[go: up one dir, main page]

JP2005199373A - コミュニケーション装置及びコミュニケーション方法 - Google Patents

コミュニケーション装置及びコミュニケーション方法 Download PDF

Info

Publication number
JP2005199373A
JP2005199373A JP2004006791A JP2004006791A JP2005199373A JP 2005199373 A JP2005199373 A JP 2005199373A JP 2004006791 A JP2004006791 A JP 2004006791A JP 2004006791 A JP2004006791 A JP 2004006791A JP 2005199373 A JP2005199373 A JP 2005199373A
Authority
JP
Japan
Prior art keywords
unit
sensor
distributed
certainty factor
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004006791A
Other languages
English (en)
Inventor
Miwako Doi
美和子 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004006791A priority Critical patent/JP2005199373A/ja
Priority to US11/022,778 priority patent/US20050171741A1/en
Publication of JP2005199373A publication Critical patent/JP2005199373A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/165Detection; Localisation; Normalisation using facial parts and geometric relationships
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/254Fusion techniques of classification results, e.g. of results related to same input data
    • G06F18/256Fusion techniques of classification results, e.g. of results related to same input data of results relating to different input data, e.g. multimodal recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manipulator (AREA)

Abstract

【課題】 本発明は、センサ等から検知される周囲情報、及び対話相手との対話内容に応じて確信度を随時更新させることにより、連続した自然な対話をすることができるコミュニケーション装置を提供することを目的とする。
【解決手段】 本発明のコミュニケーション装置は、センサ入力部101からのセンサ情報をセンサ種別情報や属性により対応させて記憶する分散センサ情報DB111と、この分散センサ情報DB111に記憶されているセンサ情報に基づき認識処理を行う分散環境行動処理部102と、この分散環境行動処理部102の認識結果に応じて確信度を付与する確信度付与部103と、分散環境行動処理部102の認識結果と、確信度付与部103が付与した確信度とを分散センサ情報DB111のセンサ情報とを対応させて記憶する分散環境行動DB110とから構成される。
【選択図】 図1

Description

本発明は分散した多種のセンサなどにより取得したセンシング情報から認識した位置や個人認識などの時々刻々変化する確信度をもとに、ユーザにとって自然な状況に応じたコミュニケーション装置に関する。
キーボードやマウスを使って画面上のアイコンやメニューをポインティングすることで操作をおこなうGUI(Graphical User Interface)は、オフィスにおける生産効率向上に大きく貢献した。これに対し、家庭などでキーボードやマウスなどを用いることなく、ジェスチャや自然言語を用いた人間にとって自然な対話を行いたいという要求がある。
この要求にこたえるために、自然言語を用いて質問応答を行うシステムやジェスチャを用いたロボットとの対話システムなどが開発されている。これらの対話システムにおいて、人工知能分野では、人間にとって好ましい対話が行えるように、話題の確からしさや、対話相手である人間の状況認識の確からしさを(それぞれのパラメータの内容は精密には同義ではないが)、確信度として用いる方法がいくつか提案されている。
例えば、ユーザの質問に対して、知識ベースを検索し、回答を作成する際に、知識ベースの検索結果の確信度(尤もらしい確率、パターンマッチングの整合度)を用いるものがある。これらの質問応答システムでは、質問に対して最も確信度が高い回答を見出し、回答文を生成する。ここでは、同一の確信度で回答が見出された場合、どの回答が望まれているのか、人間に質問を投げ返すことが示されている(例えば、非特許文献1を参照)。
また、確信度にあわせて、システム側の押し付け度合いを主導度、大胆度、情報提供度に分けて定義して、回答文生成を制御するシステムも提案されている(例えば、非特許文献2を参照)。確信度が高く、主導度との和、あるいは大胆度との和が1を超えていると、人間に意思決定をゆだねず、システム側が意思決定を行い、逆に確信度が低く、主導度との和が1以下であると、情報提供のみを行うというように、制御を行うものである。
これら従来技術では、確信度を決定するための知識ベースを有する個々の知識ユニットが有する確率などは確定的である。確信度の導出方法に変化があるのは、新しい知識ユニットが加わった時、あるいは対象となる人間の特性にあわせて利用する知識ユニットのドメイン(分野)を変更する時などである。一度変更がなされると、同じ質問に対して、同じ確信度が算出される。
人間同士の自然な対話においては、まったく同じ質問であっても、受け手の専門知識や興味ある分野(ドメイン)、現在の関心事項によって、異なる知識が検索され、回答されるなど、受け手の状況に応じて知識の検索結果の確信度は変化している。これに対し、現状のシステムでは同一の質問文に対しては、同じ確信度になるため、自然な対話が実現できないという問題がある。
さらに、対話の送り手側の人間が同じ質問をしたとしても、送り手側の発声や雑音などの影響で、受け手が異なる質問文として受け取ることがある。あるいは受け手がシステムであるとしても送り手側の発声や雑音の影響や音声認識結果が変化し、システムに与えられるテキストとしての質問文が異なる場合がある。
一方、入力に音声認識を用いる場合には、認識した単語の確からしさを示す確信度を用いることがある。しかし、これらの確信度は、認識した単語を連結した際に、構文としての確からしさとして用いられる。つまり、音声認識の精度は認識結果を得るために利用され、認識結果としての質問文の確からしさとしてのみ用いられている。認識単語の確信度に応じて、その後の対話方式を制御することは行われていない。そのため、自然な対話が実現できないという問題もある。
センサ情報など外部からの刺激情報を評価して、ユーザからの働きかけか否かを判別し、ユーザの働きかけごとに外部刺激を所定のパラメータへ数値化すると共に、当該パラメータに基づいて行動を決定し、決定した行動に基づいてロボット装置の各部位を動作させるようにしたロボットがある(例えば、特許文献1を参照)。しかし、例えばユーザが遠方にいて、ロボットに対して働きかけを行っていない場合には、ロボットが取得する外部刺激となるユーザの影響はパラメータ化されない、つまり確信度として対話制御に用いられない。
特開2002−178282公報 大規模テキスト知識ベースに基づく自動質問応答、電子情報通信学会、信学技法 秘書エージェントのための対話管理とその適応機能、日本人工知能学会第16回全国大会、2002. 福井和広、山口治「形状抽出とパターン照合の組み合わせによる顔特徴点抽出」、電子情報通信学会論文誌、Vol.J80-D-II、 No.8、pp.2170-2177(1997)
上記説明したように、質問文応答などの対話制御に使用されている確信度は、知識データベースに付与されている確定的な確率を用いるために、入力文が同一であるときには、文脈や周囲状況に依存せず、同一の確信度となり、変化のない応答しかできないという問題がある。また、外部刺激を用いるロボットの対話制御においてもユーザが働きかけをしたときのみ外部刺激が取り入れられ、パラメータとして用いられるため、周囲情報を連続して確信度として用いる対話制御を行うことができないという問題がある。さらに、確信度を用いてロボットの対話制御をおこなうものでも、確信度の算出は確定的であり、周囲情報に応じて変化しない。
つまり、確信度を内容や対話相手だけでなく、周囲情報に応じて、変化させる仕組みがないため、連続した対話制御を行うことができないという問題があった。
本発明は、上記問題を解決するものであって、センサ等から検知される周囲情報、及び対話相手との対話内容に応じて確信度を随時更新させることにより、連続した自然な対話をすることができるコミュニケーション装置を提供することを目的とする。
上記目的を達成するために、本発明に係るコミュニケーション装置は、複数センサからのセンサ情報をセンサ種別情報や属性により対応させて記憶する分散センサ記憶部と、前記分散センサ記憶部に記憶されているセンサ情報に基づき認識処理を行う分散環境行動処理部と、前記分散環境行動処理部の認識結果に応じて確信度を付与する確信度付与部と、前記分散環境行動処理部の認識結果と、前記確信度付与部が付与した確信度とを、前記分散センサ記憶部のセンサ情報とを対応させて記憶する分散環境行動記憶部とを備えることを特徴とする。
また、本発明に係るコミュニケーション方法は、分散センサ記憶部により複数センサからのセンサ情報をセンサ種別情報や属性に対応させて記憶し、分散環境行動処理部により前記センサ情報に基づき認識処理を行い、確信度付与部により前記分散環境行動処理部の認識結果に応じて確信度を付与し、分散環境行動記憶部により前記認識結果と前記確信度とを前記分散センサ記憶部のセンサ情報とを対応させて記憶することを特徴とする。
本発明の構成によれば、随時更新される確信度により、ロボットなどが対話を行い、必要な情報を取得して負担なく自然な対話を実現でき、連続した対話制御を行うことができる。
本発明の実施の形態について図面を用いて説明する。図1は実施の形態のコミュニケーション装置の構成概略を示したブロック図である。
コミュニケーション装置は、RF(Radio Frequency)タグ、光センサ、あるいはマイクロフォン(以下マイクと称する)、カメラなどの複数の分散するセンサから構成されるセンサ入力部101と、センサ入力部101から入力されたセンサ情報とその認識結果とを格納する分散環境行動DB(DataBase)110と、センサ入力部101からの情報を音声認識、画像認識、あるいは無線の強度による位置同定などの種々の処理をおこなう分散環境行動処理部102と、センサ入力部101からのセンサ情報あるいは分散環境行動DB110に格納された情報をもとに、確信度を付与する確信度付与部103と、センサ入力部101からの情報にもとづき随時あるいはリアルタイムで分散環境行動DB110に格納された情報および確信度を編集する分散環境行動編集部104と、分散環境行動DB110に格納された情報および確信度をもとに、コミュニケーション制御を行うコミュニケーション制御部105と、コミュニケーション制御部105の制御に基づきユーザに提示するコミュニケーションの生成を行うコミュニケーション生成部106と、コミュニケーション生成部106の生成結果を、ロボットが提示できるメディアに変換する表現メディア変換部107と、表現メディア変換部107の変換結果を提示するコミュニケーション提示部108とから構成されている。
図2は、家庭にセンサ入力部101が複数設置されている様子を示している。家庭に設置されるセンサとしては煙センサ、温度センサ、歪センサ、圧力センサなど種々のものがあるが、ここでは、説明に用いるRFタグ及び光センサ等を用いる位置センサ、カメラ、及びマイクのみを記している。
例えば、1Fの浴室には見守り役のロボットA(201)、2Fの居間には話し相手のロボットB(202)、外部には番犬の役目を果たすロボットC(203)がいる。これらロボットA〜C(201〜203)には、移動する際に必要な障害物を検出するための超音波センサや赤外線センサなどの種々のセンサがついているが、ここでは説明に用いるカメラ、マイク等のセンサのみ記している。
いずれのロボットにも、ヒトの顔かどうか、あるいは見分けた顔で個人認証したり、あるいは顔向きを検出したり、あるいは動物体があるかどうかなどの状況を識別するためカメラ(動画カメラ)2012、2022、2032がついている。カメラ2012、2022、2032は、すべておなじ規格である必要はない。例えば、ロボットC201は監視することが目的であるので、カメラ2032は夜間でも使用できる赤外線カメラ、あるいは高速に移動する動物体を見分けるための60枚/秒以上での撮影ができる高速度撮影カメラを用いることも可能である(通常のカメラは30枚/秒程度)。また、ロボットA(201)やロボットB(203)は、ヒトと対話することが目的なので、ステレオタイプカメラ(2眼)にして距離を見分けるとともに、2眼にすることで、対応するヒトからみると2つの目との対話になるので、安心できるようにすることもある。あるいは、ロボットA201のように子守が役目の場合には、子供と対応するので、耐水性があるカメラなどを用いるようにしてもよい。一つのロボットが複数のカメラを有して、例えば昼間は高照度なので、通常のカメラ、夜間は低照度なので、赤外線カメラと使いわけることも可能である。さらに、カメラの解像度についてもロボット毎に高解像度カメラ、あるいは低解像度カメラにするといった使い分けすることも可能である。省電のために、赤外センサなどと組み合わせて動きがあるときのみ撮像するようにした監視カメラ等を用いるようにしてもよい。このような使い分けなどは、家庭の部屋に設置されているカメラ1011−Bやカメラ1013−Bについても同様である。
例えば、居間に設置されたカメラ1013−Aが撮像した結果は、センサ入力部101からのセンサ情報として、センサの精度とともに蓄積する分散環境行動DB110のうちの分散センサ情報DB111に蓄積される。分散センサ情報DB111に蓄積される情報形式は図3のようになる。
カメラやマイク、その他のセンサすべてに関して、一意に定まっている機械(MAC)アドレスなどのセンサID、センサ名、センサの性能や機能などを参照するときに必要となるので、カタログ参照DBでのID、センサが設置されている場所、センサが取得するデータ種類、データの次元、データの精度、センサデータ取得のサンプリングレート、記録開始日時、取得データの単位、取得したデータのラベルとが冒頭に記述されている。データの精度やデータの単位は、データの次元に応じて記述されている。
続いて<body>と</body>にはさまれた部分にデータ本体が記述されている。この場合、カメラが撮像したデータはたとえば、30フレーム/秒の画像データである。通常のビデオカメラであれば、画像は640画素x480画素の2次元データである。しかし、1枚のフレームは1つのまとまりであるので、データの次元としては1次元で、サンプリングレートは1/30となっている。個々のデータは、たとえば<body>に記述されているように、MPEG2(Motion Picture Expert Group)で圧縮されたファイルとなっており、そのファイル名とそれぞれのファイルの末尾でのタイムスタンプが記述されている。
ここでは、例えばMPEG2ファイルで蓄積しているが、必ずしもこれに限られる必要はない。例えば、MotionJPEG、JPEG2000、avi、MPEG1、MPEG4、あるいはDVなど種々の動画像対応フォーマットがあり、どのようなフォーマットでも適用できる。
ところで、精度は1次元であるので、<accurate-x>のみが記述されていて、ここでは1.0となっている。つまり、カメラを設定したときの状態で撮像が行われていることを示している。この精度は、例えば照度不足なのにフラッシュが使えない、直射日光が直接降り注ぎ逆光になっている、あるいは充電不足等、カメラがカタログ値とおりの性能で撮像できないときには、この精度は1.0より小さな値となる。
また、ロボットA〜C(201〜203)には、ヒトの声で個人認証したり、あるいは動物体などあるかどうかなどの状況を識別するためのマイク2013、2023、2033がついている。マイクついてもカメラと同様に、同一規格のマイクを用いる必要はない。
例えば、2本のマイクを用いることで指向性を高めたマイクアレイを用いて、ある一定範囲の音だけ集音するようにしてもよい。あるいは、省電のために、赤外センサなどと組み合わせて動きがあるときのみ集音するようにした集音マイクを用いることも可能である。このような使い分けなどは、家庭の部屋に設置されているマイク1011−Cやマイク1013−Cについても同様である。
例えば、居間に設置されたマイクロフォン1013−Cが集音した結果は、センサ入力部101からのセンサ情報として、センサの精度とともに蓄積する分散環境行動DB110のうちの分散センサ情報DB111に蓄積される。分散センサ情報DB111に蓄積される情報形式は図4のようになる。
図4の情報形式は、図3の情報形式と同様である。異なっている点は、上述したカメラの場合は、MPEGファイル等であったのに、ここでは音データのフォーマットであるwav形式となっている。例として、wavフォーマットになっているが、かならずしもこれに限られる必要はない。例えばMPEGフォーマット(MP3)など、動画像と同様にどのようなフォーマットであってもよい。
精度は、1次元であるので<accurate-x>のみが記述されていて、ここでは1.0となっている。つまりマイクを設定したときの状態で集音が行われていることを示している。この精度は、例えば充電不足など、マイクがカタログ値とおりの性能で撮像できないときには、この精度は1.0より小さな値になる。
センサとしては、図2にカメラやマイク以外に位置センサ1011−A、1012−A、1013−Aが設置されている。位置センサにはいろいろな形式があるが、ここでは、例えばロボットA〜C(201〜203)、あるいはヒトA〜Dは、RFIDなどの無線タグを持っており、その微弱電波を位置センサ1011−A、1012−A、1013−Aが検知する方式とする。無線タグにも自ら電波を発するアクティブ方式と、自ら電波を発せず、位置センサのゲートに近づいたときに電磁誘導により電波を発生するパッシブ方式とがある。ここでは、アクティブ方式の無線タグをロボットA〜C(201〜203)、あるいはヒトA〜Dのそれぞれが身に付けているとする。ヒトの場合には、たとえば、室内履きなどに無線タグを付けておけば、本人は付けていることを意識せず、負担に感じることはない。但し、室内履きを必ずしも履かないこともあるので、その場合には、ヒトの位置の確信度として、1.0より低い値となる。
居間にある位置センサ1013−Aが検知した結果は、センサ入力部101からのセンサ情報として、センサの精度とともに蓄積する分散環境行動DB110のうちの分散センサ情報DB111に蓄積される。分散センサ情報DB111に蓄積される情報形式は図5のようになる。
図5の情報形式は、図3または図4の情報形式とほぼ同様である。異なっている点は、データ2次元であることと、データが音や画像のように大容量ではないので直接<body>内に記述されていることである。
データとしては、電波を検知した無線タグの番号とそのときの電波強度の2種になっている。無線タグ番号はここでは、わかりやすくするために、ヒトAが付けている無線タグの番号は「XXXヒトA」、ロボットB(202)が付けている無線タグ番号は「XXXロボB」と記述している。一方の電波強度は、位置センサが取得する電波強度を0〜255までの256段階で正規化した時の値となっている。但し、255を表す電波強度が一番強く、最も近い場所に存在し、それに対して低い値ほど遠くなる。電波強度は距離の二乗に反比例するので、256段階は線形ではなく、大きな値ほど範囲が狭く、小さい値ほど広い範囲が含まれる。
図2のように居間にヒトA〜CとロボットB(202)と複数の無線タグが存在する場合、位置センサ1013−Aはすべての無線タグを同時に検知している訳ではなく、順次検知している。よって、図5に示すように、検知した結果は時系列に記述されている。この場合、ヒトBやヒトCは位置センサ1013−Aより遠いところにいるので、電波が弱いために必ず電波が届くわけではない。そのため検知されない場合もあり、図5に示されているように、ヒトAやロボットB(202)が検知される回数の方が多い。また、場合によっては、図5にあるように外にいるロボットC(203)が検知されてしまうこともある。従って、検知した無線タグIDに関しての、精度は1.0以下である。ここでは、このセンサの精度は0.8となっている。
無線タグは、例えばカタログで通信距離10mとなっているときには、最低10mは検知可能ということである。最低10mということは、10m以上電波が届くということであり、事実上40mまで検知可能な場合もある。さらに、実際には、アンテナ取り付け向きなどの電波の届く距離には、個体差がある。そこで、y軸(2次元データのうちの2番目のデータ)の範囲としては、例えば、8〜40mとなっている。最低が8mとなっているのは、10mが最低といっても実際に居間にすえつけた時に計測したデータで最低が8mとなったことを示している。
電波強度Iは
Figure 2005199373
kは係数
rが距離
但し、この場合電波強度Iは256段階となっている。
さらに、位置センサは温度や部屋にいる人数などによって電波の届き方が変動することを考慮して、ここでは距離に関する精度0.6としている。
ここでは、特に触れないが、他のセンサ情報に関しても図3〜図5と同様に、分散センサ情報DB111に蓄積されている。
分散環境行動処理部102は、逐次分散センサ情報DB111に蓄積される情報を読み出し、ヒトとモノの情報にわけ、また適切な認識処理を行い、センサ情報の精度をもとに、確信度付与部103の算出した確信度とあわせて、分散環境行動編集部104により、その結果を、モノにかかわる位置や姿勢、モノの状態(移動中など)を分散環境情報DB112に、ヒトにかかわる位置や姿勢、歩行や安静などの基本的な動作情報を分散状態情報DB113へ書き込む。
さらに、分散センサ情報DB111と分散状態情報DB112、分散状態情報DB113の情報を読み出し、適切な認識処理を行い、読み出したセンサ精度や確信度をもとに、確信度付与部103の算出した確信度とあわせて、分散環境行動編集部104により、睡眠や食事、TV視聴、入浴、料理などの行動を分散行動情報DB114に書き込む。
さらに、分散センサ情報DB111と分散状態情報DB112、分散状態情報DB113、分散行動情報DB114の情報を読み出し、適切な認識処理を行い、読み出したセンサ精度や確信度をもとに、確信度付与部103の算出した確信度とあわせて、分散環境行動編集部104により、ヒトが例えば、TVを視聴している場合には、ヒトがTVサービスを利用していることをヒトとサービスのインタラクションDB115に、ヒトが皿をしまったといったヒトとモノの関わりをヒトとモノのインタラクションDB116に、家族が話しているといったヒトとヒトの関わりをインタラクションDB117に書き込んでいく。
以下に、図3、図4、図5に例示した分散センサ情報をもとに、どのように確信度を算出しつつ、分散環境行動DB110に対して編集を行っていくかを説明する。図6に示したように、分散環境行動処理部102は、存在するヒトが家人かどうかを認証する個人認証部1021と、その動作を認識するための動作認識部1024と、行動を認識するための行動認識部1045と、状況を認識するための状況認識部1046と、モノやサービスなどの環境を認識するための環境認識部1047と、さらにこれらのもととなる認識処理を行う画像認識部1022と、音声認識部1023から構成されている。
ここでは、動作認識部1024と個人認証部1021とが、どのように分散センサ情報DB111のセンサ情報を用いてヒトAの位置と動作が認識され、分散状態情報DB113に記述されたかを図6を用いて説明する。モノにかかわる分散状態情報DB112についても分散状態情報DB113とほぼ同様なので、ここでは分散状態情報DB113についてのみ説明する。
動作認識部1024は、図5にあるような分散センサ情報DB111の位置センサ1013−Aの情報でヒトAの位置が複数回検出されていることを検索する。位置センサ1013−Aは、図5にあるように居間にあるセンサなので検出された位置は居間である。
確信度付与部103は、図5より位置センサ1013−Aの取得精度が、ヒトに関しては0.8、検知する電波強度に関しては0.6であることより、位置センサ1013−Aの取得した位置の確信度は0.8×0.6=0.48と算出する。例えば図7にあるように、その算出された確信度は分散環境行動編集部104により分散状態情報DB112に追加記述される。
ところで、居間にはカメラ1013−Bとマイク1013−Cが設置されており、ロボットB(202)は居間にいるので、ロボットB(202)のカメラ2022とマイク2023もまた、ヒトAにかかわる情報を記録している。ここでは、カメラ1013−Bとカメラ2022において、撮像と同時に個人認識認証を行っている例について述べる。マイク1013−Cとマイク2023についても、同様の処理が行うので、ここでは説明を簡単にするため図7の記述でも省略している。
カメラ1013−Bやカメラ2022にヒトAが撮像されているかどうかは、個人認識認証部1021と画像認識部1022により以下のように調べる。
まず、カメラ1013−Bやカメラ2022が撮像したデータは図3で示したように、ここではMPEG2データ等として蓄えられている。検出した動物体を見極めるために、顔画像の検出を行う。顔領域の抽出は、画像ファイル中から顔の領域、あるいは頭部領域を検出するものである。
ところで、顔領域抽出方法には、いくつかの方法がある。例えば、撮像した画像がカラー画像である場合には、色情報を用いるものがある。具体的には、カラー画像をRGBカラー空間からHSVカラー空間に変換し、色相、彩度などの色情報を用いて、顔領域や頭髪部を、領域分割によって分割する。分割された部分領域を領域併合法などを用いて、検出するものである。別の顔領域抽出方法としては、あらかじめ用意した顔検出のためのテンプレートを、画像中で移動させて相関値を求める。相関値がもっとも高い領域を顔領域として検出するものである。相関値の代わりに、Eigenface法や部分空間法を用いて、距離や類似度を求め、距離が最小あるいは類似度の最大の部分を抽出する方法もある。あるいは、通常のCCDカメラとは別に、近赤外光を投射し、その反射光より、対象の顔にあたる領域を切り出す方法もある。ここでは、上記にて説明した方法だけでなく、他の方法を用いてもよい。
また、抽出された顔領域に対し、目の位置を検出することで、顔がどうかの判断を行う。検出方法は顔検出と同様にパターンマッチングによるものや、動画像中から瞳、鼻孔、口端などの顔特徴点を抽出する方法(例えば、非特許文献3を参照)を用いることができる。ここでも、上記にて説明した方法、あるいは、他の方法のいずれを用いてもよい。
ここで、抽出された顔領域と顔領域から検出された顔部品に基づいて、検出された顔部品の位置と顔領域の位置から、領域を一定の大きさと形状にきりだす。この切り出しの濃淡情報を認識のための特徴量として入力画像より抽出する。検出された顔部品のうち、2つを選択する。この2つの部品を結ぶ線分が、一定の割合で、抽出された顔領域におさまっていれば、これをm画素×n画素の領域に変換し、正規化パターンとする。
図8は、顔部品として両目を選んだ場合の例を示している。図8(a)は、撮像入力手段が撮像した顔画像に、抽出された顔領域を白い矩形で示し、検出された顔部品を白い十字形で重ねて示したものである。図8(b)は抽出された顔領域と顔部品を模式的にあらわしたものである。図8(c)のように右目と左目を結んだ線分の中点からの各部品への距離が一定の割合であれば、顔領域を、濃淡情報に変更し、図8(d)のような、m画素×n画素の濃淡行列情報とする。以降、図8(d)のようなパターンを正規化パターンと呼ぶ。図8(d)のような正規化パターンが切り出されれば、少なくとも顔が検出されたとみなす。
図8(d)の正規化パターンが切り出されたところで、切り出された顔画像が、家族の一員であるかどうかの認証を行う。認証は以下のように行われる。図8(d)の正規化パターンは、図9(a)に示すように、m行×n列に濃淡値が並んでいるが、これをベクトル表現に変換すると、図9(b)に示すようになる。この特徴ベクトルN(kは同一人物に対して得られた何枚目の正規化パターンであるかを示す)を以後の計算に用いる。
認識に使う特徴量はこの特徴ベクトルの相関行列を求め、KL展開をすることで得られる正規直交ベクトルのデータ次元数を下げた部分空間である。相関行列Cは次式であらわされる。
Figure 2005199373
なお、rは同一人物に対して取得した正規化パターンの枚数である。このCを対角化することで、主成分(固有ベクトル)が得られる。固有ベクトルのうち、固有値の大きいものからM個を部分空間として用い、この部分空間が個人認証を行うための辞書にあたる。
個人認証を行うためには、あらかじめ抽出した特徴量を、当該人物のID番号、部分空間(固有地、固有ベクトル、次元数、サンプルデータ数)などのインデクス情報とともに、この辞書に登録しておく必要がある。個人認証部1021は、この辞書に登録されている特徴量と撮像した顔画像から抽出した特徴量とを比較し、照合する(例えば、特許文献3を参照)。
照合の結果、ヒトAが認証されると、図7にあるようにヒトAは居間にいるというその位置に関する情報を、カメラ1013−Bとカメラ2022が取得したセンサIDとともに記述される。
カメラ1013−Bの場合には、ヒトAからの距離が遠いため、顔画像の大きさが小さいため、確信度1とするための面積に対して0.7の割合の面積でしか撮像できていなかった。さらに顔認識の類似度が0.9となっている。もともとのカメラ1013−Bの精度は1.0である。これにより、確信度付与部103は、1.0×0.7×0.9=0.63と確信度は0.63となっている。仮に、カメラ1013−Bの設置環境が変わり、精度が1.0でなくなれば、その分確信度は低下する。他のマイクなどについても同様である。
同様に、ロボットB(202)のカメラ2022は近くにいるため、顔の面積は0.89の割合の面積で取得でき、もともとのカメラ2022の精度は1.0である。また、顔認識の類似度が0.9となっているので、確信度付与部103は、確信度を1.0×0.89×0.9=0.8と算出している。
同様に、動作認識部1024は、カメラ2022の画像を基に、画像認識部1022により、ヒトAの身体の向きと、顔の向きを認識し、図7に示すように確信度とともに記述する。身体の向きや顔の向きの算出は、壁に固定されているカメラ1013−Bのような場合には、カメラをパンしたとしても、図3に示すように自分の座標位置と法線方向はわかっているので、そこから、写っている身体や顔の向きを算出できる。
一方、ロボットについているカメラ2022のような場合には、ロボットが移動するために、カメラ1013−Bのように位置や向きが既知ではない。このような場合には、例えば、部屋の壁に飾られている時計や絵画、あるいは壁際に置かれているTVや、冷蔵庫、電子レンジなどをランドマークとして用いる。
例えば、図10に示すように、ランドマークとなる時計に正対する(この場合は時計が円なので、真円になる)ようにカメラ2022をパンあるいはチルトする。それに対して、細線化などにより、ヒトの身体の輪郭を抽出し、その輪郭を覆う平行四辺形を見出す。この四辺形に対して、法線を導き出せば、ヒトの身体の向きを見出すことができる。同様に顔については、図8に示したように、両目と鼻の穴を結んだ線で作られる四辺形により、顔の向きを見出す。
さらに、カメラ2022の画像をもとに、ヒトAは座位(sitting)であることがわかる。つまり図10にあるように、ランドマークである時計とヒトの顔の位置と大きさからヒトの顔が身長より低い位置にあることはわかる。
以上の例では、カメラで撮像したときに、同時に個人認識認証を行っているが、必ずしもこれに限定されるものではない。例えば、位置センサ1013−Aにより、分散環境行動処理部102は、ヒトAが居間にいることがわかる。ヒトAの存在がわかった時点で、分散環境行動処理部102は、居間にあるすべてのセンサ情報中にヒトAにかかわる同時刻(同じタイムスタンプを有するか、あるいはタイムスタンプを包含する)の情報があるかどうかを検索し、個人認識認証を行うようにするようにしてもよい。ここでは、画像認識による個人認証について説明してきたが、音声認識についても同様に確信度を算出することができる。上述のように、カメラ、マイク、及び位置センサなどのセンサで収集した情報をもとに、随時、タイムスタンプをつけて確信度が算出する。
図11は、センサ情報と動作情報をもとに、行動規則知識をもとに、行動認識部1025が認識したヒトAの行動であり、これらは認識されると、分散環境行動編集部104を経て、分散行動情報DB114に追加書き込みされる。
行動認識部1025が使用する行動規則知識の一例を図12に示す。例えば、”tv_watching”(TV視聴)という行動は、
ユーザが”living”(居間)にいる確信度が0.6以上で、
”sitting”(座っていて)している確信度が0.6以上で、
”tv”(TV)がユーザの視界にある確信度が0.6以上
という条件を満たしているときに、”tv_watching”(TV視聴)と判断される。
同様に”knitting”(編み物)は、
ユーザが”living”(居間)にいる確信度が0.6以上で、
”sitting”(座っていて)している確信度が0.6以上で、
”knit”(編み物)がユーザの視界にある確信度が0.6以上
という条件を満たしているときに、”knitting”(編み物)と判断される。
図7にあるように、2000-11-2T10:40:15 の時点では、位置センサ1013−Aが取得したヒトAの位置は”living”である。しかし、その確信度は0.48で0.6以上という条件に合致しない。
一方、2000-11-2T10:40:16 の時点では、カメラ1013−Bが取得したヒトAの位置は”living”である。しかも、その確信度は0.63で0.6以上という条件に合致する。
さらに、カメラ1013−Bが取得したヒトAの動作は”sitting”である。しかも、その確信度は0.6で0.6以上という条件に合致する。2000-11-2T10:40:16 の時点での顔向きは、カメラ2022が取得した確信度0.6で(px31,py31,pz31)である。この顔向きには、居間のランドマークであるTVが視野内にあることは、例えば、カメラ2022がこの方向をみることで確認できる。つまり、ユーザの視界にTVがあることの確信度が0.6以上である。
上述したように”tv_watching”(TV視聴)のすべての条件に適合したので、行動認識部1025は、図11にあるように、2000-11-2T10:40:16 の時点での行動を”tv_watching”(TV視聴)と判断した。そのときの確信度は、3つの条件の確信度(0.63,0.6,0.6)のうち、最低の0.6となる。
同様に、2000-11-2T10:40:20 の時点では、カメラ2022が取得したヒトAの位置は”living”である。しかも、その確信度は0.8で0.6以上という条件に合致する。さらに、カメラ2022が取得したヒトAの動作は”sitting”である。しかも、その確信度は0.8で0.6以上という条件に合致する。2000-11-2T10:40:20 の時点での顔向きは、カメラ2022が取得した確信度0.8で(px32,py32,pz32)である。しかし、この顔向きは、実は手元の編み物を見ている。この顔向きには、居間のランドマークであるTVが視野内はなく、他のランドマークも存在しないことは、例えば、カメラ2022がこの方向をみることで確認できる。
ここで、行動認識部1025は、行動判断条件であるユーザの視界に何があるかを確認するために、コミュニケーション制御部105に対話要請を送る。コミュニケーション制御部105は、コミュニケーション生成部106にある対話テンプレートを基に対話を生成する。対話テンプレートは、例えば図13のようになっている。
図13では、例えば、条件が埋まっていないfiled nameごとに対話テンプレートが記述されている。ここでは”user-view”が埋まっていないので、コミュニケーション生成部106に渡されたのは”user-view”であるので、そのfieldを埋めるための対話テンプレートが適用される。発声対話としては、「何をみているの」「目の前にあるのは何」「手元には何があるの」「それは何」の<one-of>(いずれかひとつ)が適用されて発話される。選ばれたpromptは、メディア変換部107に渡され音声合成される。その結果は、コミュニケーション提示部108であるロボットB(202)のスピーカー2021より発話される。
その発話に対するヒトAの回答はuser-view.grsmlにより音声認識される。音声認識されたときの精度が”user-view”の確信度となり、この場合は例えば、0.85である。認識された結果、例えば「knit(編み物)」であると”user-view”のfieldが埋まるので、“knitting”のすべての条件が満たされる。そのときの確信度は、3つの条件の確信度(0.8,0.8,0,85)のうち、最低の0.8となる。
また、ロボットB(202)とヒトAはこの対話により、インタラクションが発生している。その結果、例えば、図14のようにヒトとモノのインタラクションDB116に記述される。
ロボットB(202)が発生する対話は、ある規則にのっとっているので、その規則が発生したロボットのIDと、それを出力したデバイスと、実際の内容とが記述される。それに対し、ヒトAの側は特に規則があるわけではないので、認識した結果が認識に使われたマイクのセンサIDとともに記述される。
本実施の形態では、確信度付与部103による確信度の算出は、センサの精度からの積と3条件の最低値との例を示したが、必ずしもこれに限定されるものではない。
例えば、画像による個人認識認証は、取得した画像を学習することでその精度をあげていくことができるが、それと同様に規則など学習することで、その確信度条件設定を変化させることなども可能である。図2に示すようにヒトDがお皿を机上に置いているが、その方向に顔が向いているときには、ヒトDはお皿の位置を意識しているので、確信度は高い。それに対して、その方向を向いていないときには、お皿の位置へ意識は低いので、確信度は低い。このように、画像認識で認識した顔向きにより、確信度を変化させるようにしてもよい。
ここでは、ヒトとモノのインタラクションDB116に記述について説明したが、ヒトとサービスのインタラクションDB115、ヒトとヒトのインタラクションDB117も同様に記述される。
このように、本実施の形態の構成によれば、センサから検知される精度情報、及びヒトとの対話情報から随時確信度を変化させることができるため、この確信度を用いてロボットなどが対話を行い、必要な情報を取得して負担なく自然な対話を実現でき、連続した対話制御を行うことができる。
本発明の実施の形態のコミュニケーション装置の概略構成を示すブロック図。 本発明の実施の形態の実施概要図。 カメラの分散センサ情報DBの記述例を示す図。 マイクの分散センサ情報DBの記述例を示す図。 位置センサの分散センサ情報DBの記述例を示す図。 分散環境行動処理部の詳細構成を示すブロック図。 分散状態情報DBの記述例を示す図。 カメラからの顔検出を説明する図。 顔画像の正規化パターンと特徴ベクトルを説明する図。 身体の向き検出の説明図。 分散行動情報DBの記述例を示す図。 行動導出規則の一例を示す図。 対話テンプレートの一例を示す図。 ヒトとモノのインタラクションDBの記述例を示す図。
符号の説明
101・・・センサ入力部
102・・・分散環境行動処理部
103・・・確信度付与部
104・・・分散環境行動編集部
105・・・コミュニケーション制御部
106・・・コミュニケーション生成部
107・・・表現メディア変換部
108・・・コミュニケーション提示部
110・・・分散環境行動DB
111・・・分散センサ情報DB
112・・・分散状態情報DB(モノ)
113・・・分散状態情報DB(ヒト)
114・・・分散行動情報DB
115・・・ヒトとサービスのインタラクションDB
116・・・ヒトとモノのインタラクションDB
117・・・ヒトとヒトのインタラクションDB
1011−A、1012−A、1013−A・・・位置センサ
1011−B、1013−B・・・カメラ
1011−C、1013−C・・・マイク
1021・・・個人認証部
1022・・・画像認識部
1023・・・音声認識部
1024・・・動作認識部
1025・・・行動認識部
1026・・・状況認識部
1027・・・環境認識部
201、202、203・・・ロボット
2011、2021、2031・・・スピーカー
2012、2022、2032・・・カメラ
2013、2023、2033・・・マイク

Claims (6)

  1. 複数センサからのセンサ情報をセンサ種別情報や属性により対応させて記憶する分散センサ記憶部と、前記分散センサ記憶部に記憶されているセンサ情報に基づき認識処理を行う分散環境行動処理部と、前記分散環境行動処理部の認識結果に応じて確信度を付与する確信度付与部と、前記分散環境行動処理部の認識結果と、前記確信度付与部が付与した確信度とを、前記分散センサ記憶部のセンサ情報とを対応させて記憶する分散環境行動記憶部と、を備えることを特徴とするコミュニケーション装置。
  2. 更に、前記分散センサ記憶部のセンサ情報を読み出し、読み出されたセンサ情報に基づき前記分散環境行動処理部により認識処理した認識結果と、該認識結果に応じて前記確信度付与部により付与される確信度とを、分散環境行動記憶部に追加修正する分散環境行動編集部とを具備することを特徴とする請求項1記載のコミュニケーション装置。
  3. 更に、前記分散環境行動記憶部に記憶されている認識状況と確信度に基づき、コミュニケーション制御をおこなうためのコミュニケーション制御部と、前記コミュニケーション制御部の制御に沿ってコミュニケーションを生成するためのコミュニケーション生成部と、前記コミュニケーション生成部に生成結果を提示するためのコミュニケーション提示部と、を具備することを特徴とする請求項1または請求項2記載のコミュニケーション装置。
  4. 前記分散環境行動処理部は、対象となる人を認証する個人認証部を有し、前記個人認証部の認証結果に応じて前記確信度付与部は確信度を付与することを特徴とする請求項1記載のコミュニケーション装置。
  5. 前記確信度付与部は、前記センサ情報に基づく認識結果として前記センサの精度情報に応じて確信度が付与されることを特徴とする請求項1記載のコミュニケーション装置。
  6. 分散センサ記憶部により複数センサからのセンサ情報をセンサ種別情報や属性に対応させて記憶し、分散環境行動処理部により前記センサ情報に基づき認識処理を行い、確信度付与部により前記分散環境行動処理部の認識結果に応じて確信度を付与し、分散環境行動記憶部により前記認識結果と前記確信度とを前記分散センサ記憶部のセンサ情報とを対応させて記憶することを特徴とするコミュニケーション方法。
JP2004006791A 2004-01-14 2004-01-14 コミュニケーション装置及びコミュニケーション方法 Pending JP2005199373A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004006791A JP2005199373A (ja) 2004-01-14 2004-01-14 コミュニケーション装置及びコミュニケーション方法
US11/022,778 US20050171741A1 (en) 2004-01-14 2004-12-28 Communication apparatus and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006791A JP2005199373A (ja) 2004-01-14 2004-01-14 コミュニケーション装置及びコミュニケーション方法

Publications (1)

Publication Number Publication Date
JP2005199373A true JP2005199373A (ja) 2005-07-28

Family

ID=34805327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006791A Pending JP2005199373A (ja) 2004-01-14 2004-01-14 コミュニケーション装置及びコミュニケーション方法

Country Status (2)

Country Link
US (1) US20050171741A1 (ja)
JP (1) JP2005199373A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166184A (ja) * 2008-01-17 2009-07-30 Saitama Univ ガイドロボット
KR101186192B1 (ko) * 2008-12-08 2012-10-08 한국과학기술원 센서 스크립트를 이용한 센서 정보 인식 장치 및 그 방법과그를 이용한 로봇
CN106909896A (zh) * 2017-02-17 2017-06-30 竹间智能科技(上海)有限公司 基于人物性格与人际关系识别的人机交互系统及工作方法
WO2019026617A1 (ja) * 2017-08-01 2019-02-07 ソニー株式会社 情報処理装置、及び情報処理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460528B2 (ja) * 2004-12-14 2010-05-12 本田技研工業株式会社 識別対象識別装置およびそれを備えたロボット
KR100889026B1 (ko) 2008-07-22 2009-03-17 김정태 이미지를 이용한 검색 시스템
US8590021B2 (en) * 2009-01-23 2013-11-19 Microsoft Corporation Passive security enforcement
FR2947923B1 (fr) * 2009-07-10 2016-02-05 Aldebaran Robotics Systeme et procede pour generer des comportements contextuels d'un robot mobile
US9065955B2 (en) * 2012-10-15 2015-06-23 Fuji Xerox Co., Ltd. Power supply control apparatus, image processing apparatus, non-transitory computer readable medium, and power supply control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268529B2 (ja) * 1990-03-14 2002-03-25 株式会社日立製作所 知識データベース処理システムおよびエキスパートシステム
US6125339A (en) * 1997-12-23 2000-09-26 Raytheon Company Automatic learning of belief functions
US6347261B1 (en) * 1999-08-04 2002-02-12 Yamaha Hatsudoki Kabushiki Kaisha User-machine interface system for enhanced interaction
JP2005044330A (ja) * 2003-07-24 2005-02-17 Univ Of California San Diego 弱仮説生成装置及び方法、学習装置及び方法、検出装置及び方法、表情学習装置及び方法、表情認識装置及び方法、並びにロボット装置
US7349758B2 (en) * 2003-12-18 2008-03-25 Matsushita Electric Industrial Co., Ltd. Interactive personalized robot for home use
US7299110B2 (en) * 2004-01-06 2007-11-20 Honda Motor Co., Ltd. Systems and methods for using statistical techniques to reason with noisy data

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166184A (ja) * 2008-01-17 2009-07-30 Saitama Univ ガイドロボット
KR101186192B1 (ko) * 2008-12-08 2012-10-08 한국과학기술원 센서 스크립트를 이용한 센서 정보 인식 장치 및 그 방법과그를 이용한 로봇
CN106909896A (zh) * 2017-02-17 2017-06-30 竹间智能科技(上海)有限公司 基于人物性格与人际关系识别的人机交互系统及工作方法
CN106909896B (zh) * 2017-02-17 2020-06-30 竹间智能科技(上海)有限公司 基于人物性格与人际关系识别的人机交互系统及工作方法
WO2019026617A1 (ja) * 2017-08-01 2019-02-07 ソニー株式会社 情報処理装置、及び情報処理方法
JPWO2019026617A1 (ja) * 2017-08-01 2020-09-10 ソニー株式会社 情報処理装置、及び情報処理方法
US11430437B2 (en) 2017-08-01 2022-08-30 Sony Corporation Information processor and information processing method
JP7230804B2 (ja) 2017-08-01 2023-03-01 ソニーグループ株式会社 情報処理装置、及び情報処理方法

Also Published As

Publication number Publication date
US20050171741A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
CN110291489B (zh) 计算上高效的人类标识智能助理计算机
US11561621B2 (en) Multi media computing or entertainment system for responding to user presence and activity
KR101803081B1 (ko) 매장 관리 로봇
WO2019085585A1 (zh) 设备控制处理方法及装置
US20180232571A1 (en) Intelligent assistant device communicating non-verbal cues
US20190362134A1 (en) Makeup evaluation system and operating method thereof
CN108198130B (zh) 图像处理方法、装置、存储介质及电子设备
CN116916497B (zh) 基于嵌套态势识别的落地柱形氛围灯光照控制方法及系统
KR20210048272A (ko) 음성 및 영상 자동 포커싱 방법 및 장치
KR20100001928A (ko) 감정인식에 기반한 서비스 장치 및 방법
JP2010224715A (ja) 画像表示システム、デジタルフォトフレーム、情報処理システム、プログラム及び情報記憶媒体
US20120155773A1 (en) Image processing apparatus, image processing method, and storage medium
US10559172B1 (en) Customized notifications based on device characteristics
US11657821B2 (en) Information processing apparatus, information processing system, and information processing method to execute voice response corresponding to a situation of a user
JP7306152B2 (ja) 感情推定装置、感情推定方法、プログラム、情報提示装置、情報提示方法及び感情推定システム
US10791607B1 (en) Configuring and controlling light emitters
CN109986553B (zh) 一种主动交互的机器人、系统、方法及存储装置
CN110309693B (zh) 多层次状态侦测系统与方法
US10917721B1 (en) Device and method of performing automatic audio focusing on multiple objects
JP2005199373A (ja) コミュニケーション装置及びコミュニケーション方法
KR102012719B1 (ko) 전방위 영상 기반 화상회의 발언자 인식 장치 및 방법
US11687049B2 (en) Information processing apparatus and non-transitory computer readable medium storing program
CN111919250B (zh) 传达非语言提示的智能助理设备
JP2005141328A (ja) 予知ロボット装置、予知ロボットの制御方法、及び予知ロボットシステム
JP2018051648A (ja) ロボット制御装置、ロボット、ロボット制御方法、及びプログラム

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021