaction as in Example 1 was performed, except that the raw material was isobutene / isobutane = 50/50 (volume ratio).

原料をイソブテン/イソブタン=80/20(体積比)とした他は実施例1と同様の反応を行った。   The same reaction as in Example 1 was performed, except that the raw material was isobutene / isobutane = 80/20 (volume ratio).

原料をイソブテン/n−ブタン=50/50(体積比)とした他は実施例1と同様の反応を行った。   The same reaction as in Example 1 was performed, except that the raw material was isobutene / n-butane = 50/50 (volume ratio).

[比較例1]
原料をイソブテン100%とした他は実施例1と同様の反応を行った。
[Comparative Example 1]
The same reaction as in Example 1 was performed except that the raw material was 100% isobutene.

固体酸触媒としてγ-アルミナ(0.425〜1.0mmに粉砕、500℃で3時間焼成)を長さ60cm、内径10mmの反応管に6.0g充填した固定床流通反応装置に、イソブテン/イソブタン=50/50(体積比)の原料を6g/h、ダウンフローで供給して3時間運転した。反応温度は400℃、圧力は大気圧として、n−ブテン類を製造した。   As a solid acid catalyst, γ-alumina (pulverized to 0.425 to 1.0 mm, calcined at 500 ° C. for 3 hours) was charged into a fixed bed flow reactor filled with 6.0 g in a reaction tube with a length of 60 cm and an inner diameter of 10 mm, and isobutene / isobutane = 50 / A 50 (volume ratio) raw material was supplied at a down flow of 6 g / h and operated for 3 hours. N-butenes were produced at a reaction temperature of 400 ° C. and a pressure of atmospheric pressure.

[比較例2]
原料をイソブテン100%とした他は実施例6と同様の反応を行った。
[Comparative Example 2]
The same reaction as in Example 6 was carried out except that the raw material was 100% isobutene.

表1に示すように、触媒としてフェリエライト(実施例1〜4、比較例1)またはγ―アルミナ(実施例6、比較例2)を使用し、飽和炭化水素を共存させた実施例1〜6と共存させない比較例1、2とでは、n-ブテン収率が同等もしくは改良されているのみならず、C5以上の重質分の生成量、C5以上の重質分の生成量/イソブテンの供給量、コークの生成量およびコークの生成量/イソブテンの供給量・触媒量が著しく改良されていることが明らかである。   As shown in Table 1, Examples 1 to 4 using ferrierite (Examples 1 to 4 and Comparative Example 1) or γ-alumina (Example 6 and Comparative Example 2) as a catalyst and coexisting saturated hydrocarbons were used. In Comparative Examples 1 and 2 not coexisting with No. 6, not only the yield of n-butene is equal or improved, but also the production amount of C5 or more heavy component, the production amount of C5 or more heavy component / isobutene It is apparent that the feed amount, the amount of coke produced, and the amount of coke produced / the amount of isobutene supplied and the amount of catalyst are remarkably improved.

Figure 2005200364
Figure 2005200364

Claims (5)

イソブテンと炭素数1〜10の飽和炭化水素とを含む供給原料を固体酸触媒と接触させ、イソブテンを骨格異性化させることによりn−ブテン類を製造する方法。   A method for producing n-butenes by bringing a feedstock containing isobutene and a saturated hydrocarbon having 1 to 10 carbon atoms into contact with a solid acid catalyst and subjecting isobutene to skeletal isomerization. 供給原料中のイソブテンの濃度が10〜90体積%であることを特徴とする請求項1に記載のn−ブテン類の製造方法。   The method for producing n-butenes according to claim 1, wherein the concentration of isobutene in the feedstock is 10 to 90% by volume. 供給原料中の前記飽和炭化水素の濃度が10〜90体積%であることを特徴とする請求項1または2記載のn−ブテン類の製造方法。   The method for producing n-butenes according to claim 1 or 2, wherein a concentration of the saturated hydrocarbon in the feedstock is 10 to 90% by volume. 前記飽和炭化水素がブタン類であることを特徴とする請求項1から3のいずれかに記載のn−ブテン類の製造方法。   The method for producing n-butenes according to any one of claims 1 to 3, wherein the saturated hydrocarbon is butanes. 固体酸触媒がシリカアルミナまたは活性アルミナであることを特徴とする請求項1から4のいずれかに記載のn−ブテン類の製造方法。   The method for producing n-butenes according to any one of claims 1 to 4, wherein the solid acid catalyst is silica alumina or activated alumina.
JP2004009136A 2004-01-16 2004-01-16 Process for producing n-butenes by isomerization of isobutene Expired - Fee Related JP4431407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009136A JP4431407B2 (en) 2004-01-16 2004-01-16 Process for producing n-butenes by isomerization of isobutene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009136A JP4431407B2 (en) 2004-01-16 2004-01-16 Process for producing n-butenes by isomerization of isobutene

Publications (2)

Publication Number Publication Date
JP2005200364A true JP2005200364A (en) 2005-07-28
JP4431407B2 JP4431407B2 (en) 2010-03-17

Family

ID=34822265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009136A Expired - Fee Related JP4431407B2 (en) 2004-01-16 2004-01-16 Process for producing n-butenes by isomerization of isobutene

Country Status (1)

Country Link
JP (1) JP4431407B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293960B2 (en) 2009-08-17 2012-10-23 Lummus Technology Inc. Process for the production of butadiene
WO2022138841A1 (en) * 2020-12-24 2022-06-30 Eneos株式会社 Method for manufacturing dicyclopentadiene and isoprene
US11993551B2 (en) 2019-01-28 2024-05-28 Linde Gmbh Process and plant for producing alpha olefins

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293960B2 (en) 2009-08-17 2012-10-23 Lummus Technology Inc. Process for the production of butadiene
US8933284B2 (en) 2009-08-17 2015-01-13 Lummus Technology Inc. Process for the production of butadiene
US11993551B2 (en) 2019-01-28 2024-05-28 Linde Gmbh Process and plant for producing alpha olefins
JP7565945B2 (en) 2019-01-28 2024-10-11 リンデ ゲーエムベーハー Method and equipment for producing alpha-olefins
WO2022138841A1 (en) * 2020-12-24 2022-06-30 Eneos株式会社 Method for manufacturing dicyclopentadiene and isoprene
JPWO2022138841A1 (en) * 2020-12-24 2022-06-30
JP7664284B2 (en) 2020-12-24 2025-04-17 Eneos株式会社 Method for producing dicyclopentadiene and isoprene

Also Published As

Publication number Publication date
JP4431407B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP5784647B2 (en) A method for producing propylene by simultaneous dehydration and skeletal isomerization of isobutanol over an acid catalyst followed by a metathesis step
US11242297B2 (en) Multiple-stage catalyst system for self-metathesis with controlled isomerization and cracking
TWI534132B (en) Olefin isomerization and metathesis catalyst
US9254479B2 (en) Process and catalyst for cracking of ethers and alcohols
JP6289607B2 (en) Process for converting paraffin to olefin and catalyst for use therein
JP2013522270A (en) Simultaneous dehydration and skeletal isomerization of isobutanol over acid catalyst
US5523510A (en) Treated bound ferrierite zeolites for skeletal isomerization of n-olefins to iso-olefins
EP2374780A1 (en) Production of propylene via simultaneous dehydration and skeletal isomerisation of isobutanol on acid catalysts followed by metathesis
EP3162763A1 (en) Simultaneous dehydration and skeletal isomerisation of isobutanol on ti-containing zeolite catalysts
EP2684858A2 (en) Method for preparing high purity isobutene using glycolether
US20130261345A1 (en) Production of fuel additives via simultaneous dehydration and skeletal isomerisation of isobutanol on acid catalysts followed by etherification
JP4431407B2 (en) Process for producing n-butenes by isomerization of isobutene
JP5001274B2 (en) Production method of lower olefins under negative pressure
JP4431408B2 (en) Process for producing n-butenes by isomerization of isobutene
KR101839567B1 (en) Isomerazation catalyst of 2-butene and isomerazation method of 2-butene using the same
CA2959460A1 (en) Method and apparatus for producing hydrocarbons
JP2019077637A (en) Method for producing aromatic hydrocarbons

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4431407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees